
Safety-Critical Systems 4:
Engineering of

Embedded Software Systems

c© Jan Bredereke

University of Bremen

WS 2002/03

0. Introduction

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Topic of This Lecture 2

Topic of This Lecture

intersection of:

• engineering

• embedded systems

• software systems

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Engineering 3

Engineering

• the disciplined use of science, mathematics and technology

to build useful artefacts

• engineers design by means of documentation
◦ key step: design validation

◦ maintenance requires good documentation

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Embedded Systems 4

Embedded Systems

• definition: an embedded computer system is considered a

module in some larger system

• some distinguishing characteristics:
◦ designer not free to define interface

◦ interface constraints may be strict and arbitrary, but we can’t ignore

them

◦ interfaces will change during development

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Examples of Embedded Systems 5

Examples of Embedded Systems

• computer in autonomous wheelchair
constraints: devices

sensor data

physics of wheelchair

• telephone switching system
constraints: other company’s switches

own older switches

international standards

telephone number rules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Safety-Critical Systems Lecture Series 6

The Safety-Critical Systems
Lecture Series

SCS1: Basic concepts - problems - methods - techniques

(SoSe02)

SCS2: Management aspects - standards - V-Models - TQM

- assessment - process improvement (SoSe01, SoSe03)

SCS3: Formal methods and tools - model checking - testing

- partial verification - inspection techniques - case studies

(WiSe01/02)

SCS4: Engineering of Embedded Software Systems

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Overview of SCS4 7

Overview of SCS4

1. rigorous description of requirements
1.1 system requirements

1.2 software requirements

1.3 further issues

1.4 tabular expressions

2. what information should be provided

in computer system documentation?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Overview of SCS4 8

3. decomposition into modules
3.1 the criteria to be used in decomposing systems into modules

3.2 structuring complex software with the module guide

3.3 hierarchical software structures

3.4 designing software for ease of extension and contraction

3.5 design of abstract interfaces

4. families of systems
4.1 motivation: maintenance problems in telephone switching

4.2 families of programs

4.3 families of requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Style of This Course 9

Style of This Course

• lecture 2 SWS (Vorlesung)
◦ “This is obvious, isn’t it?”

• seminar 2 SWS (Übung)
◦ “Oops, applying it here is difficult!”

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Web Page of Lecture 10

Web Page of Lecture

www.tzi.de/agbs/lehre/ws0203/scs4

available for download:

• slides

• assignments

• announcements

• links

• . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

http://www.tzi.de/agbs/lehre/ws0203/scs4

Text for Reading 11

Text for Reading

• lecture based on a number of research papers

• references will be given during course
◦ mostly, not online :-(

◦ important ones available for copying from secretary

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Mark / “Schein” 12

Mark (“Schein”)

• n assignments during term, 7 ≤ n ≤ 14
• assignments can be solved in groups of two

• n− 1 assignments must be handed in

• average of n− 1 best marks must be ≥ 60%
• oral exam (“Fachgespräch”) at end of term
◦ 15-20 min

◦ in the groups of two

◦ individual marks

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

1. Rigorous Description
of Requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 1 14

Text for Chapter 1

[PaMa95] Parnas, D. L. and Madey, J. Functional

documents for computer systems. Sci. Comput.

Programming 25(1), 41–61 (Oct. 1995).

Four-variable model, structure of requirements

documentation and software documentation.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 1 15

[Pet00] Peters, D. K. Deriving Real-Time Monitors from

System Requirements Documentation. PhD thesis,

McMaster Univ., Hamilton, Canada (Jan. 2000).

Most current version of four-variable model and tabular

notation. (Is also on testing).

Relevant: Chapters 1.1, 5, Appendix A

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 1 16

Additional Background for Chapter 1

[vSPM93] van Schouwen, A. J., Parnas, D. L., and Madey,

J. Documentation of requirements for computer systems.

In “IEEE Int’l. Symposium on Requirements Engineering –

RE’93”, pp. 198–207, San Diego, Calif., USA (4–6 Jan.

1993). IEEE Comp. Soc. Press.

Example for the four-variable approach (water level

monitoring system).

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 1 17

[LaRö01] Lankenau, A. and Röfer, T. The Bremen

Autonomous Wheelchair – a versatile and safe mobility

assistant. IEEE Robotics and Automation Magazine,

“Reinventing the Wheelchair” 7(1), 29–37 (Mar. 2001).

General description of the Bremen autonomous wheelchair

“Rolland”.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Role of Documentation in Computer System Design 18

The Role of Documentation
in Computer System Design

• professional engineer:
◦ makes plan on paper

◦ analyses plan thoroughly

◦ then builds system, using plan

• engineer revising the system:
◦ understands system through old plan

◦ changes plan

◦ analyses plan thoroughly

◦ then builds system, using plan

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Role of Documentation in Computer System Design 19

• Computer hardware is made this way.

• Computer software usually is not.

• But standard engineering practice can be applied, too.

• Documentation
◦ as a design medium

◦ input to analysis

◦ input to testing

◦ facilitates revision or replacement

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Education of Engineers Can’t Start Too Early... 20

Education of Engineers
Can’t Start Too Early. . .

from a text book on engineering:

title page

good example

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

1.1 System Requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

How Can We Document System Requirements? 22

How Can We Document
System Requirements?

• identify the relevant environmental quantities
◦ physical properties

� temperatures

� pressures

◦ positions of switches

◦ readings of user-visible displays

◦ wishes of a human user

• represent them by mathematical variables

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

How Can We Document System Requirements? 23

• define carefully the association

of env. quantities and math. variables

• specify a relation on the math. variables

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Functions of Time 24

Functions of Time

• env. quantities qi described by functions of time

• types of values of env. quantities: qi ∈ Qi

• environmental state function:

S : R→ Q1 ×Q2 × . . .×Qn

• set of possible env. states:

St =df Q1 ×Q2 × . . .×Qn

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: Electronic Thermometer 25

Example: Electronic Thermometer

→ blackboard. . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Monitored vs. Controlled Quantities 26

Monitored vs. Controlled Quantities

• controlled quantities:

their value may be required to be changed by the system

• monitored quantities:

shall affect the system behaviour

• some quantities are both

• time: is a monitored quantity

(in real-time systems)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Monitored vs. Controlled Quantities 27

• monitored state function:

m˜ t : R→ Q1 ×Q2 × . . .×Qi, 1 ≤ i ≤ n
• controlled state function:

c˜t : R→ Qj ×Qj+1 × . . .×Qn, 1 ≤ j ≤ n
• j ≤ i+ 1
• environmental state function: (m˜ t, c˜t)• set of all m˜ t: M
• set of all c˜t: C
• “behaviour”: an S for a single execution

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Relation NAT 28

The Relation NAT

• constraints on the environmental quantities

• constraints by nature, by previously installed systems

• is part of the requirements document

• validity is responsibility of customer

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Relation NAT 29

• NAT ⊆ M× C
• domain(NAT) = {m˜ t | m˜ t allowed by env. constraints}
◦ if m˜ t 6∈ domain(NAT) then designer may assume that these values

never occur

• range(NAT) = {c˜t | c˜t allowed by env. constraints}
◦ if c˜t 6∈ range(NAT) then system cannot make these values happen

• (m˜ t, c˜t) ∈ NAT iff environmental constraints allow that

c˜t are controlled quantities if m˜ t are monitored quantities

• NAT usually not a function
◦ the system should have some choice

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Relation REQ 30

The Relation REQ

• further constraints on the environmental quantities

• constraints by system

• is part of the requirements document

• validity is responsibility of system designer

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Relation REQ 31

• REQ ⊆ M× C
• domain(REQ) ⊇ domain(NAT)

= {m˜ t | m˜ t allowed by env. constraints}
• range(REQ) = {c˜t | c˜t allowed by correct system}
• (m˜ t, c˜t) ∈ REQ iff system should permit that

c˜t are controlled quantities if m˜ t are monitored quantities

• REQ usually not a function
◦ one can tolerate “small” errors in the values of controlled quantities

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Contract 32

Contract

• REQ states what the system designer must provide

• NAT states what the customer must provide

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Black-Box View 33

Black-Box View

• the requirements document is entirely in terms of

environmental quantities

• no reference to internal quantities

• no reference to internal state,

only to the history of env. quantities

• ⇒ no restriction on system designer

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Specifying Behaviour 34

Specifying Behaviour

what’s next?

• modes and mode classes

• conditions, events

• four-variable approach for system design and software

requirements

• tabular notation

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Modes and Mode Classes, Informally 35

Modes and Mode Classes, Informally

Definition 1 (Mode, informally)

An (environmental) mode is a set of (environmental)
states.
Definition 2 (Mode Class, informally)

A mode class is a partitioning of the state space.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Discussion of Modes etc. 36

Discussion of Modes etc.

• there may be several mode classes

• system is always in one mode of every mode class

• mode class and its modes may be defined by a transition

table

• one state change may imply two mode changes
◦ no “simultaneous events”

• if time is monitored, the system never returns into the
same state
◦ modes are handy for equivalence classes of states

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: Lift Controller 37

Example: Lift Controller

Floor 2

Floor 1

Floor 3

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: Relevant Environmental Quantities 38

Lift Controller:
Relevant Environmental Quantities

• height of lift

• elevation motor command

• position of doors

• door motor command

• (buttons left out for simplicity here)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: Environment Variables 39

Lift Controller: Environment Variables

Variable m
o

n
.

ct
rl

.

Description Value Set Unit N
o

te
s

mheight • height of lift R m 1
celevMotorCommand • elevation motor command {Cup, Coff, Cdown} —
mdoorPos • position of doors R m 2
celevMotorCommand • door motor command {Copen, Coff, Cclose} —

Notes
1. The height is relative to the lowest position physically possible, upward is positive.

2. This is how far the doors are opened. 0 m means entirely closed, positive means open.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: the Relation NAT 40

Lift Controller: the Relation NAT

what to state rigorously (not done here):

• height is ≥ 0 m and ≤ max. height

• the acceleration and deceleration of the lift is bounded

(→ use differential equations)

• door position is ≥ 0 m and ≤ max. width

• . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Conditions 41

Conditions

Definition 3 (Condition)

A condition is a function R→ B,
defined in terms of the env. state function.
It is finitely variable on all intervals of system operation.
Definition 4 (Cnd)

Cnd is the tuple of all conditions.
We assume an order on the conditions.
We assume Cnd to be finite.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: Conditions 42

Lift Controller: Conditions

Name Condition

pdoorClosed mdoorPos = 0 m
pat1stFloor |mheight− 0.5 m| ≤ 1 cm
pat2ndFloor |mheight− 4.5 m| ≤ 1 cm
pat3rdFloor |mheight− 8.5 m| ≤ 1 cm

Cnd = (pdoorClosed, pat1stFloor, pat2ndFloor, pat3rdFloor)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Events 43

Events

Definition 5 (Event)

An event e, is a pair, (t, c), where
e.t ∈ R is a time at which one or more conditions change
value and
e.c ∈ {T, F,@T,@F}n indicates the status of all
conditions at e.t, as follows: e.c[i] pi

T 8pi(e.t) ∧ pi′(e.t)
F ¬8pi(e.t) ∧ ¬pi′(e.t)

@T ¬8pi(e.t) ∧ pi′(e.t)
@F 8pi(e.t) ∧ ¬pi′(e.t)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Event Space 44

Event Space

Definition 6 (Event Space)

The event space is the set of all possible events:
EvSp =df R× {T, F,@T,@F}n

• any particular finite duration behaviour defines a finite set

of events Ev ⊂ EvSp

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: Events 45

Lift Controller: Events

• (5 s, (F,@T,F,F))
• (7 s, (@T,T,F,F))
• (20 s, (@F,T,F,F))
• (22 s, (F,@F,F,F))
• (29 s, (F,F,@T,F))
• . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

History 46

History

• we are often interested in the values of the conditions for a

specific interval of time

• a history is
◦ the set of initial values for the conditions and

◦ the sequence of events in the time interval

• (formal definition omitted here)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Modes and Mode Classes 47

Modes and Mode Classes

Definition 7 (Mode Class)

A (environmental) mode class is an equivalence relation
on possible histories, such that:
if MC(H1,H2) and
if Ĥ1 and Ĥ2 are the extensions of H1 and H2

by the same event,
then MC(Ĥ1, Ĥ2).
Definition 8 (Mode)

An (environmental) mode is one such equivalence class.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: Mode Classes 48

Lift Controller: Mode Classes

• some useful mode classes:
◦ Cldoor: MddoorClosed, MddoorOpen

◦ Clfloor: Mdin1stFloor, Mdin2ndFloor, Mdin3rdFloor

◦ ClatFloor: MdatAFloor, MdbetweenFloors

• definition of mode classes:
◦ through conditions

◦ by transition tables

(see later)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Tabular Notation 49

Tabular Notation

• tabular notations often useful to represent functions in

computer system documentation

• extensive work on different table formats exists

• precise semantics has been defined for these table formats

• one format specifically for mode transition tables

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: the Relation REQ 50

Lift Controller: the Relation REQ

• conditions defined in terms of (monitored) variables

• event classes defined in terms of conditions

• mode classes defined in terms of event classes

• controlled variables defined in terms of mode classes

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: the Relation REQ 51

Clfloor:
Mode Event Class New mode

Mdin1stFloor @T(pat2ndFloor) Mdin2ndFloor
Mdin2ndFloor @T(pat1stFloor) Mdin1stFloor

@T(pat3rdFloor) Mdin3rdFloor
Mdin3rdFloor @T(pat2ndFloor) Mdin2ndFloor

• the mode remains the same when between floors

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

“Simultaneous” Events 52

“Simultaneous” Events

• modes of a mode class must be disjoint

• → event classes for one mode must be disjoint

• event expressions can comprise more than one event

• assume that causally independent changes of conditions

never occur at exactly the same time (t ∈ R)

• watch out for condition changes that are causally related!

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Piecewise Continuous Behaviour 53

Piecewise Continuous Behaviour

• often, environmental quantities have piecewise continuous
behaviour over time
◦ height of lift

◦ position of lift door

• each continuous piece can be described well by a

differential equation

• switching from piece to piece can be described well by

mode changes

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Lift Controller: Piecewise Continuous Behaviour 54

Lift Controller:
Piecewise Continuous Behaviour

one of the constraints by NAT:
d
dt
mheight =

inmode(Mdup) CliftSpeed

inmode(MdstandStill) 0 cm/s

inmode(Mddown) −CliftSpeed

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

1.2 Software Requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

System Design 56

System Design

• decisions on what to do in hardware/software

• results in:
◦ hardware requirements

◦ software requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Four-Variable Approach for System Design and Software Requirements 57

The Four-Variable Approach
for System Design and Software Requirements

input
devices

IN SOF

software
output
devices

OUT

i(t) o(t)m(t) c(t)

target system

REQ

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Input and Output Quantities 58

Input and Output Quantities

• input state function:

i˜t : R→ I1 × I2 × . . .× In
• output state function:

o˜t : R→ O1 ×O2 × . . .×Om

• set of all i˜t: I
• set of all o˜t: O
• behaviour required of
◦ the input devices: IN ⊆ M× I

◦ the output devices: OUT ⊆ O× C

◦ the software: SOF ⊆ I×O

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Software Acceptability 59

Software Acceptability

• the software requirements SOFREQ are
determined completely by REQ, NAT, IN, and OUT
◦ ((IN · SOFREQ ·OUT) ∩NAT) = REQ

◦ SOFREQ usually difficult to calculate precisely

• a software SOF is acceptable if

SOF with IN and OUT and NAT imply REQ:
((IN · SOF ·OUT) ∩NAT) ⊆ REQ
◦ some design decisions make life easier

� remove some non-determinism

� SOF ⊆ SOFREQ

◦ SOF must still be acceptable

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

First Application of Four-Variable Method 60

First Application of Four-Variable Method

• software cost reduction project (SCR)
◦ developed the method

◦ US Naval Research Laboratory (NRL)

• specification of the complete software requirements for the
A-7 aircraft’s TC-2 on-board computer
◦ reverse-engineering of existing system

◦ with help from domain experts (pilots, . . .)

• maintained over lifetime of system
◦ first release: Nov. 1978

◦ end of project: Dec. 1988

• 473 pages

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: Autonomous Wheelchair “Rolland” 61

Example: Autonomous Wheelchair “Rolland”

• Univ. of Bremen, AG B. Krieg-Brückner

(Thomas Röfer, Axel Lankenau, . . .)

• joystick-to-motor line wiretapped

• ring of sonar sensors

• safety module

• driving assistant
◦ turning on the spot skill

◦ obstacle avoidance skill

◦ . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Specification of Safety-Relevant Behaviour 62

Rolland: Specification of
Safety-Relevant Behaviour

• very recent research work on “mode confusion” problems

• requirements documented by A. Lankenau, J. Bredereke

• reverse-engineering work

• language: CSP
◦ different formalism

◦ model-checking tool available

◦ CSP starts out with events, not variables

◦ otherwise same software engineering approach used

• slides: presentation ignores CSP

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Relevant Environmental Quantities 63

Rolland: Relevant Environmental Quantities

• the joystick command

• the wheelchair motors command

• the actual wheelchair motors status

• location of the obstacles near the wheelchair

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Environment Variables 64

Rolland: Environment Variables

Variable m
o

n
.

ct
rl

.

Description Type N
o

te
s

mt • current time R
mjoystickCommand • the user intended motion as

indicated with the joystick

tJoystickCommandVector

cmotorsCommand • command for the wheelchair

motors

tMotorsCommandVector

mmotorsActual • the actual motors status of the

wheelchair

tMotorsCommandVector

mobsLoc • location of relevant obstacles tobstacleLocs
morientation • the current orientation of the

wheelchair

torientationRange 1

Notes
1. The orientation is relative to the world (inertial system). At program start, the orientation is 0◦.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Environment Variable Types 65

Rolland: Environment Variable Types

Type Description Values Unit

tJoystickCommandVector a joystick command vector (i,d).

i: fraction of max. joystick

inclination,

d: direction of the joystick

inclination

tinclinationRange ×
torientationRange

(%, ◦)

tinclinationRange fraction of max. joystick

inclination

{x ∈ R |
0 ≤ x ≤ 100}

%

torientationRange a direction.

0: straight ahead

90: left

180: straight back

-90: right

{x ∈ R |
− 180 < x ≤ 180}

◦

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Environment Variable Types 66

Type Description Values Unit

tMotorsCommandVector A command vector (s,a) sent to

the motors as target value.

s: speed value, restricted by

physical limitations of the

wheelchair,

a: angle of the wheelchair’s

steering wheels

tspeedRange ×
tsteeringAngleRange

(cm/s,
◦)

tspeedRange physical wheelchair speed range

(167 cm/s is 6 km/h)

{x ∈ R |
− 167 ≤ x ≤ 167}

cm/s

tsteeringAngleRange angle of steering wheels of

wheelchair.

-60: right

0: straight

60: left

{x ∈ R |
− 60 ≤ x ≤ 60}

◦

tobstacleLocs

(the rather complex type tobstacleLocs is omitted in the slides)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Observations 67

Rolland: Observations

• precise link between environmental quantities and
mathematical variables
◦ definitions in rigorous prose

◦ explicit units

◦ explicit meaning of individual values of a range

• tabular format suitable

• duplication of description avoided

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Conditions and Events 68

Rolland: Conditions and Events

• simple for Rolland

• not specified separately

• specified in-place in the relations (see later)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: the Relation NAT 69

Rolland: the Relation NAT

complete description would comprise:
• the wheelchair obeys to commands after a delay
◦ acceleration/deceleration

◦ steering

• obstacles don’t move by themselves

• obstacles are always visible for the sonar sensors

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: the Relation NAT 70

• simplified specification for case study:

∃td ∈ (0 . . . CmaxDelMot] .
mmotorsActual = cmotorsCommand(mt− td)

• restrictions of value ranges already specified by types

• convention: if omitted, mt is parameter implicitly

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: the Relation REQ 71

Rolland: the Relation REQ
• was specified in case study only implicitly
◦ because of reverse-engineering approach

• explicitly: IN, SOF, OUT, and NAT
• we can assume SOFREQ = SOF and then derive

REQ = ((IN · SOFREQ ·OUT) ∩NAT)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Input Variables 72

Rolland: Input Variables

Input Variable Description Type N
o

te
s

ijoystickUnitCommand the user intended motion as

indicated with the joystick

tJoystickUnitCommandVector

imotorsUnitActual the actual motors status of the

wheelchair

tMotorsUnitCommandVector

iobsLoc location of relevant obstacles tobstacleLocsMap 1
iorientation the current orientation of the

wheelchair

todoOrientationRange 2

Notes
1. This does not include obstacles that cannot be detected by the wheelchair’s sonar sensors, because of

their known technical limitations (surface structure dependance, objects visible only at sensor level,

etc.)

2. The orientation is relative to the world (inertial system). At program start, the orientation is 0◦. This

information is only reliable over short distances due to odometry drift.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Input and Output Variable Types 73

Rolland: Input and Output Variable Types

Type Description Values Unit

tMotorsUnitCommandVector A command vector (s,r)

interpreted by the motors unit.

s: speed value, restricted by

safety and comfort limitations

of the wheelchair,

r: curve radius of the

wheelchair’s steering wheels

tSpeedCommandRange

× tRadiusRange

(cm/s,

cm)

tJoystickUnitCommandVector a command vector (s,r)

containing the interpreted

joystick command,

interpretation as above

tMotorsUnitCommand-

Vector

(cm/s,

cm)

tSpeedCommandRange speed range used for target

commands (coming from the

joystick and sent to the

motor) (84 cm/s is 3 km/h)

{x ∈ N |
−42 ≤ x ≤ 84}

cm/s

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Input and Output Variable Types 74

Type Description Values Unit

tRadiusRange curve radius range

< 0: right curve

> 0: left curve

0: straight
other values between −50

and +50 are physically

impossible and are interpreted

as −50 and +50, respectively

N cm

todoOrientationRange a direction, as computed by

odometry.

{x ∈ N |
− 180 < x ≤ 180}

◦

tobstacleLocsMap

(the rather complex type tobstacleLocsMap is omitted in the slides)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: Output Variables 75

Rolland: Output Variables

Output Variable Description Type N
o

te
s

omotorsUnitCommand the command for the

wheelchair motor unit

tMotorsUnitCommandVector

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: the Relation IN 76

Rolland: the Relation IN
ijoystickUnitCommand =
mjoystickCommand.d > 90 ∨
mjoystickCommand.d < −90

(round(mjoystickCommand.i/100 · −42),

calcRadius(calcSteeringAngle(mjoystickCommand.d)))

¬(mjoystickCommand.d > 90 ∨
mjoystickCommand.d < −90)

(round(mjoystickCommand.i/100 · 84),

calcRadius(calcSteeringAngle(mjoystickCommand.d)))

Note: round, calcSteeringAngle, and calcRadius are functions defined in the Dictionary and omitted in the

slides.

imotorsUnitActual =
mmotorsActual.s ≥ −42 ∧
mmotorsActual.s ≤ 84

(round(mmotorsActual.s), calcRadius(mmotorsActual.a))

mmotorsActual.s < −42 (−42, calcRadius(mmotorsActual.a))
mmotorsActual.s > 84 (84, calcRadius(mmotorsActual.a))

iorientation = round(morientation)

iobsLoc = . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: the Relation OUT 77

Rolland: the Relation OUT
cmotorsCommand = (omotorsUnitCommand.s, calcMotorSteeringAngle(omotorsUnitCommand.r))

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rolland: the Relation SOF 78

Rolland: the Relation SOF

• complex behaviour, see specification in CSP editor

• specify output variables in terms of input variables

• use mode classes as appropriate

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

1.3 Further Issues

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

System Modes vs. Environmental Modes 80

System Modes vs. Environmental Modes

• environmental mode
◦ equivalence class of histories

◦ change depends on occurrence of events

◦ initial env. mode depends on history before system turned on

• system mode
◦ equivalence class of system states

◦ change depends on detection of events

◦ initial system mode is fixed

• ideally, system and env. modes should be equivalent

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

“Ideal” Behaviour is Impossible 81

“Ideal” Behaviour is Impossible

• accuracy of measurement of analogue monitored quantities

• tolerance of analogue controlled quantities

• important analogue monitored quantity: time
◦ detection of events needs time

◦ reaction to events needs time

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

A Useful Heuristics for “Real” Behaviour 82

A Useful Heuristics for “Real” Behaviour

• specify “ideal” behaviour relation

• specify separately accuracy and tolerance relations
and concatenate these relations
◦ do not forget this!

• may not work for more complex timing
◦ then need explicit “transition” modes

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: Logic Probe 83

Example: Logic Probe

• device giving a short pulse of 100 ms when button pressed

Clprobe =

Mode Event Class New Mode

Mdtest @T(mPulse = CDown) Mdpulse
Mdpulse @T(Since(@T(Mdpulse)) > 100 ms) Mdtest

Maximum Delay: 2 ms

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Logic Probe With Delay, Expanded 84

Logic Probe With Delay, Expanded

• same behaviour, but without delay specification

• implicit transition modes made explicit for demonstration

Clprobe =

Mode Event Class New Mode

Mdt̂est @T(mPulse = CDown) Mdtest–pulse
Mdtest–pulse @T(cRequiv ≤ 320 Ω) Mdp̂ulse

@T(Since(@T(Mdtest–pulse)) ≥ 2 ms)
Mdp̂ulse @T(Since(@T(Mdpulse)) > 100 ms) Mdpulse–test

Mdpulse–test @T(cRequiv ≥ 500 kΩ) Mdt̂est

@T(Since(@T(Mdpulse–test)) ≥ 2 ms)

• cRequiv: a controlled variable reflecting the mode

(needed!)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Using Discrete Clocks 85

Using Discrete Clocks

• many embedded software systems:

cycle read→process→write→. . .

• read and write at discrete points of time
◦ system requirements should permit such implementations

• concise requirements by specifying the required
resolution of time
◦ resolution = smallest significant increment of time

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Implications for System when Specifying a Resolution of Time 86

Implications for System when Specifying
a Resolution of Time δ

• system clock frequency ≥ 1
δ

◦ sufficient to sample monitored quantities at rate of 1
δ

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Implications for Requirements when Specifying a Resolution of Time 87

Implications for Requirements when
Specifying a Resolution of Time δ

• changes in environment that occur within δ

may be considered simultanteous

• system can only be required to detect conditions

that have held for at least δ

• max. measurement accuracy for instants: +0 / −δ
• max. measurement accuracy for time intervals: ±δ
• min. delay tolerance for response to any event: δ

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: Time Resolution 88

Example: Time Resolution

δ

d fg i ja

f

t
Cond1

c e hb

f

t
Cond2

time

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Useful Standard Functions For Time 89

Useful Standard Functions For Time

• implicitly interpreted w.r.t. a particular behaviour on the

interval of the system’s operation [ti, tf]

Prev(e, t) the set of events of event class e

that occur prior to t

Last(e, t) the time of the latest event

of event class e before t

First(e, t) the time of the earliest event

of event class e before t

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Useful Standard Functions For Time 90

Drtn(pi, t) the duration that condition pi has been

continuously true up to time t

totalDrtn(pi, t1, t2) the total amount of time that condition

pi has been true between times t1 and t2

Since(e, t) the time since the latest event of

event class e before t

• if time argument t is current time tf , it will be omitted by

convention

• precise definitions in [Pet00, pp. 49]

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Repetition: Events 91

Repetition: Events

An event e, is a pair, (t, c), where

e.t ∈ R is a time at which one or more conditions change

value and

e.c ∈ {T, F,@T,@F}n indicates the status of all conditions

at e.t, as follows: e.c[i] pi

T 8pi(e.t) ∧ pi′(e.t)
F ¬8pi(e.t) ∧ ¬pi′(e.t)

@T ¬8pi(e.t) ∧ pi′(e.t)
@F 8pi(e.t) ∧ ¬pi′(e.t)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Some Useful Event Class Notation 92

Some Useful Event Class Notation

Notation e.c[i]
∗ true

� false

– F ∨ T

t T ∨ @F

f F ∨ @T

t′ T ∨ @T

f′ F ∨ @F

• t(pi) = 8pi(e.t) ∧ true

• t′(pi) = true ∧ pi′(e.t)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: Telephone Connection 93

Example: Telephone Connection

• table describes the connection mode

between any two users u and v

• from a large requirements specification (Bredereke)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: Telephone Connection 94

current mode conditions next mode

m
co

n
n

ec
tR

eq
(u
,
v
)

in
m

o
d

e(
M

d
co

n
n

ec
ti

on
-

R
es

ou
rc

eA
va

il(
u
,
v
))

m
co

n
n

ec
tR

sp
(v

)

Md Idle(u, v) @T t′ – MdSetup(u, v)

@T f ′ – MdOTeardown(u, v)
MdSetup(u, v) – T @T MdEstablished(u, v)

@F ∗ – Md Idle(u, v)

– @F ∗ MdOTeardown(u, v)
MdEstablished(u, v) – ∗ @F MdOTeardown(u, v)

@F ∗ – MdTTeardown(u, v)

– @F – MdBTeardown(u, v)
MdOTeardown(u, v) @F ∗ – Md Idle(u, v)
MdTTeardown(u, v) – ∗ @F Md Idle(u, v)
MdBTeardown(u, v) – ∗ @F MdOTeardown(u, v)

@F ∗ – MdTTeardown(u, v)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Tabular vs. Scalar Notation for Event Classes 95

Tabular vs. Scalar Notation for Event Classes

tabular scalar

pi
T WHILE(pi)
F WHILE(¬pi)

@T @T(pi)
@F @F(pi)
∗ (not useful)

– CONT(pi)
� (not useful)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Tabular vs. Scalar Notation for Event Classes 96

tabular scalar

pi
t WHEN(pi)
f WHEN(¬pi)
t’ (no notation defined)

f’ (no notation defined)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: Tabular Expressions 97

Example: Tabular Expressions
Clfloor:
current mode conditions next mode

p
at

1s
tF

lo
or

p
at

2n
d

F
lo

or

p
at

3r
d

F
lo

or

Mdin1stFloor – @T – Mdin2ndFloor
Mdin2ndFloor @T – – Mdin1stFloor

– – @T Mdin3rdFloor
Mdin3rdFloor – @T – Mdin2ndFloor

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: Scalar Expressions 98

Example: Scalar Expressions
Clfloor:

Mode Event Class New mode
Mdin1stFloor @T(pat2ndFloor) Mdin2ndFloor
Mdin2ndFloor @T(pat1stFloor) Mdin1stFloor

@T(pat3rdFloor) Mdin3rdFloor
Mdin3rdFloor @T(pat2ndFloor) Mdin2ndFloor

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Requirements Feasibility 99

Requirements Feasibility

→ blackboard. . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Fail-Soft Behaviour in the Four-Variable Approach 100

Fail-Soft Behaviour
in the Four-Variable Approach

• repetition: acceptability of a software SOF:

((IN · SOF ·OUT) ∩NAT) ⊆ REQ
• if devices are broken, software is not constrained at all

• specify weaker versions of IN, OUT, and SOF
that hold if some devices are broken

• software must satisfy the conjunction of of all

requirements specified this way

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Merit Functions 101

Merit Functions

• although all behaviours in REQ are acceptable,

some are preferable over others

• examples:

processing speed: quicker responses preferred

soft real-time constraints: failure to respond within

specified time not catastrophic, but undesirable

safety margins: controlled values may approach certain

thresholds, but the larger the safety margin the better

stability: large oscillations in controlled values are

undesirable

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Merit Functions 102

Definition 11 (Merit function)

A merit function is a function of a behaviour that
indicates which behaviours are preferred over which others
– the higher the merit function value the more preferred
the behaviour.

• related to “objective function” in control systems and

optimization

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Limitations of the Approach 103

Limitations of the Approach

necessary:
1. env. quantities can be expressed as functions of time that

are either
◦ piecewise-continuous (for real-valued quantities), or

◦ finitely variable (for discrete-valued quantities)

2. the acceptable behaviour can be characterized by a

relation on the env. quantities

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Environmental Quantities Not Expressible 104

Environmental Quantities Not Expressible

• if cannot be expressed effectively
◦ example: compiler

◦ source code = array of characters???

• if not usefully viewed as functions of time
◦ example: compiler

◦ only two instants of time relevant (start, termination)

• approach unsuitable for “information processing” systems

in particular

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Requirements Relation Not Expressible 105

Requirements Relation Not Expressible

• non-behavioural properties
◦ maintainability

◦ code size

• internal properties
◦ number of times an instruction is invoked

(if not externally observable)

• requirements not preserved under sub-setting of behaviours

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Requirements Not Preserved Under Sub-Setting of Behaviours 106

Requirements Not Preserved Under
Sub-Setting of Behaviours

• average response time over all behaviours
◦ different from average over a single behaviour

(which can be expressed)

◦ usually, such statistical properties can be approximated reasonably

well and specified with reference to a lengthy execution

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Requirements Not Preserved Under Sub-Setting of Behaviours 107

• possibilistic properties
◦ important for security

◦ “if behaviour A is possible, then behaviour B must also be possible”

◦ this is not the same as

A ∈ REQ⇒ B ∈ REQ

◦ what is acceptable in an implementation

is different from what is possible

◦ usually, REQ is non-deterministic, but the implementation is not

◦ intruders must not be able to infer information

from the possibility of A and the impossibility of B

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

1.4 Tabular Expressions

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 1.4 109

Text for Chapter 1.4

[Pet00] Peters, D. K. Deriving Real-Time Monitors from

System Requirements Documentation. PhD thesis,

McMaster Univ., Hamilton, Canada (Jan. 2000).

Brief introduction into tabular expressions in

Chapter 5.2.3. Most current version of notation.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 1.4 110

[JaKh99] Janicki, R. and Khedri, R. On a formal semantics

of tabular expressions. CRL Report 379, McMaster

University, Hamilton, Ontario, Canada (Sept. 1999).

Extensive description and definition of tabular expressions.

Notation not entirely up to date.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Introduction to Tabular Expressions 111

Introduction to Tabular Expressions

• this must be done real slow,

so we do it on the blackboard

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

2. What Information
Should Be Provided
in Computer System

Documentation?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 2 113

Text for Chapter 2

[PaMa95] Parnas, D. L. and Madey, J. Functional

documents for computer systems. Sci. Comput.

Programming 25(1), 41–61 (Oct. 1995).

Structure of the requirements documentation and software

documentation.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 2 114

Additional Background for Chapter 2

[PaCl86] Parnas, D. L. and Clements, P. C. A rational design

process: how and why to fake it. IEEE Trans. Softw. Eng.

12(2), 251–257 (Feb. 1986).

Structure of the documentation vs. structure of the

development process.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Overview of Documents 115

Overview of Documents

• system requirements document

• system design document

• software requirements document

• software behaviour specification

• software module guide

• module interface specification

• uses-relation document

• module internal design document

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Overview of Documents 116

• communication: service specification document

• communication: protocol design document

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Specification Form vs. Specification Content 117

Specification Form vs. Specification Content

• this overview: concerned with content only

• formalism must be adapted to situation

• choice of some formalism alone does not guarantee
completeness of content!
◦ “formal” vs. “rigorous”

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The System Requirements Document 118

The System Requirements Document

description of:

• environmental quantities of concern

• association of env. quantities to math. variables

• relationships between values of these

due to environmental constraints (NAT)

• relationships between values of these

due to new system (REQ)

• descriptions are black-box

• details: see Chapter 1.1

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Structure of the System Requirements Document 119

Structure of the
System Requirements Document

required sections:

• environmental quantities

• environmental constraints

• system behaviour

• dictionary
◦ definitions of:

� math. functions and relations

� words that are not common natural language

� words that have special meaning in application domain

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Structure of the System Requirements Document 120

optional sections:
• system overview
◦ informal

◦ possibly including non-behavioural requirements

• notational conventions
◦ if non-standard notation used

◦ variable naming

◦ special variable mark-up

◦ . . .

• anticipated changes
◦ important to reduce effort for later changes

◦ see also Chapter 4

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The System Design Document 121

The System Design Document

• introduces input and output variables

description of:

• relationships between monitored and input variables (IN)

• relationships between output and controlled vars. (OUT)

• relationships between input and output variables (SOF)
(software requirements)
◦ in separate document, see below

• details: see Chapter 1.2

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Software Requirements Document 122

The Software Requirements Document

• software requirements (SOFREQ) implicitly determined by
◦ system requirements document

}
= software requirements doc.

◦ system design document

(NAT, REQ, IN, OUT)

• usually design step:

explicit, more deterministic

software behaviour specification (SOF)

• details: see Chapter 1.2

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Software Behaviour Specification 123

The Software Behaviour Specification

• SOF

• details: see Chapter 1.2

• particularly important for
multi-processor / multi-computer / network systems
◦ allocation of tasks to individual computers

◦ hierarchy of software behaviour specifications

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Software Modules 124

Software Modules

Definition 12 (Module)

A module is a programming work assignment.

• (see other definitions of “module” later in lecture)

• assume information hiding principle was used (see below)

• black-box description of module’s behaviour

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Software Module Guide 125

The Software Module Guide

• division of software into modules

• states responsibilities of each module

• informal “guide”
◦ rigorous module interface specification necessary

to start implementation

• details: see Chapter 3.2 later in lecture

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Module Interface Specification 126

The Module Interface Specification

• each module implements one or more
finite state machines (FSMs)
◦ FSMs also called objects or variables

• description of module interface is
black-box description of these objects
◦ every “program” (= method/function/. . .)

belongs to exactly one module

◦ programs use objects created by other modules

as components of their data structure

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Writing Module Interface Specifications 127

Writing Module Interface Specifications

• similar to documenting software requirements

• simplifications possible
◦ many software modules are entirely internal

� no environmental quantities

� all communication through

external invocation of the module’s programs

◦ state set finite

◦ state transitions can be treated as discrete events

◦ often: real-time can be neglected,

only the sequence of events matters

� replace time-functions by traces

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Writing Module Interface Specifications 128

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Formalisms for Module Interface Specifications 129

Formalisms for
Module Interface Specifications

• “Trace Assertion Method” proposed by Parnas et.al.
was never used much

• many other formalisms known and in use:
◦ CSP

}
see lecture Safety-Critical Systems 3

◦ Z (/ Object-Z)

◦ SDL

◦ StateCharts

◦ . . .

advantages/disadvantages depend on application domain

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Uses-Relation Document 130

The Uses-Relation Document

• range and domain of “uses” relation:
subsets of set of access-programs of the modules
◦ (P, Q) in relation if program P uses program Q

• document often is a binary matrix

• constrains work of programmers

• determines viable subsets of the software

• for details, see Chapter 3.4 later in lecture

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Module Internal Design Document 131

The Module Internal Design Document

• for each module

• describe module’s data structure

• state intended interpretation of data structure

(in terms of external interface)

• specify effect of each access-program on data structure

• “clear-box description”

• sufficiently precise to verify the workability of the design

(together with module interface specification)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Information in the Module Internal Design Document 132

Information in the
Module Internal Design Document

1. complete description of data structure

(may include objects implemented by other modules)

2. abstraction function

from values of objects

to descriptions in terms of external program calls

3. program function:

an LD relation specifying each program as a

mapping from states before to states after execution

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Abstraction Function 133

Abstraction Function

for deterministic programs; using CSP:

program function
for event e

for event e
CSP process transformation

P2

abstraction
function

ds2

P1

abstraction
function

ds1

• if design correct, then diagram commutes for all events

• if program non-deterministic, program funct. is LD relation

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Programs 134

Programs

Definition 13 (Program)

A program is a text describing a set of state sequences in
a digital (finite state) machine.

• Each state sequence is called an execution of the program.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Documenting the Effect of Individual Programs 135

Documenting the Effect of
Individual Programs

• execution
◦ starting state

◦ final state (if finite)

◦ or infinite sequence

• intermediate states often not interesting, only:
◦ termination possible?

 LD relation◦ termination guaranteed?

◦ if termination possible, then in which final states?

• if with parameters, then

functions from parameters to programs

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

LD Relation 136

LD Relation

→ blackboard. . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Documenting by LD Relations 137

Documenting by LD Relations

• for specification of program

• for actual behaviour of program

• notations:
many, depending on application area
◦ “displays” proposed by Parnas et.al.

were never used much

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Communication: The Service Specification Document 138

Communication: The Service Specification
Document

• communication system often implemented as a hierarchy

of services

• each level can be viewed as a module

• black-box behaviour of a module = service specification

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Communication: The Protocol Design Document 139

Communication: The Protocol Design
Document

• implementation = protocol design
◦ using lower-level services

◦ using local data structures

• is a kind of internal module design document

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

A Rational Design Process: How and Why to Fake It 140

A Rational Design Process:
How and Why to Fake It

• all this is straight top-down development

• “reality does not work this way!”

• but it pays to pretend that it does

• text: [PaCl86]

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

A Rational Person 141

A Rational Person

• one who always has a good reason for what he does

• each step is provably the best way to get to the goal

• are you a rational professional?

• top-down approaches: desire for rational software design
◦ the search for the philosopher’s stone

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Why a Rational Design Process Does Not Work 142

Why a Rational Design Process
Does Not Work

• customer does not know exactly what he wants,

customer cannot tell us all he knows

• even if we knew the requirements:

we don’t know all details necessary for
the best design decisions
◦ need to backtrack in design

◦ minimize lost work

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Why a Rational Design Process Does Not Work 143

• even if we knew all relevant facts:
a human cannot handle this huge amount of details
◦ separation of concerns helps

◦ but before concerns are separated,

we are bound to make errors

• even if we could master all detail:
all projects change due to external reasons
◦ minimize lost work

• human errors are inevitable
◦ even after separation of concerns

• we have preconceived design ideas
◦ own invention, from related projects, learned in class

◦ try out favorite idea in project

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Why a Rational Design Process Does Not Work 144

• re-use of software
◦ from previous project

◦ shared with parallel project

◦ off-the-shelf software

◦ software not ideal for project, but will save effort

• are small textbook examples rational?
◦ no, polished until they show the point nicely

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Why a Rational Design Process is Useful Nevertheless 145

Why a Rational Design Process
is Useful Nevertheless

• keeping as close to the process as possible helps
◦ guideline

• the documentation that would have resulted

from this process is useful

• this is “faking a rational design process”

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Why Use an Ideal Process as a Guideline 146

Why Use an Ideal Process as a Guideline

• designers need guidance: what to do first?

• even if we cannot know all facts at the beginning:

trying to find them reduces backtracking

and thereby improves the design

• measure progress of project
◦ relative to ideal process

• an organization needs a standard process for projects
◦ to transfer people, ideas, software

◦ external review of projects (measure progress)

◦ a rational process is a good base

� more refined processes (V-model, . . .): → SCS 2 (SoSe 03)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

What should the Process Description Tell? 147

What should the Process Description Tell?

• what product to work on next

• what criteria the product must satisfy

• what kind of persons should do the work

• what information they should use

most useful: description in terms of work products
• allows reviews and progress measurement
◦ see also course: “Integrierte Softwareentwicklung und

Qualitätssicherung mit Together” (WiSe 02/03, Buth)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Rational Design Process 148

The Rational Design Process

1. Establish and Document Requirements

2. Design and Document the Module Structure

3. Design and Document the Module Interfaces

4. Design and Document the Uses Hierarchy

5. Design and Document the Module Internal Structures

6. Write Programs

7. Maintain

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

What is Wrong With Most Documentation Today 149

What is Wrong With
Most Documentation Today

• many programmers don’t expect (their) documentation
to be useful
◦ self-fulfilling prophecy

• why is incomplete or inaccurate information

not simply added or corrected?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Underlying Organizational Problems of the Documents 150

Underlying Organizational Problems
of the Documents

• poor organization

• boring prose

• confusing and inconsistent terminology

• myopia

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Poor Organization 151

Poor Organization

• documents often organized by either
◦ stream of conciousness

� ordered by time when thought occurred

◦ stream of execution

� ordered by system’s run-time order

• difficult . . .
◦ to find particular information

◦ to check completeness

◦ to change consistently

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Boring Prose 152

Boring Prose

• lots of words used to say what could be said by
◦ single programming language statement

◦ formula

◦ diagram

• certain facts repeated in many sections

• leads to: inattentive reading, undiscovered errors

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Confusing and Inconsistent Terminology 153

Confusing and Inconsistent Terminology

• any complex system needs new terminology
◦ otherwise documentation far too long

• software documentation often does not provide
precise definitions
◦ many terms used for same concept

◦ many similar, distinct concepts described by same term

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Myopia 154

Myopia

• documentation written near completion of project

• major decisions taken for granted

• small details are documented
◦ to avoid forgetting them

• useful for insiders

• impenetrable for newcomers

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

How to Avoid Poor Organization 155

How to Avoid Poor Organization

(i.e., avoid “stream of conciousness”, “stream of execution”)

1. design the structure of each document explicitly
◦ by stating the questions that it must answer

◦ by refining these questions until each defines one section

◦ one and only one place for every fact

◦ several documents of a kind: have a standard organization

2. answer questions (write document)
after the structure has been defined
◦ each aspect: one section

◦ each section: only one aspect

}
is also separation of concerns

3. reviews: for content and also for documentation rules
Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

How to Avoid Boring Prose 156

How to Avoid Boring Prose

• increase density of information
◦ use tables, formulas, formal notation

• prevent duplication by above organizational rules

• still not easy reading,

but provides precise information

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

How to Avoid Confusing and Inconsistent Terminology 157

How to Avoid Confusing and Inconsistent
Terminology

• have a “dictionary”

• typed terms
◦ (monitored, controlled, input, output, . . . quantities)

• mark-up of terms with type: mterm1, cterm2, . . .

• separate dictionary for each type
◦ easier to check for similar terms

• mechanical checks for
◦ terms introduced but not used

◦ terms used but not introduced

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

How to Avoid Myopia 158

How to Avoid Myopia

• use documentation as a means of design

• documents written before myopia starts

• documents mature when the maintainer needs them

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Faking the Ideal Process 159

Faking the Ideal Process

• attempt to produce documents in order of ideal process

• when information is unavailable:
◦ note this fact in the document instead

◦ continue process as if this information were expected to change

• error found: correct it, and update all documentation

• no design decisions considered to be made

until they are documented

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Analogous Process: Mathematical Proofs 160

Analogous Process: Mathematical Proofs

• often: painful, difficult discovery process

• then: polished

• others may find simpler proof

• the simplest proof is published

• readers interested in truth of theorem, not of its discovery

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

One Difference to Ideal Documentation 161

One Difference to Ideal Documentation

• record all design alternatives considered
◦ why considered

◦ why rejected

• for ourselves

• for a later maintainer

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

3. Decomposition Into Modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Overview of Chapter 3 163

Overview of Chapter 3:
Decomposition Into Modules

3.1 the criteria to be used in decomposing systems into

modules

3.2 structuring complex software with the module guide

3.3 time and space decomposition of complex structures

3.4 designing software for ease of extension and contraction

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

3.1 The Criteria to be Used in
Decomposing Systems into

Modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 3.1 165

Text for Chapter 3.1

[Par72] Parnas, D. L. On the criteria to be used in

decomposing systems into modules. Commun. ACM

15(12), 1053–1058 (1972).

Seminal paper on information hiding and modularization.

Still valid.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 3.1 166

Additional Background for Chapter 3.1

[HoWe01] Hoffman, D. M. and Weiss, D. M., editors.

Software Fundamentals – Collected Papers by David L.

Parnas. Addison-Wesley (Mar. 2001).

A collection of important Parnas papers. With

introductions on their history and current relevance.

Includes [Par72].

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

What is a Module? 167

What is a Module?

• historically: a unit of measure
◦ e.g., 2,54 cm

• manufacturers learned to build parts

that were one unit large

• word now: the parts themselves

• modules: relatively self-contained systems,

combined to make a larger system

• design: often is assembly of many previously designed

modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Constraints on Modules 168

The Constraints on Modules

• if modules are hardware:
obvious how to put them together
◦ well-known physical constraints

◦ well-identified time for module assembly

• if modules are software:
no obvious constraints
◦ software modules can be arbitrarily large

◦ their interfaces can be arbitrarily complex

• during software development:

several different times at which parts are combined,

several different ways of putting parts together

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Modules of Software – When are Parts Put Together? 169

Modules of Software – When are Parts
Put Together?

1. while writing software
◦ parts: work assignments for programmer(s)

◦ when: before compilation or execution

2. when linking object programs
◦ parts: separately compiled (or assembled) programs

◦ when: before execution

3. while running a program in limited memory
◦ parts: executable programs or data

◦ when: during run-time

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Modules of Software – When are Parts Put Together? 170

• literature: uses “module” for all three!

• this ambiguity leads to confusion

• this lecture: only the first meaning (“while writing SW”)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Constraints on the Three Structures 171

The Constraints on the Three Structures

what constrains our choice of “modularization”?

• for write-time “modules”:
◦ intellectual coherence for programmer

◦ ability to understand, verify

◦ ease of change

• for link-time “modules”:
◦ duplicate names

◦ time needed to re-compile and link

• for run-time “modules”:
◦ memory size

◦ frequency of references to items outside module

◦ time needed to load into memory

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Constraints on the Three Structures 172

• these three sets of constraints are independent

• only commonality: the word “module”

• three different design concepts

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Old Example for a Confusion 173

Old Example for a Confusion

• TSS/360
◦ time sharing system by IBM, in the 60’s

◦ very slow

• a well-known IBM researcher:
“reason is over-modularization”
◦ memory thrashing

◦ memory management interpretation

• previous popular wisdom:
make modules as small as possible
◦ work assignment interpretation

• two meanings were confused

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Recent Example for a Confusion 174

Recent Example for a Confusion

• a recent book on “software architecture”
◦ presents and compares different styles

for organizing large software

◦ text book

◦ well-known authors

◦ uses Parnas’ KWIC example (see below)

• does not distinguish write-time / link-time modules
◦ e.g., does run-time performance comparisons for write-time modules

• book not used for this lecture. . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Effect of Confusing the Meanings 175

The Effect of Confusing the Meanings

• inefficiency, if
◦ forcing write-time modules to be link-time modules:

� overhead for frequently executed call sequences

◦ forcing write-time modules to be run-time modules:

� overhead for frequent memory loads

• high development/maintenance costs, if
◦ forcing run-time modules to be write-time modules:

� difficult to program and to maintain

• write-time modules need not be compiled separately

one may use macro substitution or similar

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Write-Time Modules 176

Write-Time Modules

• we want the following properties:
◦ can be designed and changed independently

◦ can be sub-divided into further modules

• when to stop sub-dividing into modules?
◦ when so small that it is easier

to write a new one than to change it

◦ when the cost of specifying the interface exeeds any future benefit

from having smaller modules

• “module = work assignment” is only a definition,

need guidelines for designing a module structure

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: A KWIC Index Production System 177

Example: A KWIC Index Production System

• KWIC: “Key Words In Context”

• the KWIC index system accepts an ordered set of lines

• each line is an ordered set of words

• each word is an ordered set of characters

• any line may be “circularly shifted” by repeatedly removing

the first word and appending it to the end of the line

• the KWIC index system outputs a listing of all circular

shifts of all lines in alphabetical order

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example of a KWIC Index 178

Example of a KWIC Index
input output

THE COLOUR OF MAGIC
THE LIGHT FANTASTIC
EQUAL RITES
MORT
MOVING PICTURES

COLOUR OF MAGIC THE
EQUAL RITES
FANTASTIC THE LIGHT
LIGHT FANTASTIC THE
MAGIC THE COLOUR OF
MORT
MOVING PICTURES
OF MAGIC THE COLOUR
PICTURES MOVING
RITES EQUAL
THE COLOUR OF MAGIC
THE LIGHT FANTASTIC

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Output of The Unix ptx Utility 179

Output of The Unix ptx Utility

(ptx: “permuted index”)

THE COLOUR OF MAGIC
EQUAL RITES

THE LIGHT FANTASTIC
THE LIGHT FANTASTIC

THE COLOUR OF MAGIC
MORT
MOVING PICTURES

THE COLOUR OF MAGIC
MOVING PICTURES
EQUAL RITES

THE COLOUR OF MAGIC
THE LIGHT FANTASTIC

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Ideas for a Modularization 180

Ideas for a Modularization

• pretend: programming task is so large that

it must be performed by serveral persons

• how should we modularize the KWIC index software?
◦ which modules?

◦ which interfaces between modules?

(discussion) editor

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

What are the Criteria for a Modularization? 181

What are the Criteria for a Modularization?

• well, what are they? editor

• does our modularization meet them?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Conventional Modularization 182

“Conventional” Modularization

1. Input Module

• reads data lines from input medium

• stores them in memory, packed four to a word

• end of word marker: an otherwise unused character

• makes index to show start address of each line

input interface: input format, marker conventions

output interface: memory format

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Conventional Modularization 183

2. Circular Shift Module

• called after input module

• makes index with addresses of first char. of shifts

• output is array of pairs of words (start of line, start of shift)

input interface: memory format

output interface: memory format, perhaps the same

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Conventional Modularization 184

3. Alphabetizing Module

• takes the arrays of modules 1 and 2

• produces an array in format of module 2

• the result is ordered alphabetically

input interface: memory format

output interface: memory format

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Conventional Modularization 185

4. Output Module

• takes the arrays of module 3 and 1

• produces formatted output listing

• maybe: mark start of line, . . .

input interface: memory format

output interface: paper format, conventions, . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Conventional Modularization 186

5. Master Control Module

• controls the sequencing of the other modules

• handles error messages, memory allocation, . . .

interface: names of the program to be invoked

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Some Likely Changes 187

Some Likely Changes

1. input format
(a) line break characters (\n / \r\n / \r)

(b) word break characters

(c) size of a character (7 bit / 8 bit / Unicode)

2. memory formats
(a) keep all lines in memory?

(b) pack characters four to a word?

(c) store shifts explicitly / as index+offset

3. decision to sort all output before starting to print

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Some Likely Changes 188

4. decision to produce all shifts
(a) eliminate shifts starting with noise words

(b) eliminate shifts not starting with only-words

5. different alphabetizations
(a) ignore case

(b) locale

6. output format
(a) different visual output layouts

(b) truncate overlong lines in output

(c) generate output for different formatting tools

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Parnas’ Modularization 189

Parnas’ Modularization

1. Line Holder Module

• special purpose memory to hold lines of KWIC index

interface programs:

• GET CHAR(lineno, wordno, charno)

• SET CHAR(lineno, wordno, charno, char)

• CHARS(lineno, wordno)

• WORDS(lineno)

• LINES

• DELETE LINE(lineno)

• DELETE WORD(lineno, wordno)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Parnas’ Modularization 190

2. Input Module

• reads from input medium

• calls line-holder programs to store in memory

interface program:

• INPUT

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Parnas’ Modularization 191

3. Circular Shift Module

• creates “virtual” list of circular shifts

• uses line holder programs to get data from memory

• may or may not create an actual table

interface programs:

• CS SETUP

• CS CHAR(lineno, wordno, charno)

• . . . (analogs to the other programs of the input module)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Parnas’ Modularization 192

4. Alphabetizer Module

• does actual sorting of the shifts

• may or may not produce a new list

• if it doesn’t, it makes a directory

interface programs:

• ALPH

• ITH(lineno)

• . . . (some more supporting programs)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Parnas’ Modularization 193

5. Output Module

• does the actual printing

• calls ITH and circular shift programs

interface program:

• OUTPUT

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Parnas’ Modularization 194

6. Master Control Module

• links all modules together to do the job

• is the main program, but very simple

• calls INPUT, CS SETUP, ALPH, and OUTPUT

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Comparison of the Two Modularizations 195

Comparison of the Two Modularizations

• both:
◦ small, manageable programs,

to be programmed independently

◦ may use same data representations

◦ may use same algorithms

◦ may result in identical code after compilation

• different:
◦ way of cutting up the system

◦ interfaces

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Comparison of the Two Modularizations 196

• changeability:
◦ 2nd modularization better changeable (compare list on slide 187)

• independent development:
◦ 1st: cooperation of all teams until best data representation is found

◦ 2nd: teams can start independently early

• comprehensibility:
◦ 1st: output module can be understood only by understanding some

constraints of the alphabetizer, shifter, and input module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Criteria 197

The Criteria

criteria for designing information-hiding modules:
• identify the design decisions that are likely to change
◦ requires experience and judgement

◦ is additional work up-front

• have a module for each that is very likely to change

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Secret of a Module 198

The Secret of a Module

• the design decision that might change
◦ only the implementor needs to know what decision was made

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Examples for Module Secrets 199

Examples for Module Secrets

• line holder module
◦ how lines are represented in memory

• input module
◦ input format

• circular shift module
◦ how shifts are represented

• alphabetizer module
◦ sorting algorithm

◦ time when alphabetization is done

• output module
◦ output format

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Some Specific Criteria 200

Some Specific Criteria

the following should be hidden in a single module:

• a data structure, its access and modyfying procedures

• a routine and its assembly call sequence

• control block formats (into a control block module)

• character codes, alphabetic orderings, . . .

• sequence of processing

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Interface Between Modules 201

Interface Between Modules

• the assumptions that they make about each other

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Module Structure 202

Module Structure

system structure:
• a system’s parts and their connections
◦ connections: the modules’ interfaces (i.e., assumptions)

◦ parts: work assignments (modules)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Efficiency and Implementation 203

Efficiency and Implementation

• frequency of switching between modules at run-time:
◦ steps-in-processing approach: low frequency

◦ information-hiding approach: high frequency

• module access programs need not be subroutines
◦ the usual space-time tradeoffs apply

◦ supporting language constructs:

� macros (in C, C++, not in Java)

� inline functions/methods (in C++, not in Java)

� templates (in C++, not in Java)

◦ automatically optimizing compilers

� they know size of code, but not frequency of calls

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Information Hiding and Abstract Data Types 204

Information Hiding and Abstract Data Types

• data abstraction is a special case of information hiding
◦ algorithms can be hidden as well

• data types allow many copies of the hidden structure
◦ each variable has one copy

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Information Hiding and Object-Orientation 205

Information Hiding and Object-Orientation

• both: group data and programs together

• information hiding: no inheritance

• OO: often no distinction of write-time/link-time modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Information Hiding and Program Families 206

Information Hiding and Program Families

• designing not a single program, but a program family

• early: decisions shared by all members

• postpone: decisions likely to change

• see Chapters 3.4 and 4

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

3.2 Structuring Complex
Software with the Module

Guide

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 3.2 208

Text for Chapter 3.2

[PCW85] Parnas, D. L., Clements, P. C., and Weiss, D. M.

The modular structure of complex systems. IEEE Trans.

Softw. Eng. 11(3), 259–266 (Mar. 1985).

Information hiding; the modules to decompose into.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 3.2 209

Additional Background for Chapter 3.2

[Lam88] Lamb, D. A. Software Engineering: Planning for

Change. Prentice-Hall (1988).

Chapter 5: information hiding; the modules to decompose

into.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Why the Gap Between Information Hiding in Theory and in Practice? 210

Why the Gap Between Information Hiding in
Theory and in Practice?

(before start of SCR project)

1. idea is impractical for real problems?

2. responsible managers unwilling to bet on unproven idea?

(startup problem)

3. examples in papers too unlikely to practical problems?

4. idea needs refinement or extension for complex projects?

5. practitioners not intellectually capable of application?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Why the Gap Between Information Hiding in Theory and in Practice? [2] 211

Why the Gap Between Information Hiding in
Theory and in Practice?

1. idea is impractical for real problems?
◦ no

2. responsible managers unwilling to bet on unproven idea?

(startup problem)

3. examples in papers too unlikely to practical problems?

4. idea needs refinement or extension for complex projects?

5. practitioners not intellectually capable of application?
◦ no

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Bridging the Gap 212

Bridging the Gap

2. responsible managers unwilling to bet on unproven idea?
(startup problem)
◦ started SCR project as an example

3. examples in papers too unlikely to practical problems?
◦ SCR: A-7E flight operational program is realistic

4. idea needs refinement or extension for complex projects?
◦ see below

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Structuring Complex Software Systems into Modules 213

Structuring Complex Software Systems
Into Modules

• many implementation decisions, many details

• therefore many modules

• ≤ 25 modules:
◦ not difficult to know:

� which modules affected by a change

� whether coverage complete

◦ careful inspection

• hundreds of modules??
◦ information hiding alone does not work here!

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Needed: the Software Module Guide Document 214

Needed: the Software Module Guide
Document

• tree-structured hierarchy

• additional goals by hierarchy and guide:
◦ well-defined concern: easily find relevant modules

without looking at all the others

◦ number of branches at each node small enough

such that designers can argue convincingly that

� no overlapping responsibilities of submodules

� all responsibilities of module are covered

◦ again: understand responsibility of a module without

understanding its internal design

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Software Module Guide Document 215

The Software Module Guide Document

• how responsibilities are allocated among the major modules

• the criteria used to assign a particular responsibility

• scope and contents of the individual design documents

• large example will follow

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

When to Write the Software Module Guide 216

When to Write the Software Module Guide

• start after SW behaviour specification (SOF) is complete

• refine top-level modules as concurrent work assignments
◦ each refinement step renders more concurrent design work

assignments

• the module interface specification writers

work out the details

• the module internal design follows

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Tracing Requirements 217

Tracing Requirements

• software module guide derived from

SW behaviour specification (SOF)

• easy to trace requirements to modules

• easy to trace back a design decision to the requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Access to a Module’s Access Programs 218

Access to a Module’s Access Programs

• any program may use any access program of
any module in the guide
◦ independent of relative positions in hierarchy

◦ but see also the “uses hierarchy” in Chapter 3.4 later on!

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Module Interfaces May Change 219

Module Interfaces May Change

• module interfaces are (higher-level) design decisions
◦ may change

◦ like module contents are design decisions

• encapsulate these interfaces in higher-level modules

• don’t mention these sub-modules in guide
◦ don’t use sub-modules outside this module

• additional local module guide for this module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Difficulties During Structuring 220

Difficulties During Structuring

• unstable information that cannot be encapsulated
◦ → “restricted” modules

• need to locate “secret” modules in the guide
◦ → “hidden” modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Restricted Modules 221

Restricted Modules

• a problem:
◦ we should confine information about hardware that could be replaced

◦ diagnostic information about that hardware

must be communicated to display modules

• restrict use of such modules
◦ mark by “(R)” in module guide

◦ try to avoid using restricted modules

because of potentially high costs of change

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Hidden Modules 222

Hidden Modules

• often: existence of certain sub-modules is a secret
◦ not in the global guide

◦ no use outside this module

• sometimes: existence of sub-module is a secret, but
guide should clearly state where certain functionality is
◦ mention these sub-modules in guide

� mark by “(H)” as hidden

◦ still no use outside the module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Two Kinds of Module Secrets 223

Two Kinds of Module Secrets

• primary secret
◦ hidden information specified to the software designer

• secondary secrets
◦ implementation decisions made by the designer when implementing

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Classes of Modules in the A-7E Software Module Structure 224

The Classes of Modules in the A-7E
Software Module Structure

top-level decomposition:

1. hardware-hiding module
}

secret is in software

requirements document2. behaviour-hiding module

3. software decision module
}

secret is not a requirement

• this top-level decomposition is

valid for nearly all SW systems!

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Classes of Modules in the A-7E Software Module Structure 225

• hardware-hiding module
◦ any programs affected by replacing a device

� with different interface

� with same general capabilities

◦ implements virtual hardware used by rest of software

◦ even for “non-embedded” software

� any programs affected by likely changes in the operating system

◦ primary secrets:

� the hardware-software interfaces

described in the requirements document

◦ secondary secrets:

� data structures and algorithms used to implement

the virtual hardware

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Classes of Modules in the A-7E Software Module Structure 226

• behaviour-hiding module
◦ any programs affected by changes of the required behaviour

◦ these programs determine the values to be sent to the

“virtual hardware” output devices

◦ primary secrets:

� the required behaviour

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Classes of Modules in the A-7E Software Module Structure 227

• software decision module
◦ hides software design decisions based upon

� mathematical theorems

� physical facts

� programming considerations (efficiency, accuracy)

◦ secrets and interfaces determined by software designers

� secrets are not in the requirements document

◦ likely reason for changes here:

� improve performance

� not: externally imposed changes

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Fuzziness in the Top-Level Classification 228

Fuzziness in the Top-Level Classification

1. line between requirements and design
decided when requirements are written
◦ example: requirements can specify an explicit weapon trajectory

model or just accuracy requirements

2. line between hardware characteristics and software design
◦ software tasks could be cast into hardware

◦ software decision module or hardware-hiding module?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Fuzziness in the Top-Level Classification 229

3. software design decisions may not be appropriate anymore
because of changes in
◦ the hardware

◦ the behaviour of the system

◦ the behaviour of its users

4. all software modules include software design decisions
◦ changes in any module may be motivated by efficiency or accuracy

considerations

• such fuzziness is not acceptable!

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Eliminating Fuzziness in the Top-Level Classification 230

Eliminating Fuzziness in the Top-Level
Classification

• by referring to a precise software requirements document
◦ specifies the lines between behaviour, hardware, and software

decisions

ad 1: line between requirements and design
◦ if requirements specifies algorithm:

algorithm is not software design decision

◦ if requirements specifies constraints only:

program that implements algorithm is part of

software design decision module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Eliminating Fuzziness in the Top-Level Classification 231

ad 2: line between hardware characteristics and software
design
◦ interface specified in software requirements document

◦ draw line based on likelihood of changes

� if likely to cast this software in hardware:

classify as hardware-hiding module

� otherwise: software design module

◦ conservative stance in SCR project:

� drastic changes less likely than evolutionary changes

� slight changes to hardware:

hardware-hiding modules affected only

� radical changes software→hardware:

some software decision modules eliminated or reduced in size

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Eliminating Fuzziness in the Top-Level Classification 232

ad 3: software design decisions may not be appropriate
anymore because of changes in [. . .]
◦ module only in software decision module if

it remains useful even when requirements document is changed

(although possibly less efficient)

ad 4: all software modules include software design decisions
◦ module only in software decision module if

its secrets do not include information from the requirements document

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Second-Level Decomposition: Hardware-Hiding Module 233

Second-Level Decomposition:
Hardware-Hiding Module

1. extended computer module

2. device interface module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Extended Computer Module 234

Extended Computer Module

• hides that part of the HW/SW interface that is likely to
change
◦ when computer modified

◦ when computer replaced

◦ same for operating system, if used

• example A-7E computer:
◦ floating point unit or software simulation?

◦ single / multi-processor?

• extended computer provides a virtual machine that can be

implemented efficiently on all likely platforms

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Extended Computer Module 235

• primary secrets for A-7E computer:
◦ number of processors

◦ instruction set of the computer

◦ capacity for concurrent operations

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Device Interface Module 236

Device Interface Module

• hides that part of peripheral devices that is likely to
change
◦ each device might be replaced by an improved one capable of the

same tasks

• example A-7E:
◦ all angle-of-attack sensors measure angle between reference line on

aircraft and the velocity of the air

◦ they differ in: input format, timing, amount of noise

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Device Interface Module 237

• module provides virtual devices
◦ sometimes one virtual device corresponds to several hardware devices

◦ sometimes the capabilities of a physical unit may change

independently: then hide in different modules

• primary secrets for A-7E:
◦ those characteristics of the present devices that

� are documented in the requirements document

� are not likely to be shared by replacement devices

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Second-Level Decomposition: Behaviour-Hiding Module 238

Second-Level Decomposition:
Behaviour-Hiding Module

1. function driver module

2. shared services module
◦ supports function driver module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Function Driver Module 239

Function Driver Module

• a set of individual modules (“function drivers”)

• each function driver is sole controller of
a set of closely related outputs
◦ outputs related closely: if it is easier to describe their values

together than individually

◦ example: sine of an angle, cosine of same angle

• these outputs go to the virtual devices

• primary secrets: the rules determining the values of the

outputs

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Shared Services Module 240

Shared Services Module

• some aspects are common to two or more function drivers
◦ A-7E: they control the same aircraft

◦ odometer example: the display mode

• a shared services module hides one such aspect

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Searching for a Behaviour-Hiding Module 241

Searching for a Behaviour-Hiding Module

• documentation users:

will not know which aspects are shared

• documentation for the function driver modules:

must have a reference to the shared services modules used

• start search:

always with function driver

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Second-Level Decomposition: Software Decision Module 242

Second-Level Decomposition:
Software Decision Module

1. application data type module
◦ hides implementation of certain variables

2. physical model module
◦ hides algorithms that simulate physical phenomena

3. data banker module
◦ hides data-updating policies

4. system generation module
◦ hides decisions that are postponed until system generation time

5. software utility module
◦ hides algorithms used in several other modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Application Data Type Module 243

Application Data Type Module

• supplements data types by extended computer module

• provides data types useful for avionics

that do not require a computer dependent implementation

• primary secrets: the data representation of the variables
◦ variables can be used without units

◦ where necessary, the modules provide unit conversion operators

which deliver or accept values in specified units

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Physical Model Module 244

Physical Model Module

• software requires estimates of quantities that cannot be

measured directly,

but can be computed from other observables

• primary secrets: the physical models

• secondary secrets: the implementations of the models

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Data Banker Module 245

Data Banker Module

• most data:

produced by one module and consumed by another

• usually: consumer gets value as up-to-date as practical

• data banker: middle-man, determines update policy

• if update policy changes:

change neither producer nor consumer

• don’t use data banker if consumer requires . . .
◦ specific members of value sequence

◦ values with a specific time (e.g., when an event occurs)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Some Data Update Policies 246

Some Data Update Policies

name store when new value produced

on demand no whenever a consumer requests the

value

periodic yes periodically. consumer gets most

recently stored value

event driven yes whenever data banker is notfied by

an event of a possible change

conditional yes whenever a consumer requests the

value, provided certain conditions

are true.

otherwise: previously store value

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Choice of Updating Policies 247

Choice of Updating Policies

• consumers’ accuracy requirements

• how often consumers require the value

• max. wait that consumers can accept

• how often the value changes

• cost of producing a new value

• the policy decision does not depend on coding details of
consumer or producer
◦ data banker usually not rewritten

if producer or consumer change

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

System Generation Module 248

System Generation Module

• primary secrets:
decisions that are postponed until system generation time
◦ system generation parameters

◦ choice among alternative implementations

• secondary secrets:
◦ method used to generate executable code

◦ representation of the postponed decisions

• these programs do not run on on-board computer
◦ A-7E: cross-platform build

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Software Utility Module 249

Software Utility Module

• primary secrets: the algorithms implementing
common software functions and mathematical routines
◦ resource monitor

◦ square root, logarithm, . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Third-Level Decomposition: Extended Computer Module 250

Third-Level Decomposition:
Extended Computer Module

1. data type module

2. data structure module

3. input/output module

4. computer state module

5. parallelism control module

6. sequence control module

7. diagnostics module (R)

8. virtual memory module (H)

9. interupt handler module (H)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Data Type Module 251

Data Type Module

• implements variables and operators for real numbers,

time periods, and bit strings

• primary secrets: data representations and data

manipulation instructions built into the computer hardware

• secondary secrets:
◦ how range and resolution requirements are used to determine

representation

◦ procedures for performing numeric operations

◦ procedures for performing bitstring operations

◦ how to compute the memory location of an array index given the

array name and the element index

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Computer State Module 252

Computer State Module

• keeps track of current state of extended computer

(operating / off / failed)

• signals relevant state changes to user programs
◦ after extended computer is initialized,

signals the event that starts initialization of the rest of the software

• primary secret: the way that the hardware detects and

causes state changes

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Diagnostics Module R 253

Diagnostics Module (R)

• provides diagnostic programs to test
◦ the interrupt hardware

◦ the I/O hardware

◦ the memory

• use is restricted

because it reveals secrets of the extended computer

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Virtual Memory Module H 254

Virtual Memory Module (H)

• presents a uniformly addressable virtual memory
for use by
◦ data type module

◦ input/output module

◦ sequence control module

• allows using virtual addresses for data and subprograms

• primary secrets:
◦ hardware addressing methods for data and instructions in real

memory

◦ differences in the way that different areas of memory are addressed

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Virtual Memory Module H 255

• secondary secrets:
◦ policy for allocating real memory to virtual addresses

◦ programs that translate from virtual address references to real

instruction sequences

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Third-Level Decomposition: Device Interface Module 256

Third-Level Decomposition:
Device Interface Module

1. air data computer

◦ how to read barometric altitude, true airspeed, and Mach number

2. angle of attack sensor

◦ how to read angle of attack

3. audible signal device

4. computer fail device

5. Doppler radar set

6. flight information displays

7. forward looking radar

8. head-up display (HUD)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Third-Level Decomposition: Device Interface Module 257

9. inertial measurement set (IMS/IMU)

10. panel

11. projected map display set (PMDS)

12. radar altimeter

13. shipboard inertial navigation system (SINS)

14. slew control

15. switch bank

16. TACAN

17. visual indicators

18. waypoint information system

19. weapon characteristics

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Third-Level Decomposition: Device Interface Module 258

20. weapon release system

◦ how to ascertain weapon release actions the pilot has requested

21. weight on gear

• almost corresponds to hardware structure
◦ exceptions are closely linked devices

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Third-Level Decomposition: Function Driver Module 259

Third-Level Decomposition:
Function Driver Module

1. air data computer functions

2. audible signal functions

3. computer fail signal functions

4. Doppler radar functions

5. flight information display functions

6. forward looking radar functions

7. head-up display (HUD) functions

8. inertial measurement set (IMS/IMU) functions

9. panel functions

10. projected map display set (PMDS) functions

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Third-Level Decomposition: Function Driver Module 260

11. ships inertial navigation system (SINS) functions

12. visual indicator functions

13. weapon release functions

14. ground test functions

• input-only modules are missing here:
◦ angle of attack sensor

◦ radar altimeter

◦ . . .

• each module can be divided further

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Head-Up Display Functions 261

Head-Up Display Functions

• primary secrets:
◦ where the movable HUD symbols should be placed

◦ whether a HUD symbol should be on, off, or blinking

◦ what information should be displayed on the fixed-position displays

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Inertial Measurement Set Functions 262

Inertial Measurement Set Functions

• primary secrets:
◦ rules determining the scale to be used for the IMS velocity

measurements

◦ when to initialize the velocity measurements

◦ how much to rotate the IMS for alignment

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Panel Functions 263

Panel Functions

• primary secrets:
◦ what information should be displayed on panel window

◦ when the enter light should be turned on

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Third-Level Decomposition: Shared Services Module 264

Third-Level Decomposition:
Shared Services Module

1. mode determination module

2. stage director module

3. shared subroutine module

4. system value module

5. panel I/O support module

6. diagnostic I/O support module

7. event tailoring module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Mode Determination Module 265

Mode Determination Module

• determines system modes

(as defined in the requirements document)

• signals the occurence of mode transitions

• makes the identity of the current modes available

• primary secrets:

the mode transition tables in the requirements document

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

System Value Module 266

System Value Module

• has a set of sub-modules

• each sub-module computes a set of values,

some of which are used by more than one function driver

• primary secrets: the rules in the requirements that define
the value that it computes
◦ selection among several alternative sources

◦ applying filters to values produced by other modules

◦ imposing limits on a value calculated elsewhere

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Third-Level Decomposition: Application Data Type Module 267

Third-Level Decomposition:
Application Data Type Module

• examples:
◦ angles (several versions)

◦ distances

◦ temperatures

◦ local data types for device modules

◦ STE (state transition event) variables

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Third-Level Decomposition: Physical Model Module 268

Third-Level Decomposition:
Physical Model Module

1. earth model module

2. aircraft motion module

3. spatial relations module

4. human factors module

5. weapon behaviour module

6. target behaviour module

7. filter behaviour module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Earth Model Module 269

Earth Model Module

• primary secrets: models of the earth and its atmosphere
◦ local gravity

◦ curvature of the earth

◦ pressure at sea level

◦ magnetic variation

◦ local terrain

◦ rotation of the earth

◦ coriolis force

◦ atmospheric density

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Aircraft Motion Module 270

Aircraft Motion Module

• primary secrets: models of the aircraft’s motion

• used to calculate aircraft position, velocity, attitude

from observable inputs

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Spatial Relations Module 271

Spatial Relations Module

• primary secrets: models of three-dimensional space

• used to perform coordinate transformations,

angle calculations, distance calculations

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Human Factors Module 272

Human Factors Module

• primary secrets: models of pilot reaction time and

perception of simulated continuous motion

• determines the update frequency for symbols on a display

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Weapon Behaviour Module 273

Weapon Behaviour Module

• primary secrets: models used to predict weapon behaviour

after release

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Third-Level Decomposition: Data Banker Module 274

Third-Level Decomposition:
Data Banker Module

• one for each real-time data item

• value always up-to-date

• secret: when to compute up-to-date value

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Third-Level Decomposition: System Generation Module 275

Third-Level Decomposition:
System Generation Module

• . . .
◦ (these programs do not run on on-board computer)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Third-Level Decomposition: Software Utility Module 276

Third-Level Decomposition:
Software Utility Module

• resource monitor module

• other shared resources
◦ square root

◦ logarithm

◦ . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Results of the A-7E Module Guide 277

Results of the A-7E Module Guide

• module guide is < 30 pages
◦ every project member must and can read it

• experience:
◦ important to organize the guide by secrets,

not by interfaces or by roles

◦ software requirements document was essential

for disambiguating choices in the guide’s structure

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Results of the A-7E Module Guide 278

• implementation of several subsets on a flight simulator

• integration testing of the first “minimal useful subset”:
◦ took a week only

◦ nine bugs found

� each in a single module only

� each quickly fixed

Dave Weiss: “like a breeze!”

• guide often used as a document template for other projects

applying the method

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

3.3 Hierarchical Software
Structures

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 3.3 280

Text for Chapter 3.3

[Par74] Parnas, D. On a ‘buzzword’: Hierarchical structure.

In “IFIP Congress 74”, pp. 336–339. North-Holland

(1974). Reprinted in [HoWe01].

[HoWe01] Hoffman, D. M. and Weiss, D. M., editors.

Software Fundamentals – Collected Papers by David L.

Parnas. Addison-Wesley (Mar. 2001).

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 3.3 281

Additional Background for Chapter 3.3

[Cou85] Courtois, P.-J. On time an space decomposition of

complex structures. Commun. ACM 28(6), 590–603 (June

1985).

“Courtois hierarchy” of structures which are complex in

time and space.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Structure 282

Structure

• partial description of a system, showing
◦ a division into parts

◦ a relation between the parts

• graphs can describe a structure

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Hierarchical Structure 283

Hierarchical Structure

• a structure with no loops in its relation’s graph:
◦ P0 = {α ∈ P | ¬∃ β ∈ P . R(α, β)}
◦ Pi = {α ∈ P | ∃ β ∈ Pi−1 . R(α, β) ∧

¬∃ j ∈ N, γ ∈ Pj . R(α, γ) ∧ j ≥ i}

• note: hierarchy 6= tree

• meaning of “hierarchical structure”?
◦ meaning of parts?

◦ meaning of relation?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Different Kinds of Software Hierarchies 284

Different Kinds of Software Hierarchies

• module decomposition hierarchy

• calls hierarchy

• uses hierarchy

• Courtois hierarchy

• gives-work-to hierarchy

• created hierarchy

• resource allocation hierarchy

• can-be-accessed-by hierarchy

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Module Decomposition Hierarchy 285

Module Decomposition Hierarchy

• kind of structure:
◦ parts: write-time modules

◦ relation: part-of

• time: early design time

• this structure is always a hierarchy
◦ never loop in “part-of”

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Calls Hierarchy 286

Calls Hierarchy

• kind of structure:
◦ parts: programs

◦ relation: calls

• time: design time

• hierarchical relation forbids recursion
◦ usually not a useful hierarchy

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Uses Hierarchy 287

Uses Hierarchy

• kind of structure:
◦ parts: programs

◦ relation: uses (i.e., requires-the-presence-of)

• time: design time

• definition of “uses”:

Given a program A with specification S and a program B,

A uses B iff

A cannot satisfy S unless B is present and functioning

correctly

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Uses Hierarchy 288

• example: list insert routine
◦ uses getNextElem, setNextElem routines

◦ calls nullPointerException routine

◦ does not “use” nullPointerException routine

• example: window manager with call-backs
◦ application passes address of draw() program to window manager

◦ application responsible for drawing sub-area when draw() called

◦ window manager calls draw()

◦ window manager does not “use” draw()

• example: layers of communication services
◦ the higher layer uses the services of the lower layer

◦ messages are passed in both directions

(reqest, indication, response, confirm)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Uses Hierarchy 289

• if a structure is a uses hierarchy:

levels define virtual machines

• useful for “ease of subsetting” (see later)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Courtois Hierarchy 290

Courtois Hierarchy

• kind of structure:
◦ parts: operations

◦ relation: takes more time and occurs less frequently than

• time: run time

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Courtois: Decomposition of Complex Structures 291

Courtois: Decomposition of Complex
Structures

• domains with complex structures:
◦ physics

◦ social science

◦ economy

◦ computer science

• sometimes easily decomposable in time and space
◦ concentrations in chemical reactions

� differential equation suitable

� large number of molecules allows to assume continuum

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Courtois: Decomposition of Complex Structures 292

• hierarchical decomposition difficult when
◦ time or size scales are not far apart

◦ interesting behavioural properties are related to rare events caused by

weak interactions within the system

◦ events at many scales of time or size from each other

nevertheless have a non-negligible influence on each other

• a hierarchical decomposition should ideally have:
◦ time and size scales far apart between levels

◦ . . .

• (Courtois describes how one can model structures even

when they are not easily decomposable)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Some More Kinds of Software Hierarchies 293

Some More Kinds of Software Hierarchies

• module decomposition hierarchy

• calls hierarchy

• uses hierarchy

• Courtois hierarchy

some more kinds:

• gives-work-to hierarchy

• created hierarchy

• resource allocation hierarchy

• can-be-accessed-by hierarchy

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Gives-Work-To Hierarchy 294

Gives-Work-To Hierarchy

• kind of structure:
◦ parts: processes

◦ relation: gives an assignment to

• time: run time

• found in T.H.E. operating system
◦ organized as set of parallel sequential processes

◦ processes exchange work assignments and information

by message passing

◦ processes are in hierarchical gives-work-to relation

• useful for guaranteeing termination, but neither necessary

nor sufficient for this

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Created Hierarchy 295

Created Hierarchy

• kind of structure:
◦ parts: processes

◦ relation: created

• time: run time

• must be a hierarchy (parent is older than child)

• is a tree
◦ why? (team work in creating progeny is accepted practice)

• sometimes implies unnecessary restrictions
◦ example: parent cannot die until all progeny die

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Resource Allocation Hierarchy 296

Resource Allocation Hierarchy

• kind of structure:
◦ parts: processes

◦ relation: allocate-a-resource-to or

owns-the-resources-of

• time: run time

• applicable with dynamic resource administration only

• “allocate to” vs. “controls”: the question of pre-emption

• example: hierarchical money budgets for country, state,

university, department, . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Resource Allocation Hierarchy 297

• advantages:
◦ interference reduced or eliminated

◦ deadlock possibilities reduced

• disadvantages:
◦ poor utilization when load unbalanced

◦ high overhead when resources are tight

(especially with many levels)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Can-Be-Accessed-By Hierarchy 298

Can-Be-Accessed-By Hierarchy

• kind of structure:
◦ parts: programs

◦ relation: can-be-accessed-by

• time: design time

• important to security and reliability

• example: the “rings” of Multics
◦ generalization of supervisor/user level of CPU execution

◦ is even complete ordering

• a hierarchy prevents some useful accessability patterns

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Many Kinds of Software Hierarchies Possible 299

Many Kinds of Software Hierarchies Possible

• not all of these relations must form a hierarchy!

• you may choose some of these relations

to form a hierarchy

• if you confuse these relations,
you will mess up your design
◦ you then force a hierarchy on a relation

that should not be a hierarchy

� T.H.E.: uses hierarchy and gives-work-to hierarchy coincided

� write-time module hierarchy and uses hierarchy

of course should not coincide

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Many Kinds of Software Hierarchies Possible 300

� write-time module hierarchy and created hierarchy

should not coincide if the latter imposes constraints

(object creation in OO!)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: ISO OSI Basic Reference Model 301

Example: ISO OSI Basic Reference Model

• basic reference model for communication systems
◦ 7 layers

• is a uses hierarchy

• should not be implemented as a gives-work-to hierarchy
◦ then lots of message passing between layers

◦ much too inefficient

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Uses Hierarchy and Courtois Hierarchy 302

Uses Hierarchy and Courtois Hierarchy

• in practice they usually coincide
◦ programs that require few or no other programs to function

run short and are executed often

◦ programs that run long and only a few times

require many other programs to function

• except: the handling of exceptions
◦ interrupts

◦ reboot (seldom, needed by all programs)

◦ . . .

• if the above is not the case

then usually something is wrong!

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

3.4 Designing Software for Ease
of Extension and Contraction

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 3.4 304

Text for Chapter 3.4

[Par79] Parnas, D. L. Designing software for ease of

extension and contraction. IEEE Trans. Softw. Eng.

SE-5(2), 128–138 (Mar. 1979).

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 3.4 305

Additional Background for Chapter 3.4

[Par76] Parnas, D. L. On the design and development of

program families. IEEE Trans. Softw. Eng. 2(1), 1–9 (Mar.

1976).

Stepwise refinement vs. information hiding; families of

programs.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Motivation 306

Motivation

some common complaints about software systems:

• deliver early release with subset of functionality?

→ the subset won’t work until everything works

• add simple capability?

→ rewrite most of the current code

• remove unneeded capability?

→ rewrite much of the current code

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

A Family of Programs 307

A Family of Programs

• usually you don’t write a single program,

but a family of programs

• families of systems: Chapter 4

• here special case:
families of programs where
◦ some members are subsets of other members, or

◦ several members share a large common subset

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Alternatives for the Software Producer 308

Alternatives for the Software Producer

• a “super” system
◦ generality costs

� memory, speed: still important for embedded systems

� difference to mathematics

• a system for the “average” user
◦ doesn’t really fit for anybody

• a set of independently developed systems
◦ with subtle differences → maintenance nightmare

• a subsettable “super” system
◦ each family member offers a subset

of services of the largest member

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

A Subsettable System 309

A Subsettable System

• individual installations only pay for what they need
◦ computer resources

◦ marketing

• incremental implementation possible

• allows for fail-soft subsets

• ability to contract by deleting whole programs,

not by modifying programs

• ability to extend by adding programs,

without changing programs

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Uses Hierarchy, Again 310

The Uses Hierarchy, Again

• is the key to subsets!

• kind of structure:
◦ parts: programs (not modules)

◦ relation: uses (i.e., requires-the-presence-of)

• time: design time

• definition of “uses”:

Given a program A with specification S and a program B,

A uses B iff

A cannot satisfy S unless B is present and functioning

correctly

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Design Error: Loops in the Uses Relation 311

Design Error: Loops in the Uses Relation

example:
use
allocated memory for tables

use
tables to keep track of memory

table handling
programs

memory
allocator

• neither works until both work

• if either is removed, the other no longer works

• should memory allocator build own tables?
◦ code duplication

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Design Error: Loops in the Uses Relation 312

example (from Multics):

• virtual memory uses file system

• file system uses virtual memory

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Basic Steps in the Design of a Subsettable System 313

Basic Steps in the Design
of a Subsettable System

1. identify the subsets

2. make list of programs belonging to each module

3. decide on uses matrix for the programs

4. construct the uses hierarchy from the matrix

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Identify the Subsets 314

Identify the Subsets

• during requirements definition

• search for minimal useful subset

• search for minimal useful increments
◦ even if it appears trivial now

• each increment later becomes a

write-time module in the design

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Make List of Programs Belonging to Each Module 315

Make List of Programs
Belonging to Each Module

• access programs

• internal programs
◦ cannot be used directly by outside programs

◦ can use other programs

• main programs
◦ cannot be used (are top-level)

◦ can use other programs

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Basic Steps in the Design of a Subsettable System [2] 316

Basic Steps in the Design
of a Subsettable System

1. identify the subsets

2. make list of programs belonging to each module

3. decide on uses matrix for the programs

4. construct the uses hierarchy from the matrix

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Decide on Uses Matrix for the Programs 317

Decide on Uses Matrix for the Programs

• three possibilities for each pair (A, B)
◦ A may use B

◦ B may use A

◦ neither may use the other

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Conditions for Allowing Program A to Use Program B 318

Conditions for Allowing
Program A to Use Program B

• A is simpler because it uses B

• B is not more complex because it is not allowed to use A

• there is a useful subset containing B and not A

• there are no useful subsets containing A and not B

• all conditions must be satisfied

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Construct the Uses Hierarchy from the Matrix 319

Construct the Uses Hierarchy from the Matrix

• could be done by a tool
◦ see Ada’s “with” clause to make the uses relation explicit

• make list of programs at level 0
◦ they don’t use other programs

• work up from there
◦ level 1 programs use only level 0 programs

◦ level 2 programs . . .

• the uses matrix and hierarchy must be maintained,

of course

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Conflict Removal: Sandwiching 320

Conflict Removal: Sandwiching

use
allocated memory for tables

use
tables to keep track of memory

memory
allocator

programs
table access

table handling
programs

variable sized tables

fixed sized tables

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Conflict Removal: Sandwiching 321

• message:

a level (in the uses hierarchy)
is not a module (in the write-time hierarchy)

◦ uses relationship is between programs, not modules

◦ there are no “layers of abstraction”

◦ in a subsetted system,

there may be subsets of the programs in the modules

� the designer of each module must identify the useful subsets

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Deriving Subsets from the Uses Relation 322

Deriving Subsets from the Uses Relation

• any level is a subset

0

1

2

3

• can also omit parts of levels

0

1

2

3

0

1

2

3

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Levels and Virtual Machines 323

Levels and Virtual Machines

• def. virtual machine: a set of variables and operations,

implemented in software

• each level is a virtual machine
◦ applications programs are simpler:

they use virtual machine programs

• upper level machines are less powerful
◦ resources used to implement a VM

must not be available to a program that uses the VM

◦ upper level machines more specialized

• upper level machines are more convenient and safer

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Evaluation Criteria for a Uses Hierarchy 324

Evaluation Criteria for a Uses Hierarchy

1. all desirable subsets?

2. no duplicated or almost alike programs?

3. is it simple?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Getting All Desirable Subsets 325

Getting All Desirable Subsets

• principle of minimal steps
◦ start with minimal useful subset

◦ minimal useful increments

• examples of violation:
◦ RC4000 operating system combined

synchronization and message passing

◦ Hydra operating system combined

parameter passing and run-time type checking

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The One, Fixed, Variable Pattern 326

The One, Fixed, Variable Pattern

• a common, useful pattern for designing a uses hierarchy

• three levels of operations:
◦ operations on one item

◦ operations on a fixed number of similar items

◦ operations on a variable number of similar items

• you might want to have three subsets

• language/library support

for “fixed”, “variable” supersets
of “one” data element
◦ C++, Java, . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: an Address Processing System 327

Example: an Address Processing System

• read, store, and write out lists of addresses

• example taken from [Par79]

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Information in an Address 328

Information in an Address

• last name

• given names

• organization

• internal identifier

• street address or P.O. box

• city or mail unit identifier

• state

• Zip code

• title

• branch of service if military

• GS grade if civil service

• each field may be empty

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Basic Assumptions 329

Basic Assumptions

• the items on previous slide will be processed by all

application programs

• the input formats are subject to change

• the output formats are subject to change

• choice of input/output format for different systems:
◦ fixed format

 (one/fixed/variable)◦ run-time choice from a fixed set

◦ user-specified format definition language

• representation of addresses in main memory will vary

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Basic Assumptions 330

• most systems: only a subset of addresses in main memory
at any one time
◦ number needed may vary

◦ some systems: number needed may vary at run-time

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Proposed Design Decisions 331

Proposed Design Decisions

• input and output programs will be table driven
◦ table specifies format

◦ secret of input and output modules:

content and organization of format tables

• secret of address storage module (ASM):
representation of addresses in main memory
◦ changing a part of an address is cheaper than

growing or shrinking the address table

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Proposed Design Decisions 332

• address file module (AFM):
used if more addresses than main memory
◦ interface compatible to ASM

◦ provides additional operations for efficient sequential iteration

• implementation of AFM has ASM, BFM as submodule
◦ block file module (BFM):

stores data blocks (size of at least an address),

does not look at content

◦ the ASM within the AFM has two interfaces:

� “normal” interface: addresses and their fields

� interface for blocks of contiguous storage, input/output

◦ BFM might be part of operating system

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Access Programs of “Normal” Interface of ASM 333

Access Programs of “Normal” Interface
of ASM

addTit: asm× integer× string→ asm
addGN: asm× integer× string→ asm
addLN: asm× integer× string→ asm
addServ: asm× integer× string→ asm
addBOrC: asm× integer× string→ asm
addCOrA: asm× integer× string→ asm
addSOrP: asm× integer× string→ asm
addCity: asm× integer× string→ asm
addState: asm× integer× string→ asm
addZip: asm× integer× string→ asm
addGsL: asm× integer× string→ asm
setNum: asm× integer → asm

fetTit: asm× integer→ string
fetGN: asm× integer→ string
fetLN: asm× integer→ string
fetServ: asm× integer→ string
fetBOrC: asm× integer→ string
fetCOrA: asm× integer→ string
fetSOrP: asm× integer→ string
fetCity: asm× integer→ string
fetState: asm× integer→ string
fetZip: asm× integer→ string
fetGsL: asm× integer→ string
fetNum: asm× integer

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Component Programs of Address Input Module 334

Component Programs of
Address Input Module

InAd: Reads in an address in the currently selected format and calls ASM or
AFM programs to store it.

InFSel: Selects a format from an existing set of format tables for InAd. There is
always a format selected.

InFCr: Adds a new format to the tables used by InFSel. The format is specified
in a “format language”. Selection is not changed.

InTabExt: Adds a blank table to the set of input format tables.
InTabChg: Rewrites a table in the input format tables. Selection is not changed.
InFDel: Deletes a table from the set of format tables. The selected format cannot

be deleted.
InAdSel: Reads in an address using one of a set of formats. Choice is specified by

an integer parameter.
InAdFo: Reads in an address in a format specified as one of its parameters (a

string in the format definition language). The format is selected and
added to the tables and subsequent addresses could be read in using InAd.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Component Programs of Address Output Module 335

Component Programs of
Address Output Module

OutAd: Prints out an address in the currently selected format. The information is
in an ASM and identfied by its position there.

OutFSel: Selects a format from an existing set of format tables for OutAd. There
is always a format selected.

OutFCr: Adds a new format to the tables used by OutFSel. The format is
specified in a “format language”. Selection is not changed.

OutTabExt: Adds a blank table to the set of output format tables.
OutTabChg: Rewrites a table in the output format tables. Selection is not changed.
OutFDel: Deletes a table from the set of format tables. The selected format cannot

be deleted.
OutAdSel: Prints out an address using one of a set of formats. Choice is specified by

an integer parameter.
OutAdFo: Prints out an address in a format specified as one of its parameters (a

string in the format definition language). The format is selected and
added to the tables and subsequent addresses could be printed using OutAd.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Component Programs of Address Storage Module 336

Component Programs of
Address Storage Module

Fet<CompName>: Read information from an address store. (See Slide 333.)
Add<CompName>: Write information in an address store. (See Slide 333.)
GetBlock: Takes an integer parameter, returns a storage block.
SetBlock: Takes a storage block and an integer. Changes the contents

of an address store – reflected by the Fet<CN> programs.
AsmExt: Extends an address store by appending a new address with

empty components at the end of the address store.
AsmShr: “Shrinks” the address store.
AsmCr: Creates a new address store. The parameter specifies the

number of components. All components are initially empty.
AsmDel: Deletes an existing address store.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Component Programs of Block File Module 337

Component Programs of
Block File Module

BlFet: Takes an integer and returns a “block”.
BlSto: Takes a block and an integer and stores the block.
BfExt: Extends BFM by adding additional blocks to its capacity.
BfShr: Reduces the size of the BFM by removing some blocks.
BfMCr: Creates a file of blocks.
BfMDel: Deletes an existing file of blocks.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Component Programs of Address File Module 338

Component Programs of
Address File Module

• provides all ASM programs except GetBlock and SetBlock.

• the programs are renamed as follows:

AfmFet<CompName>: As in ASM.
AfmAdd<CompName>: As in ASM.
AfmExt: As in BFM.
AfmShr: As in BFM.
AfmCr: As in BFM.
AfmDel: As in BFM.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Uses Relation of the System 339

Uses Relation of the System
AfmFet<CN> AfmAdd<CN> AfmExt AfmShr AfmDel AfmCr

F
et

<
C

N
>

A
dd

<
C

N
>

G
et

B
lo

ck

S
et

B
lo

ck

A
sm

E
xt

A
sm

S
hr

A
sm

C
r

A
sm

D
el

B
lF

et

B
lS

to

B
fE

xt

B
fS

hr

B
fM

C
r

B
fM

D
el

InAdFo

In
F

D
el

In
T

ab
C

hg

In
T

ab
E

xt

In
F

S
el

In
A

d

InAdSel InFCr

OutAdFo

OutAdSel OutFCr

O
ut

F
D

el

O
ut

T
ab

C
hg

O
ut

T
ab

E
xt

O
ut

F
S

el

O
ut

A
d

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Subset: Addresses in a Single Format 340

Subset: Addresses in a Single Format
AfmFet<CN> AfmAdd<CN> AfmExt AfmShr AfmDel AfmCr

F
et

<
C

N
>

A
dd

<
C

N
>

G
et

B
lo

ck

S
et

B
lo

ck

A
sm

E
xt

A
sm

S
hr

A
sm

C
r

A
sm

D
el

B
lF

et

B
lS

to

B
fE

xt

B
fS

hr

B
fM

C
r

B
fM

D
el

O
ut

A
d

In
A

d

In
T

ab
E

xt

In
T

ab
C

hg

In
F

D
el

In
F

S
el

InFCr

InAdFo

InAdSel OutAdSel

OutAdFo

OutFCr

O
ut

F
S

el

O
ut

T
ab

E
xt

O
ut

T
ab

C
hg

O
ut

F
D

el

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Subset: Small Set of Addresses 341

Subset: Small Set of Addresses
F

et
<

C
N

>

A
dd

<
C

N
>

A
sm

E
xt

A
sm

S
hr

A
sm

C
r

A
sm

D
el

InAdFo

In
F

D
el

In
T

ab
C

hg

In
T

ab
E

xt

In
F

S
el

In
A

d

InAdSel InFCr

OutAdFo

OutAdSel OutFCr

O
ut

F
D

el

O
ut

T
ab

C
hg

O
ut

T
ab

E
xt

O
ut

F
S

el

O
ut

A
d

B
lF

et

B
lS

to

B
fE

xt

B
fS

hr

B
fM

D
el

B
fM

C
r

AfmExt AfmShr AfmDel AfmCrAfmAdd<CN>AfmFet<CN>

G
et

B
lo

ck

S
et

B
lo

ck

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Subset: Query-Only System 342

Subset: Query-Only System
AfmFet<CN> AfmAdd<CN> AfmExt AfmShr AfmDel AfmCr

F
et

<
C

N
>

A
dd

<
C

N
>

G
et

B
lo

ck

S
et

B
lo

ck

A
sm

E
xt

A
sm

S
hr

A
sm

C
r

A
sm

D
el

B
lF

et

B
lS

to

B
fE

xt

B
fS

hr

B
fM

C
r

B
fM

D
el

InAdFo

In
F

D
el

In
T

ab
C

hg

In
T

ab
E

xt

In
F

S
el

In
A

d

InAdSel InFCr

OutAdFo

OutAdSel OutFCr

O
ut

A
d

O
ut

F
S

el

O
ut

T
ab

E
xt

O
ut

T
ab

C
hg

O
ut

F
D

el

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

3.5 Design of Abstract
Interfaces

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 3.5 344

Text for Chapter 3.5

[HBPP81] Heninger Britton, K., Parker, R. A., and Parnas,

D. L. A procedure for designing abstract interfaces for

device interface modules. In “Proc. of the 5th Int’l. Conf.

on Software Engineering – ICSE 5”, pp. 195–204 (Mar.

1981).

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 3.5 345

Additional Background for Chapter 3.5

[Par77] Parnas, D. L. Use of abstract interfaces in the

development of software for embedded computer systems.

NRL Report 8047, Naval Research Lab., Washington DC,

USA (3 June 1977). Reprinted in Infotech State of the Art

Report, Structured System Development, Infotech

International, 1979.

A predecessor report of [HBPP81] with more examples.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 3.5 346

[PaWe85] Parnas, D. L. and Weiss, D. M. Active design

reviews: Principles and practices. In “Proc. of the 8th Int’l

Conf. on Software Engineering – ICSE 8”, London (Aug.

1985).

How to organize the review of documentation.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Applying Information Hiding to Embedded Systems 347

Applying Information Hiding
to Embedded Systems

• the external interface is what is likely to change

• use an abstract interface to hide the actual interface

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Motivation for Abstract Interface Design Rules 348

Motivation
for Abstract Interface Design Rules

• much of the complexity of embedded real-time software:
special-purpose hardware devices
◦ example A-7 avionics:

� 21 devices, arbitrary interfaces (value encodings, timing quirks)

� changes during and after development

� device “adequate” but does not meet specification exactly

� device replaced by better one

� new connections between devices

• hide details inside device interface modules

• but which details?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Device Interface Modules 349

Device Interface Modules

• software module structure:
1. hardware-hiding module

1.1 extended computer module
1.2 device interface module

1.2.1 air data computer

1.2.2 angle of attack sensor

. . .

2. behaviour-hiding module

3. software decision module

• provide virtual devices
◦ example: virtual altimeter

� provides value of type range instead of bit string

� raw data is read, scaled, corrected, and filtered

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Design Goals for Device Interface Modules 350

Design Goals for Device Interface Modules

• confine changes

• simplify the rest of the software

• enforce disciplined use of resources

• code sharing

• efficient use of devices

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Definitions 351

Definitions

for:

• interface

• abstraction

• abstract interface

• device interface module

• secret of a device interface module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Definition: Interface 352

Definition: Interface

Definition 15 (Interface)

The interface between two programs consists of
the set of assumptions that each programmer
needs to make about the other program in order to
demonstrate the correctness of his own program.

• more than syntax

• analogous definition for the interface program–device

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Definition: Abstraction 353

Definition: Abstraction

Definition 16 (Abstraction)

An abstraction of a set of objects is
a description that applies equally well to any one of them.

• each object is an instance of the abstraction

• an abstraction models some aspects, but not all

• example: differential equations

(electrical circuits, collections of springs and weights, . . .)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Appropriateness of an Abstraction 354

Appropriateness of an Abstraction

• appropriate for a given purpose:
easier to study the abstraction than the actual system
◦ example: map map

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Definition: Abstract Interface 355

Definition: Abstract Interface

Definition 17 (Abstract interface)

An abstract interface is
an abstraction that represents more than one interface.

• exactly the assumptions included in all of the interfaces

that it represents

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Definition: Device Interface Module 356

Definition: Device Interface Module

Definition 18 (Device interface module)

A device interface module is a set of programs that
translate between the abstract interface and
the actual hardware interface.

• implementation possible only if all assumptions

in abstract interface are true of actual interface

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Definition: Secret of a Device Interface Module 357

Definition: Secret of a Device Interface
Module

Definition 19 (Secret of a device interface module)

A secret of a device interface module is
an assumption about the actual device
that user programs is not allowed to make.

• secret is an information about the current device

which needs not be true for others

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Undesired Event Assumptions 358

Undesired Event Assumptions

• interface between programs A, B includes assumptions of

A about B and of B about A

• B′: does not make any assumptions about A
◦ extra error checking and reporting in B′; more expensive

• development version of A-7:

device interface modules that assume

undesired events by user programs can occur

• production version of A-7: checking omitted
◦ compiler switch

• error checks in the requirements: never omitted

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Design Approach 359

Design Approach

• two partially redundant descriptions of the interface:
1. assumption list characterizing the virtual device

2. programming constructs embodying the assumptions

• review and iterate

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Description 1: Assumption List Characterizing the Virtual Device 360

Description 1: Assumption List
Characterizing the Virtual Device

• study devices available or under development
◦ advertisements of vendors

◦ journals

◦ . . .

• make list of common characteristics
◦ device capabilities

◦ modes

◦ information requirements

◦ behaviour

◦ proper use

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Description 1: Assumption List Characterizing the Virtual Device 361

• these are the assumptions

• example:
“The device provides information from which barometric
altitude can be determined.”
◦ only devices satisfying this assumption

will replace the current barometric altitude sensor

◦ no common assumption on the format of the information

• many assuptions appear inocuous
◦ record anyway

◦ review might prove them false

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Description 2: Programming Constructs Embodying the Assumptions 362

Description 2: Programming Constructs
Embodying the Assumptions

• access programs
◦ name, parameter types, value returned

◦ limitations

◦ effect on the device

• signalling events

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Descriptions are Partially Redundant 363

The Descriptions are Partially Redundant

• specifications for the programming constructs

imply the assumptions

• access program specifications additionally provide
form of data exchange
◦ example:

altimeter device interface module

might not provide barometric altitude directly,

but two or three quantities from which it can be computed

◦ a design change would change the access program specification

but not the assumption list

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Different Purposes of the Two Descriptions 364

Different Purposes of the Two Descriptions

1. assumption list: state assumptions explicitly
◦ explicit: invalid assumptions are easier to detect

◦ prose: easier to review for non-programmers

◦ review by programmers, users, hardware engineers

� valid?

� general enough?

2. programming constructs: direct use in user programs
◦ review by programmers

who have worked with similar programs

� typical user programs supported well?

� efficient implementation possible?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Different Purposes of the Two Descriptions 365

• consistency is essential
◦ assumptions clearly embodied in the programming construct

specifications

◦ programming construct specifications should not imply additional

capabilities

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Reviews 366

Reviews

• ask the expert why something cannot change
◦ “active design review”

◦ for details see [PaWe85]

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Iterative Process for the A-7 367

Iterative Process for the A-7

• tried to list assumptions first

• many subtle assumptions became apparent only

when designing programming constructs

• review of assumptions revealed errors

in programming constructs

• several cycles of review
◦ internally at NRL (several times)

◦ by A-7 maintenance team (informal, then formal)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: Development of the Air Data Computer 368

Example: Development of the
Air Data Computer (ADC)

• a sensor that measures
◦ barometric altitude

◦ true airspeed

◦ the mach number representation of airspeed

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpt of an Early Draft 369

Excerpt of an Early Draft
assumption list

1. The ADC provides a measure of barometric altitude, mach number, and true
airspeed.

2. The above measurements are based on a common set of sensors. Therefore an
inaccuracy in one ADC sensor may affect any of these outputs.

3. The ADC provides an indication if any of its sensors are not functioning properly.

4. The measurements are made assuming a sea level pressure of 29.92 inches of
mercury.

access program table

program name parameter type parameter information
G ADC ALTITUDE p1:distance;O altitude assuming 29.92 inches sea

level pressure
G ADC MACH INDEX p1:mach;O mach
G ADC TRUE AIRSPEED p1:speed;O true airspeed
G ADC FAIL INDICATOR p1:logical;O true if ADC failed

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Problems with This Early Draft 370

Problems with This Early Draft

• current ADC hardware and most replacement devices

have built-in test capability – no access

• when ADC is in failed state,

no values specified for access functions

• ranges of measured values not specified

• user programs must poll to detect changes in validity

• not clear whether module performs device-dependent

corrections to the raw sensor values

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpt of Draft for Formal Review 371

Excerpt of Draft for Formal Review
assumption list

1. The ADC provides measurements of the barometric altitude, true airspeed, and the
mach number representation of the airspeed of the aircraft. Any known
measurement errors are compensated for within the module. Altitude measurements
are made assuming that the air pressure at sea level is 29.92 inches of mercury.

2. All of these measurements are based on a common set of sensors; therefore an
inaccuracy in one ADC sensor will affect all measurements.

3. User programs are notified by means of an event when the ADC hardware fails. If
the access programs for barometric altitude, true airspeed, and mach number are
called during an ADC failure, the last valid measurements (stale values) are provided.

4. The ADC is capable of performing a self-test upon command from the software. The
result of this test is returned to the software.

5. The minimum measureable value for mach number and true airspeed is zero. The
minimum barometric altitude measureable is fixed after system generation time, as
are the maximum value and resolution for all measurements.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpt of Draft for Formal Review 372

access program table

program name parameter type parameter information
G ADC BARO ALTITUDE p1:distance;O corrected altitude assuming sea

level pressure = 29.92 inches
mercury

G ADC MACH INDEX p1:mach;O corrected mach
G ADC RELIABILITY p1:logical;O true if ADC reliable
G ADC TRUE AIRSPEED p1:speed;O corrected true airspeed
TEST ADC p1:logical;O true if ADC passed self test

event table

event when signalled
@T(ADC unreliable) When “ADC reliable” changes from true to false

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Problems with the Later Draft 373

Problems with the Later Draft

• correction for actual sea level pressure is device-dependent
◦ therefore better do inside DIM

◦ future hardware may do this automatically

• only one reliability indicator for three values
◦ current hardware: only one indicator; OK

◦ future hardware: might have independent sensors

• some devices might not be able to measure

speeds as low as zero

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpt of Published Version 374

Excerpt of Published Version
assumption list

1. The ADC provides measurements of the barometric altitude, true airspeed, and the
mach number representation of the airspeed of the aircraft (mach index). Any
known measurement errors are compensated for within the module. <deleted>

<deleted>

2. User programs are notified by means of events when one or more of the outputs are
unavailable. A user program can also inquire about the reliability of individual
outputs. If the access programs for barometric altitude, true airspeed, and mach
number are called while the values are unreliable, the last valid measurements (stale
values) are provided.

3. The ADC is capable of performing a self-test upon command from a user program.
The result of this test is returned to the user program.

4. The minimum, maximum, and resolution of all ADC measurements are fixed after
system generation time.

5. The ADC will compute its outputs on the basis of a value for Sea Level Pressure

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpt of Published Version 375

(SLP) supplied to it by a user program. If no value is provided, an SLP of 29.92 will
be assumed.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpt of Published Version 376

access program table

program name parameter type parameter information
G ADC ALTITUDE p1:distance;O corrected altitude assuming

SLP=29.92 or user supplied
SLP

p2:logical;O true if altitude valid
G ADC MACH INDEX p1:mach;O corrected mach

p2:logical;O true if mach valid
G ADC TRUE AIRSPEED p1:speed;O corrected true airspeed

p2:logical;O true if true airspeed valid
S ADC SLP p1:pressure;I sea level pressure
TEST ADC p1:logical;O true if ADC passed self test

event table

event when signalled
@T(altitude invalid) When “altitude valid” changes from true to false
@T(airspeed invalid) When “true airspeed valid” changes from true to false
@T(mach invalid) When “mach valid” changes from true to false

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Design Problems – Tradeoffs and Compromises 377

Design Problems – Tradeoffs and
Compromises

• design goals in conflict:
◦ small device interface modules

◦ device-independent user programs

◦ efficiency

• ultimate goal:

minimize expected cost of the software

over its entire period of use

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Major Variations Among Available Devices 378

Major Variations Among Available Devices

• sometimes differences are more than skin deep
◦ example: Inertial Measurement Set (IMS)

• full simulation does not separate concerns

• solution: two modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Devices with Characteristics that Change Independently 379

Devices with Characteristics that Change
Independently

• failure to fully separate
◦ example: Projected Map Display Set (PMDS)

• solution: module within module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Virtual Device Characteristics that are Likely to Change 380

Virtual Device Characteristics that are Likely
to Change

• they cannot be hidden:
user programs must behave differently if these
characteristics change
◦ examples:

� measurement resolutions

� number of positions on switches

� max. displayable value

• a solution: symbolic constants
◦ are system generation parameters

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Virtual Device Characteristics that are Likely to Change 381

• problem:

initial assumption wrong that

all values known at system generation time

• solutions:

cost for

variability

likelihood

of change

solution

low ∗ run-time variable (+ access prgs.)

high low system generation parameter

high high run-time variable

with option to bind earlier

conservative value for all devices,

bind early

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Device Dependent Data to/from Other Modules 382

Device Dependent Data to/from Other
Modules

• device dependent characteristics that vary at run-time
◦ example: enter drift rate of IMS at run-time through panel

• reporting and displaying device dependent errors

• solution: restricted interface
◦ mark these assumptions and and access programs as “restricted”

◦ append to normal interface

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Removable Interconnections Between Devices 383

Removable Interconnections Between Devices

• device interdependences for hardware convenience
◦ example: Doppler and Ship Inertial Navigation Set share a data path

� someone assumed the software never needs both simultaneously

◦ can hide nature but not existence of connection

• hardware connection might be removed later

• similar: concurrent access to capabilities restricted

within a single module

• solution: upward compatible interface
◦ show interdependence now

◦ maybe remove later

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Interconnections Through Possible Failures? 384

Interconnections Through Possible Failures?

• device A provides information, device B uses it

• device A can fail, invalidating the data of B

• if computer can detect failure of A:
◦ device interface module of B can and should hide interconnection

by simulating the detection of a failure of B

• if computer cannot detect failure of A:
◦ users of B must expect undetectable failures

◦ the interconnection itself can and should be hidden

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Reporting Changes in Device State 385

Reporting Changes in Device State

• by signalling events or by access programs?
◦ problem: depends on the (changing) requirements of user programs

• solution:

specify always both,

implement only what is used

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Devices That Need Software Supplied Information 386

Devices That Need Software Supplied
Information

• information from outside device interface module
◦ example: current IMS device needs to know whether aircraft

is above 70◦ latitude

� latitude not calculated within IMS module

• how to get information?
(a) device interface module provides access program

(b) device interface module programs call other programs

• solution: depends on whether information requirement
is common to the replacement devices
◦ if yes: provide access program

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Virtual Devices that Do not Correspond to Hardware Devices 387

Virtual Devices that Do not Correspond to
Hardware Devices

• a 1-to-1 relationship not always gives clear interfaces
◦ some related capabilities scattered among several hardware devices

� example: weapons-related capabilities of A-7

◦ some unrelated capabilities occur in the same device

for physical convenience

� example: weapons release device fills two roles

◦ some groupings explained by history only

• solution:
◦ one virtual device for weapons release

◦ one virtual device for weapon data

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Bottom Line 388

Bottom Line

• the basic definition of abstraction gives good guidelines

even in hard design problems

• we can do a better job with a systematic procedure

and a principle

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

When Won’t It Work? 389

When Won’t It Work?

success depends on:
• the oracle assumption
◦ our ability to predict change

• existence of commonality between actual interfaces
◦ interface programs smaller than applications programs

• the Big “Big-Box” Assumption
◦ the application is big enough to justify

the effort for an abstract interface

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Abstract Interface Design as an Application of Fundamental Principles 390

Abstract Interface Design as an Application of
Fundamental Principles

• being explicit about assumptions and design decisions

• encapsulation of likely change

• abstract interface module can solve

the embedded computer system problem

by hiding the embedding from the computer

• external interface modules are just a special case
◦ use same method for other information hiding modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

4. Families of Systems

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Overview of SCS4, Again 392

Overview of SCS4, Again

1. rigorous description of requirements

2. what information should be provided

in computer system documentation?

3. decomposition into modules

4. families of systems

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Overview of Chapter 4 393

Overview of Chapter 4:
Families of Systems

4.1 motivation:

maintenance problems in telephone switching

4.2 families of programs

4.3 families of requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

4.1 Motivation: Maintenance
Problems in Telephone

Switching

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Overview of Chapter 4.1 395

Overview of Chapter 4.1

• background

on telephone switching

• feature interaction problems

in telephone switching

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

History of Telephone Switching Systems 396

History of Telephone Switching Systems

.

1950s direct distance dialling (DDD)

No. 5 Crossbar

early 1960s stored program control switches

1976 Signalling System No. 6

1980 Signalling System No. 7

1984 ISDN

currently IP telephony

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Signalling System No. 7 397

Signalling System No. 7

application layer

session layer

transport layer

presentation layer

physical layer

data link layer

network layer

OSI model

MTP Level 1

MTP Level 2

MTP Level 3

SCCP

<empty>

TC

OMAP ASEs

ISUP TUP

SS7 architecture

OMAP: Operations, Maintenance

and Administration Part

ASE: Application Service

Element

TC: Transactions Capabilities

ISUP: ISDN User Part

SCCP: Signalling Connection

Control Part

MTP: Message Transfer Part

TUP: Telephone User Part

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

ISDN/DSS1 398

ISDN/DSS1

• Integrated Services Digital Network

• basic service:
◦ two B-channels (64 kbit/s, transparent)

◦ one D-channel (16 kbit/s, for signalling, e.g., call setup)

� protocol: Digital Subscriber Signalling 1 (DSS1)

• supplementary services:
◦ Calling Line Identification Presentation

◦ Call Forwarding

◦ Closed User Group

◦ User-to-User Signalling

◦ . . .

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

ISDN/DSS1 399

• fixed set of supplementary services

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Intelligent Network – IN 400

Intelligent Network (IN)

• extension of telephone switching systems

• general goals:
◦ rapid introduction of new services

◦ broaden range of services

◦ multi-vendor environment

◦ evolve from (all) existing networks

• standardized by ITU-T

• approach: base service & additional services/features

• new services step by step:
CS−1

CS−2
CS−3

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Intelligent Network Conceptual Model – INCM 401

Intelligent Network Conceptual Model
(INCM)

• four “levels”:
◦ service plane

◦ global functional plane

◦ distributed functional plane

◦ physical plane

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Global Functional Plane 402

Global Functional Plane

• service independent building blocks (SIBs)

• service logic (“glue” for SIBs)

• basic call process
◦ is special SIB

◦ POI: point of initiation (of service)

◦ POR: point of return

SIB1 SIB2 SIB3 SIB6

basic call processPOI POR POR

SIB4 SIB5

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Services in IN CS-1 403

Services in IN CS-1
• Abbreviated dialling

• Account card calling

• Automatic alternative billing

• Call distribution

• Call forwarding

• Call rerouting distribution

• Completion of call to busy subscriber

• Conference calling

• Credit card calling

• Destination call routing

• Follow-me diversion

• Freephone

• Malicious call identification

• Mass calling

• Originating call screening

• Premium rate

• Security screening

• Selective call forward on busy / don’t
answer

• Split charging

• Televoting

• Terminating call screening

• Universal access number

• Universal personal telecommunications

• User-defined routing

• Virtual private network

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Services in IN CS-1 404

• 25 services

• kind of services limited:
◦ mainly for call setup and call tear down

◦ 1 customer and 1 call leg only, mostly

• set is “political”:
◦ some services very similar

� taken from different sources, without proper merge

� example: Televoting / Mass Calling

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Features in IN CS-1 405

Features in IN CS-1
• Abbreviated dialling

• Attendant

• Authentication

• Authorization code

• Automatic call back

• Call distribution

• Call forwarding

• Call forwarding on BY/DA

• Call gapping

• Call hold with announcement

• Call limiter

• Call logging

• Call queueing

• Call transfer

• Call waiting

• Closed user group

• Consulation calling

• Customer profile management

• Customized recorded announcement

• Customized ringing

• Destinating user prompter

• Follow-me diversion

• Mass calling

• Meet-me conference

• Multi-way calling

• Off net access

• Off net calling

• One number

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Features in IN CS-1 406

• Origin dependent routing

• Originating call screening

• Originating user prompter

• Personal numbering

• Premium charging

• Private numbering plan

• Reverse charging

• Split charging

• Terminating call screening

• Time dependent routing

• 38 features

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Architecture of Distributed Functional Plane 407

Architecture of Distributed Functional Plane

voice
signalling
control
management

CCAF CCF CCAFCCF

SSF

SMF

SMAF

SCEF

SCF

SDF

SRF

call control

service management

service control

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Basic Call State Model 408

Basic Call State Model

• originating BCSM automaton

• terminating BCSM automaton

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Feature Interaction Problems in Telephone Switching 409

Feature Interaction Problems
in Telephone Switching

• features work separately, but not together
◦ hundreds of (proprietary) features

◦ combinations cannot be checked anymore

• telephone switching
◦ users’ expectation high

• feature
◦ about any increment of functionality

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Calling Card and Voice Mail 410

Calling Card & Voice Mail

• #-button
◦ (Bell) calling card:

start new call without re-authorization

◦ (Meridian) voice mail:

end of mailbox number, end of password, . . .

• call voice mailbox using calling card??
◦ either early disconnect, or

◦ calling card feature crippled

• resolution by Bell
◦ introduce new signal:

“#-button pressed at least 2 sec.”

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Call Waiting and Call Forward on Busy 411

Call Waiting & Call Forward on Busy

• both activated simultaneously
◦ in busy state

◦ when another call arrives

• only one can get control
◦ no resolution, except restrictions on features

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Originating Call Screening and Area Number Calling 412

Originating Call Screening
& Area Number Calling

• OCS
◦ aborts calls to numbers in list

◦ query Service Data Point (SDP) for list

• ANC
◦ dialled number + area(calling number) → called number

◦ example: Domino’s Pizza

◦ query SDP for called number

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Originating Call Screening and Area Number Calling 413

• switch may restrict no. of queries
◦ protection against infinite loops

◦ e.g., one query per call

◦ → OCS subscription prevents orders for pizza

• solution: one more query??

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Calling Number Delivery and Unlisted Number 414

Calling Number Delivery & Unlisted Number

• conflict of goals
◦ CND reveals caller

◦ UN prevents revealing caller

• resolution
◦ weaken one feature

◦ e.g.: CND delivers only 1-111-1111-1111

for unlisted number

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Call Forwarding and Terminating Call Screening 415

Call Forwarding & Terminating Call Screening

• CF
◦ B forwards all calls to C

• TCS
◦ when A is caller, C blocks him

• A calls B: can/should A reach C?

A B
?

C

not AC

• notion of “caller” is crucial

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Informal Feature Interaction Definition in Literature 416

Informal Feature Interaction Definition
in Literature

• FI:

the behaviour of a feature is changed by another feature

• not precisely clear what a feature actually is

• not all interactions are undesired

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Categorization of Causes 417

Categorization of Causes

according to [Cameron et. al.]:
• violation of feature assumptions
◦ naming

◦ data availability

◦ administrative domain

◦ call control

◦ signalling protocol

• limitations on network support
◦ limited CPE signalling capabilities

◦ limited functionalities for communications among network

components

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Categorization of Causes 418

• intrinsic problems in distributed systems
◦ resource contention

◦ personalized instantiation

◦ timing and race conditions

◦ distributed support of features

◦ non-atomic operations

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Approaches for Tackling FI 419

Approaches for Tackling FI

• ignore

• informal
◦ filtering

◦ heuristics

◦ . . .

• formal methods
◦ validation of:

� specified properties of the features

� general properties of the system

(free of non-determinism, . . .)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Approaches for Tackling FI 420

• new architectures
◦ IN

◦ Tina, Race, Acts

◦ DFC, agents

• better software engineering processes

• in practice: ignore / informal / processes / (architectures)

• formal analysis?
yes, but. . .
◦ formalization is huge task

◦ complexity not amenable to tools

� “spaghetti code” dependences

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Feature Interactions in the Requirements 421

Feature Interactions in the Requirements

• if requirements complete,

all FI are (inherently) present in the requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Requirements Structuring Problems 422

Requirements Structuring Problems

• monolithic requirements or single layer of extension
◦ ISDN: monolithic

◦ IN: no features on top of features

◦ CF & TCS: resolution needs extended, common notion of caller

◦ CF & OCS: resolution needs extended, common notion of called user

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Requirements Structuring Problems 423

• new services depend implicitly on new concepts
◦ some new concepts:

� conditional call setup blocking

� dialled number translation
� multi-party call/session
• required for CF & TCS and for CF & OCS

� service session without communication session

� distinction user – terminal device

� distinction user – subscriber
� mobility of users and of terminals
• difficult to specify with network of distributed switches

� multiple service providers, billing separately

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Requirements Structuring Problems 424

• concerns of the users’ interface are spread out
◦ several features assume exclusive access to the user’s terminal device

(12 buttons + hook)

◦ example: calling card & voice mail

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Needed: a More Modular Requirements Structure 425

Needed: a More Modular Requirements
Structure

• centralize responsibility for the users’ interface

• a layered architecture
◦ like in computer communication systems

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

New Architectures 426

New Architectures

• current: IN
◦ currently largest impact on implementations

� see above

◦ Jain

� enhanced IN-like architecture

� developed currently

� in Java

� allows multi-party, multi-media calls

� Java Call Control (JCC):

call state machine similar to that of the IN

� JCC does not handle feature interactions

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

New Architectures 427

• future: Tina, Race, and Acts
◦ Tina

� radical approach: entirely new architecture

� strongly based on Open Distributed Processing (ODP) and Corba

� migration difficult

◦ Race project
� Cassiopeia
• developed open services architectural framework (Osa)

• many commonalities with Tina

• focuses on requirements engineering of services

• tries to take legacy services into account

� Score
• concerned with the methodological aspects of service creation

• detection of undesired service interactions:
formal methods, exhaustive simulation
applied to small example

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

New Architectures 428

◦ Acts project

� followed Race project

� application and on evaluation of service architectures

� result: a modified architecture

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

New Architectures 429

• research: the DFC and the agent architecture
◦ Distributed Feature Composition (DFC)

� compose features in a pipe-and-filter network

� designed to be implementable on a conventional switch

� some new concepts supported, others not

� no layered architecture

� implemented in AT&T’s Eclipse project,

which additionally incorporates Voice Over IP

◦ Zibman et. al.’s agent architecture

� separates several concerns explicitly

� restricts itself to narrow-band telephony over a fixed network

� Plain Old Telephone Service is represented by a single service agent

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Discussion of New Architectures 430

Discussion of New Architectures

• IN important step, but not sufficient

• Tina, Race, Acts have most of the interesting concepts,

but transition is very expensive

• feature interaction detection is still research

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Discussion of New Architectures 431

• some undesired service interactions still possible in new
architectures
◦ a paper checked the FI benchmark for Tina

◦ still possible:

� forwarding loop

� automatic callback & automatic re-call

� calling number delivery & calling number delivery blocking

� billing problems for video conference

� . . .

◦ causes: violated assumptions or conflicting goals

• how to prepare for unanticipated changes??
◦ at least encapsulate as much as possible

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

4.2 Families of Programs

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Overview of Chapter 4.2 433

Overview of Chapter 4.2

• basic idea of families of programs

• . . . and what to do if the first version is due yesterday

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 4.2 434

Text for Chapter 4.2

[Par76] Parnas, D. L. On the design and development of

program families. IEEE Trans. Softw. Eng. 2(1), 1–9 (Mar.

1976).

First paper to introduce families of programs explicitly.

Presents the essentials very clearly.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 4.2 435

[WeLa99] Weiss, D. M. and Lai, C. T. R. Software Product

Line Engineering – a Family-Based Software Development

Process. Addison Wesley Longman (1999).

Best current book on how to do software product line

engineering (families of programs) in practice.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Definition of Program Family 436

Definition of Program Family

Definition 20 (Program family)

A set of programs constitutes a family
whenever it is worthwile to study programs from the set by
first studying the common properties of the set and
then determining the special properties of the individual
family members.

• examples:
◦ the set of versions of an embedded software for different

environments

◦ the set of versions of a software over time

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The “Classical” Method of Producing Program Families 437

The “Classical” Method of Producing
Program Families

1

2

3

7

9 8

5 64

0

incomplete program

working program

set of initial possibilities

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Newer Techniques 438

Newer Techniques

1 32 54

incomplete program

working program

set of initial possibilities

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Stepwise Refinement 439

Stepwise Refinement

• intermediate stages:
◦ complete programs

◦ except: certain operators and operand types

only specified, not yet implemented

• next step: provide some more implementation,

using more, newly introduced specifications as necessary

• linear sequence of steps towards one program
◦ if a step must be taken back, all subsequent steps are lost

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Module Specification 440

Module Specification

• intermediate stages:
◦ black-box specifications of modules

◦ not complete programs

• next step: add design decisions for a module,

using newly introduced sub-modules as necesary

• steps taken in different modules are independent
◦ any step taken back affects its sub-modules only

◦ order of steps: more important

◦ independent further development of modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Discussion of Both Development Approaches 441

Discussion of Both Development Approaches

• both based on same basic ideas:
◦ represent intermediate stages precisely

◦ postpone certain decisions

• extra effort to design first family member:
◦ stepwise refinement: none

◦ module specification: significant

• effort to design next family members:
◦ stepwise refinement: high, if early step taken back

◦ module specification: low, as long as low uses-level modules affected

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Dilemma: Careful Engineering vs. Rapid Production 442

Dilemma:
Careful Engineering vs. Rapid Production

• careful engineering:
◦ attractive functionality

◦ ease of use

◦ reliability

◦ easy to enhance

• rapid production:
◦ market it ahead of competition

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

A Solution in Other Fields 443

A Solution in Other Fields

• fields:
◦ aerospace

◦ automotive

◦ computer hardware

◦ . . .

• idea: a family of products

produced with a single production facility

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

A Solution in Other Fields 444

• family: set of items
◦ common aspects (e.g., chassis)

◦ predicted variabilities (e.g., engine)

• def. product line: a family of products

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Family-Oriented Abstraction, Specification, and Translation – FAST 445

Family-Oriented Abstraction, Specification,
and Translation (FAST)

domain
engineer

production
family

facility

family
definition

application
engineer

family
members

domain
engineering

application
engineering

creates and uses

creates

uses

creates

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Applications of FAST 446

Applications of FAST

• developed and in use within Lucent Technologies

(development: Bell Labs)

• many product lines already created there

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Basic Assumptions 447

Basic Assumptions

• redevelopment hypothesis

• oracle hypothesis

• organizational hypothesis

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Stages Towards an Engineered Family 448

Stages Towards an Engineered Family

1. potential family
◦ one suspects sufficient commonality

2. semifamily
◦ common and variable aspects identified

3. defined family
◦ semifamily + economic analysis of exploiting it

4. engineered family
◦ defined family + investment in processes, tools, resources

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

FAST Strategies 449

FAST Strategies

• identify collections of programs

that can be considered families

• design the family for producibility

• invest in family-specific tools

• create a family-specific way to model family members
◦ for validating the requirements by exploring the behaviour

◦ for generating code and documentation

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Outputs from Domain and Application Engineering 450

Outputs from Domain and Application
Engineering

domain
engineer

engineering
application

process

family
definition

application
engineer

family
members

domain
engineering

application
engineering

engineering
application

environment

creates and uses

creates

creates

uses

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Predicting Change 451

Predicting Change

• is critical
◦ but is not all-or-nothing

• confidence should rule size of investment

• FAST: explicitly bounds change (oracle hypothesis)
◦ allows for common abstractions

• good guides for future change:
◦ past change

◦ your marketing organization

◦ early adopters

◦ experienced developers

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Organizational Considerations 452

Organizational Considerations

• reorientation of software development around domains
may need change in organization of development
◦ e.g., one sub-organization for each domain

◦ e.g., a product line composed out ouf several sub-domains

� example: protocol stack

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: FAST Applied to Commands and Reports 453

Example:
FAST Applied to Commands and Reports

• C&R: part of Lucent’s 5ESS telephone switch

• technicians monitor and maintain running switch
◦ issue commands

◦ receive status reports

• voluminous documentation

• command set: thousands of commands and report types

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: FAST Applied to Commands and Reports 454

define C&R family and
develop production facility

C&R domain engineering:

C&R application
engineering environment:

SPEC language

C&R application engineering process

ASPECT toolset

C&R application engineering:

produce C&R family members

command & report descriptions
and customer documentation

investment

payback

Feedback

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Defining the C-R Family 455

Defining the C&R Family

• identify potential family members,

characterize commonalities and differences

• 5ESS command:
◦ always command code followed by parameters

� command code: action and an object
• example: report status of a line connected to the switch

◦ the particular actions, objects, parameters vary

� over reasonably well-defined sets
� certain combinations not included in family
• example: remove clock is not included, but set clock is included

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

C-R Commonality Analysis Document 456

C&R Commonality Analysis Document

• introduction
◦ purpose of the commonality analysis

• overview
◦ brief overview of C&R domain

• dictionary
◦ defines technical terms for the C&R domain used

• commonalities
◦ assumptions true for every member

• variabilities
◦ assumptions about how members may vary

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

C-R Commonality Analysis Document 457

• parameters of variation
◦ the value space for each variability

◦ the time at which the value must be fixed

• issues
◦ issues that arose during analysis / how resolved

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpts from Dictionary Section 458

Excerpts from Dictionary Section
Command code Unique identifier of an input command, consisting of

a verb and an object.
Input command A command entered by an office technician that acts

as a stimulus to the 5ESS to perform tasks. Such
tasks include changing the state or reporting the state
of the 5ESS.

Input command definition A specification of all the information needed to
identify and produce an input command or a set of
input commands with common structure and
contents.

Input command manual page Documentation of an input command for the
customer’s use.

Output report An information message that is printed on an output
device.

Output report definition A specification of all the information needed to
identify and produce an output report or a set of
output reports with common structure and contents.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpts from Dictionary Section 459

Purpose Customer documentation that describes the use of
an input command.

Verb The name of the action indicated by an input
command.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpts from Commonality Section 460

Excerpts from Commonality Section
COMMONALITIES

The following are basic assumptions about the domain of input commands, output
reports, and customer documentation.

INPUT COMMANDS

C1. Each input command is uniquely determined by its command code. When an
input command definition is used to define more than one input command, it
defines multiple command codes, all of which share the same set of input
parameters.

C2. Each input command is described on exactly one input manual page.

C3. The following administrative data are required in an input command definition:
msgid, process, ostype, schedule, and auth. Each input command has exactly one
value for each of these fields.

C4. A verb is an alpha-string with a maximum length.

C5. There is a fixed maximum number of input parameters permitted for input
commands.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpts from Commonality Section 461

C6. An input parameter description consists of a parameter name and a value
specification. The value specification defines the range of values that an office
technician may use for the input parameter.

OUTPUT REPORTS

C7. Output reports appear in three different contexts as follows.

a. Runtime: At runtime an output report may appear on an output device, such as
the printer.

b. Report definition: The set of output reports that a 5ESS switch may produce at
runtime, and the meaning of each possible output report, must be defined before
building the software for the switch.

c. Output report documentation: Each output report must be documented for
customer use. The documentation of output reports must include all the
information that the office technician needs to know to understand the report and
determine the reason for its appearance at runtime.

C8. An output report contains the report type – spontaneous or solicited – and the
text of the report.

C9. There is a fixed maximum number of characters in a line of an output report.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpts from Commonality Section 462

C10. Each output report is described on exactly one output manual page; however, an
output manual page may describe more than one output report.

C11. An output report definition is a sequence of text block definitions.

DOCUMENTATION

C12. An (input command or output report) manual page consists of several fixed
sections. It may also reference an appendix.

C13. An (input command or output report) manual page documents one or more
input commands or output reports.

SHARED COMMONALITIES

C14. All the information needed to define an input command, the associated solicited
output report, and the associated manual pages must be describable as one
specification. It must be possible to generate from such a specification all the files
and data needed to process input commands and produce output reports at
runtime and to generate either (1) the input command and output manual pages or
(2) files and data that can be used to generate the input command manual pages
and output manual pages.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpts from Variabilities Section 463

Excerpts from Variabilities Section
The following statements describe how input commands, output reports, and customer
documentation may vary.

VARIABILITIES

INPUT COMMANDS

V1. The maximum length of a verb, object, parameter name, or enumeration value.

V2. The domain for verbs.

V3. The maximum number of input parameters.

V4. The Csymbol used to designate a msgid.

OUTPUT REPORTS

V5. The maximum number of characters in a line of an output report.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpts from Variabilities Section 464

DOCUMENTATION

V6. The representation of an input command on an input manual page, particularly

the following in the syntactic template for the input command :

a. The separators used between the command code and the list of input parameters
b. The terminator for the representation of the input command
c. The separator used between the verb and the object
Typical input command representations appear as follows:

<command code rep><separator1><input parameter rep><input terminator>
<command code rep><input terminator>
<verb><separator2><object>

V7. Typographic distinguishers for command templates.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Sample Command Template, Written in SPEC 465

Sample Command Template, Written in SPEC

COMMAND {
TEMPLATE {

abt-task:tlws;
purpose: "Aborts an active trunk and line workstation

(TLWS) maintenance task.";
warning: "Once this command is entered, the

consistency of all hardware states and data
in use by the task is questionable.";

}
}

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Formatted Generated Documentation 466

Formatted Generated Documentation

ABT-TASK:TLWS=a;

Warning: Once this command is entered, the consistency of
all hardware states and data in use by the task is
questionable.

• Purpose

Aborts an active trunk and line workstation (TLWS) maintenance task.

• Explanation of Parameters
a = Task identifier given to active TLWS maintenance

tasks by the OP-JOBST command.

• Responses

Only standard system responses apply.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Sample Parameter Definition 467

Sample Parameter Definition

COMMAND {
..........

PARAM tlws {
TYPE {

domain: num;
min: 0;
max: 15;
default: 0;
}

desc: "Task identifier given to active TLWS
maintenance tasks by the OP-JOBST command.";

csymbol: task_id;
}

}

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

A Parameterized Version of TLWS 468

A Parameterized Version of TLWS

PARAM lib_tlws(x) {
TYPE {

domain: num;
min: 0;
max: 15;
default: 0;
}

desc: "Task identifier given to active TLWS
maintenance tasks by the OP-JOBST command.";

csymbol: x;
}

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Reuse of TLWS 469

Reuse of TLWS

COMMAND {
TEMPLATE {

abt-task:tlws;
purpose: "Aborts an active trunk and line workstation

(TLWS) maintenance task.";
warning: "Once this command is entered, the

consistency of all hardware states and data
in use by the task is questionable.";

}

PARAM tlws use lib_tlws(task_id)

}

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Producing Multiple Documentation Formats 470

Producing Multiple Documentation Formats

text preview

SGML

Postscript

HTML

TROFF

ASPECTSPEC source

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Designing the Translators 471

Designing the Translators

• existing parser generator tools used

• principles of software family development applied

• combined with SCR design process

• minimal toolset:
◦ command translator

◦ report translator

◦ command documentation generator

◦ report documentation generator

• much overlap between translators expected

(commonalities)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Using the SCR Design Process 472

Using the SCR Design Process

• information hiding hierarchy
◦ module guide

◦ uses relation

• ASPECT:
◦ external interface module

� . . .

◦ behaviour hiding module

� . . .

◦ software decisions module

� . . .

• result: substantial code reuse

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

ASPECT External Interface Module 473

ASPECT External Interface Module

• output drivers module
◦ command format module

◦ report format module

◦ documentation format module

• library reference module

• device drivers module
◦ text module

◦ HTML module

◦ formatter macros (TROFF) module

◦ Postscript module

◦ SGML module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

ASPECT Behaviour Hiding Module 474

ASPECT Behaviour Hiding Module

• tool builder module

• input command traversal module

• output report traversal module

• command documentation traversal module

• report documentation traversal module

• shared services module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

ASPECT Software Decisions Module 475

ASPECT Software Decisions Module

• cross reference module

• database module

• domain translator module

• error recorder module

• global context module

• preprocessors module
◦ alter structure module

◦ alter syntax module

◦ random access module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

ASPECT Software Decisions Module 476

• semantic verification module
◦ completeness module

◦ consistency module

◦ placement module

• specification expander module

• symbol reference module

• text function module

• text translation module

• global language data module

• system interface module

• transversal module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Economics of FAST 477

The Economics of FAST

0 C T

2 C T

4 C T

1 C T

3 C T

0 1 2 3 4

cost
cumulative

number of
family members

without domain engineering

with domain
engineering

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Modelling the FAST Process 478

Modelling the FAST Process

• there is a precise model for the FAST process
◦ see [WeLa99]

• description of process models: PASTA approach
(Process and Artifact State Transition Abstraction)
◦ see [WeLa99]

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Finding Domains where FAST is Worth Applying 479

Finding Domains where FAST is Worth
Applying

• usually apply to legacy systems

• look for domain with
◦ frequent, continuing change

◦ change at high cost

◦ predictable change

◦ (quick change needed)

• do an informal or formal economic analysis

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Applying FAST Incrementally 480

Applying FAST Incrementally

• early activities of FAST:
better understanding of market, customers, requirements
◦ facilitates communication, staff training, member design

◦ modest cost

• later activities of FAST:

make effective use of information and understanding

• apply FAST iteratively, e.g.:
1. commonality analysis only, to make design more flexible

2. introduce a rudimentary language

to generate data structures changing most often

3. expand language to generate majority of code

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Transitioning to a FAST Process 481

Transitioning to a FAST Process

• FAST process allows for gradual introduction into company

• early: staff learns to think in terms of families
◦ test: can they predict future changes?

• later: use this thinking

• one way to start:
◦ pick a few, high-leverage, well-understood domains

◦ apply a simple version of FAST

◦ several iterations

◦ if you understand it and if it works,

spread to more domains and more parts of company

• you might have to reengineer your organization later

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

4.3 Families of Requirements

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 4.3 483

Text for Chapter 4.3

[Bre01b] Bredereke, J. A tool for generating specifications

from a family of formal requirements. In Kim, M., Chin,

B., Kang, S., and Lee, D., editors, “Formal Techniques for

Networked and Distributed Systems”, pp. 319–334. Kluwer

Academic Publishers (Aug. 2001).

A tool for families of CSP-OZ specifications.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 4.3 484

Additional Background for Chapter 4.3

[Bre02] Bredereke, J. Maintaining telephone switching

software requirements. IEEE Commun. Mag. 40(11),

104–109 (Nov. 2002).

Telephone switching system structure problems and

solutions.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 4.3 485

[Zav01] Zave, P. Requirements for evolving systems: A

telecommunications perspective. In “5th IEEE Int’l

Symposium on Requirements Engineering”, pp. 2–9. IEEE

Computer Society Press (2001).

Feature-oriented descriptions and “feature engineering” in

telephone switching.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 4.3 486

[Mil98] Miller, S. P. Specifying the mode logic of a flight

guidance system in CoRE and SCR. In “Second Workshop

on Formal Methods in Software Practice”, Clearwater

Beach, Florida, USA (4–5 Mar. 1998).

Application of the CoRE approach to an auto-pilot.

[Bre00b] Bredereke, J. genFamMem 2.0 Manual – a

Specification Generator and Type Checker for Families of

Formal Requirements. University of Bremen (Oct. 2000).

URL http://www.tzi.de/˜brederek/genFamMem/.

Definition of CSP-OZ language extension and manual for

the genFamMem tool.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 4.3 487

[Bre00a] Bredereke, J. Families of formal requirements in

telephone switching . In Calder, M. and Magill, E., editors,

“Feature Interactions in Telecommunications and Software

Systems VI”, pp. 257–273, Amsterdam (May 2000). IOS

Press.

Families of CSP-OZ specifications.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 4.3 488

[Bre00d] Bredereke, J. Specifying features in requirements

using CSP-OZ . In Gilmore, S. and Ryan, M., editors,

“Proc. of Workshop on Language Constructs for

Describing Features”, pp. 87–88, Glasgow, Scotland

(15–16 May 2000). ESPRIT Working Group 23531 –

Feature Integration in Requirements Engineering.

Families of CSP-OZ specifications.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 4.3 489

[Bre00c] Bredereke, J. Hierarchische Familien formaler

Anforderungen. In Grabowski, J. and Heymer, S., editors,

“Formale Beschreibungstechniken für verteilte Systeme –

10. GI/ITG-Fachgespräch”, pp. 31–40, Lübeck, Germany

(June 2000). Shaker Verlag, Aachen, Germany.

Families of CSP-OZ specifications, ordered hierarchically.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 4.3 490

[Bre01a] Bredereke, J. Ein Werkzeug zum Generieren von

Spezifikationen aus einer Familie formaler Anforderungen.

In Fischer, S. and Jung, H. W., editors, “Formale

Beschreibungstechniken – 11. GI/ITG-Fachgespräch”,

Bruchsal, Germany (June 2001). URL http://www.i-u.de/

fbt2001/.

A tool for families of CSP-OZ specifications.

[Bre99] Bredereke, J. Modular, changeable requirements for

telephone switching in CSP-OZ . Tech. Rep. IBS-99-1,

University of Oldenburg, Oldenburg, Germany (Oct. 1999).

Case study with families of CSP-OZ specifications.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 4.3 491

[Bre98] Bredereke, J. Requirements specification and design

of a simplified telephone network by Functional

Documentation. CRL Report 367, McMaster University,

Hamilton, Ontario, Canada (Dec. 1998).

Case study with families of Parnas tables.

[Kat93] Katz, S. A superimposition control construct for

distributed systems. ACM Trans. Prog. Lang. Syst. 15(2),

337–356 (Apr. 1993).

Seminal paper on superimposition.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Additional Background for Chapter 4.3 492

[BrSc02] Bredereke, J. and Schlingloff, B.-H. An automated,

flexible testing environment for UMTS . In Schieferdecker,

I., König, H., and Wolisz, A., editors, “Testing of

Communicating Systems XIV – Application to Internet

Technologies and Services”, pp. 79–94. Kluwer Academic

Publishers (Mar. 2002).

Families of CSP test specifications.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Overview of Chapter 4.3 493

Overview of Chapter 4.3

• feature-oriented description

• the CoRE method

• families of CSP-OZ specifications

• families of CSP test specifications

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Focus on Requirements 494

Focus on Requirements

• motivation:
◦ all feature interaction problems

already (implicitly) present in requirements

◦ many “formal methods” support single product only

� how to integrate family support into method?

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Feature-Oriented Description in Telephone Switching 495

Feature-Oriented Description
in Telephone Switching

• base description plus separate feature descriptions

• attraction: behavioural “modularity”
◦ easy change of system behaviour

◦ make any change by just adding a new feature description

◦ never change existing descriptions

• emphasizes individual features
◦ makes them explicit

• de-emphasizes feature interactions
◦ makes them implicit in the feature composition operator

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Feature-Oriented Description in Telephone Switching 496

• not all feature interactions are bad
◦ feature-oriented description relies on the good ones

• example: busy treatments
◦ B1 and B2 both enabled, B2 higher priority

◦ B1 not applied, despite its stand-alone description

◦ behavioural “modularity”:

add new busy treatments without changing existing ones

• most feature-oriented descriptions still informal
◦ behavioural “modularity” and formality do not combine easily

� behavioural “modularity”: don’t answer some questions now

� formality: answer all questions now

◦ proposed composition operators / approaches often do not scale

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Feature-Oriented Description in Telephone Switching 497

• IP telephony:
◦ highly complex new services

◦ services still viewed as stand-alone

◦ undesired feature interactions will haunt us soon

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Feature-Oriented Descriptions and Common Abstractions 498

Feature-Oriented Descriptions
and Common Abstractions

• modules need common abstractions/assumptions
◦ module: now in the sense of this lecture

◦ common abstraction/assumption: true for all family members

• rapid innovation, legacy systems, too many players:

hard to limit the domain

• without domain limits: no common abstractions

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Performing Incremental Specification Formally 499

Performing Incremental Specification Formally

• standard means:

stepwise refinement

• step:
1. extend behaviour or 2. impose constraints
◦ example 1.: add another potential event to a state

◦ example 2.: specify the order of two events

• interesting properties preserved by step
◦ example 1.: all old events remain possible

� no deadlock in this state

◦ example 2.: no harmful event added

� all safety properties preserved

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Non-Monotonous Changes 500

Non-Monotonous Changes

• telephone switching:
new features change the behaviour
◦ of base system, or

◦ of other features

• example: call forwarding
◦ stops to connect to dialled number

� restricts base system behaviour

and

◦ starts connecting to forwarded-to number

� extends base system behaviour

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Formal Support for Feature Specification 501

Formal Support for Feature Specification

• considerable research effort

on feature composition operators

• FIREworks project
(Feature Interactions in Requirements Engineering)
◦ various feature operators proposed and investigated

• “feature-oriented programming”

• based on the superimposition idea by Katz

• analytical complexity:

too big for tools for real systems

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Superimposition 502

Superimposition

• by Katz [Kat93]

• approach:
◦ base system

◦ textual increments

◦ composition operator

• problem:
◦ increments have defined interface,

base system has not

◦ increment can invalidate arbitrary assumptions about base system

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The CoRE Method 503

The CoRE Method

• based on four-variable model and SCR

• groups the variables into classes

• developed during the early 1990’s

• no explicit family support, but maybe a good base for it

• no formal syntax and semantics

• no tool support

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Families of CSP-OZ Specifications 504

Families of CSP-OZ Specifications

key ideas:

• maintain all variants together
◦ generate specific member automatically as necessary

• document information needed for changes
◦ dependence of requirements

◦ what is the core of a feature

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Constraint-Oriented Specification 505

Constraint-Oriented Specification

• features closely interrelated
◦ most refer to mode of connection

◦ user interface: few, shared lexical events

� system cannot be sliced by controlled events

• incrementally impose partial, self-contained constraints

• composition by logical conjunction

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Formalism CSP-OZ 506

The Formalism CSP-OZ

• CSP-OZ demo: one very simple telephone demo

• CSP-OZ class inheritance for incremental constraints

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Case Study on Telephone Switching Requirements 507

Case Study on Telephone Switching
Requirements

• black box specification of telephone switching

• attempt to incorporate new concepts

• details: see [Bre99]

papers: see [Bre01b, Bre01a, Bre00c, Bre00a, Bre00a]

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Grouping Classes into Features 508

Grouping Classes into Features

the chapters of the requirements document:
1. Introduction
2. feature UserSpace
3. feature BasicConnection
4. feature VoiceChannel
5. familymember SpecificationA
6. feature ScreeningBase
7. feature BlackListOfDevices
8. familymember SpecificationB
9. feature BlackListOfUsers

10. feature FollowHumanConnectionForwarding
11. familymember SpecificationC
12. feature TransferUserRoleToAnotherHuman
13. familymember SpecificationD

... ...
Indices / Bibliography

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Feature Construct 509

The Feature Construct

• feature UserSpace spec

• feature BasicConnection

• familymember SpecificationB

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Generating Family Members From a Family Document 510

Generating Family Members
From a Family Document

S13 S23 S33 S43 S13 S23 S43S12 S22 S32 S42 S22 S42

McMa Mb
members
family

F1 F2 F3 F4

S11 S21 S31 S41 S11 S41

member
family

F1 F2

Mc

F4features

sections

family of requirements

sections

requirements specification

features

extension of CSP−OZ plain CSP−OZ

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Result of Family Member Generation 511

Result of Family Member Generation
1. Introduction
2. feature UserSpace
3. feature BasicConnection
4. feature VoiceChannel
5. feature ScreeningBase
6. feature BlackListOfDevices
7. familymember SpecificationB

Indices / Bibliography

• family member composition chapter:

part replaced spec

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Controlled Non-Monotonous Changes 512

Controlled Non-Monotonous Changes

• feature ScreeningBase spec

• feature BlackListOfUsers

• feature FollowHumanConnectionForwarding

• familymember SpecificationC

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Avoiding Feature Interactions 513

Avoiding Feature Interactions

• introduced three notions explicitly
◦ “telephone device”

◦ “human”

◦ “user role”

• consequences:
◦ black list above:

screens user roles, not devices

◦ another black list feature:

screens devices, not user roles

◦ also two kinds of call forwarding

• no feature interaction screening–forwarding anymore

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Detecting Feature Interactions by Type-Checks 514

Detecting Feature Interactions
by Type Checks

• type rules: part of the family extension of CSP-OZ

• syntactic rules → syntactic errors:
◦ “remove” an “essential” class

◦ feature of needed class not included

◦ feature of “removed” class not included

◦ another class still needs “removed” class

• heuristic syntactic rules → syntactic warnings:
◦ class is marked both essential and changeable

◦ class is “removed” twice

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Feature Interactions Detected in Case Study 515

Feature Interactions Detected in Case Study

• no interactions between TCS and CF
◦ no type errors detectable

• but other problems problems present:
◦ both screening features “remove” the same section

◦ type rules: warning!

◦ manual inspection: contradiction

• resolution: another feature

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Documenting Dependences 516

Documenting Dependences

• uses-relation for requirements:
◦ use of previous definition

◦ reliance on previous constraint

• documented by:
◦ Z’s section “parents” construct

◦ class inheritance (mapped to Z sections)

• if no relationship: identifiers out of scope

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Sections of Feature UserSpace 517

Sections of Feature UserSpace
d
aV

in
ci

V
2

.1

UserSpaceFeature

UserOneHumanUserRolNoRem UserNoRem

UserEss

DevAssocNoRem

HumNoRem

DevNoRem

DeviceEss

HumanEss

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Hierarchy of Features of SpecificationC 518

Hierarchy of Features of SpecificationC
da

V
in

ci
V

2
.1

VoiceChannel

UserSpace ToolkitExtensions

BasicConnection

ScreeningBase

BlackListOfUsers FollowHumanConnectionForwarding

SpecificationC.00007

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Hierarchical Requirements Specification 519

Hierarchical Requirements Specification

• a feature can build on other features

• in contrast to the Intelligent Network

• possible to have feature providing a common base

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Tool genFamMem 2.0 520

The Tool genFamMem 2.0

• extracts specifications in plain CSP-OZ

from a family document,

• detects feature interactions by
◦ additional type checks for families

◦ heuristic warnings

• helps avoiding feature interactions by

generating documentation on the structure of the family.

• available freely

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Further Tools 521

Further Tools

• cspozTC
◦ type checker for CSP-OZ

• daVinci
◦ visualizes uses hierarchy graphs

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Semantics of CSP-OZ Extension 522

Semantics of CSP-OZ Extension

• formal definition of language extension in [Bre00b]
◦ understand details: need to know Object-Z and CSP

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

What Is Still To Do? 523

What Is Still To Do?

• more experience – extend case study further

• apply to other formalisms than CSP-OZ
◦ necessary:

constraint-oriented specification style

and incremental refinement

◦ already supported: CSPZ and plain Z

• investigate relationship:

families of requirements – families of programs

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Families of CSP Test Specifications 524

Families of CSP Test Specifications

• testing of embedded systems with RT-Tester tool

• RLC layer in UMTS protocol stack

• project with Bosch/Siemens Salzgitter

• requirements specification in CSP

• see [BrSc02]

• light-weight application of previous ideas
◦ no consistency checks

◦ no documentation generation

◦ simple preprocessor for CSP plus method

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Flexible Maintenance of Test Specification 525

Flexible Maintenance of Test Specification

• late changes to requirements

• variants of test suites:
(a) adjust test coverage

� selected signal parameters

� stimuli: random → increased probabilities → deterministic

(b) component / integration tests

� different protocol layers

� parallel instances of same layer

(c) active / passive tests

⇒ a family of test suites

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Rules for Modularizing Requirements 526

Rules for Modularizing Requirements

• separate: signature / behaviour of module

• identify requirements that will change together,

put into one module

specifically, separate:
◦ tester specific issues / application

◦ timer handling / application

◦ protocol layers

◦ stimulus generation / test observation

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Separate: Test Stimulus Generation / Test Observation 527

Separate:
Test Stimulus Generation / Test Observation

no_reaction

stimulus_overrun

wrong_reaction

System
Under
Test

R
T−

Te
st

er
 T

es
t D

riv
er

RLCTESTSPEC
(Radio Link
Control layer)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Cont.: Separate: Test Stimulus Generation / Test Observation 528

Cont.: Separate:
Test Stimulus Generation / Test Observation

no_reaction

stimulus_overrun

wrong_reaction

System
Under
Test

RLC_OBSERVER

RANDOM_TESTGENERATOR(EventSet)

R
T−

Te
st

er
 T

es
t D

riv
er

RLCTESTSPEC
(Radio Link
Control layer)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Summary of Lecture 529

Summary of Lecture

• safety-critical systems
◦ quality does matter

• professional engineering
◦ “blueprint before build”

� Chapter 2: what information in computer system documentation?

• embedded software systems
◦ “ugly”, strict interface constraints

� Chapter 1: rigorous description of requirements

◦ interface changes all the time

� Chapter 3: decomposition into modules

� Chapter 4: families of systems

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

5. Appendix

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

References 531

References

[Bre98] Bredereke, J. Requirements specification and design of a simplified telephone network by

Functional Documentation. CRL Report 367, McMaster University, Hamilton, Ontario, Canada

(Dec. 1998).

[Bre99] Bredereke, J. Modular, changeable requirements for telephone switching in CSP-OZ . Tech.

Rep. IBS-99-1, University of Oldenburg, Oldenburg, Germany (Oct. 1999).

[Bre00a] Bredereke, J. Families of formal requirements in telephone switching . In Calder, M. and

Magill, E., editors, “Feature Interactions in Telecommunications and Software Systems VI”,

pp. 257–273, Amsterdam (May 2000). IOS Press.

[Bre00b] Bredereke, J. genFamMem 2.0 Manual – a Specification Generator and Type Checker for

Families of Formal Requirements. University of Bremen (Oct. 2000). URL http://www.tzi.

de/˜brederek/genFamMem/.

[Bre00c] Bredereke, J. Hierarchische Familien formaler Anforderungen. In Grabowski, J. and Heymer, S.,

editors, “Formale Beschreibungstechniken für verteilte Systeme – 10. GI/ITG-Fachgespräch”,

pp. 31–40, Lübeck, Germany (June 2000). Shaker Verlag, Aachen, Germany.

[Bre00d] Bredereke, J. Specifying features in requirements using CSP-OZ . In Gilmore, S. and Ryan,

M., editors, “Proc. of Workshop on Language Constructs for Describing Features”, pp. 87–88,

Glasgow, Scotland (15–16 May 2000). ESPRIT Working Group 23531 – Feature Integration in

Requirements Engineering.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

References 532

[Bre01a] Bredereke, J. Ein Werkzeug zum Generieren von Spezifikationen aus einer Familie formaler

Anforderungen. In Fischer, S. and Jung, H. W., editors, “Formale Beschreibungstechniken – 11.

GI/ITG-Fachgespräch”, Bruchsal, Germany (June 2001). URL http://www.i-u.de/fbt2001/.

[Bre01b] Bredereke, J. A tool for generating specifications from a family of formal requirements. In

Kim, M., Chin, B., Kang, S., and Lee, D., editors, “Formal Techniques for Networked and

Distributed Systems”, pp. 319–334. Kluwer Academic Publishers (Aug. 2001).

[Bre02] Bredereke, J. Maintaining telephone switching software requirements. IEEE Commun. Mag.

40(11), 104–109 (Nov. 2002).

[BrSc02] Bredereke, J. and Schlingloff, B.-H. An automated, flexible testing environment for UMTS . In

Schieferdecker, I., König, H., and Wolisz, A., editors, “Testing of Communicating Systems XIV

– Application to Internet Technologies and Services”, pp. 79–94. Kluwer Academic Publishers

(Mar. 2002).

[Cou85] Courtois, P.-J. On time an space decomposition of complex structures. Commun. ACM 28(6),

590–603 (June 1985).

[HBPP81] Heninger Britton, K., Parker, R. A., and Parnas, D. L. A procedure for designing abstract

interfaces for device interface modules. In “Proc. of the 5th Int’l. Conf. on Software Engineering

– ICSE 5”, pp. 195–204 (Mar. 1981).

[HoWe01] Hoffman, D. M. and Weiss, D. M., editors. Software Fundamentals – Collected Papers by

David L. Parnas. Addison-Wesley (Mar. 2001).

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

References 533

[JaKh99] Janicki, R. and Khedri, R. On a formal semantics of tabular expressions. CRL Report 379,

McMaster University, Hamilton, Ontario, Canada (Sept. 1999).

[Kat93] Katz, S. A superimposition control construct for distributed systems. ACM Trans. Prog. Lang.

Syst. 15(2), 337–356 (Apr. 1993).

[Lam88] Lamb, D. A. Software Engineering: Planning for Change. Prentice-Hall (1988).

[LaRö01] Lankenau, A. and Röfer, T. The Bremen Autonomous Wheelchair – a versatile and safe

mobility assistant. IEEE Robotics and Automation Magazine, “Reinventing the Wheelchair”

7(1), 29–37 (Mar. 2001).

[Mil98] Miller, S. P. Specifying the mode logic of a flight guidance system in CoRE and SCR. In

“Second Workshop on Formal Methods in Software Practice”, Clearwater Beach, Florida, USA

(4–5 Mar. 1998).

[PaCl86] Parnas, D. L. and Clements, P. C. A rational design process: how and why to fake it. IEEE

Trans. Softw. Eng. 12(2), 251–257 (Feb. 1986).

[PaMa95] Parnas, D. L. and Madey, J. Functional documents for computer systems. Sci. Comput.

Programming 25(1), 41–61 (Oct. 1995).

[Par72] Parnas, D. L. On the criteria to be used in decomposing systems into modules. Commun.

ACM 15(12), 1053–1058 (1972).

[Par74] Parnas, D. On a ‘buzzword’: Hierarchical structure. In “IFIP Congress 74”, pp. 336–339.

North-Holland (1974). Reprinted in [HoWe01].

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

References 534

[Par76] Parnas, D. L. On the design and development of program families. IEEE Trans. Softw. Eng.

2(1), 1–9 (Mar. 1976).

[Par77] Parnas, D. L. Use of abstract interfaces in the development of software for embedded

computer systems. NRL Report 8047, Naval Research Lab., Washington DC, USA (3 June

1977). Reprinted in Infotech State of the Art Report, Structured System Development,

Infotech International, 1979.

[Par79] Parnas, D. L. Designing software for ease of extension and contraction. IEEE Trans. Softw.

Eng. SE-5(2), 128–138 (Mar. 1979).

[PaWe85] Parnas, D. L. and Weiss, D. M. Active design reviews: Principles and practices. In “Proc. of

the 8th Int’l Conf. on Software Engineering – ICSE 8”, London (Aug. 1985).

[PCW85] Parnas, D. L., Clements, P. C., and Weiss, D. M. The modular structure of complex systems.

IEEE Trans. Softw. Eng. 11(3), 259–266 (Mar. 1985).

[Pet00] Peters, D. K. Deriving Real-Time Monitors from System Requirements Documentation. PhD

thesis, McMaster Univ., Hamilton, Canada (Jan. 2000).

[vSPM93] van Schouwen, A. J., Parnas, D. L., and Madey, J. Documentation of requirements for

computer systems. In “IEEE Int’l. Symposium on Requirements Engineering – RE’93”, pp.

198–207, San Diego, Calif., USA (4–6 Jan. 1993). IEEE Comp. Soc. Press.

[WeLa99] Weiss, D. M. and Lai, C. T. R. Software Product Line Engineering – a Family-Based Software

Development Process. Addison Wesley Longman (1999).

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

5. Appendix 535

[Zav01] Zave, P. Requirements for evolving systems: A telecommunications perspective. In “5th IEEE

Int’l Symposium on Requirements Engineering”, pp. 2–9. IEEE Computer Society Press (2001).

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

	0. Introduction
	Topic of This Lecture
	Engineering
	Embedded Systems
	Examples of Embedded Systems
	The Safety-Critical Systems Lecture Series
	Overview of SCS4
	Style of This Course
	Web Page of Lecture
	Text for Reading
	Mark / ``Schein''

	1. Rigorous Description of Requirements
	Text for Chapter 1
	Additional Background for Chapter 1
	The Role of Documentation in Computer System Design
	Education of Engineers Can't Start Too Early...

	1.1 System Requirements
	How Can We Document System Requirements?
	Functions of Time
	Example: Electronic Thermometer
	Monitored vs. Controlled Quantities
	The Relation NAT
	The Relation REQ
	Contract
	Black-Box View
	Specifying Behaviour
	Modes and Mode Classes, Informally
	Discussion of Modes etc.
	Example: Lift Controller
	Lift Controller: Relevant Environmental Quantities
	Lift Controller: Environment Variables
	Lift Controller: the Relation NAT
	Conditions
	Lift Controller: Conditions
	Events
	Event Space
	Lift Controller: Events
	History
	Modes and Mode Classes
	Lift Controller: Mode Classes
	Tabular Notation
	Lift Controller: the Relation REQ
	``Simultaneous'' Events
	Piecewise Continuous Behaviour
	Lift Controller: Piecewise Continuous Behaviour

	1.2 Software Requirements
	System Design
	The Four-Variable Approach for System Design and Software Requirements
	Input and Output Quantities
	Software Acceptability
	First Application of Four-Variable Method
	Example: Autonomous Wheelchair ``Rolland''
	Rolland: Specification of Safety-Relevant Behaviour
	Rolland: Relevant Environmental Quantities
	Rolland: Environment Variables
	Rolland: Environment Variable Types
	Rolland: Observations
	Rolland: Conditions and Events
	Rolland: the Relation NAT
	Rolland: the Relation REQ
	Rolland: Input Variables
	Rolland: Input and Output Variable Types
	Rolland: Output Variables
	Rolland: the Relation IN
	Rolland: the Relation OUT
	Rolland: the Relation SOF

	1.3 Further Issues
	System Modes vs. Environmental Modes
	``Ideal'' Behaviour is Impossible
	A Useful Heuristics for ``Real'' Behaviour
	Example: Logic Probe
	Logic Probe With Delay, Expanded
	Using Discrete Clocks
	Implications for System when Specifying a Resolution of Time
	Implications for Requirements when Specifying a Resolution of Time
	Example: Time Resolution
	Useful Standard Functions For Time
	Repetition: Events
	Some Useful Event Class Notation
	Example: Telephone Connection
	Tabular vs. Scalar Notation for Event Classes
	Example: Tabular Expressions
	Example: Scalar Expressions
	Requirements Feasibility
	Fail-Soft Behaviour in the Four-Variable Approach
	Merit Functions
	Limitations of the Approach
	Environmental Quantities Not Expressible
	Requirements Relation Not Expressible
	Requirements Not Preserved Under Sub-Setting of Behaviours

	1.4 Tabular Expressions
	Text for Chapter 1.4
	Introduction to Tabular Expressions

	2. What Information Should Be Provided in Computer System Documentation?
	Text for Chapter 2
	Additional Background for Chapter 2
	Overview of Documents
	Specification Form vs. Specification Content
	The System Requirements Document
	Structure of the System Requirements Document
	The System Design Document
	The Software Requirements Document
	The Software Behaviour Specification
	Software Modules
	The Software Module Guide
	The Module Interface Specification
	Writing Module Interface Specifications
	Formalisms for Module Interface Specifications
	The Uses-Relation Document
	The Module Internal Design Document
	Information in the Module Internal Design Document
	Abstraction Function
	Programs
	Documenting the Effect of Individual Programs
	LD Relation
	Documenting by LD Relations
	Communication: The Service Specification Document
	Communication: The Protocol Design Document
	A Rational Design Process: How and Why to Fake It
	A Rational Person
	Why a Rational Design Process Does Not Work
	Why a Rational Design Process is Useful Nevertheless
	Why Use an Ideal Process as a Guideline
	What should the Process Description Tell?
	The Rational Design Process
	What is Wrong With Most Documentation Today
	Underlying Organizational Problems of the Documents
	Poor Organization
	Boring Prose
	Confusing and Inconsistent Terminology
	Myopia
	How to Avoid Poor Organization
	How to Avoid Boring Prose
	How to Avoid Confusing and Inconsistent Terminology
	How to Avoid Myopia
	Faking the Ideal Process
	Analogous Process: Mathematical Proofs
	One Difference to Ideal Documentation

	3. Decomposition Into Modules
	Overview of Chapter 3

	3.1 The Criteria to be Used in Decomposing Systems into Modules
	Text for Chapter 3.1
	Additional Background for Chapter 3.1
	What is a Module?
	The Constraints on Modules
	Modules of Software -- When are Parts Put Together?
	The Constraints on the Three Structures
	Old Example for a Confusion
	Recent Example for a Confusion
	The Effect of Confusing the Meanings
	Write-Time Modules
	Example: A KWIC Index Production System
	Example of a KWIC Index
	Output of The Unix ptx Utility
	Ideas for a Modularization
	What are the Criteria for a Modularization?
	Conventional Modularization
	Some Likely Changes
	Parnas' Modularization
	Comparison of the Two Modularizations
	The Criteria
	The Secret of a Module
	Examples for Module Secrets
	Some Specific Criteria
	Interface Between Modules
	Module Structure
	Efficiency and Implementation
	Information Hiding and Abstract Data Types
	Information Hiding and Object-Orientation
	Information Hiding and Program Families

	3.2 Structuring Complex Software with the Module Guide
	Text for Chapter 3.2
	Additional Background for Chapter 3.2
	Why the Gap Between Information Hiding in Theory and in Practice?
	Why the Gap Between Information Hiding in Theory and in Practice? [2]
	Bridging the Gap
	Structuring Complex Software Systems into Modules
	Needed: the Software Module Guide Document
	The Software Module Guide Document
	When to Write the Software Module Guide
	Tracing Requirements
	Access to a Module's Access Programs
	Module Interfaces May Change
	Difficulties During Structuring
	Restricted Modules
	Hidden Modules
	Two Kinds of Module Secrets
	The Classes of Modules in the A-7E Software Module Structure
	Fuzziness in the Top-Level Classification
	Eliminating Fuzziness in the Top-Level Classification
	Second-Level Decomposition: Hardware-Hiding Module
	Extended Computer Module
	Device Interface Module
	Second-Level Decomposition: Behaviour-Hiding Module
	Function Driver Module
	Shared Services Module
	Searching for a Behaviour-Hiding Module
	Second-Level Decomposition: Software Decision Module
	Application Data Type Module
	Physical Model Module
	Data Banker Module
	Some Data Update Policies
	Choice of Updating Policies
	System Generation Module
	Software Utility Module
	Third-Level Decomposition: Extended Computer Module
	Data Type Module
	Computer State Module
	Diagnostics Module R
	Virtual Memory Module H
	Third-Level Decomposition: Device Interface Module
	Third-Level Decomposition: Function Driver Module
	Head-Up Display Functions
	Inertial Measurement Set Functions
	Panel Functions
	Third-Level Decomposition: Shared Services Module
	Mode Determination Module
	System Value Module
	Third-Level Decomposition: Application Data Type Module
	Third-Level Decomposition: Physical Model Module
	Earth Model Module
	Aircraft Motion Module
	Spatial Relations Module
	Human Factors Module
	Weapon Behaviour Module
	Third-Level Decomposition: Data Banker Module
	Third-Level Decomposition: System Generation Module
	Third-Level Decomposition: Software Utility Module
	Results of the A-7E Module Guide

	3.3 Hierarchical Software Structures
	Text for Chapter 3.3
	Additional Background for Chapter 3.3
	Structure
	Hierarchical Structure
	Different Kinds of Software Hierarchies
	Module Decomposition Hierarchy
	Calls Hierarchy
	Uses Hierarchy
	Courtois Hierarchy
	Courtois: Decomposition of Complex Structures
	Some More Kinds of Software Hierarchies
	Gives-Work-To Hierarchy
	Created Hierarchy
	Resource Allocation Hierarchy
	Can-Be-Accessed-By Hierarchy
	Many Kinds of Software Hierarchies Possible
	Example: ISO OSI Basic Reference Model
	Uses Hierarchy and Courtois Hierarchy

	3.4 Designing Software for Ease of Extension and Contraction
	Text for Chapter 3.4
	Additional Background for Chapter 3.4
	Motivation
	A Family of Programs
	Alternatives for the Software Producer
	A Subsettable System
	The Uses Hierarchy, Again
	Design Error: Loops in the Uses Relation
	Basic Steps in the Design of a Subsettable System
	Identify the Subsets
	Make List of Programs Belonging to Each Module
	Basic Steps in the Design of a Subsettable System [2]
	Decide on Uses Matrix for the Programs
	Conditions for Allowing Program A to Use Program B
	Construct the Uses Hierarchy from the Matrix
	Conflict Removal: Sandwiching
	Deriving Subsets from the Uses Relation
	Levels and Virtual Machines
	Evaluation Criteria for a Uses Hierarchy
	Getting All Desirable Subsets
	The One, Fixed, Variable Pattern
	Example: an Address Processing System
	Information in an Address
	Basic Assumptions
	Proposed Design Decisions
	Access Programs of ``Normal'' Interface of ASM
	Component Programs of Address Input Module
	Component Programs of Address Output Module
	Component Programs of Address Storage Module
	Component Programs of Block File Module
	Component Programs of Address File Module
	Uses Relation of the System
	Subset: Addresses in a Single Format
	Subset: Small Set of Addresses
	Subset: Query-Only System

	3.5 Design of Abstract Interfaces
	Text for Chapter 3.5
	Additional Background for Chapter 3.5
	Applying Information Hiding to Embedded Systems
	Motivation for Abstract Interface Design Rules
	Device Interface Modules
	Design Goals for Device Interface Modules
	Definitions
	Definition: Interface
	Definition: Abstraction
	Appropriateness of an Abstraction
	Definition: Abstract Interface
	Definition: Device Interface Module
	Definition: Secret of a Device Interface Module
	Undesired Event Assumptions
	Design Approach
	Description 1: Assumption List Characterizing the Virtual Device
	Description 2: Programming Constructs Embodying the Assumptions
	The Descriptions are Partially Redundant
	Different Purposes of the Two Descriptions
	Reviews
	Iterative Process for the A-7
	Example: Development of the Air Data Computer
	Excerpt of an Early Draft
	Problems with This Early Draft
	Excerpt of Draft for Formal Review
	Problems with the Later Draft
	Excerpt of Published Version
	Design Problems -- Tradeoffs and Compromises
	Major Variations Among Available Devices
	Devices with Characteristics that Change Independently
	Virtual Device Characteristics that are Likely to Change
	Device Dependent Data to/from Other Modules
	Removable Interconnections Between Devices
	Interconnections Through Possible Failures?
	Reporting Changes in Device State
	Devices That Need Software Supplied Information
	Virtual Devices that Do not Correspond to Hardware Devices
	Bottom Line
	When Won't It Work?
	Abstract Interface Design as an Application of Fundamental Principles

	4. Families of Systems
	Overview of SCS4, Again
	Overview of Chapter 4

	4.1 Motivation: Maintenance Problems in Telephone Switching
	Overview of Chapter 4.1
	History of Telephone Switching Systems
	Signalling System No. 7
	ISDN/DSS1
	Intelligent Network -- IN
	Intelligent Network Conceptual Model -- INCM
	Global Functional Plane
	Services in IN CS-1
	Features in IN CS-1
	Architecture of Distributed Functional Plane
	Basic Call State Model
	Feature Interaction Problems in Telephone Switching
	Calling Card and Voice Mail
	Call Waiting and Call Forward on Busy
	Originating Call Screening and Area Number Calling
	Calling Number Delivery and Unlisted Number
	Call Forwarding and Terminating Call Screening
	Informal Feature Interaction Definition in Literature
	Categorization of Causes
	Approaches for Tackling FI
	Feature Interactions in the Requirements
	Requirements Structuring Problems
	Needed: a More Modular Requirements Structure
	New Architectures
	Discussion of New Architectures

	4.2 Families of Programs
	Overview of Chapter 4.2
	Text for Chapter 4.2
	Definition of Program Family
	The ``Classical'' Method of Producing Program Families
	Newer Techniques
	Stepwise Refinement
	Module Specification
	Discussion of Both Development Approaches
	Dilemma: Careful Engineering vs. Rapid Production
	A Solution in Other Fields
	Family-Oriented Abstraction, Specification, and Translation -- FAST
	Applications of FAST
	Basic Assumptions
	Stages Towards an Engineered Family
	FAST Strategies
	Outputs from Domain and Application Engineering
	Predicting Change
	Organizational Considerations
	Example: FAST Applied to Commands and Reports
	Defining the C-R Family
	C-R Commonality Analysis Document
	Excerpts from Dictionary Section
	Excerpts from Commonality Section
	Excerpts from Variabilities Section
	Sample Command Template, Written in SPEC
	Formatted Generated Documentation
	Sample Parameter Definition
	A Parameterized Version of TLWS
	Reuse of TLWS
	Producing Multiple Documentation Formats
	Designing the Translators
	Using the SCR Design Process
	ASPECT External Interface Module
	ASPECT Behaviour Hiding Module
	ASPECT Software Decisions Module
	The Economics of FAST
	Modelling the FAST Process
	Finding Domains where FAST is Worth Applying
	Applying FAST Incrementally
	Transitioning to a FAST Process

	4.3 Families of Requirements
	Text for Chapter 4.3
	Additional Background for Chapter 4.3
	Overview of Chapter 4.3
	Focus on Requirements
	Feature-Oriented Description in Telephone Switching
	Feature-Oriented Descriptions and Common Abstractions
	Performing Incremental Specification Formally
	Non-Monotonous Changes
	Formal Support for Feature Specification
	Superimposition
	The CoRE Method
	Families of CSP-OZ Specifications
	Constraint-Oriented Specification
	The Formalism CSP-OZ
	Case Study on Telephone Switching Requirements
	Grouping Classes into Features
	The Feature Construct
	Generating Family Members From a Family Document
	Result of Family Member Generation
	Controlled Non-Monotonous Changes
	Avoiding Feature Interactions
	Detecting Feature Interactions by Type-Checks
	Feature Interactions Detected in Case Study
	Documenting Dependences
	Sections of Feature UserSpace
	Hierarchy of Features of SpecificationC
	Hierarchical Requirements Specification
	The Tool genFamMem 2.0
	Further Tools
	Semantics of CSP-OZ Extension
	What Is Still To Do?
	Families of CSP Test Specifications
	Flexible Maintenance of Test Specification
	Rules for Modularizing Requirements
	Separate: Test Stimulus Generation / Test Observation
	Cont.: Separate: Test Stimulus Generation / Test Observation
	Summary of Lecture

	5. Appendix
	References

