4. Families of Systems

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Overview of SCS4, Again

- 1. *rigorous description* of requirements
- 2. *what information* should be provided in computer system documentation?
- 3. decomposition into modules
- 4. families of systems

Overview of Chapter 4: Families of Systems

- 4.1 motivation:
 - maintenance problems in telephone switching
- 4.2 families of programs
- 4.3 families of requirements

4.1 Motivation: Maintenance Problems in Telephone Switching

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Overview of Chapter 4.1

- background on telephone switching
- feature interaction problems in telephone switching

History of Telephone Switching Systems

• • •	• • •
1950s	direct distance dialling (DDD)
	No. 5 Crossbar
early 1960s	stored program control switches
1976	Signalling System No. 6
1980	Signalling System No. 7
1984	ISDN
currently	IP telephony

Signalling System No. 7

MAP:	Operations, Maintenance
	and Administration Part
SE:	Application Service
	Element
C:	Transactions Capabilities
SUP:	ISDN User Part
CCP:	Signalling Connection
	Control Part
ITP:	Message Transfer Part
UP:	Telephone User Part

ISDN/DSS1

- Integrated Services Digital Network
- basic service:
 - two B-channels (64 kbit/s, transparent)
 - o one D-channel (16 kbit/s, for signalling, e.g., call setup)
 ▷ protocol: Digital Subscriber Signalling 1 (DSS1)

• supplementary services:

- $\circ\,$ Calling Line Identification Presentation
- Call Forwarding
- Closed User Group
- User-to-User Signalling

^{0...}

• fixed set of supplementary services

Intelligent Network (IN)

- extension of telephone switching systems
- general goals:
 - $\circ\,$ rapid introduction of new services
 - $\circ\,$ broaden range of services
 - multi-vendor environment
 - evolve from (all) existing networks
- standardized by ITU-T
- approach: base service & additional services/features
- new services step by step:

Intelligent Network Conceptual Model (INCM)

- four "levels":
 - service plane
 - global functional plane
 - distributed functional plane
 - physical plane

Global Functional Plane

- service independent building blocks (SIBs)
- service logic ("glue" for SIBs)
- basic call process
 - is special SIB
 - POI: point of initiation (of service)
 - POR: point of return

Services in IN CS-1

- Abbreviated dialling
- Account card calling
- Automatic alternative billing
- Call distribution
- Call forwarding
- Call rerouting distribution
- Completion of call to busy subscriber
- Conference calling
- Credit card calling
- Destination call routing
- Follow-me diversion
- Freephone
- Malicious call identification

- Mass calling
- Originating call screening
- Premium rate
- Security screening
- Selective call forward on busy / don't answer
- Split charging
- Televoting
- Terminating call screening
- Universal access number
- Universal personal telecommunications
- User-defined routing
- Virtual private network

- 25 services
- kind of services limited:
 - mainly for call setup and call tear down
 - $\circ~1$ customer and 1 call leg only, mostly
- set is "political":
 - $\circ\,$ some services very similar
 - ▷ taken from different sources, without proper merge
 - ▷ example: Televoting / Mass Calling

Features in IN CS-1

- Abbreviated dialling
- Attendant
- Authentication
- Authorization code
- Automatic call back
- Call distribution
- Call forwarding
- Call forwarding on BY/DA
- Call gapping
- Call hold with announcement
- Call limiter
- Call logging
- Call queueing
- Call transfer

- Call waiting
- Closed user group
- Consulation calling
- Customer profile management
- Customized recorded announcement
- Customized ringing
- Destinating user prompter
- Follow-me diversion
- Mass calling
- Meet-me conference
- Multi-way calling
- Off net access
- Off net calling
- One number

- Origin dependent routing
- Originating call screening
- Originating user prompter
- Personal numbering
- Premium charging
- Private numbering plan
- Reverse charging
- Split charging
- Terminating call screening
- Time dependent routing
- 38 features

Architecture of Distributed Functional Plane

Basic Call State Model

- originating BCSM
- terminating BCSM

automaton

automaton

Feature Interaction Problems in Telephone Switching

- features work separately, but not together
 hundreds of (proprietary) features
 combinations cannot be checked anymore
- telephone switching

users' expectation high

• feature

about any increment of functionality

Calling Card & Voice Mail

• #-button

• (Bell) calling card:

start new call without re-authorization

(Meridian) voice mail: end of mailbox number, end of password, . . .

• call voice mailbox using calling card??

- $\circ\,$ either early disconnect, or
- calling card feature crippled

• resolution by Bell

• introduce new signal:

"#-button pressed at least 2 sec."

Call Waiting & Call Forward on Busy

• both activated simultaneously

 \circ in busy state

 \circ when another call arrives

• only one can get control

 $\circ\,$ no resolution, except restrictions on features

Originating Call Screening & Area Number Calling

• OCS

 \circ aborts calls to numbers in list

• query Service Data Point (SDP) for list

• ANC

 \circ dialled number + area(calling number) \rightarrow called number

- example: Domino's Pizza
- query SDP for called number

- switch may restrict no. of queries
 - $\circ\,$ protection against infinite loops
 - $\circ\,$ e.g., one query per call
 - $\circ \rightarrow \text{OCS}$ subscription prevents orders for pizza
- solution: one more query??

Calling Number Delivery & Unlisted Number

• conflict of goals

- CND reveals caller
- UN prevents revealing caller
- resolution
 - weaken one feature
 - e.g.: CND delivers only 1-111-1111
 for unlisted number

Call Forwarding & Terminating Call Screening

• CF

 $\circ\,$ B forwards all calls to C

• TCS

 \circ when A is caller, C blocks him

• A calls B: can/should A reach C?

• notion of "caller" is crucial

Informal Feature Interaction Definition in Literature

• *FI:*

the behaviour of a feature is changed by another feature

- not precisely clear what a feature actually is
- not all interactions are undesired

Categorization of Causes

- according to [Cameron et. al.]:
- violation of feature assumptions
 - naming
 - data availability
 - administrative domain
 - call control
 - signalling protocol
- limitations on network support
 - $\circ\,$ limited CPE signalling capabilities
 - limited functionalities for communications among network components

- intrinsic problems in distributed systems
 - $\circ\,$ resource contention
 - \circ personalized instantiation
 - timing and race conditions
 - \circ distributed support of features
 - non-atomic operations

Approaches for Tackling FI

- ignore
- informal
 - \circ filtering
 - \circ heuristics
 - 0...

formal methods

- \circ validation of:
 - \vartriangleright specified properties of the features
 - > general properties of the system
 (free of non-determinism, ...)

- new architectures
 IN
 - Tina, Race, Acts
 - DFC, agents
- better software engineering processes

- in practice: ignore / informal / processes / (architectures)
- formal analysis? yes, but. . .
 - formalization is huge task
 - $\circ\,$ complexity not amenable to tools
 - ▷ "spaghetti code" dependences

Feature Interactions in the Requirements

if requirements complete,
 all FI are (inherently) present in the requirements

Requirements Structuring Problems

- monolithic requirements or single layer of extension
 - \circ ISDN: monolithic
 - $\circ~$ IN: no features on top of features
 - CF & TCS: resolution needs extended, common notion of caller
 - CF & OCS: resolution needs extended, common notion of called user

new services depend implicitly on new concepts

- some new concepts:
 - ▷ conditional call setup blocking
 - ▷ dialled number translation
 - ▷ multi-party call/session
 - required for CF & TCS and for CF & OCS
 - > service session without communication session
 - ▷ distinction user terminal device
 - ▷ distinction user subscriber
 - \triangleright mobility of users and of terminals
 - difficult to specify with network of distributed switches
 - ▷ multiple service providers, billing separately

- concerns of the users' interface are spread out
 - several features asume exclusive access to the user's terminal device (12 buttons + hook)
 - example: calling card & voice mail

Needed: a More Modular Requirements Structure

- centralize responsibility for the users' interface
- a layered architecture
 - $\circ\,$ like in computer communication systems

New Architectures

- current: IN
 - $\circ\,$ currently largest impact on implementations
 - \triangleright see above
 - Jain
 - ▷ enhanced IN-like architecture
 - ▷ developed currently
 - \triangleright in Java
 - ▷ allows multi-party, multi-media calls
 - ▷ Java Call Control (JCC):

call state machine similar to that of the IN

▷ JCC does not handle feature interactions

• future: Tina, Race, and Acts

 \circ Tina

- ▷ radical approach: entirely new architecture
- ▷ strongly based on Open Distributed Processing (ODP) and Corba
- ▷ migration difficult

Race project

- ⊳ Cassiopeia
 - developed open services architectural framework (Osa)
 - many commonalities with Tina
 - focuses on requirements engineering of services
 - tries to take legacy services into account

⊳ Score

- concerned with the methodological aspects of service creation
- detection of undesired service interactions: formal methods, exhaustive simulation applied to small example

- Acts project
 - ▷ followed Race project
 - ▷ application and on evaluation of service architectures
 - ▷ result: a modified architecture

- research: the DFC and the agent architecture
 - Distributed Feature Composition (DFC)
 - ▷ compose features in a pipe-and-filter network
 - ▷ designed to be implementable on a conventional switch
 - \triangleright some new concepts supported, others not
 - \triangleright no layered architecture
 - implemented in AT&T's Eclipse project, which additionally incorporates Voice Over IP
 - Zibman et. al.'s agent architecture
 - ▷ separates several concerns explicitly
 - > restricts itself to narrow-band telephony over a fixed network
 - ▷ Plain Old Telephone Service is represented by a single service agent

Discussion of New Architectures

- IN important step, but not sufficient
- Tina, Race, Acts have most of the interesting concepts, but transition is very expensive
- feature interaction detection is still research

- some undesired service interactions still possible in new architectures
 - \circ a paper checked the FI benchmark for Tina
 - still possible:
 - \triangleright forwarding loop
 - ▷ automatic callback & automatic re-call
 - ▷ calling number delivery & calling number delivery blocking
 - ▷ billing problems for video conference
 - \triangleright . . .
 - $\circ\,$ causes: violated assumptions or conflicting goals
- how to prepare for unanticipated changes??
 o at least encapsulate as much as possible