4. Families of Systems
Overview of SCS4, Again

1. *rigorous description* of requirements
2. *what information* should be provided in computer system documentation?
3. *decomposition* into modules
4. *families* of systems
Overview of Chapter 4: Families of Systems

4.1 motivation:
 maintenance problems in telephone switching

4.2 families of programs

4.3 families of requirements
4.1 Motivation: Maintenance Problems in Telephone Switching
Overview of Chapter 4.1

• background on telephone switching

• feature interaction problems in telephone switching
History of Telephone Switching Systems

<table>
<thead>
<tr>
<th>Decade</th>
<th>System Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950s</td>
<td>direct distance dialling (DDD)</td>
</tr>
<tr>
<td></td>
<td>No. 5 Crossbar</td>
</tr>
<tr>
<td>early 1960s</td>
<td>stored program control switches</td>
</tr>
<tr>
<td>1976</td>
<td>Signalling System No. 6</td>
</tr>
<tr>
<td>1980</td>
<td>Signalling System No. 7</td>
</tr>
<tr>
<td>1984</td>
<td>ISDN</td>
</tr>
<tr>
<td>currently</td>
<td>IP telephony</td>
</tr>
</tbody>
</table>
Signalling System No. 7

OSI model
- application layer
- presentation layer
- session layer
- transport layer
- network layer
- data link layer
- physical layer

SS7 architecture
- OMAP
- ASEs
- TC
- ISUP
- TUP
- SCCP
- MTP Level 3
- MTP Level 2
- MTP Level 1

OMAP: Operations, Maintenance and Administration Part
ASE: Application Service Element
TC: Transactions Capabilities
ISUP: ISDN User Part
SCCP: Signalling Connection Control Part
MTP: Message Transfer Part
TUP: Telephone User Part
ISDN/DSS1

- Integrated Services Digital Network

- basic service:
 - two B-channels (64 kbit/s, transparent)
 - one D-channel (16 kbit/s, for signalling, e.g., call setup)

 ▶ protocol: Digital Subscriber Signalling 1 (DSS1)

- supplementary services:
 - Calling Line Identification Presentation
 - Call Forwarding
 - Closed User Group
 - User-to-User Signalling
 - . . .
• fixed set of supplementary services
Intelligent Network (IN)

- extension of telephone switching systems
- general goals:
 - rapid introduction of new services
 - broaden range of services
 - multi-vendor environment
 - evolve from (all) existing networks
- standardized by ITU-T
- approach: base service & additional services/features
- new services step by step:
Intelligent Network Conceptual Model (INCM)

- four “levels”:
 - service plane
 - global functional plane
 - distributed functional plane
 - physical plane
Global Functional Plane

- service independent building blocks (SIBs)
- service logic ("glue" for SIBs)
- basic call process
 - is special SIB
 - POI: point of initiation (of service)
 - POR: point of return
Services in IN CS-1

- Abbreviated dialling
- Account card calling
- Automatic alternative billing
- Call distribution
- Call forwarding
- Call rerouting distribution
- Completion of call to busy subscriber
- Conference calling
- Credit card calling
- Destination call routing
- Follow-me diversion
- Freephone
- Malicious call identification
- Mass calling
- Originating call screening
- Premium rate
- Security screening
- Selective call forward on busy / don’t answer
- Split charging
- Televoting
- Terminating call screening
- Universal access number
- Universal personal telecommunications
- User-defined routing
- Virtual private network
• 25 services

• kind of services limited:
 ○ mainly for call setup and call tear down
 ○ 1 customer and 1 call leg only, mostly

• set is “political”:
 ○ some services very similar
 ▶ taken from different sources, without proper merge
 ▶ example: Televoting / Mass Calling
Features in IN CS-1

- Abbreviated dialling
- Attendant
- Authentication
- Authorization code
- Automatic call back
- Call distribution
- Call forwarding
- Call forwarding on BY/DA
- Call gapping
- Call hold with announcement
- Call limiter
- Call logging
- Call queueing
- Call transfer
- Call waiting
- Closed user group
- Consulation calling
- Customer profile management
- Customized recorded announcement
- Customized ringing
- Destinating user prompter
- Follow-me diversion
- Mass calling
- Meet-me conference
- Multi-way calling
- Off net access
- Off net calling
- One number
• Origin dependent routing
• Originating call screening
• Originating user prompter
• Personal numbering
• Premium charging
• Private numbering plan
• Reverse charging
• Split charging
• Terminating call screening
• Time dependent routing

• 38 features
Architecture of Distributed Functional Plane

- - - - - voice
- - - - - signalling
- - - - - control
- - - - - management

service management

service control

call control

Basic Call State Model

- originating BCSM
- terminating BCSM
Feature Interaction Problems in Telephone Switching

• features work separately, but not together
 ○ hundreds of (proprietary) features
 ○ combinations cannot be checked anymore

• telephone switching
 ○ users’ expectation high

• feature
 ○ about any increment of functionality
Calling Card & Voice Mail

• #-button
 ○ (Bell) calling card:
 start new call without re-authorization
 ○ (Meridian) voice mail:
 end of mailbox number, end of password, . . .

• call voice mailbox using calling card??
 ○ either early disconnect, or
 ○ calling card feature crippled

• resolution by Bell
 ○ introduce new signal:
 “#-button pressed at least 2 sec.”
Call Waiting & Call Forward on Busy

- both activated simultaneously
 - in busy state
 - when another call arrives
- only one can get control
 - no resolution, except restrictions on features
Originating Call Screening & Area Number Calling

- **OCS**
 - aborts calls to numbers in list
 - query Service Data Point (SDP) for list

- **ANC**
 - dialled number + area(calling number) → called number
 - example: Domino’s Pizza
 - query SDP for called number
• switch may restrict no. of queries
 ○ protection against infinite loops
 ○ e.g., one query per call
 ○ → OCS subscription prevents orders for pizza

• solution: one more query??
Calling Number Delivery & Unlisted Number

• conflict of goals
 ○ CND reveals caller
 ○ UN prevents revealing caller

• resolution
 ○ weaken one feature
 ○ e.g.: CND delivers only 1-111-1111-1111
 for unlisted number
Call Forwarding & Terminating Call Screening

- **CF**
 - B forwards all calls to C

- **TCS**
 - when A is caller, C blocks him

- A calls B: can/should A reach C?

- notion of “caller” is crucial
Informal Feature Interaction Definition in Literature

- **Fi:**

 the behaviour of a feature is changed by another feature

- not precisely clear what a feature actually is

- not all interactions are undesired
Categorization of Causes

according to [Cameron et. al.]:

• violation of feature assumptions
 ○ naming
 ○ data availability
 ○ administrative domain
 ○ call control
 ○ signalling protocol

• limitations on network support
 ○ limited CPE signalling capabilities
 ○ limited functionalities for communications among network components
• intrinsic problems in distributed systems
 ○ resource contention
 ○ personalized instantiation
 ○ timing and race conditions
 ○ distributed support of features
 ○ non-atomic operations
Approaches for Tackling FI

• ignore
• informal
 ◦ filtering
 ◦ heuristics
 ◦ . . .
• formal methods
 ◦ validation of:
 ▶ specified properties of the features
 ▶ general properties of the system
 (free of non-determinism, . . .)
• new architectures
 o IN
 o Tina, Race, Acts
 o DFC, agents

• better software engineering processes

• in practice: ignore / informal / processes / (architectures)

• formal analysis?
 yes, but. . .
 o formalization is huge task
 o complexity not amenable to tools
 ▶ “spaghetti code” dependences
Feature Interactions in the Requirements

- if requirements complete, all FI are (inherently) present in the requirements
Requirements Structuring Problems

- monolithic requirements or single layer of extension
 - ISDN: monolithic
 - IN: no features on top of features
 - CF & TCS: resolution needs extended, common notion of caller
 - CF & OCS: resolution needs extended, common notion of called user
new services depend implicitly on new concepts

- some new concepts:
 - conditional call setup blocking
 - dialled number translation
 - multi-party call/session
 - required for CF & TCS and for CF & OCS
 - service session without communication session
 - distinction user – terminal device
 - distinction user – subscriber
 - mobility of users and of terminals
 - difficult to specify with network of distributed switches
 - multiple service providers, billing separately
• concerns of the users’ interface are spread out
 ○ several features assume exclusive access to the user’s terminal device (12 buttons + hook)
 ○ example: calling card & voice mail
Needed: a More Modular Requirements Structure

- centralize responsibility for the users’ interface
- a layered architecture
 - like in computer communication systems
New Architectures

- **current**: IN
 - currently largest impact on implementations
 ▶ see above
 - Jain
 ▶ enhanced IN-like architecture
 ▶ developed currently
 ▶ in Java
 ▶ allows multi-party, multi-media calls
 ▶ Java Call Control (JCC):
 call state machine similar to that of the IN
 ▶ JCC does not handle feature interactions
future: Tina, Race, and Acts

Tina
- radical approach: entirely new architecture
- strongly based on Open Distributed Processing (ODP) and Corba
- migration difficult

Race project
- Cassiopeia
 - developed open services architectural framework (Osa)
 - many commonalities with Tina
 - focuses on requirements engineering of services
 - tries to take legacy services into account

Score
- concerned with the methodological aspects of service creation
- detection of undesired service interactions:
 - formal methods, exhaustive simulation
 - applied to small example
○ Acts project
 ▶ followed Race project
 ▶ application and on evaluation of service architectures
 ▶ result: a modified architecture
• **research: the DFC and the agent architecture**
 ○ **Distributed Feature Composition (DFC)**
 ▶ compose features in a pipe-and-filter network
 ▶ designed to be implementable on a conventional switch
 ▶ some new concepts supported, others not
 ▶ no layered architecture
 ▶ implemented in AT&T’s Eclipse project, which additionally incorporates Voice Over IP
 ○ **Zibman et. al.’s agent architecture**
 ▶ separates several concerns explicitly
 ▶ restricts itself to narrow-band telephony over a fixed network
 ▶ Plain Old Telephone Service is represented by a single service agent
Discussion of New Architectures

• IN important step, but not sufficient
• Tina, Race, Acts have most of the interesting concepts, but transition is very expensive
• feature interaction detection is still research
• some undesired service interactions still possible in new architectures
 ○ a paper checked the FI benchmark for Tina
 ○ still possible:
 ▶ forwarding loop
 ▶ automatic callback & automatic re-call
 ▶ calling number delivery & calling number delivery blocking
 ▶ billing problems for video conference
 ▶ . . .
 ○ causes: violated assumptions or conflicting goals
• how to prepare for unanticipated changes??
 ○ at least encapsulate as much as possible