
4.3 Families of Requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Text for Chapter 4.3 483

Text for Chapter 4.3

[Bre01b] Bredereke, J. A tool for generating specifications

from a family of formal requirements. In Kim, M., Chin,

B., Kang, S., and Lee, D., editors, “Formal Techniques for

Networked and Distributed Systems”, pp. 319–334. Kluwer

Academic Publishers (Aug. 2001).

A tool for families of CSP-OZ specifications.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 4.3 484

Additional Background for Chapter 4.3

[Bre02] Bredereke, J. Maintaining telephone switching

software requirements. IEEE Commun. Mag. 40(11),

104–109 (Nov. 2002).

Telephone switching system structure problems and

solutions.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 4.3 485

[Zav01] Zave, P. Requirements for evolving systems: A

telecommunications perspective. In “5th IEEE Int’l

Symposium on Requirements Engineering”, pp. 2–9. IEEE

Computer Society Press (2001).

Feature-oriented descriptions and “feature engineering” in

telephone switching.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 4.3 486

[Mil98] Miller, S. P. Specifying the mode logic of a flight

guidance system in CoRE and SCR. In “Second Workshop

on Formal Methods in Software Practice”, Clearwater

Beach, Florida, USA (4–5 Mar. 1998).

Application of the CoRE approach to an auto-pilot.

[Bre00b] Bredereke, J. genFamMem 2.0 Manual – a

Specification Generator and Type Checker for Families of

Formal Requirements. University of Bremen (Oct. 2000).

URL http://www.tzi.de/˜brederek/genFamMem/.

Definition of CSP-OZ language extension and manual for

the genFamMem tool.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 4.3 487

[Bre00a] Bredereke, J. Families of formal requirements in

telephone switching . In Calder, M. and Magill, E., editors,

“Feature Interactions in Telecommunications and Software

Systems VI”, pp. 257–273, Amsterdam (May 2000). IOS

Press.

Families of CSP-OZ specifications.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 4.3 488

[Bre00d] Bredereke, J. Specifying features in requirements

using CSP-OZ . In Gilmore, S. and Ryan, M., editors,

“Proc. of Workshop on Language Constructs for

Describing Features”, pp. 87–88, Glasgow, Scotland

(15–16 May 2000). ESPRIT Working Group 23531 –

Feature Integration in Requirements Engineering.

Families of CSP-OZ specifications.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 4.3 489

[Bre00c] Bredereke, J. Hierarchische Familien formaler

Anforderungen. In Grabowski, J. and Heymer, S., editors,

“Formale Beschreibungstechniken für verteilte Systeme –

10. GI/ITG-Fachgespräch”, pp. 31–40, Lübeck, Germany

(June 2000). Shaker Verlag, Aachen, Germany.

Families of CSP-OZ specifications, ordered hierarchically.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 4.3 490

[Bre01a] Bredereke, J. Ein Werkzeug zum Generieren von

Spezifikationen aus einer Familie formaler Anforderungen.

In Fischer, S. and Jung, H. W., editors, “Formale

Beschreibungstechniken – 11. GI/ITG-Fachgespräch”,

Bruchsal, Germany (June 2001). URL http://www.i-u.de/

fbt2001/.

A tool for families of CSP-OZ specifications.

[Bre99] Bredereke, J. Modular, changeable requirements for

telephone switching in CSP-OZ . Tech. Rep. IBS-99-1,

University of Oldenburg, Oldenburg, Germany (Oct. 1999).

Case study with families of CSP-OZ specifications.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 4.3 491

[Bre98] Bredereke, J. Requirements specification and design

of a simplified telephone network by Functional

Documentation. CRL Report 367, McMaster University,

Hamilton, Ontario, Canada (Dec. 1998).

Case study with families of Parnas tables.

[Kat93] Katz, S. A superimposition control construct for

distributed systems. ACM Trans. Prog. Lang. Syst. 15(2),

337–356 (Apr. 1993).

Seminal paper on superimposition.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 4.3 492

[BrSc02] Bredereke, J. and Schlingloff, B.-H. An automated,

flexible testing environment for UMTS . In Schieferdecker,

I., König, H., and Wolisz, A., editors, “Testing of

Communicating Systems XIV – Application to Internet

Technologies and Services”, pp. 79–94. Kluwer Academic

Publishers (Mar. 2002).

Families of CSP test specifications.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Overview of Chapter 4.3 493

Overview of Chapter 4.3

• feature-oriented description

• the CoRE method

• families of CSP-OZ specifications

• families of CSP test specifications

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Focus on Requirements 494

Focus on Requirements

• motivation:
◦ all feature interaction problems

already (implicitly) present in requirements

◦ many “formal methods” support single product only

� how to integrate family support into method?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Feature-Oriented Description in Telephone Switching 495

Feature-Oriented Description
in Telephone Switching

• base description plus separate feature descriptions

• attraction: behavioural “modularity”
◦ easy change of system behaviour

◦ make any change by just adding a new feature description

◦ never change existing descriptions

• emphasizes individual features
◦ makes them explicit

• de-emphasizes feature interactions
◦ makes them implicit in the feature composition operator

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Feature-Oriented Description in Telephone Switching 496

• not all feature interactions are bad
◦ feature-oriented description relies on the good ones

• example: busy treatments
◦ B1 and B2 both enabled, B2 higher priority

◦ B1 not applied, despite its stand-alone description

◦ behavioural “modularity”:

add new busy treatments without changing existing ones

• most feature-oriented descriptions still informal
◦ behavioural “modularity” and formality do not combine easily

� behavioural “modularity”: don’t answer some questions now

� formality: answer all questions now

◦ proposed composition operators / approaches often do not scale

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Feature-Oriented Description in Telephone Switching 497

• IP telephony:
◦ highly complex new services

◦ services still viewed as stand-alone

◦ undesired feature interactions will haunt us soon

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Feature-Oriented Descriptions and Common Abstractions 498

Feature-Oriented Descriptions
and Common Abstractions

• modules need common abstractions/assumptions
◦ module: now in the sense of this lecture

◦ common abstraction/assumption: true for all family members

• rapid innovation, legacy systems, too many players:

hard to limit the domain

• without domain limits: no common abstractions

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Performing Incremental Specification Formally 499

Performing Incremental Specification Formally

• standard means:

stepwise refinement

• step:
1. extend behaviour or 2. impose constraints
◦ example 1.: add another potential event to a state

◦ example 2.: specify the order of two events

• interesting properties preserved by step
◦ example 1.: all old events remain possible

� no deadlock in this state

◦ example 2.: no harmful event added

� all safety properties preserved

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Non-Monotonous Changes 500

Non-Monotonous Changes

• telephone switching:
new features change the behaviour
◦ of base system, or

◦ of other features

• example: call forwarding
◦ stops to connect to dialled number

� restricts base system behaviour

and

◦ starts connecting to forwarded-to number

� extends base system behaviour

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Formal Support for Feature Specification 501

Formal Support for Feature Specification

• considerable research effort

on feature composition operators

• FIREworks project
(Feature Interactions in Requirements Engineering)
◦ various feature operators proposed and investigated

• “feature-oriented programming”

• based on the superimposition idea by Katz

• analytical complexity:

too big for tools for real systems

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Superimposition 502

Superimposition

• by Katz [Kat93]

• approach:
◦ base system

◦ textual increments

◦ composition operator

• problem:
◦ increments have defined interface,

base system has not

◦ increment can invalidate arbitrary assumptions about base system

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The CoRE Method 503

The CoRE Method

• based on four-variable model and SCR

• groups the variables into classes

• developed during the early 1990’s

• no explicit family support, but maybe a good base for it

• no formal syntax and semantics

• no tool support

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Families of CSP-OZ Specifications 504

Families of CSP-OZ Specifications

key ideas:

• maintain all variants together
◦ generate specific member automatically as necessary

• document information needed for changes
◦ dependence of requirements

◦ what is the core of a feature

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Constraint-Oriented Specification 505

Constraint-Oriented Specification

• features closely interrelated
◦ most refer to mode of connection

◦ user interface: few, shared lexical events

� system cannot be sliced by controlled events

• incrementally impose partial, self-contained constraints

• composition by logical conjunction

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Formalism CSP-OZ 506

The Formalism CSP-OZ

• CSP-OZ demo: one very simple telephone demo

• CSP-OZ class inheritance for incremental constraints

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Case Study on Telephone Switching Requirements 507

Case Study on Telephone Switching
Requirements

• black box specification of telephone switching

• attempt to incorporate new concepts

• details: see [Bre99]

papers: see [Bre01b, Bre01a, Bre00c, Bre00a, Bre00a]

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Grouping Classes into Features 508

Grouping Classes into Features

the chapters of the requirements document:
1. Introduction
2. feature UserSpace
3. feature BasicConnection
4. feature VoiceChannel
5. familymember SpecificationA
6. feature ScreeningBase
7. feature BlackListOfDevices
8. familymember SpecificationB
9. feature BlackListOfUsers

10. feature FollowHumanConnectionForwarding
11. familymember SpecificationC
12. feature TransferUserRoleToAnotherHuman
13. familymember SpecificationD

... ...
Indices / Bibliography

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Feature Construct 509

The Feature Construct

• feature UserSpace spec

• feature BasicConnection

• familymember SpecificationB

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Generating Family Members From a Family Document 510

Generating Family Members
From a Family Document

S13 S23 S33 S43 S13 S23 S43S12 S22 S32 S42 S22 S42

McMa Mb
members
family

F1 F2 F3 F4

S11 S21 S31 S41 S11 S41

member
family

F1 F2

Mc

F4features

sections

family of requirements

sections

requirements specification

features

extension of CSP−OZ plain CSP−OZ

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Result of Family Member Generation 511

Result of Family Member Generation
1. Introduction
2. feature UserSpace
3. feature BasicConnection
4. feature VoiceChannel
5. feature ScreeningBase
6. feature BlackListOfDevices
7. familymember SpecificationB

Indices / Bibliography

• family member composition chapter:

part replaced spec

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Controlled Non-Monotonous Changes 512

Controlled Non-Monotonous Changes

• feature ScreeningBase spec

• feature BlackListOfUsers

• feature FollowHumanConnectionForwarding

• familymember SpecificationC

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Avoiding Feature Interactions 513

Avoiding Feature Interactions

• introduced three notions explicitly
◦ “telephone device”

◦ “human”

◦ “user role”

• consequences:
◦ black list above:

screens user roles, not devices

◦ another black list feature:

screens devices, not user roles

◦ also two kinds of call forwarding

• no feature interaction screening–forwarding anymore

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Detecting Feature Interactions by Type-Checks 514

Detecting Feature Interactions
by Type Checks

• type rules: part of the family extension of CSP-OZ

• syntactic rules → syntactic errors:
◦ “remove” an “essential” class

◦ feature of needed class not included

◦ feature of “removed” class not included

◦ another class still needs “removed” class

• heuristic syntactic rules → syntactic warnings:
◦ class is marked both essential and changeable

◦ class is “removed” twice

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Feature Interactions Detected in Case Study 515

Feature Interactions Detected in Case Study

• no interactions between TCS and CF
◦ no type errors detectable

• but other problems problems present:
◦ both screening features “remove” the same section

◦ type rules: warning!

◦ manual inspection: contradiction

• resolution: another feature

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Documenting Dependences 516

Documenting Dependences

• uses-relation for requirements:
◦ use of previous definition

◦ reliance on previous constraint

• documented by:
◦ Z’s section “parents” construct

◦ class inheritance (mapped to Z sections)

• if no relationship: identifiers out of scope

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Sections of Feature UserSpace 517

Sections of Feature UserSpace
d
aV

in
ci

V
2

.1

UserSpaceFeature

UserOneHumanUserRolNoRem UserNoRem

UserEss

DevAssocNoRem

HumNoRem

DevNoRem

DeviceEss

HumanEss

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Hierarchy of Features of SpecificationC 518

Hierarchy of Features of SpecificationC
da

V
in

ci
V

2
.1

VoiceChannel

UserSpace ToolkitExtensions

BasicConnection

ScreeningBase

BlackListOfUsers FollowHumanConnectionForwarding

SpecificationC.00007

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Hierarchical Requirements Specification 519

Hierarchical Requirements Specification

• a feature can build on other features

• in contrast to the Intelligent Network

• possible to have feature providing a common base

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



The Tool genFamMem 2.0 520

The Tool genFamMem 2.0

• extracts specifications in plain CSP-OZ

from a family document,

• detects feature interactions by
◦ additional type checks for families

◦ heuristic warnings

• helps avoiding feature interactions by

generating documentation on the structure of the family.

• available freely

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Further Tools 521

Further Tools

• cspozTC
◦ type checker for CSP-OZ

• daVinci
◦ visualizes uses hierarchy graphs

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Semantics of CSP-OZ Extension 522

Semantics of CSP-OZ Extension

• formal definition of language extension in [Bre00b]
◦ understand details: need to know Object-Z and CSP

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



What Is Still To Do? 523

What Is Still To Do?

• more experience – extend case study further

• apply to other formalisms than CSP-OZ
◦ necessary:

constraint-oriented specification style

and incremental refinement

◦ already supported: CSPZ and plain Z

• investigate relationship:

families of requirements – families of programs

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Families of CSP Test Specifications 524

Families of CSP Test Specifications

• testing of embedded systems with RT-Tester tool

• RLC layer in UMTS protocol stack

• project with Bosch/Siemens Salzgitter

• requirements specification in CSP

• see [BrSc02]

• light-weight application of previous ideas
◦ no consistency checks

◦ no documentation generation

◦ simple preprocessor for CSP plus method

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Flexible Maintenance of Test Specification 525

Flexible Maintenance of Test Specification

• late changes to requirements

• variants of test suites:
(a) adjust test coverage

� selected signal parameters

� stimuli: random → increased probabilities → deterministic

(b) component / integration tests

� different protocol layers

� parallel instances of same layer

(c) active / passive tests

⇒ a family of test suites

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Rules for Modularizing Requirements 526

Rules for Modularizing Requirements

• separate: signature / behaviour of module

• identify requirements that will change together,

put into one module

specifically, separate:
◦ tester specific issues / application

◦ timer handling / application

◦ protocol layers

◦ stimulus generation / test observation

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Separate: Test Stimulus Generation / Test Observation 527

Separate:
Test Stimulus Generation / Test Observation

no_reaction

stimulus_overrun

wrong_reaction

System
Under
Test

R
T−

Te
st

er
 T

es
t D

riv
er

RLCTESTSPEC
(Radio Link
Control layer)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Cont.: Separate: Test Stimulus Generation / Test Observation 528

Cont.: Separate:
Test Stimulus Generation / Test Observation

no_reaction

stimulus_overrun

wrong_reaction

System
Under
Test

RLC_OBSERVER

RANDOM_TESTGENERATOR(EventSet)

R
T−

Te
st

er
 T

es
t D

riv
er

RLCTESTSPEC
(Radio Link
Control layer)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Summary of Lecture 529

Summary of Lecture

• safety-critical systems
◦ quality does matter

• professional engineering
◦ “blueprint before build”

� Chapter 2: what information in computer system documentation?

• embedded software systems
◦ “ugly”, strict interface constraints

� Chapter 1: rigorous description of requirements

◦ interface changes all the time

� Chapter 3: decomposition into modules

� Chapter 4: families of systems

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



5. Appendix

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



References 531

References

[Bre98] Bredereke, J. Requirements specification and design of a simplified telephone network by

Functional Documentation. CRL Report 367, McMaster University, Hamilton, Ontario, Canada

(Dec. 1998).

[Bre99] Bredereke, J. Modular, changeable requirements for telephone switching in CSP-OZ . Tech.

Rep. IBS-99-1, University of Oldenburg, Oldenburg, Germany (Oct. 1999).

[Bre00a] Bredereke, J. Families of formal requirements in telephone switching . In Calder, M. and

Magill, E., editors, “Feature Interactions in Telecommunications and Software Systems VI”,

pp. 257–273, Amsterdam (May 2000). IOS Press.

[Bre00b] Bredereke, J. genFamMem 2.0 Manual – a Specification Generator and Type Checker for

Families of Formal Requirements. University of Bremen (Oct. 2000). URL http://www.tzi.

de/˜brederek/genFamMem/.

[Bre00c] Bredereke, J. Hierarchische Familien formaler Anforderungen. In Grabowski, J. and Heymer, S.,

editors, “Formale Beschreibungstechniken für verteilte Systeme – 10. GI/ITG-Fachgespräch”,

pp. 31–40, Lübeck, Germany (June 2000). Shaker Verlag, Aachen, Germany.

[Bre00d] Bredereke, J. Specifying features in requirements using CSP-OZ . In Gilmore, S. and Ryan,

M., editors, “Proc. of Workshop on Language Constructs for Describing Features”, pp. 87–88,

Glasgow, Scotland (15–16 May 2000). ESPRIT Working Group 23531 – Feature Integration in

Requirements Engineering.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



References 532

[Bre01a] Bredereke, J. Ein Werkzeug zum Generieren von Spezifikationen aus einer Familie formaler

Anforderungen. In Fischer, S. and Jung, H. W., editors, “Formale Beschreibungstechniken – 11.

GI/ITG-Fachgespräch”, Bruchsal, Germany (June 2001). URL http://www.i-u.de/fbt2001/.

[Bre01b] Bredereke, J. A tool for generating specifications from a family of formal requirements. In

Kim, M., Chin, B., Kang, S., and Lee, D., editors, “Formal Techniques for Networked and

Distributed Systems”, pp. 319–334. Kluwer Academic Publishers (Aug. 2001).

[Bre02] Bredereke, J. Maintaining telephone switching software requirements. IEEE Commun. Mag.

40(11), 104–109 (Nov. 2002).

[BrSc02] Bredereke, J. and Schlingloff, B.-H. An automated, flexible testing environment for UMTS . In

Schieferdecker, I., König, H., and Wolisz, A., editors, “Testing of Communicating Systems XIV

– Application to Internet Technologies and Services”, pp. 79–94. Kluwer Academic Publishers

(Mar. 2002).

[Cou85] Courtois, P.-J. On time an space decomposition of complex structures. Commun. ACM 28(6),

590–603 (June 1985).

[HBPP81] Heninger Britton, K., Parker, R. A., and Parnas, D. L. A procedure for designing abstract

interfaces for device interface modules. In “Proc. of the 5th Int’l. Conf. on Software Engineering

– ICSE 5”, pp. 195–204 (Mar. 1981).

[HoWe01] Hoffman, D. M. and Weiss, D. M., editors. Software Fundamentals – Collected Papers by

David L. Parnas. Addison-Wesley (Mar. 2001).

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



References 533

[JaKh99] Janicki, R. and Khedri, R. On a formal semantics of tabular expressions. CRL Report 379,

McMaster University, Hamilton, Ontario, Canada (Sept. 1999).

[Kat93] Katz, S. A superimposition control construct for distributed systems. ACM Trans. Prog. Lang.

Syst. 15(2), 337–356 (Apr. 1993).

[Lam88] Lamb, D. A. Software Engineering: Planning for Change. Prentice-Hall (1988).

[LaRö01] Lankenau, A. and Röfer, T. The Bremen Autonomous Wheelchair – a versatile and safe

mobility assistant. IEEE Robotics and Automation Magazine, “Reinventing the Wheelchair”

7(1), 29–37 (Mar. 2001).

[Mil98] Miller, S. P. Specifying the mode logic of a flight guidance system in CoRE and SCR. In

“Second Workshop on Formal Methods in Software Practice”, Clearwater Beach, Florida, USA

(4–5 Mar. 1998).

[PaCl86] Parnas, D. L. and Clements, P. C. A rational design process: how and why to fake it. IEEE

Trans. Softw. Eng. 12(2), 251–257 (Feb. 1986).

[PaMa95] Parnas, D. L. and Madey, J. Functional documents for computer systems. Sci. Comput.

Programming 25(1), 41–61 (Oct. 1995).

[Par72] Parnas, D. L. On the criteria to be used in decomposing systems into modules. Commun.

ACM 15(12), 1053–1058 (1972).

[Par74] Parnas, D. On a ‘buzzword’: Hierarchical structure. In “IFIP Congress 74”, pp. 336–339.

North-Holland (1974). Reprinted in [HoWe01].

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



References 534

[Par76] Parnas, D. L. On the design and development of program families. IEEE Trans. Softw. Eng.

2(1), 1–9 (Mar. 1976).

[Par77] Parnas, D. L. Use of abstract interfaces in the development of software for embedded

computer systems. NRL Report 8047, Naval Research Lab., Washington DC, USA (3 June

1977). Reprinted in Infotech State of the Art Report, Structured System Development,

Infotech International, 1979.

[Par79] Parnas, D. L. Designing software for ease of extension and contraction. IEEE Trans. Softw.

Eng. SE-5(2), 128–138 (Mar. 1979).

[PaWe85] Parnas, D. L. and Weiss, D. M. Active design reviews: Principles and practices. In “Proc. of

the 8th Int’l Conf. on Software Engineering – ICSE 8”, London (Aug. 1985).

[PCW85] Parnas, D. L., Clements, P. C., and Weiss, D. M. The modular structure of complex systems.

IEEE Trans. Softw. Eng. 11(3), 259–266 (Mar. 1985).

[Pet00] Peters, D. K. Deriving Real-Time Monitors from System Requirements Documentation. PhD

thesis, McMaster Univ., Hamilton, Canada (Jan. 2000).

[vSPM93] van Schouwen, A. J., Parnas, D. L., and Madey, J. Documentation of requirements for

computer systems. In “IEEE Int’l. Symposium on Requirements Engineering – RE’93”, pp.

198–207, San Diego, Calif., USA (4–6 Jan. 1993). IEEE Comp. Soc. Press.

[WeLa99] Weiss, D. M. and Lai, C. T. R. Software Product Line Engineering – a Family-Based Software

Development Process. Addison Wesley Longman (1999).

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



5. Appendix 535

[Zav01] Zave, P. Requirements for evolving systems: A telecommunications perspective. In “5th IEEE

Int’l Symposium on Requirements Engineering”, pp. 2–9. IEEE Computer Society Press (2001).

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03


	4.3 Families of Requirements
	Text for Chapter 4.3
	Additional Background for Chapter 4.3
	Overview of Chapter 4.3
	Focus on Requirements
	Feature-Oriented Description in Telephone Switching
	Feature-Oriented Descriptions and Common Abstractions
	Performing Incremental Specification Formally
	Non-Monotonous Changes
	Formal Support for Feature Specification
	Superimposition
	The CoRE Method
	Families of CSP-OZ Specifications
	Constraint-Oriented Specification
	The Formalism CSP-OZ
	Case Study on Telephone Switching Requirements
	Grouping Classes into Features
	The Feature Construct
	Generating Family Members From a Family Document
	Result of Family Member Generation
	Controlled Non-Monotonous Changes
	Avoiding Feature Interactions
	Detecting Feature Interactions by Type-Checks
	Feature Interactions Detected in Case Study
	Documenting Dependences
	Sections of Feature UserSpace
	Hierarchy of Features of SpecificationC
	Hierarchical Requirements Specification
	The Tool genFamMem 2.0
	Further Tools
	Semantics of CSP-OZ Extension
	What Is Still To Do?
	Families of CSP Test Specifications
	Flexible Maintenance of Test Specification
	Rules for Modularizing Requirements
	Separate: Test Stimulus Generation / Test Observation
	Cont.: Separate: Test Stimulus Generation / Test Observation
	Summary of Lecture

	5. Appendix
	References

