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(June 2000). Shaker Verlag, Aachen, Germany.

Families of CSP-OZ specifications, ordered hierarchically.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Additional Background for Chapter 4.3 490

[Bre01a] Bredereke, J. Ein Werkzeug zum Generieren von

Spezifikationen aus einer Familie formaler Anforderungen.

In Fischer, S. and Jung, H. W., editors, “Formale

Beschreibungstechniken – 11. GI/ITG-Fachgespräch”,
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Overview of Chapter 4.3

• feature-oriented description

• the CoRE method

• families of CSP-OZ specifications

• families of CSP test specifications
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Focus on Requirements

• motivation:
◦ all feature interaction problems

already (implicitly) present in requirements

◦ many “formal methods” support single product only

� how to integrate family support into method?
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Feature-Oriented Description
in Telephone Switching

• base description plus separate feature descriptions

• attraction: behavioural “modularity”
◦ easy change of system behaviour

◦ make any change by just adding a new feature description

◦ never change existing descriptions

• emphasizes individual features
◦ makes them explicit

• de-emphasizes feature interactions
◦ makes them implicit in the feature composition operator
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• not all feature interactions are bad
◦ feature-oriented description relies on the good ones

• example: busy treatments
◦ B1 and B2 both enabled, B2 higher priority

◦ B1 not applied, despite its stand-alone description

◦ behavioural “modularity”:

add new busy treatments without changing existing ones

• most feature-oriented descriptions still informal
◦ behavioural “modularity” and formality do not combine easily

� behavioural “modularity”: don’t answer some questions now

� formality: answer all questions now

◦ proposed composition operators / approaches often do not scale
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• IP telephony:
◦ highly complex new services

◦ services still viewed as stand-alone

◦ undesired feature interactions will haunt us soon
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Feature-Oriented Descriptions
and Common Abstractions

• modules need common abstractions/assumptions
◦ module: now in the sense of this lecture

◦ common abstraction/assumption: true for all family members

• rapid innovation, legacy systems, too many players:

hard to limit the domain

• without domain limits: no common abstractions

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Performing Incremental Specification Formally 499

Performing Incremental Specification Formally

• standard means:

stepwise refinement

• step:
1. extend behaviour or 2. impose constraints
◦ example 1.: add another potential event to a state

◦ example 2.: specify the order of two events

• interesting properties preserved by step
◦ example 1.: all old events remain possible

� no deadlock in this state

◦ example 2.: no harmful event added

� all safety properties preserved
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Non-Monotonous Changes

• telephone switching:
new features change the behaviour
◦ of base system, or

◦ of other features

• example: call forwarding
◦ stops to connect to dialled number

� restricts base system behaviour

and

◦ starts connecting to forwarded-to number

� extends base system behaviour
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Formal Support for Feature Specification

• considerable research effort

on feature composition operators

• FIREworks project
(Feature Interactions in Requirements Engineering)
◦ various feature operators proposed and investigated

• “feature-oriented programming”

• based on the superimposition idea by Katz

• analytical complexity:

too big for tools for real systems
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Superimposition

• by Katz [Kat93]

• approach:
◦ base system

◦ textual increments

◦ composition operator

• problem:
◦ increments have defined interface,

base system has not

◦ increment can invalidate arbitrary assumptions about base system
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The CoRE Method

• based on four-variable model and SCR

• groups the variables into classes

• developed during the early 1990’s

• no explicit family support, but maybe a good base for it

• no formal syntax and semantics

• no tool support
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Families of CSP-OZ Specifications

key ideas:

• maintain all variants together
◦ generate specific member automatically as necessary

• document information needed for changes
◦ dependence of requirements

◦ what is the core of a feature
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Constraint-Oriented Specification

• features closely interrelated
◦ most refer to mode of connection

◦ user interface: few, shared lexical events

� system cannot be sliced by controlled events

• incrementally impose partial, self-contained constraints

• composition by logical conjunction
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The Formalism CSP-OZ

• CSP-OZ demo: one very simple telephone demo

• CSP-OZ class inheritance for incremental constraints
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Case Study on Telephone Switching
Requirements

• black box specification of telephone switching

• attempt to incorporate new concepts

• details: see [Bre99]

papers: see [Bre01b, Bre01a, Bre00c, Bre00a, Bre00a]
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Grouping Classes into Features

the chapters of the requirements document:
1. Introduction
2. feature UserSpace
3. feature BasicConnection
4. feature VoiceChannel
5. familymember SpecificationA
6. feature ScreeningBase
7. feature BlackListOfDevices
8. familymember SpecificationB
9. feature BlackListOfUsers

10. feature FollowHumanConnectionForwarding
11. familymember SpecificationC
12. feature TransferUserRoleToAnotherHuman
13. familymember SpecificationD

... ...
Indices / Bibliography
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The Feature Construct

• feature UserSpace spec

• feature BasicConnection

• familymember SpecificationB
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Generating Family Members
From a Family Document

S13 S23 S33 S43 S13 S23 S43S12 S22 S32 S42 S22 S42

McMa Mb
members
family

F1 F2 F3 F4

S11 S21 S31 S41 S11 S41

member
family

F1 F2

Mc

F4features

sections

family of requirements

sections

requirements specification

features

extension of CSP−OZ plain CSP−OZ
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Result of Family Member Generation
1. Introduction
2. feature UserSpace
3. feature BasicConnection
4. feature VoiceChannel
5. feature ScreeningBase
6. feature BlackListOfDevices
7. familymember SpecificationB

Indices / Bibliography

• family member composition chapter:

part replaced spec
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Controlled Non-Monotonous Changes

• feature ScreeningBase spec

• feature BlackListOfUsers

• feature FollowHumanConnectionForwarding

• familymember SpecificationC
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Avoiding Feature Interactions

• introduced three notions explicitly
◦ “telephone device”

◦ “human”

◦ “user role”

• consequences:
◦ black list above:

screens user roles, not devices

◦ another black list feature:

screens devices, not user roles

◦ also two kinds of call forwarding

• no feature interaction screening–forwarding anymore
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Detecting Feature Interactions
by Type Checks

• type rules: part of the family extension of CSP-OZ

• syntactic rules → syntactic errors:
◦ “remove” an “essential” class

◦ feature of needed class not included

◦ feature of “removed” class not included

◦ another class still needs “removed” class

• heuristic syntactic rules → syntactic warnings:
◦ class is marked both essential and changeable

◦ class is “removed” twice
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Feature Interactions Detected in Case Study

• no interactions between TCS and CF
◦ no type errors detectable

• but other problems problems present:
◦ both screening features “remove” the same section

◦ type rules: warning!

◦ manual inspection: contradiction

• resolution: another feature
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Documenting Dependences

• uses-relation for requirements:
◦ use of previous definition

◦ reliance on previous constraint

• documented by:
◦ Z’s section “parents” construct

◦ class inheritance (mapped to Z sections)

• if no relationship: identifiers out of scope
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Sections of Feature UserSpace
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Hierarchy of Features of SpecificationC
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Hierarchical Requirements Specification

• a feature can build on other features

• in contrast to the Intelligent Network

• possible to have feature providing a common base
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The Tool genFamMem 2.0

• extracts specifications in plain CSP-OZ

from a family document,

• detects feature interactions by
◦ additional type checks for families

◦ heuristic warnings

• helps avoiding feature interactions by

generating documentation on the structure of the family.

• available freely
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Further Tools

• cspozTC
◦ type checker for CSP-OZ

• daVinci
◦ visualizes uses hierarchy graphs
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Semantics of CSP-OZ Extension

• formal definition of language extension in [Bre00b]
◦ understand details: need to know Object-Z and CSP
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What Is Still To Do?

• more experience – extend case study further

• apply to other formalisms than CSP-OZ
◦ necessary:

constraint-oriented specification style

and incremental refinement

◦ already supported: CSPZ and plain Z

• investigate relationship:

families of requirements – families of programs
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Families of CSP Test Specifications

• testing of embedded systems with RT-Tester tool

• RLC layer in UMTS protocol stack

• project with Bosch/Siemens Salzgitter

• requirements specification in CSP

• see [BrSc02]

• light-weight application of previous ideas
◦ no consistency checks

◦ no documentation generation

◦ simple preprocessor for CSP plus method

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



Flexible Maintenance of Test Specification 525

Flexible Maintenance of Test Specification

• late changes to requirements

• variants of test suites:
(a) adjust test coverage

� selected signal parameters

� stimuli: random → increased probabilities → deterministic

(b) component / integration tests

� different protocol layers

� parallel instances of same layer

(c) active / passive tests

⇒ a family of test suites
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Rules for Modularizing Requirements

• separate: signature / behaviour of module

• identify requirements that will change together,

put into one module

specifically, separate:
◦ tester specific issues / application

◦ timer handling / application

◦ protocol layers

◦ stimulus generation / test observation
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Separate:
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Cont.: Separate:
Test Stimulus Generation / Test Observation
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Summary of Lecture

• safety-critical systems
◦ quality does matter

• professional engineering
◦ “blueprint before build”

� Chapter 2: what information in computer system documentation?

• embedded software systems
◦ “ugly”, strict interface constraints

� Chapter 1: rigorous description of requirements

◦ interface changes all the time

� Chapter 3: decomposition into modules

� Chapter 4: families of systems

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



5. Appendix

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03



References 531

References

[Bre98] Bredereke, J. Requirements specification and design of a simplified telephone network by

Functional Documentation. CRL Report 367, McMaster University, Hamilton, Ontario, Canada

(Dec. 1998).

[Bre99] Bredereke, J. Modular, changeable requirements for telephone switching in CSP-OZ . Tech.

Rep. IBS-99-1, University of Oldenburg, Oldenburg, Germany (Oct. 1999).

[Bre00a] Bredereke, J. Families of formal requirements in telephone switching . In Calder, M. and

Magill, E., editors, “Feature Interactions in Telecommunications and Software Systems VI”,

pp. 257–273, Amsterdam (May 2000). IOS Press.

[Bre00b] Bredereke, J. genFamMem 2.0 Manual – a Specification Generator and Type Checker for

Families of Formal Requirements. University of Bremen (Oct. 2000). URL http://www.tzi.

de/˜brederek/genFamMem/.

[Bre00c] Bredereke, J. Hierarchische Familien formaler Anforderungen. In Grabowski, J. and Heymer, S.,

editors, “Formale Beschreibungstechniken für verteilte Systeme – 10. GI/ITG-Fachgespräch”,
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