Static Analysis By Abstract Interpretation

Jan Peleska!

Centre of Information Technology
University of Bremen
Germany

Helge Loding?

GESy Graduate School of Embedded Systems
University of Bremen
Germany

1 Theoretical Foundations

1.1 Lattices and Galois Connections

Recall that a binary relation C on a set L is called a (partial) order if T is reflexive,
transitive and anti-symmetric. An element y € L is called an upper bound of X C L
if x C y holds for all z € X. The lower bound of a set is defined dually. An upper
bound ¢’ of X is called a least upper bound of X and denoted by LUX if ¢/ C y
holds for all upper bounds y of X. Dually, the greatest lower bound MX of a set X
is defined.

An ordered set (L,C) is called a complete lattice, if MX and UX exist for all
subsets X C L. Lattice L has a largest element (or top) denoted by T = LIL
and a smallest element (or bottom) denoted by L = ML. Least upper bounds
and greatest lower bounds induce binary operations U,M : L x L — L by defining
v Uy =gef U{z,y} (the join of z and y) and x My =4.¢ Tz, y} (the meet of z and
y), respectively. If the join and meet are well-defined for an ordered set (L,C) but
LX,MX do not exist for all X C L then (L,C) is called an (incomplete) lattice.

Example 1.1 (i) For every set M the power set lattice is defined by (P(M), C).
The join is defined by m Lm/ =g m U m/, the meet by m Mm/ =g m Nm/.
Top and bottom elements are T = M, 1 = &, respectively.

1 Email:jpetzi.de
2 Email:hloeding@tzi.de

2008 This article uses the ENTCS style by Elsevier Science B. V.

mailto:jp@tzi.de
mailto:hloeding@tzi.de

PELESKA AND LODING

(ii) For every set M wie can introduce a nearly trivial ordering C by adding two
new elements T, 1 ¢ M and defining a lattice (M U {T, L}, C) such that all
m # m’ € M are incomparable and Vm e M : LCmC T.

(iii) Applying the construction (ii) to Booleans B = {false, true} results in the
lattice (L(B),C) with L(B) =qe¢f {L,false,true, T}, L C false C T,1 C
true C T and true,false incomparable.

(iv) (Q, <) is an incomplete lattice: Take any infinite set S C Q whose elements
are converging towards a transcendent number, say v/2, from below. Then
uS € Q.

(v) The lattice of intervals over reals including +oo is defined as (IR, C) with
10,3 N [b,B] et [a,3] N [b,B] and [a, @] U [b,5] =aet [mina, b}, maa{a,b}]. The
join of [a,a] and [b,b] is also called the interval hull of [a,a] and [b,b]. The
maximal element is T = [—o00, +00], L =[] = @.

From the collection of canonic ways to construct new lattices from existing ones
(L,C),(L1,C4), (L2, o), we need (1) cross products (L; X Lo, C') where the partial
order is defined by (z1,2z2) T’ (y1,92) if and only if z1 Ty y1 A 22 Co y2 and (2)
partial function spaces (V' 4 L,C') where f T’ g for f,g € V 4 L if and only if
dom f Cdom gA (Vz € dom f: f(z) C g(x)).

Mappings ¢ : (L1,C1) — (L2, C2) between ordered sets are called monotone if
x Ty y implies ¢(z) o ¢(y) for all z,y € L. Mappings ¢ : (L1,E1) — (L2, E2)
between lattices are called homomorphisms if they respect meets and joins, that is,

d(xUry) = é(z) Uz o(y) and ¢p(x My y) = ¢(x) N2 ¢(y) for all x,y € (L1,CZ1). Since
x Ty y implies x Uy y = y and 2 My y = x, homomorphisms are monotone.

A Galois connection (GC) between lattices (L1,C1), (L2, E2) is a tuple of map-
pings _» : (L1,51) — (La,C2) (called right) and _< : (Lg, Co) — (L1,C;) (called
left) such that

a® Cobealy bY (Gal)
for all @ € L1,b € Lo. This defining property implies that Galois connections satisfy
for all p,p1,P2 € L17 q,91,q92 € LQ:
(Gall) p Ty p™~ and 9% Ca g
(Gal2) _» and _< are monotone: p; 1 py = p1® Ca po® and ¢1 Co g2 = 19 T 2.
(Gal3) p> = P> and ¢ = ¢<>~
In [1, 7.26] it is shown that (Gall), (Gal2), (Gal3) are indeed equivalent to the defin-
ing property (Gal). A GC is called exact if (Gall) holds with ¢<9% = ¢. Intuitively
speaking, exact GCs are of particular interest for abstract interpretation, because
an abstract state element ¢ is always mapped to the “most general” concrete state

element p = ¢< which is still abstracted back to q. For GCs between complete
lattices, the right mapping of the GC preserves suprema [1, 7.31]:

vz Lo (]2 =]]2%)

where Z% is short for {z% | z € Z}.
Given a GC as above, we can lift operations, e.g., ¢ : Ly x L1 — Lj to abstracted

2

PELESKA AND LODING

operations [¢] : Ly X Ly — Lo according to the rule
>
zoly =qef (290y ")
For nary operations and operations with other ranges (e.g. the lattice over
Booleans), analogous rules exist.

For any concrete datatype ¢ used in a programming language and operation
Ot Xt — t, the operation is defined on the associated power set lattice by

Op : P(t) x P(t) — P(t)

mOpm’ =get {x02' |z €M AL € m'}

<
Lemma 1.2 Given a Galois connection P(t) = L between the power set lattice of

>
a datattype t and a complete lattice L and an operation <& @t xt — t. Then & can
be lifted to O : L x L — L by

alrb = |_|{{:c<>y}'> | x € a9 Ay € b}
Proof. According to the lifting of operations between lattices introduced above we
calculate
a¥ b =get (aOpbY)”
= {20y |zeatny ebI}”
— (| Ji{zou} |z catny e by
|_|{{av<>y}D |z €a9 Ny €b}

)l>

Lemma 1.2 can be generalised in the obvious way to n-ary operations:

<
Corollary 1.3 Given GCs P(t;) = L;,i = 0,...,n between the power set lattices
>
P(t;) of datatypes t; and complete lattices L; and an n-ary operation w : t; X ... X
t, — to. Then w can be lifted to wy, : Ly X ... X L, — Ly by
wr(at,...,a,) = | J{{w(z1,...,2,)}" | Vi€ {1,...,n} : 2; € a;7}

Example 1.4 Let us lift the +-operation to the interval lattice. First we define a
GC between (P(float), C) and (IR, C) via

m> =ger [inf(m), sup(m)]

[a,a]™ =4t [a, @]

Now we lift the +-operation according to the recipe above and define

a, @] [+][b, b] =qer
{x+y|zelaalnyce [Q,E]}D =

Lz +y.z+yl |2 €laal Ay e b} =

la+0b,a+0]

PELESKA AND LODING

1.2 Construction of Abstract Interpretation Semantics

Given any transition system T'S = (5, Sy, —) the most fine-grained state space
abstraction possible is represented by the power set lattice Lp(S) = (P(S), C) with
join operation U and meet N. We introduce an abstract interpretation semantics on
Lp(S) by turning it into a state transition system T'Sp = (Lp(S),{So}, —p) by
lifting the original transition relation to sets: Using Plotkin-style notation, this can
be specified as
Viel, s,s,eS:si— s,
{Si|iEI}—>p {8;|i€]}
We extend this definition by two additional rules allowing terminal states of S to
transit to the empty set in P(.5):
ACS VseAseS:s/—s
A—po

(P1)

(P2)

S (P3)
g —p I

Compared to the original transition system TS, this abstract interpretation
—p introduces no loss of information, since its restriction to pairs of singleton sets

is equivalent to the original transition relation:
V51,89 €5 :81 — S0 & {81} —P {52}

It is, however, an abstraction, since for transitions between states with cardinality
higher than one, say {s1, s2,...} —p {8}, s, ...}, only the possible resulting states
are listed (s}, sb,...) but the information whether, for example, s; — s} or s —
sh is no longer available.

Observe that —p obviously satisfies

Lemma 1.5 Vq,¢,7CS:q—pd ArCq= (Ir' Cq¢ :r —p1')

Now, given any other transition system 7'Sy, = (L, Lo, — 1) based on a lattice
(L,C) we can check whether T'Sy, is a valid abstract interpretation of 7'S by the
aid of T'Sp and Galois connections:

Definition 1.6 Transition system T'S;, = (L, Lo, —1,), based on a lattice (L,C),
is a valid abstract interpretation of T'S = (.S, Sy, —) if
(i) There exists a Galois connection
> (P(S),9) = (L,5), “: (L,E) = (P(5),9)
(ii) The transition relation —, is a valid abstract relation in the following sense:
Va,a',be L:(a —pd AbCa=3b e€L:b—p VANV LCd)
(iii) The transition relation —, satisfies
V(p,p') €—p:3d € L:p” —pd ApTCd
(iv) The transition relation —, satisfies
V(a,a') €—p: ' € PS:a” —pp AP C a“
The following theorem provides a “recipe” for constructing valid abstract inter-
pretations, as soon as a GC according to Definition 1.6, (i) has been established:

PELESKA AND LODING

Theorem 1.7 Given lattice (L,C) and Galois connection * : (P(S),C) — (L,C),
< (L,E) = (P(S),Q), define transition system TS, = (L, Ly, —1) by

(i) Lo ={S}"

3y PP —p

(ii) —
p* —rp
a< —p p'

(iii)

Then TSy, is a valid abstract interpretation of T'S in the sense of Definition 1.6.

a —, p/l>

Proof. We first show that —, satisfies condition (ii) of Definition 1.6: Suppose
a —, a and b C a. Since < is monotone, we conclude b~ C a~. Since transition
a — a' exists either due to rule (ii) or due to rule (iii) of the theorem, the
existence of p' € P(S) such that a< —p p/, a — p'¥ and o’ = p'* follows
for both cases. Then bY C a< and Lemma 1.5 imply existence of p” such that
b —p p” and p” C p’. Applying rule (iii) to b,p” we conclude that b — bV'.
Moreover, monotonicity of > and p” C p’ imply v C p'" = d'.

Next, condition (iii) of Definition 1.6 is established: Suppose p —p p’. Set
a =qef p¥. Then p C a< = p>< because of (Gall). As a consequence, there exists
a superset p of p’ such that ¥ —p p. Condition (iii) of the theorem now implies
a — 1, p~, and monotonicity of ™ implies p’™ T p™. Setting @’ =gef 7> now shows
validity of condition (iii) of Definition 1.6.

Finally, the validity of condition (iv) of Definition 1.6 is shown: Suppose a —,
a'. Case 1: 3p,p/ € P(S) :p” =aAp'® =d Ap®Y —p p/. Then o'~ =" 50
P C /< due to (Gal2). Case 2: Ip € P(p) : a¥ —p p' Ap’® = d/. Then (Gal)
implies p’ C @'Y, so the validity of condition (iv) of Definition 1.6 is established
once more.

This completes the proof of the theorem. O

Observations.

The conditions of Definition 1.6 and Theorem 1.7 are not equivalent. Indeed,
Theorem 1.7 specifies the most exact transition relation of all relations which are
valid in the sense of Definition 1.6. To see this, suppose that the requirements of
Definition 1.6 hold and that p>< —p p for some p,p’ € P(S). Applying condition
(iii) of the definition yields existence of a’ € L such that [
a’. Then application of (Gal3) implies p” — 1 a’ A p’” T a/. This means that
Definition 1.6 only guarantees existence of a transition to a target state o’ with
p’" C d. In other words, the condition (ii) of Theorem 1.7 is the most exact
transition rule admissible according to Definition 1.6, where a’ always coincides
with p'", instead of just being a lattice member “somewhere above” p'".

Now suppose that the requirements of Definition 1.6 hold and that a< —p p’ for
some a € L,p’ € P(S). Additionally assume that the GC is exact, that is, a<” = a
holds for all @ € L. Condition (iii) of Definition 1.6 implies existence of a’ € L such
that a<9® — 1, o/ Ap’® C o’. Due to exactness, this just means a —, a’ Ap'" C d'.
As a consequence, Definition 1.6 yields existence of a transition to a target state a’
with p’” C @ in presence of an exact GC. Again, Theorem 1.7 is more precise than

5

PELESKA AND LODING

the definition because rule (iii) of the theorem always defines the transition to the
target state o’ = p'".

1.8 Construction Principle for Abstract Program Interpretations — Fine-Grained
Data Abstraction

For programming languages like C, C++ or Java, the state space S is typically
structured into control locations ¢ € Loc and variable valuations

o€, ¥=qt X /D,

D —def UmEX D:c
Voe X,z edomo:o(z) € Dy

State transitions are defined explicitly on pairs of control locations and valuations,
such as (c¢1,01) — (c2,02). As a consequence, the associated power set lattice is
structured as

Lp =gef (P(Loc x 3),{So}, —p, <)
S() - Loc x X

with operational rule

Vi€ I,(¢,04),(c,00) € Loc x X : (¢;,04) — (¢, 0%)
{(ci,oi) | i € I} —p {(c},07) | i € I}

replacing (P1) above.
We will now present a “recipe” for constructing valid abstract interpretations
based on the abstraction of datatypes D, used in the program:

(i) For each D, used in the program, associate the desired data type abstraction
lattice L(D,), so that L(D,) is admissible in the sense that it can be related
to the power set lattice via Galois connection

(ii) Define abstract valuations

A€ X, X =def X # L(D)

L(D) = U,ex L(Dx)
VA€ X,z €dom \: A(z) € L(Dy)

(iii) Define power set abstraction lattice over abstracted datatypes L(D):
L= (P(LocxXp),C)

6

PELESKA AND LODING

(iv) Define a GC between Lp and L via
P (P(Loc x X),C) — (P(Loc x X1,), Q)
<: (P(Loc x ¥1,),C) — (P(Loc x ¥), Q)
S"” =qet {(c,\) | Jo € X : (¢,0) € SA
dom o = dom A A (Vz € dom o : {o(z)}*” = \(2))}
U =get {(c,0) | INE XL : (e, \) €U AN
dom ¢ = dom A A (Vo € dom o : {o(x)} C A(x)9)}

Lemma 1.9 below proves the GC properties for these mappings.

(v) Define transition relation — 1 C (P(Loc x X1) x P(Loc x X1)) according to
the conditions of Theorem 1.7.

(vi) Together, Lemma 1.9 and Theorem 1.7 imply that we have constructed a valid
abstract interpretation in the sense of Definition 1.6.

Lemma 1.8 The Galois connection defined in (iv) above satisfies for all S €
P(Loc x %)

(i) S* ={(c,{z— {o(@)}* | z € dom o}) | (c,0) € S}
() S*< ={(c,0) | Ic,0’) € S : dom o = dom o' A (V& € dom o : o(z) € {o'(x)}*)}

Proof. (i) is just an alternative representation of the definition of S* given in (iv).
In order to prove (ii), we calculate

5% < = {(¢, {x — {o(z)}” | € dom 7}) | (¢,0) € 5}~
={(c,0) | I(c,0’) € S:dom 0 = dom o’ A (Vo € dom o : o(z) € {al(x)}bq)}

O
Lemma 1.9 Mappings ”, <, as defined in (iv) above, represent a Galois connection.

Proof. 1. The definition of ®, < in (iv) immediately implies that both mappings
are monotone with respect to partial order C.
2. Suppose S € P(LocxX) and S® C U € P(Locx Xr). We prove that S C U<.
The definition of ¥, Lemma 1.8 and the fact that S® C U imply
U’ —def SP cU
U' ={(c,{x+— {o(x)}* | z € dom ¢}) | (¢,0) € S}

Therefore monotonicity of < implies U’ C U< and it is sufficient to prove S C U’<.
To this end, Lemma 1.8 (ii) implies that

U'< ={(c,0) | Ic,0’) € S : dom o = dom o’ A (Vz € dom o : o(z) € {0’ (x)}”)}
={(c,0) | 3(c,0’) € S : dom & = dom o’ A (Vz € dom o : {o(z)} C {o’(2)}”)}
={(c,0) | I(c,0’) € S : dom o = dom o’ A (Vo € dom o : {o(z)}” C {0’ (z)}")}
2{(c,0) | 3(c,0’) € S : dom & = dom o’ A (Va € dom o : {o(z)}> = {o’(z)}")}
oS

so this shows 2.

PELESKA AND LODING

3. Suppose S € P(Loc x ¥) and U € P(Loc x 1) and S C U<. We prove that
SE CU.
SCUY =
V(c,0) € S:
(c,o) e {(d,o") | IN €Zp : (e, V) €UA
dom ¢’ = dom N A (Vz € dom o’ : {o/(2)} C N (2)V)} =
V(c,0) € S:INE XL : (¢,\) € U Adom o = dom XA
(Vx € dom o : {o(x)} C A(z)7) =
Y(c,0) € S:3IN€ XL : (¢,\) € U Adom o = dom XA
(Vz € dom o : {o(x)}> C A(z)) =
{(¢,\) | Jo€X:(¢c,0) € SAdom o =dom XA
(Vz €dom o : {o(2)}” CA(z))} CU =
{(e;\) | o€ 2:(c,0) € SAdom o =dom A A
(Vx € dom o : {o(2)}* = A(z))} C U =
S>> CU
O

1.4 Construction Principle for Abstract Program Interpretations — Coarse-Grained
Data Abstraction

In this section we define another abstraction which is coarser than, but closely re-
lated to the the lattice (P(Locx X1), C) defined in the previous section for arbitrary
admissible data type abstractions L(D,). We wish to relate this new abstraction
directly to (P(Loc x X1),C), without having to go back to the powerset lattice
(P(Loc x ¥),C). The following theorem shows that this is possible.

Theorem 1.10 Let (L;,C;),i = 1,2 lattices with Galois connections

> (P(S),C) — (L1,E1), ¥ (L1,E1) — (P(S),C) and ¥’ : (L1,C1) — (L2, Eo
), Vi (L, C) — (L1,C1). Suppose that — 1, has been defined according to
Theorem 1.7 by

< / /
PP —pp Y —pp

> >
p> —rp a; —rp

Define —1,,C La X Ly by

<’ / </ /
CL1D —L 7 a —L a1

/ > 1 >!
a®’ —p, a) ay —r, a)

Then (Lo, Co, —1,) is a valid abstract interpretation in in the sense of Defini-
tion 1.6.

Proof. 1. The composition of GCs is again a GC. This can be checked by proving
the validity of (Gal):

pL (524/)4 & pP C b ﬁpbbl C by

2. We show that the preconditions of the theorem imply that
<]/<

>/ / 1< /

" —pp) aY —pp (%)
>/) > ;>

> —r, Py az —r, Pi

Then we can apply Theorem 1.7 to the GC (DD,, </<]) and this yields validity of the
abstract interpretation (Lg, Co, —,) in in the sense of Definition 1.6. To establish
(*) we calculate

PELESKA AND LODING

<

>|>/<]/<] ,
—P D1

</
n1 —ppi= @7)

/
>/ < >
:>p1 L1 D1

>/ ;>
=D Lo P71

and
</< / </ < /
az —ppi=(2Y) —pp
</ / >
=az" —L P1
7 >/
=ay —r, (1)

>/
= a2 — [, P1

This completes the proof.

Using abbreviations
L1 =qet (P(Loc x X),C)
Ly =aet (Loc 7> (V 7 Upex L(D2)), E)

<

We will now define a GC Ly — Lo as follows:

>

(i) For a € Ly, set

a” =def
dom ¢ =gef m1(a)
Ve € dom 6 : dom 6(c) =der Ugy | (¢,0)eq} dom A
Vo € dom 6(c) : 6(c)(x) =def L{A(x) | (¢,\) € a Az € dom A}
Observe that the last line of this definition can be equivalently replaced by
Ve € dom 6 : 5(c) =aet | [{M] (¢, \) € a}
(ii) For 6 € Lo, set

09 =ger {(¢,\) | cedom § AXNC 6(c)}

Lemma 1.11 »: Ly — Ly and < : Ly — Ly define a Galois connection.

Proof. 1. Suppose a® C §. We show that this implies a C §< by calculating

a®> Céd=

dom a® C dom § A (Ve € dom a” : (a®)(c) C d(c)) =

m1(a) C dom 6 A (Ve € 71 (a) : U{A | (e,n)eq} dom A C dom 4(c)) A
(Vz € U{/\ | (c,\)ca} dom A LI{A (@) | (e, A) € a Az € dom A} C (c)(x)) =

69 ={(c,\) | c€dom § AXC 6(c)}
S5 {(e,N) | ¢ € m(a) AN 6(c)}
={(c,\) | c € m1(a) Adom A C dom d(c) A (Vz € dom X : A(z) C §(c)(x))}
2{(c,A) [c€mi(a) Adom XA C Upar | (e,0)cay dom A A

(Vo € dom A : A(z) C L {N(z) | (¢,\) EaAx e dom N})}

1

PELESKA AND LODING

2. Suppose a C <. We show that this implies a® C § by calculating

aCéd =
aC{(c,\) |[cedom §AAXC ()} =
Ve € mi(a),z € dom §(c) : | [{N (z) | (¢, \) € a} C §(c)(z) =
a> C 4§

This completes the proof. a

Exploiting Theorem 1.10, we introduce a valid abstract interpretation on Ly =
(Loc # (V # U,ex), E) by means of the rules

< /
pD Ly P a

o
p* —r, 1 ap —p, P

/
< L P

/>

2 Abstract interpretation of while languages

The introductory results on valid abstract interpretations of transition systems of
Section 1 will now be applied to a concrete programming language. We start with
a simple C-like while-language, called Gy, initially only admitting main programs
with global and stack variables, including arrays. Function calls will be considered
at a later stage.

In the following exposition we require all Galois connections

<
P(t) = L(t)

abstracting datatypes ¢t to be exact in the sense that

Vae L(t):a% =a

2.1 Preliminaries on array abstraction

We consider n-dimensional array variables a declared as
t aldy]...[dn);
as variables of partial n-ary function type, that is,
a:int” A t; (i1,...,0,) — afiq]...[in]

By choosing a lattice L(int) abstracting array indexes and a lattice L(t) abstracting
the array type we wish to introduce an appropriate abstraction a; : C(L(int)" /4
L(t)) of array a, where C(L(int)™ / L(t)) is the set of continuous partial functions
between lattices L(int)™ and L(t). To this end, it is necessary to introduce a GC

<
P(int" 4 t) = C(L(int)" /4 L(t))
>

between the power set lattice P(int” + t) and our lattice of interest C'(L(int)" /4
L(t)). We define for some set fp € P(int" /4 t)

fpP : C(L(int)™ 4 L(t));
(i il o L f G} | F € fo AV € {1, . n} iy € ibT)
10

PELESKA AND LODING

Obviously, fp" is continuous, so > is well-defined. For fr, : C(L(int)" /4 L(t)) we
define

={f:int" At | dom f C (dom f1)~
V(it, ... in) € dom f: {f(i1,...,in)}" T fr({(i1,- ., in)}")}

Lemma 2.1 P(int" /4 t) = C(L(int)™ 4 L(t)) is a Galois Connection.

>

Proof. Given existing GCs P(int) = L(int) and P(¢) = L(t), fp € P(int" 4 t)
> >
and fr : C(L(int)"™ 4 L(t)) we first show

(a) fp C .Y = fp" C fL.
fp € fr¥ implies

Vf € fp:dom f C (dom fr)< A

(i1, ... in) € dom f 1 {f(i1,...,in)}" T fL({(i1, ... in)}")

Therefore we can calculate

dom (fp)” C dom fy,

v(ik, ... ik € dom (fp)”
(fe)" (it i) =
L{{f Gin, - umwfeﬁAwhnxng%wwwﬁ;
LGy 500} | {Ginseee i)} C (6F, . il))
fo(if, ... iL) since f1, is monotone

This proves fp” C fr.

(b) fpl> C fL = fp - fL<].
fp" C fr implies

dom (fp)” C dom fr A
V(if,. .. iy) € dom (fp)” : (fp)"(if,. .. ip) C fr(if, ..., if)
From the definition of > we conclude
V(ik,...,ik) € dom (fp)”
LS Grsees i)} | F € S A (i, ovin)} € G i8) T
C fo(if, ... k)
For (if,...,iL) =qet {(i1,...,in)}", this implies
Vf € fp,V(i1,. .., i) € dom f:{f(i1,...,in)}" C fL({(i1,-..,in)}")
11

PELESKA AND LODING

Now by definition of _<,
o9 ={f :int" At | dom f C (dom f1)? A
V(i1,. .., i) € dom f:{f(i1,...,in)}" C fr({(i1,...,in)}")}
This implies fp C fr< and completes the proof. a
Lemma 2.2 The GC P(int” / t) ; O(L(int)" /£ L(t)) is exact, that is,
Vfi € C(L(int)" 4 L(1)) : f1™° = fr
Proof. Given f1, : C(L(int)" 4 L(t)) and (i}, ..., iL) € domfr, we calculate
L) =
LS Gy} | € AV € {1, m) sy € iFT) =
L{f G, i)} | (V5 € {1, m} i € b T) A
{f(irs i)} E fr{in}, . i)™} =
LS (i)™, {in}™) | (95 € {1, m) o € 29}
Since f1, is continuous, the last line of this equation can be re-written as
fe G i) = U L€ i) L) in € 057 H()

<
Since the GC P(int) — L(int) is supposed to be exact, we can calculate for j €

{1,...,n}: :
ib =it
—{i|icit”
= (i} 1ied™)
=t 1ie iy
= Jty" i€ ity
As a consequence, equation (*) can be simplified to
fL G i) = oGk

and this completes the proof. a

>

12

PELESKA AND LODING

<G1>

<global-defs>

<typedef>
<id>
<dimension>
<nat>

<main>
<body>
<stack-defs>
<commands>

<command>

<bexpr>

<bop>

<assignment>

<int>

<rhs>

<op>
<id_const>

<const>

<global-defs>_opt <main>

<global-defs> <typedef> <id> <dimension>_opt;
| <typedef> <id> <dimension>_opt;

int | bool | float | char
C-Variable-Identifier
<dimension>_opt [<nat>]

Non-zero natural number

void main() { <body> }
<stack-defs>_opt <commands>
<stack-defs>_opt <typedef> <id>;

<commands>_opt <command>

E

| ERROR
I

| <assignment>;

| if (<bexpr>) { <commands> } else { <commands> }
| while (<bexpr>) { <commands> }

<id_const>

| <id_const> <bop> <id_const>

| not <id_const>

< | <=1]>| >] and | or
<id> = <rhs>

| <id> = <id>[<int>]

| <id>[<int>] = <id_const>
Integral number

<id_const> <op> <id_const>
| <id_const>

| - <id_const>

| input()

| (<typedef>) <id_const>

+ -1 *x1/

<id> | <comnst>

Literal defining a constant value

Fig. 1. Syntax of the simple while-language G1.

13

PELESKA AND LODING

*SUOT}ISURI) 9)e)S pauyap-[[om — 1) afenduel-o[iym oduuls oy} jo sorjuewas feuoryerod() g “S1q

(o0'2g) "M — (o'egt{1g} (" Tx)a)oTrun)

(o (mo)a—y GE(mo{e1}51a) (CHM)

(o‘zg) "M (o' {Za}osto{Ta} (("x " Ix)a)3T)
()5 (M o)y A ofe 1) 54 (&dl)

(Zo‘tg) "M (To'2giTg)

(To‘g) ﬁ\SA‘Aﬁmev Aﬂomv

"M (o) (1a)

([([(x)0]ex) 0~ Tx]0'g) "M (0¢g[1]Cx=Tx)

E(DoTmov - (@m0} 5o (9SV)

([(ex)0/(2x)0—Tx]0‘g) TMe (o‘gi€x /ex=1x)

{2013 (5) oV e Z (oo (rsv)

([(2x)0—«—Tx]0'g) H\SA’Ab,mwa\H;v

J£(@x)0 (zsv)

(H{r=—u'"0}31 | s[t]x]o'a) "M (o'ax 1) Fa)
0<uva od£) Jo Aelre [ed0[© SI T va

([, —x]o‘g) ﬁ\SA’Ab,mwx 1)
79 oQNa JO o[qeLIeA [BOO] ®© SI T (ea)

(o‘eg {ra} (‘- Tx)q)orruatg) "M (otgt{ g} (("x‘ - Tx)q)oTTun)

(@)o~ () 2)av (L (72) o w* 1} STA) (THM)

(o'1g) TM (o {Zg}esTe{ Ta} ("'~ Tx)a) 5T)
(o (o) (G2 nea 1} (LD

o'g) M (ogt
(o'g) Am:

108S)

([(2x)o—=[(1) 0] x]0'g) TMe (o‘gitx=[1]Tx)

(# () ov{T—(x)up‘0}3(2) 0 (LsV)

([(()andut) 0 Tx]|0‘g) LY p— (o‘g!()andur="Tx) A

gSvVv)

{[(Ex)0m(Tx) 0 Tx]0'g) TMe (0‘gtExmix=1x)

12 (E2) oV A(Ex) oV [+ — +)30 (esV)

([(2x) 0—Tx]0'g) "M — (o'giTx=Tx)

J£(@x)0 (1SV)

({r—u0}31 | o[1]x]o‘a) "Me—(oqt[ulx 3)

0<uva od£) Jo Aeire [eqO[3 ® ST T (ea)

([o—x]o‘g) H\SA’AbnmU" 1)
1 odA) jo o[qeLIRA [R(O[S © SI T (ta)

14

PELESKA AND LODING

(ERI) o(xz3)€{0,7} (ERZ) o(x2)="?

(x1=x2/x3;B,0) — Wy (ERROR, 7) (x1=e(...,x2,...);,0) — Wy (ERROR,7)

(ER3) o (i) Z{0,...,dim(x3) — 1} Vo (xp[i])=7 (ER4) 0 (i) #{0,...,din(x1) —1}Vo (x9) ="

(x1=x3[1]iB,0) — v (ERROR,?) (x1 1] =x2:B,0) —> v, (ERROR,?)

(ERG) (3ie{l,...,n}:o(x;)="7)

(ER5) (EE(B(x1, %)) {B1 }else{B2 },0) — 1, (ERROR,7)

(ERROR, o) 7— v/,

(ER7) (3ie{1,...,n}:0(x;)=")

(while (b(x1,...,%n)) B,0) — yy; (ERROR,?)

Fig. 3. Operational semantics of the simple while-language G1 — runtime errors.

2.2 Abstract Semantics of Coarse-Grained Abstraction Lo

Applying Lemma 1.2 tells us how to lift the Gi-operations w € {4+, —, %, /} to the
lattices L chosen for data abstraction:

awrb = |_|{{:cwy}'> |z €a9ny€bd}

15

‘SUOTYISURI) 9)R)S pouyep-[[om oy J, :(uorjorijsqe paureis-esieod) Tr) agendue[-o[iym o[duwils o) JO sdIUBWLS 10RvIISAY § "SI

exnly fT—zayniy

@=2x WopuUTY Wopv iy T—ayyv Iy T Ty (Tav)
ﬁ:ﬁ\.:nﬂvw.s_AA:ﬁmmam“wvH\QCAVT&HV%X:.XVAﬁvavvv@klwiwlmm,::rZ;HVW.S_AAAAAmﬁM..LvVH\QCAVA‘SvaX...XVAHHVQVVVsklengNm;ﬂmw:nx,:;ﬂ%vnvmﬁﬁazﬁmwNQT*%INmQﬂmv?nxn...,ﬂavnvmﬂﬂnzw Ammgd.v
L=((m0)9* (1) 9) (P°VTay (T (Fx) g1 {w' 1} 31A)
{oea} °T—{o—ta{ g} ("'~ ‘Tx)a)oTrun}

ST ()9) (©ay (T2(g: (w1} 57) (CHAMY)

foza{ra} (" Tx)q)orrunt ta} °7 —{ o—Zg{ Ta} ("' Fx)q)eTrun}
onaa=(() ¢ (1)) Dy (TA(2)g: (1) 51m) (THAWY)
{H{u 1 ((({oster}) 1 —qU(s () e X X 1o (T2)@))) Pt oemtg [{u 1} 32| (g ({enaa}) 1 —qU((@) e X+ X 1 (17)0))) Fun?a]o g} BT —{o—{2a}esto{Ta} ("' Tx)q) 31} (£4TV)

1=(("0) 9 <(7x)9) °*VTqy (T#£(*x) o:{u’ " 1}31A)

{o2a} °T—{o—{ca}oste{ ta} ('~ Tx)a)sT}
s ()9) (P Viay (T (g {1} o) (CAIY)
{o—ra) ©7—{o—{tajosto{Ja} (" P03} (p gy

PELESKA AND LODING

enza=(("x) ¢+ ¢(1%)9) (1°°VTqy (T#(*x) g: {ut 1} 31A)

([0 0((DT /) (2x) g Fx]o g} T {o(gi®x/x=Tx)}
(T {07} B(Fa)ovT Z(2a) ov {eots aut} 53 = (ex)edhi= (Fr)edki=(m)ediy (VSVV)

{[(ex)o(QVQEXSC%I Tx]o—ig} NQTA%IQB%Q&%HH@W
TE(Ez)ov T#(Cx) oV {* — +} Dmv{aeoTz aut } Da=(Ex)edh = (2x)edk1=(Tx)edAL (esSVV)

{Bg2g} ET— {Tgigiig} ST {o—a}
{Toa} °T——{Tgg} ANUm<v :m:\v
{T#®@euTy| Ex)e}n{(T=@euTyAg < L(Me#) | [T4](T2)e} #P= [Ty] o
{l,o—"x)9—a} ®T— {o—aex=[1]7x} {((r)9)ex) g = Tx] o g} ©T — { g gt [1]x="Tx}
TZ@E e (w0} 5, (e (LSVV) T Eme - 0}5, (e (9SVV)

{{(Qandur) g~ 7x] o} ®T — {0 (gt Qandur="%)} ({o—a} *T—{o—(a)} (

SSVV) IOSV)

%) (T —)erTx]genig} OT —— {geigiCx—=Tx %) @t Tx] @emig} OT —— { g—i(gitx="Tx
{{(E)e(CT—) = ﬁhwéw {o—g'ex—=1x} (ZSVV) {[(zx) 9 —Tx]e W#NSEQ (giex=Tx)} (I1SVV)

(w0} | T[e]xlo—a} “T—{on(aix 1)} { #0332 | q{o}—[rlxoa} °7— o (ai[w]x 3)}
0<uv] odA} Jo Arire [ed0[® ST T vav) o<uvy wm_\ﬁ Jjo Keire [eqO[3 ® ST T (eav)

Ut} ©T—{o(aix 3)} {[a{0}r]o—a} ®T— {o(ax 1)}
7 odA) Jo S[qrLIRA [RDO[® ST T (zav) 1 M_Q\S JO o[qeLIRA [R]O[S ® SI T (rav)

16

PELESKA AND LODING

5(z3)e{{0}™, 1}
{(x1=x2/x3;B)—6}—r, {ERROR— L}

S(xg)=L
{(xize(4.4,x2,u.);)>—>5}—>L2 {ERROR— L }

(i) #{0,...,dim(xp) =1}V (x[i])=L 8(1)#{0,...,dim(x1) —1}VS(xp)=L
{x1=x2[i];B—d}— 1, {ERROR— L } {x1[i]=x2B—8} — 1, {ERROR— L }

{E=d} /=1, {ERROR— 4} #/— L,

(Fied{1,..., n}:8(z;)=L1) (Fied{1,..., n}:8(z;)=1)
{if(b(x1,..., xn)){B1}else{B2}—6}—,{ERROR— L} {while (b(xy,..., ¥n)) B—d}—p, {ERROR— L}

Fig. 5. Abstract semantics of the simple while-language G1 (coarse-grained abstraction): State transitions
leading to runtime errors.

Theorem 2.3 The rules of Fig. 5 define a valid abstract interpretation for Gy in
the sense of Definition 1.6.

Proof. 1. Validity of rules (AAS1),(AAS2),(AAS3),(AAS4),(AAS5). We
prove the validity of (AAS3), the other proofs are constructed in an analogous way.

Step 1. We calculate the corresponding semantic rule for L; = P(Loc x 1),
using the fact that the abstract interpretation semantics on L; has been introduced
according to Theorem 1.7.
We calculate for a set B C X1, using the definition of the GC between P (Locx X)
and Lq:
{((x1 = %pwx3;B),8) | 6 € B} =

{((x1 = %owx3;B),0) | 36 € B : dom o = dom § A (Vo € dom o : {o(x)} C 6(z)")}

—pp
with

P =det {(B,o[x1 — o(x2)wo(x3)]) | 30 € B : dom o = dom & A
(Vo € dom o : {o(x)} C 6(x)T)}

Since the transition relation —, has been introduced according to the rules of
Theorem 1.7, we can apply rule (iii) of this theorem and conclude

{((x1 = xowx3;B),8) | 6 € B} —p, p'”

with p'™ calculated according to the definition of > and by application of Lemma 1.8
as

P7={®{y— {o)}” | y € dom o — {a1}} U{a1 — {o(z2)wo(x3)}"}) |
36 € B:dom ¢ = dom § A (Vo € dom o : {o(z)} C §(x)7)}

Step 2. We calculate the corresponding semantic rule for Ly = (Loc /4 X)), using
the fact that the abstract interpretation semantics on Lo has been introduced ac-
cording to Theorem 1.10 with respect to L;. To this end, we calculate according to

17

PELESKA AND LODING

the GC definitions on page 9 for B =4 {0 € X1, | § C A\}:
{(x1 = xowx3;B) > A}~ = {((x1 = xowx3;B),0) | § € B}
{(%1 = xowx3;B,d) | § € B} — 1, ¢
¢ =det {(B,{y = {o(¥)}" | y € dom o — {w1}} U {z1 > {o(a2)wo(x3)}"}) |
36 € B:dom ¢ = dom 6 A (Vo € dom o : {o(z)} C §(x)7)}
From Theorem 1.10 we conclude
{(x1 = %pwx3;B) = \} —1, ¢'©
and calculate according to the GC definitions on page 9
¢" ={B—\}
with
dom) = dom A
Vy € dom N — {x1}: N(y) =
L{{e(y)}* | 36 € B: dom ¢ = dom 6 A (Vz € dom o : {o(z)} C §(x)9)} =
LI{{e(y)}* | dom o C dom A A (Vz € dom o : {o(z)} C Mz)9)} = (1)
L({{e(y)} | dom o C dom AA (Va € dom o : {o(z)} CA2)9)}) = (2)
(L{{o()} | dom o C dom AA (Vo € dom o : {o()} CA@)I)}) " = (3)
{o(y) | o(y) € M)} = (4)
)™ = (5)
A(y)
N(21) = U{{o(22)wo(x3)}” |
36 € B:dom 0 = dom § A (Vo € dom o : {o(2)} C §(z)9)} =
Ui{o(2)wo(23)}” | o(x2) € Maz)™ Ao(as) € M)~} =
AMzo)wpA(z1)

In line (1) of the calculations above we have just re-written the function application
of P according to X® =g¢r {z% | x € X}. In line (2) we have used the fact that
> preserves joins (i. e., (| | X)¥ = [|(X®)). The equality (3) follows from the fact
that for power set lattices, the supremum is just the union of sets. Finally, equality
(5) follows from the exactness of the GCs defining the datatype abstraction for
each variable symbol y. In the last line in the calculation of X(z1) we have used
Lemma 1.2.
Combining the results elaborated for X' (y) and X (z1) results in

{(x1 = xowx3;B) — A} — 1, {B— Az — A(z2)wrA(21)]}

so this proves (AAS3).
18

PELESKA AND LODING

2. Validity of rule (AAS6). We proceed in an analogy to the proof for the rules
in 1.

Step 1. We calculate the corresponding semantic rule for L1 = P(Loc x ¥1) for a
set B C X, using the definition of the GC between P(Loc x ¥) and Lq:

{((x1 = x2[i];B),8) | 6 € B} =
{((x1 = x5[i];B),0) | 3§ € B : dom ¢ = dom § A (Vz € dom o : {o(z)} C 6(z)7)}

/
—PDP

with

P =det {(B,olx1 — o(z2)[0(7)]]) | 30 € B : dom o = dom § A
(Vo € dom o : {o(x)} C 6(x)9)}

Since the transition relation —, has been introduced according to the rules of
Theorem 1.7, we can apply rule (iii) of this theorem and conclude

{((x1 = %2[i];B),0) | 6 € B} —r, p'”

with p'" calculated according to the definition of _> and by application of Lemma 1.8
as

P ={B{y— {o(y}” |y € dom o — {z1}} U {z1 — {o(22)[0(1)]}"}) |
36 € B:dom ¢ = dom § A (Vz € dom o : {o(z)} C 6(z)7)}

Step 2. We calculate the corresponding semantic rule for Ly = (Loc /4 Y1) as
above in 1., Step 2, with B =g, {0 € X | 6 C A}:

{(x1 = %2[1];B) = A}~ = {((x1 = x2[1];B),) | 6 € B}
{(x1 = x2[i];B,8) | 6 € B} —1, ¢

¢ =aet {(B,{y = {o(y)}" | y € dom o — {a1}} U {21 {o(x2)[0 ()]} |
36 € B:dom ¢ = dom § A (Vz € dom o : {o(2)} C §(z)7)}

From Theorem 1.10 we conclude
{(x1 = %2[1};B) = A} —1, ¢
and calculate according to the GC definitions on page 9

q/l> — {B —)\/}

19

PELESKA AND LODING

with dom N = dom A and Vy € dom X — {z1} : M (y) = A(y), as can be shown
exactly as in 1. It remains to calculate the function value X (z1):

N(x1) = U{{o(z2)[o ()]} |
36 € B:dom 0 =dom § A (Vo € dom o : {o(2)} C d(z)")} =
L {{o(22)[o()]}* | dom ¢ € dom A A (Vz € dom o : {o(x)} C Mz)T)} =

L{{o(z2)[o(@)]} | o(x2) € Awa) T Ao(i) € AH)T} = (1)
Ma2) TN = (2)
Aw2)[A(D)]

Equality (1) in the calculation above follows from the GC definition for array vari-
ables given on page 10, equality (2) follows from the fact that this GC is exact
(Lemma 2.2).

Combining the results elaborated for X' (y) and X (z1) results in
{(x1 = %2[i];B) = A} —1, {B = Alzr = A(z2) [A(@)]]}

so this proves (AAS6).

3. Validity of rules (AIF1),(AIF2),(AIF3). We prove the validity of (AIF3),
the proofs for (AIF1), (AIF2) are constructed in an analogous way.

Step 1. Again, we first calculate the corresponding semantic rule for Ly = P(Loc x
Y1). Setting

¢ =dof 1£(b(x1,...,%n)){B1}else{By}

we calculate for a set B C X1, using the definition of the GC between P(Loc x X))
and Lq:

{(c,6) | 6 € B} =

{(c,0) | 36 € B:dom o = dom 6 A (Vz € dom o : {o(z)} C 6(x))}

—p Py Uph
with

P =det {(B1,0) | 30 € B :dom o = dom 6 A (Vz € dom o : {o(z)} C d(x)7) A
b(o(x1),...,0(xn)) = true}

Py =def {(B2,0) | 30 € B : dom o = dom § A (V& € dom o : {o(x)} C §(z)7) A
b(o(x1),...,0(xn)) = false}

20

PELESKA AND LODING

Applying rule (iii) of Theorem 1.7 and using the definition of _® on page 7 yields

{(c,6) | 6 € B} — 1, (Ph Uph)”

(P Uph)” =

{(B1,8") | 3o € ¥ : (By,0) € pj Adom o = dom & A
)

(Vo € dom o : {o(x)}” = ¢'(2))} U
(

{(B2,¢") | Jo € £ : (By,0) € p) Adom o = dom &' A
Vo € dom o : {o(2)}" = ¢ (2))} =
{(B1,d") | Jo € £ :35 € B : dom 0 = dom § = dom §' A

(Vo € dom o : {o(z)} C 6(z)Y A {o(x)}" = §'(x)) A
b(o(x1),...,0(xp)) = true} U

{(B2,0") | Jo € £ : 36 € B: dom o = dom § = dom &' A
(Vo € dom o : {o(z)} C §(x)I A {o(x)}" = §(x)) A
b(o(z1),...,0(zy)) = false} =

{(B1,0") | o € ¥ : 36 € B : dom o = dom § = dom &' A
(Vo € dom o : {o(x)}” C 6(x) A {o(z)}T = §'(x)) A
b(o(z1),...,0(zy)) = true} U

{(B2,8") | Jo € ¥ :35 € B:dom o = dom § = dom §' A
(Vo € dom o : {o(z)}” C 6(x) A {o(x)}* = §'(x)) A
b(o(z1),...,0(zy)) = false} =

{(B4,8") |36 €B:d T oA
(31, ..., apn) € D™ : b(aq, ..., ap) = true A

(Vi e {1,...n}: 8 (z;) = {a;}7))} U

{(Bg,d") |6 € B: 5 T oA

(Far,...,an) € D" : b(ay,...,an) = false A

(Vie{l,...n}:8(x;) = {a;}7))} =

Step 2. Again, we calculate the corresponding semantic rule for Ly = (Loc /4 X))
with respect to Ly. For ¢ as defined above and A € ¥, we set B =g {0 € X | d C

21

PELESKA AND LODING

A} and calculate according to the GC definitions on page 9:
{c—A}T={(c,d) | 6 € B}
{(¢,0) |0 € B} — 1, 4 U
¢} =det {(B1,0") | € B: 0" CTIA
(F(aa,...,apn) € D" :b(aq,...,q,) = true A
(Vi€ {1,...n}: &'(2:) = {ai}"7))}
05 =def {(B2,0") | 3 € B: 0" T A
(F(a1,...,apn) € D" : b(ay,...,ap) = false A
(Vie{l,...n}: 0'(2:) = {ai}"))}
From Theorem 1.7 we conclude
{e—= A} —r, (gh U @)
(d; Ugh)” =
{Bi—=| ¢ |FeB:0'CHA
(F(a1,...,apn) € D" : b(aq,...,ap) = true A
(Vie{1,...n}: 0 (@) = {ai}7)},
Bor | {0’ |B€eB:0'CoN
(Faa, ... apn) € D" : b(aq,...,a,) = false A
(Vi € {1,...n}: 8(z) = {ai}™))}} =
{Bi—=|HY | EXA
(F(a1,...,apn) € D" :b(ay,...,ap) = true A
(Vi€ {1,...n} : (1) = {ai}™)},
By = | {6' | T AA
(F(a1,...,an) € D" : b(aq,...,ap) = false A
(Vie{1,...n}: 0 (@) = {a:}7))}} =
{B1 — A1,Ba— Ao}
with dom A\; = dom A2 = dom A and
Ve € dom A — {z1,...,z,} : A1(x) = Aa(z) = A(2)
Vie {1,...,n}: A(zi) = m((A@) T x ... x AMzp)) Nb~ 1 ({true}))")
Vie {l,...,n}: da(z;) = m((Mz) T x ... x AMz))N b_l({false}))b)
where b™1({8}) =qet {(@1,- .-, an) | b(a1,...,an) = B}. This proves (AIF3).

4. Validity of rule (AAST). We proceed in an analogy to the proof for the rules
in 1.

22

PELESKA AND LODING

Step 1. We calculate the corresponding semantic rule for L; = P(Loc x ¥1) for a
set B C X, using the definition of the GC between P(Loc x) and Lq:

{((x1[i] = x2;B),8) | 6 € B} =
{((x1[i] = x2;B),0) | 36 € B : dom ¢ = dom § A (Vz € dom ¢ : {o(z)} C 6(z)9)}

/
—PD

with

P =det {(B,c[z1 — o(x1)[0(i) — o(z2)]]) | 30 € B : dom o = dom § A
(Vo € dom o : {o(x)} C 6(x))}

Since the transition relation —, has been introduced according to the rules of
Theorem 1.7, we can apply rule (iii) of this theorem and conclude

{((x1[i] = %2;B),8) | 6 € B} —, p'©

with p'™ calculated according to the definition of > and by application of Lemma 1.8
as

P ={B Ay~ {o®)}” |y € dom o — {a1}} U{z1 = {o(21)[o(i) = o(22)]}7}) |
36 € B:dom ¢ = dom 0 A (Vo € dom o : {o(z)} C §(x)7)}

Step 2. We calculate the corresponding semantic rule for Ly = (Loc / Y1) as
above in 1., Step 2, with B =q¢¢ {0 € X1, | § C \}:

{(xa[i] = x2;B) = A}~ = {((x1[i] = x2;B),0) | 6 € B}

{(xa[i] = x2;B,0) | 6 € B} —1, p'”

¢ =aet {8, {y = {o()}" | y € dom o — {a1}} U {21 = {o(21)[o(i) = o(22)]}7}) |
36 € B:dom ¢ = dom § A (Vo € dom o : {o(2)} C 6(x))}

From Theorem 1.10 we conclude
{(xa[i] = x2;B) = A} —1, ¢7
and calculate according to the GC definitions on page 9

q/l> — {B —)\/}

23

PELESKA AND LODING

with dom N = dom A and Vy € dom X — {z1} : M (y) = A(y), as can be shown
exactly as in 1. It remains to calculate the function value X (z1):

N(a1) = U{{o(z1)[o(@) = o(z2)]}" |
36 € B:dom 0 =dom § A (Vo € dom o : {o(2)} C é6(z)9)} =
| [{{o(z1)[o(i) — o(22)]}” | dom o C dom A A (Vz € dom o : {o(z)} C Az)9)} =
Lt{o(z1)[o(i) = o(@2)]}” | o(21) € A1) Ao(z2) € Ma2) T Ao(i) € A5} =
fe"
I =det
{o(x1)[0(i) — o(x2)] | o(z1) € Mz1) T A a(22) € Ma2) T Ao(i) € A(4)}

From the GC definition for array variables given on page 10 we infer that
dom X(z1) = dom A(z1) and that for some kj, € dom N (z1)

N(z1)[kr] =
feClkL] =
LI{{o(z1)[o

o(x;

i) = o ()] [k]}" |
e Mx) I Aa(z2) € M) Ao(i) € A@) TNk € k) =
LI({{o(z1)[k]}" |
o(x1) € Mz) TNk €k A (Fo(@) € Xi)T 1k # o(i)} U
{{o(22)}" |
o(x2) € Ma2) Ak €kIABo(i) € Xi)T bk =0(i))}) =
U({{o(z1)[k]}" |
o(x1) € Mz1) TNk €EkLIN(H#AND)T =2V ELINAG) Y =2)} U
{{o(22)}" | o(z2) € Ma2) T A kLI NAG) ™ # 23) =
Li({{o(z1)[k]}" |
o(z1) € Ma1) SNk € kI A (#ANE)T > 2V kL MAGE) = L)} U
{{o(22)}" | o(w2) € Ma2) T A KL ING) # L}) =
{Ma)kz] | (#A@)T 22V kL NA@) = L)} U{X(22) [kr MAG) # L}
Combining the results elaborated for X' (y) and X (x1) results in

~—

{(x1][i] = %2;B) = A} — 1, {B— A[z1 — d]}
with
dom o’ = dom A(x;)
d'[kr] = {Man)[kr] | (FAO)T 22V ELNAG) = L)} U{N22) | kL MA(E) # L}
This proves (AAST). 0

24

PELESKA AND LODING

References

[1] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2002.

25

	Theoretical Foundations
	Lattices and Galois Connections
	Construction of Abstract Interpretation Semantics
	Construction Principle for Abstract Program Interpretations -- Fine-Grained Data Abstraction
	Construction Principle for Abstract Program Interpretations -- Coarse-Grained Data Abstraction

	Abstract interpretation of while languages
	Preliminaries on array abstraction
	Abstract Semantics of Coarse-Grained Abstraction L2

	References

