
CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 1 of 18

Prof. Dr. rer. nat. habil. Jan Peleska
University of Bremen
Department of Mathematics and Computer Science
Bibliothekstraße 1
28359 Bremen

Project Description – Project Proposals

Prof. Dr. rer. nat. habil. Jan Peleska, Bremen

CPOT-SM – Complete Property-oriented Testing with Symbolic Methods

Project Description

1 State of the art and preliminary work

STATE OF THE ART

Complete model-based testing. The investigation of complete theories for testing against
models has a long tradition. Initially, only finite state machine (FSM) models were considered.
This started with the W-Method published by (Vasilevskii, 1973) and (Chow, 1978), who were
the first to show that implementations whose true behavior is represented by completely
specified deterministic FSMs with at most m states can be tested against reference models with
n ≤ m states, such that any violation of language equivalence will be uncovered by finitely many
test cases derived from the model. Since then, these initial results have been extended to
incompletely specified and nondeterministic finite state machines, and to language inclusion as
an alternative conformance relation to language equivalence. Moreover, many of the new
theories guaranteed complete fault coverage with considerably less test cases than needed
according to the W-Method, such as, for example, the Wp-Method (Fujiwara et al., 1991) and
(Luo et al., 1994). As of today, the most effective complete FSM-based testing method for
testing language equivalence is the H-Method published by (Dorofeeva et al., 2005). For testing
nondeterministic FSMs w.r.t. language inclusion, adaptive testing methods are preferred, as
published in (Hierons, 2004) and (Petrenko and Yevtushenko, 2011). Apart from FSM-based
MBT, complete testing methods for many other semantic models or concrete modelling
formalisms have been elaborated in the past. In (Gaudel, 1995), completeness criteria for
algebraic formalism were stated; these criteria (uniformity hypothesis and regularity hypothesis)
turned out to be generically applicable for arbitrary formalisms. For the class of formalisms
based on labelled transition system (LTS) semantics, conformance testing methods based on
the ioco relation (see, for example, (Tretmans, 1996) and (Brinksma and Tretmans, 2000))
seem to be the most widely used today. Much earlier, it has been shown in (Hennessy, 1988)
that (not necessarily finite) test suites can be used to determine refinement relations between
processes with LTS semantics. For concrete formalisms, the literature on MBT is vast. For
process algebras, we name (Schneider, 1999) and (Schneider, 1995) for testing against (timed)
CSP process algebra models, (Springintveld et al., 2001) for a complete testing theory based on
Timed Automata, and the more recent work (Cavalcanti and Gaudel, 2011) and (Alberto et al.,
2017) on testing against models specified in the Circus formalism which combines both data
and control-oriented modelling techniques from the Z specification language and the CSP
process algebra. Further examples are given below in the description of our own preliminary
work. In modeling formalisms that are more general than finite state machines and use less
restrictive fault models, it is not always guaranteed that finite complete test suites exist; see, for
example (Cavalcanti and Simao, 2017), where examples requiring test cases of infinite length
are presented for the CSP process algebra.

Symbolic methods and MBT. Similar to infinite-state model checking, symbolic methods are
applied in MBT for reducing the size of a model’s input domain, internal state space, or output

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 2 of 18

domain. Apart from our own work in this field which is described below, the following
contributions are significant for the exploration of this line of research. In (Clarke et al., 2002),,
(Frantzen et al., 2005), (Jeannet et al., 2005), and (Jéron, 2009), first suggestions about test
generation with symbolic methods were made. Full fault coverage, however, was only
established for infinite test suites. In contrast to that, complete testing theories for symbolic state
machine models requiring finite test suites have been elaborated in (Petrenko and Simao, 2015)
and (Petrenko, 2016). They are applicable in a more general context and have less stringent
requirements concerning the first-order predicates involved than our theories described below,
but – not surprisingly – this generality leads to weaker fault models that do not admit, for
example, SUTs with additional (faulty) states. In (Taromirad and Mousavi, 2017), our concepts
for black-box equivalence class partition testing described below have been extended to gray-
box testing: the authors show that considerable test suite reductions can be gained if it is not
mandatory to perform black-box testing, but some internal information about the SUT can be
obtained.

Property-oriented testing. The property-oriented testing (POT) approach has been
characterized in the overview article (Machado et al., 2007). As stated there, the main
motivation for POT is the possibility to reduce test suite size in comparison to a complete
model-based conformance test suite: while the latter requires test cases to verify all possible
behaviors in relation to a reference model, the former only requires investigating the subset of
possible behaviors which is relevant to verify a certain set of properties (i.e. requirements).
A typical approach to property-oriented testing is to state desired system requirements as
formulas in a temporal logic (see e.g. (Fernandez et al., 2003) and (Li and Qi, Zhichang, 2004))
and construct test cases based on that formula. Since we are only interested in testable
properties, the set of requirements is usually restricted to safety properties. For linear safety
properties (usually expressed as LTL formulas), the test oracle problem is solved by noting that
the test executions violating the property (the so-called bad prefixes) are inside the language of
a finite automaton, as described in (Baier, Christel and Katoen, Joost-Pieter, 2008). This holds
for the important class of regular safety properties. In the more general case, property violations
can be characterized by accepting states of Büchi automata (Peleska, 2015) or Rabin automata
(Safra, 1988). For test generation, the subsets of model executions are of interest, where the
premises associated with the property under consideration are fulfilled, so that the expected
SUT reactions can be observed. To our best knowledge, no general theory which guarantees
complete fault coverage for the general class of safety properties has been elaborated yet: the
publications (Fernandez et al., 2003) and (Li and Qi, Zhichang, 2004), for example, only
suggest heuristics for generating suitable test suites, without any guarantees concerning test
strength or fault coverage. Noteworthy tool support for property-oriented testing is given, for
example, by the QuickCheck tool (Derrick et al., 2010), where properties are extracted as
algebraic equations extracted from software API specifications.

PRELIMINARY WORK

Model-based testing and symbolic methods. While our research work always had a special
focus on MBT1, the project described in this application is based on the more recent results
obtained in the EU FP7 project COMPASS2 and the research project ITTCPS3 funded by the
University of Bremen in the context of the German Universities Excellence Initiative4. The main
MBT-related results obtained there can be summarized as follows.

1 See, for example, the early publications (Peleska and Siegel, 1996), (Peleska and Siegel,
1997) about testing against CSP process algebra models.
2 Comprehensive Modelling of Advanced Systems of Systems, see http://www.compass-
research.eu
3 Implementable Testing Theories for Cyber-physical Systems, see http://www.informatik.uni-
bremen.de/agbs/projects/ittcps/index.html
4 See https://en.wikipedia.org/wiki/German_Universities_Excellence_Initiative

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 3 of 18

(1) We have shown that every complete testing theory established for (deterministic or
nondeterministic) FSMs induces a complete equivalence class testing theory for a more
general class of systems with Kripke Structure or Extended Finite State Machine (EFSM)
semantics (Huang and Peleska, 2017a). This class of SUTs is characterized by
potentially infinite input domains and finite domains for internal states and outputs. The
class is very important for the domain of safety-critical control systems; examples are
thrust reversal systems for aircrafts, airbag controllers in cars, speed monitoring systems
for automated train protection, or even railway interlocking systems, where train
positions and point states represent a very large input domain which cannot be
completely enumerated for test purposes. It can be shown that every model of this class
can be abstracted to a symbolic state machine whose input alphabet consists of first-
order expressions characterizing the input equivalence classes needed to capture every
possible behavior. Applying complete FSM testing theories to the symbolic state
machine yields a symbolic test suite which can be translated into a concrete one by
calculating input class representatives by means of an SMT solver. The underlying fault
domains are specified by two hypotheses: First, the symbolic state machine abstracting
the true SUT behavior has at most m states, and second, the granularity of the
equivalence class partition is sufficient to capture every behavior of the SUT (this is the
variant of the generic uniformity hypothesis applicable to this class of systems). Effective
algorithms for calculating the equivalence classes from the reference models have been
published in (Huang and Peleska, 2016a) for deterministic systems and in the lecture
notes (Huang and Peleska, 2016b) for the nondeterministic case. General approaches
to translating testing theories between different formalisms can be based on the theory
of institutions or on the Unified Theory of Programming UTP; this has been investigated
in (Cavalcanti et al., 2015; Haxthausen and Peleska, 2016; Peleska, 2015).

(2) Regarding the theoretical foundations of complete testing theories, we have shown that
the existence of such theories depends on very general and rather weak factorization
properties of the observation language. The class of FSMs is just a special case of a
formalism where all models fulfil these properties. These theoretical foundations also
indicate how smallest complete test suites can be practically calculated, and it is shown
that these suites are independent from the concrete model representation. Preliminary
results had been published in (Peleska and Huang, 2016), and the full theory has been
elaborated in (Huang and Peleska, 2017b).

(3) Regarding the practical application of complete testing theories, we have shown how
input equivalence partition testing can be combined with adaptive random testing, such
that random selections are performed from the input classes selected according to the
complete strategy. This random selection preserves the suites’ completeness properties.
At the same time, it considerably increases the test strength for situations where the
SUT does not conform to the underlying fault hypotheses. These practical
considerations and associated experiments with models from different application
domains have been published in (Braunstein et al., 2014; Hübner et al., 2015; Peleska
et al., 2016) and, most comprehensively, in (Hübner et al., 2017).

(4) Regarding the relationship between complete testing methods and model checking, we
have published a first result that shows how the equivalence class partition methodology
discussed above can be effectively used to solve infinite-state model checking problems
(Krafczyk and Peleska, 2017).

Property-oriented testing. Our own research in the field of property-oriented testing first
focused on the generation of test oracles for passive testing against safety requirements
specified in LTL, see (Peleska et al., 2014a) and (Peleska, 2015). A new contribution to
complete property-oriented test generation has been published in (Huang and Peleska, 2017c):
it has been shown that an important class of safety properties can be characterized by output
abstractions of deterministic finite state machines. Using both the original DFSM model and its
abstraction, it is possible to elaborate a safety-complete test generation algorithm: the suites
generated guarantee to uncover every safety violation of the SUT, while non-critical violations of
language equivalence may remain undiscovered. This lesser degree of test strength results in a

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 4 of 18

significantly reduced test suite size (up to 50%), when compared to test suites with full fault
coverage of language equivalence violations. Meanwhile, these first results have been extended
by using a more effective test generation algorithm which is based on the H-Method instead of
the Wp-Method applied before. Therefore, it leads to still smaller safety-complete test suites,
see (Huang et al., 2017). Moreover, extensive experiments have been performed, confirming
the test suite reductions achievable when reducing the fault coverage requirements to safety-
completeness.

Open-source library fsmlib-cpp. In (Peleska et al., 2017), we have published an open-source
C++ library containing the crucial algorithms for FSM manipulation and model-based test
generation from FSM models, such as W-Method, Wp-Method, H-Method, and their safety-
complete variants according to (Huang and Peleska, 2017c) and (Huang et al., 2017). FSM-
related algorithms to be explored in this project will be implemented as extensions to this library
and made publicly available as open source.

Model-based testing tool RT-Tester. Our research group has an ongoing cooperation with
Verified Systems International GmbH, concerning the development of tools for safety-critical
systems verification and validation. In this context, an academic version of Verified Systems’
model-based testing tool RT-Tester can be used to integrate the new test generation algorithms
to be developed in the context of this project, as far as more complex modelling formalisms are
involved than FSMs. The tool is already in use by one of our academic research partners and
can also be made available to the others listed in Section Error! Reference source not found..
The capabilities of RT-Tester have been described in (Peleska et al., 2011b, 2011a; Peleska,
2013a). In 2015, Verified Systems International has been awarded the runner-up trophy of the
EU Innovation Radar Prize for integrating the latest model-based testing technology into the RT-
Tester tool.5

The key principles of the tool design are given as follows. (1) The test model is parsed into an
abstract syntax tree (AST). (2) From the AST, the model’s transition relation is automatically
calculated, assigning a formal semantics to SysML models whose behavior is specified by
sequential operations and concurrent state machines, including timing conditions. This
semantics is consistent with the semi-formal description of the SysML standard (OMG, 2015).
(3) Test cases can be automatically identified by exploiting the SysML satisfy-relationship
between model elements and requirements which is visible in the AST. In addition, user-defined
test cases may be specified using LTL formulas whose free variables are model variables and
timing constraints. (4) Test data is calculated by solving symbolic test cases of the form shown
in Figure 1. In this formula, the initial condition I specifies the model state from where the next
test objective should be solved. Symbol ɸ denotes the transition relation connecting consecutive
states (si-1,si), and G specifies the test objective. If the test objective has been specified in LTL,
the bounded model checking semantics for LTL is applied to transform the formula into a first-
order expression, as explained in (Biere et al., 2006). By solving an instance of 𝝉	using an SMT
solver, concrete input values and timing conditions for the test case to be executed are
determined. (5) With the concrete test data calculated according to (4), a model interpreter
executes the model to determine the post-state to be reached by this test case. This is
necessary, since the calculation according to (4) is frequently performed on a sub-model which
has been obtained, for example, by cone-of-influence reduction techniques. (6) Starting from
such a post-state, the next test objective is solved, so that the resulting test procedure performs
stimulations and checks of SUT responses corresponding to a sequence of test cases.

RT-Tester is distinguished from competing tools like TGV (Jard and Jéron, 2005), UPPAAL-
TRON (Larsen et al., 2005), and QuickCheck (Derrick et al., 2010) by supporting all test levels
(from software unit testing to hardware-in-the-loop system testing). Moreover, it works with
SysML models whose formal semantics has been extracted from the semi-formal OMG SysML

5 see https://www.verified.de/publications/papers-2015/eu-innovation-radar-price-runner-up-
trophy-for-verified-systems-international/

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 5 of 18

standard (OMG, 2015), whereas TRON is based on Timed Automata models, QuickCheck
focuses on software APIs, and TGV applies a proprietary modeling language.	

Industrial application. During the last 5 years, our research group has supported Verified
Systems International in optimizing the MBT approach for industrial-size projects. Meanwhile,
the company has performed numerous MBT projects for Airbus (HW/SW integration testing for
the Airbus Cabin Communication System and for the Smoke Detection Controller) and Siemens
(MBT of railway communication protocols).

Figure 1. Symbolic test case.

1.1 Project-related publications

1.1.1 Articles published by outlets with scientific quality assurance

Huang, W., Peleska, J., 2017a. Complete model-based equivalence class testing for

nondeterministic systems. Form. Asp. Comput. 29, 335–364.
https://doi.org/10.1007/s00165-016-0402-2

Huang, W., Peleska, J., 2017b. Model-based testing strategies and their (in)dependence on
syntactic model representations. Int. J. Softw. Tools Technol. Transf. 1–25.
https://doi.org/10.1007/s10009-017-0479-9

Huang, W., Peleska, J., 2017c. Safety-Complete Test Suites, in: Testing Software and Systems,
Lecture Notes in Computer Science. Presented at the IFIP International Conference on
Testing Software and Systems, Springer, Cham, pp. 145–161.
https://doi.org/10.1007/978-3-319-67549-7_9

Huang, W., Peleska, J., 2016a. Complete model-based equivalence class testing. Int. J. Softw.
Tools Technol. Transf. 18, 265–283. https://doi.org/10.1007/s10009-014-0356-8

Hübner, F., Huang, W., Peleska, J., 2017. Experimental evaluation of a novel equivalence class
partition testing strategy. Softw. Syst. Model. 1–21. https://doi.org/10.1007/s10270-017-
0595-8

Krafczyk, N., Peleska, J., 2017. Effective Infinite-State Model Checking by Input Equivalence
Class Partitioning, in: Testing Software and Systems, Lecture Notes in Computer
Science. Presented at the IFIP International Conference on Testing Software and
Systems, Springer, Cham, pp. 38–53. https://doi.org/10.1007/978-3-319-67549-7_3

Peleska, J., 2015. Translating Testing Theories for Concurrent Systems, in: Meyer, R., Platzer,
A., Wehrheim, H. (Eds.), Correct System Design, Lecture Notes in Computer Science.
Springer International Publishing, pp. 133–151. https://doi.org/10.1007/978-3-319-
23506-6_10

Peleska, J., 2013. Industrial-Strength Model-Based Testing - State of the Art and Current
Challenges. Electron. Proc. Theor. Comput. Sci. 111, 3–28.
https://doi.org/10.4204/EPTCS.111.1

Peleska, J., Huang, W., Hübner, F., 2016. A Novel Approach to HW/SW Integration Testing of
Route-Based Interlocking System Controllers, in: Lecomte, T., Pinger, R., Romanovsky,
A. (Eds.), Reliability, Safety, and Security of Railway Systems. Modelling, Analysis,
Verification, and Certification, Lecture Notes in Computer Science. Springer International
Publishing, pp. 32–49. https://doi.org/10.1007/978-3-319-33951-1_3

Peleska, J., Vorobev, E., Lapschies, F., 2011b. Automated Test Case Generation with SMT-
Solving and Abstract Interpretation, in: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi,
R. (Eds.), NASA Formal Methods, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 298–312. https://doi.org/10.1007/978-3-642-20398-5_22

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 6 of 18

1.1.2 Other publications

none

1.1.3 Patents

It is not planned to apply for any patents. Instead, all results will be published.

2 Objectives and work programme

2.1 Anticipated total duration of the project

3 years

2.2 Objectives

The objectives of this project proposal are highlighted in Figure 2. The arrows in the diagram
are interpreted as “arrow source is enabler of arrow target”.

Figure 2. Proposal objectives.

The main objective is labelled as

Objective 3. Enable complete property-oriented testing for infinite-state systems.

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 7 of 18

We will elaborate new contributions to the field of property-oriented testing of systems with
conceptually infinite domains for inputs, outputs, and internal state. The innovations will
concentrate on three main aspects (see also the detailed description in the work package
specifications below).

1. Facilitate the specification of properties by means of mixed model-based and formula-
based techniques.

2. Investigate sufficient conditions for completeness.
3. Investigate necessary conditions for the existence of complete finite test suites in

presence of infinite domains.

The term infinite is used here always in the sense that the respective domains

• are infinite in the mathematical sense, such as real-valued physical observables, or
• too large to be explicitly enumerated for test purposes, such as variables with very large

integral ranges or floating-point types.

The term symbolic methods is used here in the wider sense that subsets of the input domain,
the internal model state space, or the output domain are represented by formulas specified in
some temporal logic or first-order logic. Symbolic methods are essential whenever infinite
domains and spaces are involved. This understanding of the term contrasts with the narrower
sense sometimes used in the context of model checking, where symbolic model checking
stands for utilization of ordered binary decision diagrams for state space representations
(Clarke et al., 1999).

The main objective is supported by two sub-ordinate objectives.

Objective 2. Extend complete testing strategies to general infinite-state systems.

This objective focuses on MBT. It is motivated by the fact that property-oriented testing is
closely related to MBT, so that we follow a mixed property-based and model-based approach to
solve the challenges of the main objective. For Objective 2, we will investigate complete test
suites checking conformance between reference and implementation models. The existing
solution elaborated in our group for systems with infinite input domains and finite domains for
internal states and outputs will be extended to more general applications, where the present
finiteness restrictions are further relaxed, and time-continuous behavior is considered. This will
be based on the results presented by other researchers described in Section 1, but we will
extend their work to stronger completeness properties, exploiting the possibilities of our
language-based theory of complete testing (Huang and Peleska, 2017b). Moreover, we plan to
exploit the possibilities to increase the strength of test suites by adding knowledge about SUT
internals, thereby moving from a pure black-box approach to a grey-box testing paradigm, as
suggested in (Taromirad and Mousavi, 2017).

Objective 1. Enable complete product line testing for complex system parameterizations.

This objective is crucial to support objectives 2 and 3: today’s typical embedded control systems
depend on complex configurations, allowing for their application in different operational
environments. As a consequence, the reachability of a test goal always depends on the chosen
configuration. This induces a special problem when generating sequences of test cases, such
that the post-state of one test case execution is to be used as pre-state of the next test case. In
the naïve approach, the SMT solver fixes all configuration parameters when calculating the
configuration and input data for the first test case, regardless of whether a parameter is really
needed for the first goal or not. When calculating test data for the second test case, the
configuration data is already fixed, so that no adjustments can be made anymore. This problem
leads to the first research goal concerning parameterizations in product line testing.

• Develop an algorithm for symbolic determination of SUT parameterizations, such that
the configuration parameters can be incrementally refined while generating sequences
of consecutive test cases.

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 8 of 18

Moreover, the question of test suite completeness also needs to address the configuration
space, in addition to the input domains of the SUT and its internal state and output domains.
This leads to the second research goal related to product line testing.

• Extend the complete testing theories elaborated in the context of Objective 2 to
parameter spaces.

Objective 4. Enable complete property-oriented testing of autonomous systems.

This last objective is concerned with the application and evaluation of the results achieved
during the research on objectives 1 – 3. We will investigate property-oriented testing of cyber-
physical systems (CPS) with mixed discrete and time-continuous observables and associated
control state components. As application domains, case studies from robotics, autonomous
vehicles, and railway control systems6 will be selected and executed in collaboration with the
international partners listed in Section 2.7. All three domains present interesting challenges from
the hybrid systems domain. The first two domains contain additional challenges regarding the

• dynamicity of configurations, and the
• evolving behavior due to learning effects.

All objectives depend on the utilization of symbolic methods and SMT solvers in a crucial way.

2.3 Work programme incl. proposed research methods

The work packages specified in this proposal are in one-to-one correspondence with the
objectives described above; they are shown in Figure 3. It should be emphasized that the work
programme specified here is not to be performed by the persons alone, for whom the funding
has been applied for in this proposal: the funded persons are integrated into the team specified
in Section Error! Reference source not found., who jointly work on this research programme.
The funded persons will, however, contribute to each of the work packages defined below.

The effort spent on each work package is shown in Figure 4. The effort of 72 PM for the two
funded persons (see Section Error! Reference source not found.) is complemented by 78 PM
of the project group funded by other resources, as described in Section Error! Reference
source not found.. The following milestones have been planned.

• M1 (Year 1, End of IV). The main results for WP1 have been elaborated7. First
publications about the investigated methods and algorithms are made.

• M2 (Year 2, End of IV). The main results for WP2 and WP3 have been produced. First
publications about the methods and algorithms investigated in WP2 and WP3 are made.

• M3 (Year 3, End of III). The case studies of WP4 have been completed, and the
adaptations, extensions, and, based on the feedback from case studies, improvements
of the results obtained in WP1, WP2, WP3 have been performed. Further publications
on WP1, WP2, WP3, which are now justified by the experimental evaluations are
submitted.

• M4. (Year 3, End of IV). Final reporting has been completed.

The main focus of the funded PhD student will be on WP1, WP3, and WP4, but an in-depth
understanding of the foundations and results associated with WP2 is necessary for the
successful investigation of the topics in WP3. The funded post-doc will contribute to work
packages WP1, WP2, WP3 uniformly; for WP4 she has supervision and evaluation
responsibilities. The work on WP1, WP2, WP3 in Year 3 focuses on technical improvements
based on the feedback obtained during the case studies, and on publication of the results
obtained for each work package, based on the experimental evaluation in the case studies.

6 in particular, automated train protection systems
7 see specification of outputs at the end of each WP description

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 9 of 18

Figure 3. Work packages derived from project objectives.

Figure 4. Work programme – effort table.

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 10 of 18

WP1. Model-based product line testing with symbolic constraint processing. The starting
point for this work package is the simple product line testing support currently implemented in
the RT-Tester tool: configuration parameters are considered as a special class of inputs that
can only be set once at system startup and remain invariant while the system is running. In this
work package, this simple approach will be extended to comprehensive support for
configuration handling in product line testing.

As a first step, we will extend the equivalence class testing theory for nondeterministic Kripke
structures or Extended Finite State Machines (EFSMs) from (Huang and Peleska, 2017a) to
parameterized systems. This requires extending the equivalence class calculation method
presented there to parameters, which are special inputs, to be set only once on system startup
and to remain invariant during the execution. This results in symbolic state machine
abstractions whose input alphabet consists of constraints Xi involving guard conditions on inputs
in combination with invariant parameters. Symbolic tests cases can be represented by symbolic
input sequences

X1.X2.X3 …

More complex, so-called adaptive test cases, are represented by trees branching according to
the SUT reactions, which influences the selection of the next input (Hierons, 2004; Petrenko
and Yevtushenko, 2011). Using SMT solvers, concrete test input data can be calculated by
solving the constraint formula shown in Figure 5. Each Xi is a formula with free variables
representing either inputs x or parameters p. While the input variables x can be freely chosen
for the solution of each Xi, all parameters p keep their initial value s0(p).

In the second step, this concept will be extended to concurrent SysML state machines, each
machine abstracted according to Step 1. We will experiment with constructing symbolic product
automata from the individual abstracted FSMs but expect that this will lead to combinatorial
explosion problems. Therefore, the main focus of Step 2 will be on search techniques from
artificial intelligence which help to find paths through the abstracted concurrent system, leading
to the specified test goal, such that concrete test data can again be constructed by means of
SMT solvers.

Output WP1. Publication(s) on method and algorithms for symbolic constraint processing and
its applications in product line testing. Prototype implementation in RT-Tester.

Figure 5. Constraint for concrete test data generation presence of configuration parameters.

WP2. Complete partition testing strategies for infinite-state systems. Elaboration of finite
testing theories for infinite-state systems typically tries to partition input domains, state spaces,
output domains, and configuration spaces in such a way that Gaudel’s uniformity hypothesis
(Gaudel, 1995) is fulfilled in each partition. If the hypothesis is fulfilled, it suffices to test single
representatives from each partition in order to conclude that the SUT will behave correctly
everywhere. If the partition is finite, it is usually possible to prove a regularity hypothesis,
showing that each test case representative can be chosen to be finite, because all relevant
partition classes have been covered after finitely many test steps. For the class of Kripke
structures or EFSMs with infinite input domains and finite domains for internal states and
outputs, we have already proven the existence of suitable theories (Huang and Peleska, 2016a,

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 11 of 18

2017a). Initial investigations from our own group (Peleska et al., 2014b) and more recent
research from others (see, e.g. (Petrenko, 2016; Taromirad and Mousavi, 2017)) have shown
that the restriction to finite state and output domains can be relaxed when one is either willing to
accept lesser test strength or when switching from black-box to grey-box testing, so that some
internal information about the SUT can be exploited. We will analyze these results and extend
them in such a way that necessary and sufficient conditions for the existence of complete
testing theories are elaborated. We will try to prove or disprove our conjecture that complete
theories with full fault coverage can be elaborated for hybrid systems whose time-continuous
evolutions show piecewise linear behavior. This conjecture is based on decidability
investigations about hybrid systems, such as (Henzinger et al., 1998), and on our own result
(Huang and Peleska, 2017b). Based on the latter result, we will first prove that a regularity
condition8 of the observation language is not only sufficient (this already has been shown), but
also necessary for the existence of finite complete testing theories. With this result at hand, we
will investigate for various formalisms, which subsets of models fulfil this regularity condition.
For test oracles of hybrid systems, we will extend the existing oracle concept for time-discrete
observations (Peleska, 2013b) to time-continuous ones, following the approach of (Mohaqeqi
and Mousavi, 2016).

For certain model classes, the algorithms for generating complete test suites will be
implemented in RT-Tester. In contrast to other test tools which also apply symbolic techniques
(Jard and Jéron, 2005), (Sijtema et al., 2011), our implementation can guarantee complete fault
coverage for a well-specified fault domain.

Output WP 2. Publication(s) of methods and algorithms for complete MBT theories applicable
to infinite-state systems. Prototype implementation in RT-Tester. Integration of FSM-related
algorithms into the fsmlib-cpp (Peleska et al., 2017).

WP 3. Property-oriented testing for mixed model/formula specifications. It is well known
that for most formalisms of interest in the CPS domain, property-oriented testing can be
theoretically solved by MBT alone: for a given property, it is possible to generate a most non-
deterministic model9 M which just fulfils the property (and, of course, its implications) but
“nothing more”. As a consequence, one could in theory derive a complete test suite from M
which verifies that the SUT is a refinement of this model. This shows that the SUT fulfils the
same property as M. In practice, however, this approach is not advisable: the nondeterministic
model M will usually have far less states than the real SUT. It is well known from FSM testing
theory that the number of test cases to be constructed for a complete suite is exponential in the
difference between the number of (assumed) SUT states and the number reference model
states. As a consequence, constructing tests from M alone will frequently lead to test suites of
infeasible size.

Our results obtained for testing a restricted class of safety-properties (Huang et al., 2017;
Huang and Peleska, 2017c) indicate that another approach is far more promising: tests are
generated by means of a method taking into account both the full reference model showing all
behaviors and its abstraction to a model which is specialized according to the property to be
tested. The abstracted model can be automatically generated from the full model, applying the
property to be tested as an “abstraction recipe”. As a first step, we will generalize this approach
to a wider class of safety-properties specified in LTL. To this end, the automated abstraction
technique also needs to be extended to this wider class of properties. This solution, however,
still leaves us with the disadvantage that the effort for creating the full model has to be invested.

8 This regularity condition applies to languages with infinite alphabets; their grammar can be
specified using the classical regular expression notation in combination with a symbolic notation
specifying subsets of the alphabet. The “classical” regular languages that can be generated by
FSMs are just a special case of this more general regularity notion.
9 e.g., a Büchi automaton, or a nondeterministic process in a process algebra

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 12 of 18

Therefore, in a second step, it will be investigated how partial models can be used instead of
complete functional models, since it is desirable to reduce the modeling time for situations
where it is already known that only a given set of properties should be tested, and not the
complete system behavior. To facilitate this step in practice, we will investigate how learning-
based testing methods (see, e.g. (Khosrowjerdi et al., 2017)) can help to construct partial
models from SUT observations in an automated way. This approach seems promising, since
the partial model is only used to determine the “search depth” for exploring the SUT. The test
oracles are directly derived from the property specification.

In a third step, the theory will be extended to CPS with dynamic configurations and evolving
behavior, so that Objective 4 described above can be fulfilled. This challenge will be solved by
means of a novel testing approach exploiting the fact that in tests with finite duration, only
finitely many different configurations can be reached, and only finitely many learning steps can
lead to updates of the rules governing the system behavior.10 As a consequence, it is not
necessary to apply higher-order logic for investigating these dynamic changes, as is often
required in the formal verification of mobile processes and systems with evolving behavior
(Sangiorgi, 2003). Instead, the SUT can only perform finitely many configuration and mode
changes that can be selected from pre-defined finite sets. The elements of each set are
symbolic constraints capturing equivalence classes of behaviors or configuration states. It
remains to show whether these finite sets can be selected in such a way that from finitely many
tests, conclusions about the SUT behavior in presence of arbitrary possible configurations can
be drawn. Again, the investigations in (Henzinger et al., 1998) and further publications of the
same author indicate which kinds of systems can be completely verified with finitely many tests.

Outputs WP3. Publication(s) about methods and algorithms for complete property-oriented
testing. Prototype implementation in RT-Tester. Integration of FSM-related algorithms into the
fsmlib-cpp (Peleska et al., 2017).

WP 4. Property-oriented testing for autonomous systems. In this work package, three case
studies will be defined in cooperation with the research partners listed in Section 2.7, covering
the application domains robotics, autonomous vehicles, and automated train protection. As
SUTs, simulations of robots, vehicles, and trains will be used. For each case study, a list of
safety-critical or mission-critical properties will be derived from the system requirements. The
fault domains ensuring complete fault coverage will be specified. The test strategies from WP3
will be applied to test the SUT with respect to property violations. For each system, mutations
will be generated that are either inside or outside the fault domain where completeness can be
guaranteed. For each test suite, the (1) effort for test generation, (2) test suite size, (3) test
execution time, and (4) number of killed mutants11 are measured and used as input to the
overall evaluation.

Outputs WP4. Publication(s) about the evaluation of the methods elaborated in WP1 – WP3,
when applied to the case studies. Publication of test models and evaluation data on suitable
web sites, such as www.mbt-benchmarks.org.

2.4 Data handling

All project results will be presented on international conferences and will be published in
journals. We expect 3 dissertations to be completed on topics related to the project. Algorithms
related to finite state machines will be made publicly available through the open source library
(Peleska et al., 2017). Other algorithms will be implemented in the RT-Tester tool which is also

10 These facts are ensured by the finite variability of real-world real-time systems that cannot
change their behavior with infinite or unboundedly accelerating speed.
11 This number will be 100% for SUTs inside the fault domain but may be less for SUTs outside
the domain.

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 13 of 18

freely available to academic partners for non-commercial applications. Experimental data will be
made available on the MBT benchmarks website (“Embedded Systems Testing Benchmarks
Site,” 2011).

2.5 Other information

none

2.6 Descriptions of proposed investigations involving experiments on humans, human

materials or animals

None

2.7 Information on scientific and financial involvement of international cooperation

partners

It is planned to cooperate with the following international research partners for the exchange of
scientific results and for the definition and evaluation of case studies. There is no financial
involvement of these partners – they have their own funding.

Denmark Technical University, Prof. Anne E. Haxthausen. We have a long-standing
cooperation with Prof. Haxthausen, concerning the application of formal methods to the railway
domain, see, for example, (Haxthausen et al., 2011; Haxthausen and Peleska, 2000, 2015). In
this project, we will cooperate for the definition, execution, and evaluation of the case study in
the railway domain.

University of York, Professors Ana Cavalcanti and Jim Woodcock. The cooperation with
Professors Cavalcanti and Woodcock started during the COMPASS project (“COMPASS -
Comprehensive Modelling for Advanced Systems of Systems,” 2014), where we investigated
verification and MBT of Systems of Systems, see (Nielsen et al., 2015), (Cavalcanti et al.,
2015). Together with other British scientists, Ana Cavalcanti and Jim Woodcock have received
a major grant from the British Engineering and Physical Sciences Research Council for
investigating simulation and testing methods for mobile autonomous robots; the project will start
in April 2018, see (EPSRC, 2018). From this project, we will receive requirements regarding the
testing of autonomous learning systems and input for defining and evaluating the robotics case
study we have planned. Conversely, the British research team plans to use RT-Tester in their
testing experiments.

University of Leicester, Prof. Mohammad Mousavi. Prof. Mousavi is a specialist on MBT,
with special emphasis on product line and cyber-physical systems testing. We will cooperate
with him in the context of extending testing theories by exploiting grey-box knowledge about the
SUT, and furthermore in the case studies regarding autonomous CPS behavior in the
automotive domain.

Computer Research Institute of Montreal CRIM, Prof. Alexandre Petrenko. Prof. Petrenko
is a specialist on model-based testing, with special emphasis on FSM and EFSM testing. During
the last years, he has become one of the key players researching symbolic methods in MBT,
with objectives and results complementing our own strategies. We plan to cooperate with him
for the investigation of completeness results that are achievable with symbolic approaches and
for researching the necessary restrictions that cannot be relaxed without giving up the finiteness
of complete test suites and test cases.

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 14 of 18

3 Bibliography

Alberto, A., Cavalcanti, A., Gaudel, M.-C., Simão, A., 2017. Formal mutation testing for Circus.

Inf. Softw. Technol. 81, 131–153. https://doi.org/10.1016/j.infsof.2016.04.003
Baier, Christel, Katoen, Joost-Pieter, 2008. Principles of Model Checking [WWW Document].

URL http://is.ifmo.ru/books/_principles_of_model_checking.pdf (accessed 12.8.17).
Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V., 2006. Linear Encodings of

Bounded LTL Model Checking. Log. Methods Comput. Sci. 2.
https://doi.org/10.2168/LMCS-2(5:5)2006

Braunstein, C., Haxthausen, A.E., Huang, W., Hübner, F., Peleska, J., Schulze, U., Hong, L.V.,
2014. Complete Model-Based Equivalence Class Testing for the ETCS Ceiling Speed
Monitor, in: Merz, S., Pang, J. (Eds.), Formal Methods and Software Engineering,
Lecture Notes in Computer Science. Springer International Publishing, pp. 380–395.
https://doi.org/10.1007/978-3-319-11737-9_25

Brinksma, E., Tretmans, J., 2000. Testing Transition Systems: An Annotated Bibliography, in:
Cassez, F., Jard, C., Rozoy, B., Ryan, M. (Eds.), Summer School MOVEP’2k –
Modelling and Verification of Parallel Processes. Nantes, pp. 44–50.

Cavalcanti, A., Gaudel, M.-C., 2011. Testing for refinement in Circus. Acta Inform. 48, 97–147.
https://doi.org/10.1007/s00236-011-0133-z

Cavalcanti, A., Huang, W., Peleska, J., Woodcock, J., 2015. CSP and Kripke Structures, in:
Leucker, M., Rueda, C., Valencia, F.D. (Eds.), Theoretical Aspects of Computing -
ICTAC 2015, Lecture Notes in Computer Science. Springer International Publishing, pp.
505–523. https://doi.org/10.1007/978-3-319-25150-9_29

Cavalcanti, A., Simao, A., 2017. Fault-Based Testing for Refinement in CSP, in: Testing
Software and Systems, Lecture Notes in Computer Science. Presented at the IFIP
International Conference on Testing Software and Systems, Springer, Cham, pp. 21–37.
https://doi.org/10.1007/978-3-319-67549-7_2

Chow, T.S., 1978. Testing Software Design Modeled by Finite-State Machines. IEEE Trans.
Softw. Eng. SE-4, 178–186.

Clarke, D., Jéron, T., Rusu, V., Zinovieva, E., 2002. STG: A Symbolic Test Generation Tool, in:
Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in
Computer Science. Presented at the International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, Springer, Berlin, Heidelberg, pp. 470–475.
https://doi.org/10.1007/3-540-46002-0_34

Clarke, E.M., Grumberg, O., Peled, D.A., 1999. Model Checking. The MIT Press, Cambridge,
Massachusetts.

COMPASS - Comprehensive Modelling for Advanced Systems of Systems [WWW Document],
2014. URL http://www.compass-research.eu/ (accessed 1.5.18).

Derrick, J., Walkinshaw, N., Arts, T., Earle, C.B., Cesarini, F., Fredlund, L.-A., Gulias, V.,
Hughes, J., Thompson, S., 2010. Property-Based Testing - The ProTest Project, in:
Formal Methods for Components and Objects, Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg, pp. 250–271. https://doi.org/10.1007/978-3-642-17071-
3_13

Dorofeeva, R., El-Fakih, K., Yevtushenko, N., 2005. An Improved Conformance Testing
Method, in: Formal Techniques for Networked and Distributed Systems - FORTE 2005,
Lecture Notes in Computer Science. Presented at the International Conference on
Formal Techniques for Networked and Distributed Systems, Springer, Berlin,
Heidelberg, pp. 204–218. https://doi.org/10.1007/11562436_16

Embedded Systems Testing Benchmarks Site [WWW Document], 2011. URL http://www.mbt-
benchmarks.org (accessed 1.5.18).

EPSRC, 2018. RoboTest: : Systematic Model-Based Testing and Simulation of Mobile
Autonomous Robots [WWW Document]. URL
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/R025479/1 (accessed
1.5.18).

Fernandez, J.-C., Mounier, L., Pachon, C., 2003. Property Oriented Test Case Generation, in:
Formal Approaches to Software Testing, Lecture Notes in Computer Science. Presented

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 15 of 18

at the International Workshop on Formal Approaches to Software Testing, Springer,
Berlin, Heidelberg, pp. 147–163. https://doi.org/10.1007/978-3-540-24617-6_11

Frantzen, L., Tretmans, J., Willemse, T.A.C., 2005. Test Generation Based on Symbolic
Specifications, in: Grabowski, J., Nielsen, B. (Eds.), Formal Approaches to Software
Testing, Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 1–15.

Fujiwara, S., Bochmann, G. v, Khendek, F., Amalou, M., Ghedamsi, A., 1991. Test Selection
Based on Finite State Models. IEEE Trans. Softw. Eng. 17, 591–603.
https://doi.org/10.1109/32.87284

Gaudel, M.-C., 1995. Testing can be formal, too, in: Mosses, P.D., Nielsen, M., Schwartzbach,
M.I. (Eds.), TAPSOFT ’95: Theory and Practice of Software Development, Lecture Notes
in Computer Science. Springer Berlin Heidelberg, pp. 82–96.

Group, O.M., 2010. OMG Systems Modeling Language (OMG SysML). Object Management
Group.

Haxthausen, A.E., Peleska, J., 2016. On the Feasibility of a Unified Modelling and Programming
Paradigm, in: Leveraging Applications of Formal Methods, Verification and Validation:
Discussion, Dissemination, Applications, Lecture Notes in Computer Science. Presented
at the International Symposium on Leveraging Applications of Formal Methods,
Springer, Cham, pp. 32–49. https://doi.org/10.1007/978-3-319-47169-3_4

Haxthausen, A.E., Peleska, J., 2015. Model Checking and Model-Based Testing in the Railway
Domain, in: Drechsler, R., Kühne, U. (Eds.), Formal Modeling and Verification of Cyber-
Physical Systems. Springer Fachmedien Wiesbaden, pp. 82–121.
https://doi.org/10.1007/978-3-658-09994-7_4

Haxthausen, A.E., Peleska, J., 2000. Formal development and verification of a distributed
railway control system. IEEE Trans. Softw. Eng. 26, 687–701.
https://doi.org/10.1109/32.879808

Haxthausen, A.E., Peleska, J., Kinder, S., 2011. A formal approach for the construction and
verification of railway control systems. Form. Asp. Comput. 23, 191–219.
https://doi.org/10.1007/s00165-009-0143-6

Hennessy, M., 1988. Algebraic Theory of Processes. MIT Press, Cambridge, MA, USA.
Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P., 1998. What’s Decidable about Hybrid

Automata? J. Comput. Syst. Sci. 57, 94–124. https://doi.org/10.1006/jcss.1998.1581
Hierons, R.M., 2004. Testing from a nondeterministic finite state machine using adaptive state

counting. IEEE Trans. Comput. 53, 1330–1342. https://doi.org/10.1109/TC.2004.85
Huang, W., Özoguz, S., Peleska, J., 2017. Safety-complete Test Suites. Softw. Qual. J. Under

review.
Huang, W., Peleska, J., 2017a. Complete model-based equivalence class testing for

nondeterministic systems. Form. Asp. Comput. 29, 335–364.
https://doi.org/10.1007/s00165-016-0402-2

Huang, W., Peleska, J., 2017b. Model-based testing strategies and their (in)dependence on
syntactic model representations. Int. J. Softw. Tools Technol. Transf. 1–25.
https://doi.org/10.1007/s10009-017-0479-9

Huang, W., Peleska, J., 2017c. Safety-Complete Test Suites, in: Testing Software and Systems,
Lecture Notes in Computer Science. Presented at the IFIP International Conference on
Testing Software and Systems, Springer, Cham, pp. 145–161.
https://doi.org/10.1007/978-3-319-67549-7_9

Huang, W., Peleska, J., 2016a. Complete model-based equivalence class testing. Int. J. Softw.
Tools Technol. Transf. 18, 265–283. https://doi.org/10.1007/s10009-014-0356-8

Huang, W., Peleska, J., 2016b. Test Automation - Foundations and Applications of Model-
based Testing, Lecture Notes.

Hübner, F., Huang, W., Peleska, J., 2017. Experimental evaluation of a novel equivalence class
partition testing strategy. Softw. Syst. Model. 1–21. https://doi.org/10.1007/s10270-017-
0595-8

Hübner, F., Huang, W., Peleska, J., 2015. Experimental Evaluation of a Novel Equivalence
Class Partition Testing Strategy, in: Blanchette, J.C., Kosmatov, N. (Eds.), Tests and
Proofs, Lecture Notes in Computer Science. Springer International Publishing, pp. 155–
172. https://doi.org/10.1007/978-3-319-21215-9_10

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 16 of 18

Jard, C., Jéron, T., 2005. TGV: theory, principles and algorithms. Int. J. Softw. Tools Technol.

Transf. 7, 297–315. https://doi.org/10.1007/s10009-004-0153-x
Jeannet, B., Jéron, T., Rusu, V., Zinovieva, E., 2005. Symbolic Test Selection Based on

Approximate Analysis, in: Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science. Presented at the International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
Springer, Berlin, Heidelberg, pp. 349–364. https://doi.org/10.1007/978-3-540-31980-
1_23

Jéron, T., 2009. Symbolic Model-based Test Selection. Electron. Notes Theor. Comput. Sci.,
Proceedings of the Eleventh Brazilian Symposium on Formal Methods (SBMF 2008)
240, 167–184. https://doi.org/10.1016/j.entcs.2009.05.051

Khosrowjerdi, H., Meinke, K., Rasmusson, A., 2017. Learning-Based Testing for Safety Critical
Automotive Applications, in: Bozzano, M., Papadopoulos, Y. (Eds.), Model-Based Safety
and Assessment. Springer International Publishing, pp. 197–211.

Krafczyk, N., Peleska, J., 2017. Effective Infinite-State Model Checking by Input Equivalence
Class Partitioning, in: Testing Software and Systems, Lecture Notes in Computer
Science. Presented at the IFIP International Conference on Testing Software and
Systems, Springer, Cham, pp. 38–53. https://doi.org/10.1007/978-3-319-67549-7_3

Larsen, K.G., Mikucionis, M., Nielsen, B., Skou, A., 2005. Testing Real-time Embedded
Software Using UPPAAL-TRON: An Industrial Case Study, in: Proceedings of the 5th
ACM International Conference on Embedded Software, EMSOFT ’05. ACM, New York,
NY, USA, pp. 299–306. https://doi.org/10.1145/1086228.1086283

Li, S., Qi, Zhichang, 2004. Property-Oriented Testing: An Approach to Focusing Testing Efforts
on Behaviours of Interest [WWW Document]. URL
http://subs.emis.de/LNI/Proceedings/Proceedings58/article3512.html (accessed
12.27.17).

Luo, G., Bochmann, G.V., Petrenko, A., 1994. Test selection based on communicating
nondeterministic finite-state machines using a generalized Wp-method. IEEE Trans.
Softw. Eng. 20, 149–162. https://doi.org/10.1109/32.265636

Machado, P.D.L., Silva, D.A., Mota, A.C., 2007. Towards Property Oriented Testing. Electron.
Notes Theor. Comput. Sci., Proceedings of the Second Brazilian Symposium on Formal
Methods (SBMF 2005) 184, 3–19. https://doi.org/10.1016/j.entcs.2007.06.001

Mohaqeqi, M., Mousavi, M.R., 2016. Towards an Approximate Conformance Relation for Hybrid
I/O Automata. Electron. Proc. Theor. Comput. Sci. 232, 53–64.
https://doi.org/10.4204/EPTCS.232.8

Nielsen, C.B., Larsen, P.G., Fitzgerald, J., Woodcock, J., Peleska, J., 2015. Systems of
Systems Engineering: Basic Concepts, Model-Based Techniques, and Research
Directions. ACM Comput Surv 48, 18:1–18:41. https://doi.org/10.1145/2794381

OMG, 2015. About the OMG System Modeling Language Specification Version 1.5 [WWW
Document]. URL http://www.omg.org/spec/SysML/1.5/ (accessed 1.24.18).

Peleska, J., 2015. Translating Testing Theories for Concurrent Systems, in: Meyer, R., Platzer,
A., Wehrheim, H. (Eds.), Correct System Design, Lecture Notes in Computer Science.
Springer International Publishing, pp. 133–151. https://doi.org/10.1007/978-3-319-
23506-6_10

Peleska, J., 2013a. Industrial-Strength Model-Based Testing - State of the Art and Current
Challenges. Electron. Proc. Theor. Comput. Sci. 111, 3–28.
https://doi.org/10.4204/EPTCS.111.1

Peleska, J., 2013b. Industrial-Strength Model-Based Testing - State of the Art and Current
Challenges, in: Petrenko, A.K., Schlingloff, H. (Eds.), \rm Proceedings Eighth Workshop
on Model-Based Testing, \rm Rome, Italy, 17th March 2013, Electronic Proceedings in
Theoretical Computer Science. Open Publishing Association, pp. 3–28.
https://doi.org/10.4204/EPTCS.111.1

Peleska, J., Dottel, G., Hilken, C., 2017. fsmlib-cpp: A C++ library containing algorithms for
processing finite state machines and deriving test cases from FSMs. AGBS University of
Bremen.

Peleska, J., Honisch, A., Lapschies, F., Löding, H., Schmid, H., Smuda, P., Vorobev, E.,
Zahlten, C., 2011a. Embedded Systems Testing Benchmark.

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 17 of 18

Peleska, J., Huang, W., 2016. Model-Based Testing Strategies and Their (In)dependence on

Syntactic Model Representations, in: Critical Systems: Formal Methods and Automated
Verification, Lecture Notes in Computer Science. Springer, Cham, pp. 3–21.
https://doi.org/10.1007/978-3-319-45943-1_1

Peleska, J., Huang, W., Hübner, F., 2016. A Novel Approach to HW/SW Integration Testing of
Route-Based Interlocking System Controllers, in: Lecomte, T., Pinger, R., Romanovsky,
A. (Eds.), Reliability, Safety, and Security of Railway Systems. Modelling, Analysis,
Verification, and Certification, Lecture Notes in Computer Science. Springer International
Publishing, pp. 32–49. https://doi.org/10.1007/978-3-319-33951-1_3

Peleska, J., Huang, W., Schulze, U., 2014a. D34.3 Contract Support for Evolving Sos.
Peleska, J., Huang, W., Schulze, U., 2014b. D34.2 Specialised Test Strategies.
Peleska, J., Siegel, M., 1997. Test Automation of Safety-Critical Reactive Systems. South Afr.

Comput. Jounal 19, 53–77.
Peleska, J., Siegel, M., 1996. From testing theory to test driver implementation, in: Gaudel, M.-

C., Woodcock, J. (Eds.), FME’96: Industrial Benefit and Advances in Formal Methods,
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 538–556.
https://doi.org/10.1007/3-540-60973-3_106

Peleska, J., Vorobev, E., Lapschies, F., 2011b. Automated Test Case Generation with SMT-
Solving and Abstract Interpretation, in: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi,
R. (Eds.), NASA Formal Methods, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 298–312. https://doi.org/10.1007/978-3-642-20398-5_22

Petrenko, A., 2016. Checking Experiments for Symbolic Input/Output Finite State Machines, in:
2016 IEEE Ninth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). Presented at the 2016 IEEE Ninth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW), pp.
229–237. https://doi.org/10.1109/ICSTW.2016.9

Petrenko, A., Simao, A., 2015. Checking Experiments for Finite State Machines with Symbolic
Inputs, in: Testing Software and Systems, Lecture Notes in Computer Science.
Presented at the IFIP International Conference on Testing Software and Systems,
Springer, Cham, pp. 3–18. https://doi.org/10.1007/978-3-319-25945-1_1

Petrenko, A., Yevtushenko, N., 2011. Adaptive Testing of Deterministic Implementations
Specified by Nondeterministic FSMs, in: Wolff, B., Zaïdi, F. (Eds.), Testing Software and
Systems, Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 162–178.

Safra, S., 1988. On the complexity of omega;-automata, in: [Proceedings 1988] 29th Annual
Symposium on Foundations of Computer Science. Presented at the [Proceedings 1988]
29th Annual Symposium on Foundations of Computer Science, pp. 319–327.
https://doi.org/10.1109/SFCS.1988.21948

Sangiorgi, D., 2003. The Pi-Calculus: A Theory of Mobile Processes. Cambridge University
Press.

Schneider, S., 1999. Abstraction and Testing, in: FM’99 — Formal Methods, Lecture Notes in
Computer Science. Presented at the International Symposium on Formal Methods,
Springer, Berlin, Heidelberg, pp. 738–757. https://doi.org/10.1007/3-540-48119-2_41

Schneider, S., 1995. An Operational Semantics for Timed CSP. Inf Comput 116, 193–213.
https://doi.org/10.1006/inco.1995.1014

Sijtema, M., Stoelinga, M.I.A., Belinfante, A., Marinelli, L., 2011. Experiences with Formal
Engineering: Model-Based Specification, Implementation and Testing of a Software Bus
at Neopost., in: Formal Methods for Industrial Critical Systems, Lecture Notes in
Computer Science. Presented at the International Workshop on Formal Methods for
Industrial Critical Systems, Springer, Berlin, Heidelberg, pp. 117–133.
https://doi.org/10.1007/978-3-642-24431-5_10

Springintveld, J.G., Vaandrager, F.W., D’Argenio, P.R., 2001. Testing timed automata. Theor.
Comput. Sci. 254, 225–257.

Taromirad, M., Mousavi, M.R., 2017. Gray-Box Conformance Testing for Symbolic Reactive
State Machines, in: Fundamentals of Software Engineering, Lecture Notes in Computer
Science. Presented at the International Conference on Fundamentals of Software
Engineering, Springer, Cham, pp. 228–243. https://doi.org/10.1007/978-3-319-68972-
2_15

CPOT-SM – Complete Property-oriented Testing
 with Symbolic Methods page 18 of 18

Tretmans, J., 1996. Conformance testing with labelled transition systems: Implementation

relations and test generation. Comput. Netw. ISDN Syst., Protocol Testing 29, 49–79.
https://doi.org/10.1016/S0169-7552(96)00017-7

Vasilevskii, M.P., 1973. Failure diagnosis of automata. Kibern. Transl 4, 98–108.

