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1 State of the art and preliminary work 
 
STATE OF THE ART 
 
Complete model-based testing. The investigation of complete theories for testing against 
models has a long tradition. Initially, only finite state machine (FSM) models were considered. 
This started with the W-Method published by (Vasilevskii, 1973) and (Chow, 1978), who were 
the first to show that implementations whose true behavior is represented by completely 
specified deterministic FSMs with at most m states can be tested against reference models with 
n ≤ m states, such that any violation of language equivalence will be uncovered by finitely many 
test cases derived from the model. Since then, these initial results have been extended to 
incompletely specified and nondeterministic finite state machines, and to language inclusion as 
an alternative conformance relation to language equivalence. Moreover, many of the new 
theories guaranteed complete fault coverage with considerably less test cases than needed 
according to the W-Method, such as, for example, the Wp-Method (Fujiwara et al., 1991) and 
(Luo et al., 1994). As of today, the most effective complete FSM-based testing method for 
testing language equivalence is the H-Method published by (Dorofeeva et al., 2005). For testing 
nondeterministic FSMs w.r.t. language inclusion, adaptive testing methods are preferred, as 
published in (Hierons, 2004) and (Petrenko and Yevtushenko, 2011). Apart from FSM-based 
MBT, complete testing methods for many other semantic models or concrete modelling 
formalisms have been elaborated in the past. In (Gaudel, 1995), completeness criteria for 
algebraic formalism were stated; these criteria (uniformity hypothesis and regularity hypothesis) 
turned out to be generically applicable for arbitrary formalisms. For the class of formalisms 
based on labelled transition system (LTS) semantics, conformance testing methods based on 
the ioco relation (see, for example, (Tretmans, 1996) and (Brinksma and Tretmans, 2000)) 
seem to be the most widely used today. Much earlier, it has been shown in (Hennessy, 1988) 
that (not necessarily finite) test suites can be used to determine refinement relations between 
processes with LTS semantics. For concrete formalisms, the literature on MBT is vast. For 
process algebras, we name (Schneider, 1999) and (Schneider, 1995) for testing against (timed) 
CSP process algebra models, (Springintveld et al., 2001) for a complete testing theory based on 
Timed Automata, and the more recent work (Cavalcanti and Gaudel, 2011) and (Alberto et al., 
2017) on testing against models specified in the Circus formalism which combines both data 
and control-oriented modelling techniques from the Z specification language and the CSP 
process algebra. Further examples are given below in the description of our own preliminary 
work. In modeling formalisms that are more general than finite state machines and use less 
restrictive fault models, it is not always guaranteed that finite complete test suites exist; see, for 
example (Cavalcanti and Simao, 2017), where examples requiring test cases of infinite length 
are presented for the CSP process algebra. 
 
Symbolic methods and MBT. Similar to infinite-state model checking, symbolic methods are 
applied in MBT for reducing the size of a model’s input domain, internal state space, or output 
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domain. Apart from our own work in this field which is described below, the following 
contributions are significant for the exploration of this line of research. In (Clarke et al., 2002),, 
(Frantzen et al., 2005), (Jeannet et al., 2005), and (Jéron, 2009), first suggestions about test 
generation with symbolic methods were made. Full fault coverage, however, was only 
established for infinite test suites. In contrast to that, complete testing theories for symbolic state 
machine models requiring finite test suites have been elaborated in (Petrenko and Simao, 2015) 
and (Petrenko, 2016). They are applicable in a more general context and have less stringent 
requirements concerning the first-order predicates involved than our theories described below, 
but – not surprisingly – this generality leads to weaker fault models that do not admit, for 
example, SUTs with additional (faulty) states. In (Taromirad and Mousavi, 2017), our concepts 
for black-box equivalence class partition testing described below have been extended to gray-
box testing: the authors show that considerable test suite reductions can be gained if it is not 
mandatory to perform black-box testing, but some internal information about the SUT can be 
obtained. 
 
 
Property-oriented testing. The property-oriented testing (POT) approach has been 
characterized in the overview article (Machado et al., 2007).  As stated there, the main 
motivation for POT is the possibility to reduce test suite size in comparison to a complete 
model-based conformance test suite: while the latter requires test cases to verify all possible 
behaviors in relation to a reference model, the former only requires investigating the subset of 
possible behaviors which is relevant to verify a certain set of properties (i.e. requirements).  
A typical approach to property-oriented testing is to state desired system requirements as 
formulas in a temporal logic (see e.g. (Fernandez et al., 2003) and (Li and Qi, Zhichang, 2004))   
and construct test cases based on that formula. Since we are only interested in testable 
properties, the set of requirements is usually restricted to safety properties. For linear safety 
properties (usually expressed as LTL formulas), the test oracle problem is solved by noting that 
the test executions violating the property (the so-called bad prefixes) are inside the language of 
a finite automaton, as described in (Baier, Christel and Katoen, Joost-Pieter, 2008). This holds 
for the important class of regular safety properties. In the more general case, property violations 
can be characterized by accepting states of Büchi automata (Peleska, 2015) or Rabin automata 
(Safra, 1988). For test generation, the subsets of model executions are of interest, where the 
premises associated with the property under consideration are fulfilled, so that the expected 
SUT reactions can be observed. To our best knowledge, no general theory which guarantees 
complete fault coverage for the general class of safety properties has been elaborated yet: the 
publications (Fernandez et al., 2003) and (Li and Qi, Zhichang, 2004), for example, only 
suggest heuristics for generating suitable test suites, without any guarantees concerning test 
strength or fault coverage. Noteworthy tool support for property-oriented testing is given, for 
example, by the QuickCheck tool (Derrick et al., 2010), where properties are extracted as 
algebraic equations extracted from software API specifications. 
 
 
PRELIMINARY WORK  
 
Model-based testing and symbolic methods. While our research work always had a special 
focus on MBT1, the project described in this application is based on the more recent results 
obtained in the EU FP7 project COMPASS2 and the research project ITTCPS3 funded by the 
University of Bremen in the context of the German Universities Excellence Initiative4. The main 
MBT-related results obtained there can be summarized as follows.  

                                                
1 See, for example, the early publications (Peleska and Siegel, 1996), (Peleska and Siegel, 
1997) about testing against CSP process algebra models. 
2 Comprehensive Modelling of Advanced Systems of Systems, see http://www.compass-
research.eu 
3 Implementable Testing Theories for Cyber-physical Systems, see http://www.informatik.uni-
bremen.de/agbs/projects/ittcps/index.html 
4 See https://en.wikipedia.org/wiki/German_Universities_Excellence_Initiative 
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(1) We have shown that every complete testing theory established for (deterministic or 
nondeterministic) FSMs induces a complete equivalence class testing theory for a more 
general class of systems with Kripke Structure or Extended Finite State Machine (EFSM) 
semantics (Huang and Peleska, 2017a). This class of SUTs is characterized by 
potentially infinite input domains and finite domains for internal states and outputs. The 
class is very important for the domain of safety-critical control systems; examples are 
thrust reversal systems for aircrafts, airbag controllers in cars, speed monitoring systems 
for automated train protection, or even railway interlocking systems, where train 
positions and point states represent a very large input domain which cannot be 
completely enumerated for test purposes. It can be shown that every model of this class 
can be abstracted to a symbolic state machine whose input alphabet consists of first-
order expressions characterizing the input equivalence classes needed to capture every 
possible behavior. Applying complete FSM testing theories to the symbolic state 
machine yields a symbolic test suite which can be translated into a concrete one by 
calculating input class representatives by means of an SMT solver. The underlying fault 
domains are specified by two hypotheses: First, the symbolic state machine abstracting 
the true SUT behavior has at most m states, and second, the granularity of the 
equivalence class partition is sufficient to capture every behavior of the SUT (this is the 
variant of the generic uniformity hypothesis applicable to this class of systems). Effective 
algorithms for calculating the equivalence classes from the reference models have been 
published in (Huang and Peleska, 2016a) for deterministic systems and in the lecture 
notes (Huang and Peleska, 2016b) for the nondeterministic case. General approaches 
to translating testing theories between different formalisms can be based on the theory 
of institutions or on the Unified Theory of Programming UTP; this has been investigated 
in (Cavalcanti et al., 2015; Haxthausen and Peleska, 2016; Peleska, 2015). 

(2) Regarding the theoretical foundations of complete testing theories, we have shown that 
the existence of such theories depends on very general and rather weak factorization 
properties of the observation language. The class of FSMs is just a special case of a 
formalism where all models fulfil these properties. These theoretical foundations also 
indicate how smallest complete test suites can be practically calculated, and it is shown 
that these suites are independent from the concrete model representation. Preliminary 
results had been published in (Peleska and Huang, 2016), and the full theory has been 
elaborated in (Huang and Peleska, 2017b). 

(3) Regarding the practical application of complete testing theories, we have shown how 
input equivalence partition testing can be combined with adaptive random testing, such 
that random selections are performed from the input classes selected according to the 
complete strategy. This random selection preserves the suites’ completeness properties. 
At the same time, it considerably increases the test strength for situations where the 
SUT does not conform to the underlying fault hypotheses. These practical 
considerations and associated experiments with models from different application 
domains have been published in (Braunstein et al., 2014; Hübner et al., 2015; Peleska 
et al., 2016) and, most comprehensively, in (Hübner et al., 2017). 

(4) Regarding the relationship between complete testing methods and model checking, we 
have published a first result that shows how the equivalence class partition methodology 
discussed above can be effectively used to solve infinite-state model checking problems 
(Krafczyk and Peleska, 2017). 
 

Property-oriented testing. Our own research in the field of property-oriented testing first 
focused on the generation of test oracles for passive testing against safety requirements 
specified in LTL, see (Peleska et al., 2014a) and (Peleska, 2015).  A new contribution to 
complete property-oriented test generation has been published in (Huang and Peleska, 2017c): 
it has been shown that an important class of safety properties can be characterized by output 
abstractions of deterministic finite state machines. Using both the original DFSM model and its 
abstraction, it is possible to elaborate a safety-complete test generation algorithm: the suites 
generated guarantee to uncover every safety violation of the SUT, while non-critical violations of 
language equivalence may remain undiscovered. This lesser degree of test strength results in a 
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significantly reduced test suite size (up to 50%), when compared to test suites with full fault 
coverage of language equivalence violations. Meanwhile, these first results have been extended 
by using a more effective test generation algorithm which is based on the H-Method instead of 
the Wp-Method applied before. Therefore, it leads to still smaller safety-complete test suites, 
see (Huang et al., 2017). Moreover, extensive experiments have been performed, confirming 
the test suite reductions achievable when reducing the fault coverage requirements to safety-
completeness. 
 
Open-source library fsmlib-cpp. In (Peleska et al., 2017), we have published an open-source 
C++ library containing the crucial algorithms for FSM manipulation and model-based test 
generation from FSM models, such as W-Method, Wp-Method, H-Method, and their safety-
complete variants according to  (Huang and Peleska, 2017c) and (Huang et al., 2017). FSM-
related algorithms to be explored in this project will be implemented as extensions to this library 
and made publicly available as open source. 
 
Model-based testing tool RT-Tester. Our research group has an ongoing cooperation with 
Verified Systems International GmbH, concerning the development of tools for safety-critical 
systems verification and validation. In this context, an academic version of Verified Systems’ 
model-based testing tool RT-Tester can be used to integrate the new test generation algorithms 
to be developed in the context of this project, as far as more complex modelling formalisms are 
involved than FSMs. The tool is already in use by one of our academic research partners and 
can also be made available to the others listed in Section Error! Reference source not found.. 
The capabilities of RT-Tester have been described in (Peleska et al., 2011b, 2011a; Peleska, 
2013a). In 2015, Verified Systems International has been awarded the runner-up trophy of the 
EU Innovation Radar Prize for integrating the latest model-based testing technology into the RT-
Tester tool.5 
 
The key principles of the tool design are given as follows. (1) The test model is parsed into an 
abstract syntax tree (AST). (2) From the AST, the model’s transition relation is automatically 
calculated, assigning a formal semantics to SysML models whose behavior is specified by 
sequential operations and concurrent state machines, including timing conditions. This 
semantics is consistent with the semi-formal description of the SysML standard (OMG, 2015).  
(3) Test cases can be automatically identified by exploiting the SysML satisfy-relationship 
between model elements and requirements which is visible in the AST. In addition, user-defined 
test cases may be specified using LTL formulas whose free variables are model variables and 
timing constraints. (4) Test data is calculated by solving symbolic test cases of the form shown 
in Figure 1. In this formula, the initial condition I specifies the model state from where the next 
test objective should be solved. Symbol ɸ denotes the transition relation connecting consecutive 
states (si-1,si), and G specifies the test objective. If the test objective has been specified in LTL, 
the bounded model checking semantics for LTL is applied to transform the formula into a first-
order expression, as explained in (Biere et al., 2006). By solving an instance of 𝝉	using an SMT 
solver, concrete input values and timing conditions for the test case to be executed are 
determined. (5) With the concrete test data calculated according to (4), a model interpreter 
executes the model to determine the post-state to be reached by this test case. This is 
necessary, since the calculation according to (4) is frequently performed on a sub-model which 
has been obtained, for example, by cone-of-influence reduction techniques. (6) Starting from 
such a post-state, the next test objective is solved, so that the resulting test procedure performs 
stimulations and checks of SUT responses corresponding to a sequence of test cases. 
 
RT-Tester is distinguished from competing tools like TGV (Jard and Jéron, 2005), UPPAAL-
TRON (Larsen et al., 2005), and QuickCheck (Derrick et al., 2010) by supporting all test levels 
(from software unit testing to hardware-in-the-loop system testing). Moreover, it works with 
SysML models whose formal semantics has been extracted from the semi-formal OMG SysML 

                                                
5 see https://www.verified.de/publications/papers-2015/eu-innovation-radar-price-runner-up-
trophy-for-verified-systems-international/ 
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standard (OMG, 2015), whereas TRON is based on Timed Automata models, QuickCheck 
focuses on software APIs, and TGV applies a proprietary modeling language.	
 
Industrial application. During the last 5 years, our research group has supported Verified 
Systems International in optimizing the MBT approach for industrial-size projects. Meanwhile, 
the company has performed numerous MBT projects for Airbus (HW/SW integration testing for 
the Airbus Cabin Communication System and for the Smoke Detection Controller) and Siemens 
(MBT of railway communication protocols). 
 
 

 
Figure 1. Symbolic test case. 
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1.1.2 Other publications 
 
none 
 
1.1.3 Patents 
 
It is not planned to apply for any patents. Instead, all results will be published. 
 
 
2 Objectives and work programme 
 
2.1 Anticipated total duration of the project 
 
3 years 
 
2.2 Objectives 
 
The objectives of this project proposal are highlighted in Figure 2. The arrows in the diagram 
are interpreted as “arrow source is enabler of arrow target”.  
 

 
Figure 2. Proposal objectives. 

 
The main objective is labelled as  
 

Objective 3. Enable complete property-oriented testing for infinite-state systems. 
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We will elaborate new contributions to the field of property-oriented testing of systems with 
conceptually infinite domains for inputs, outputs, and internal state. The innovations will 
concentrate on three main aspects (see also the detailed description in the work package 
specifications below). 

1. Facilitate the specification of properties by means of mixed model-based and formula-
based techniques. 

2. Investigate sufficient conditions for completeness. 
3. Investigate necessary conditions for the existence of complete finite test suites in 

presence of infinite domains. 
 
The term infinite is used here always in the sense that the respective domains  

• are infinite in the mathematical sense, such as real-valued physical observables, or 
• too large to be explicitly enumerated for test purposes, such as variables with very large 

integral ranges or floating-point types. 
 
The term symbolic methods is used here in the wider sense that subsets of the input domain,  
the internal model state space, or the output domain are represented by formulas specified in 
some temporal logic or first-order logic. Symbolic methods are essential whenever infinite 
domains and spaces are involved. This understanding of the term contrasts with the narrower 
sense sometimes used in the context of model checking, where symbolic model checking 
stands for utilization of ordered binary decision diagrams for state space representations 
(Clarke et al., 1999). 
 
The main objective is supported by two sub-ordinate objectives.  
 

Objective 2. Extend complete testing strategies to general infinite-state systems. 
 
This objective focuses on MBT.  It is motivated by the fact that property-oriented testing is 
closely related to MBT, so that we follow a mixed property-based and model-based approach to 
solve the challenges of the main objective. For Objective 2, we will investigate complete test 
suites checking conformance between reference and implementation models. The existing 
solution elaborated in our group for systems with infinite input domains and finite domains for 
internal states and outputs will be extended to more general applications, where the present 
finiteness restrictions are further relaxed, and time-continuous behavior is considered. This will 
be based on the results presented by other researchers described in Section 1, but we will 
extend their work to stronger completeness properties, exploiting the possibilities of our 
language-based theory of complete testing (Huang and Peleska, 2017b). Moreover, we plan to 
exploit the possibilities to increase the strength of test suites by adding knowledge about SUT 
internals, thereby moving from a pure black-box approach to a grey-box testing paradigm, as 
suggested in (Taromirad and Mousavi, 2017).   
 

Objective 1. Enable complete product line testing for complex system parameterizations. 
 
This objective is crucial to support objectives 2 and 3: today’s typical embedded control systems 
depend on complex configurations, allowing for their application in different operational 
environments. As a consequence, the reachability of a test goal always depends on the chosen 
configuration. This induces a special problem when generating sequences of test cases, such 
that the post-state of one test case execution is to be used as pre-state of the next test case. In 
the naïve approach, the SMT solver fixes all configuration parameters when calculating the 
configuration and input data for the first test case, regardless of whether a parameter is really 
needed for the first goal or not. When calculating test data for the second test case, the 
configuration data is already fixed, so that no adjustments can be made anymore. This problem 
leads to the first research goal concerning parameterizations in product line testing. 

• Develop an algorithm for symbolic determination of SUT parameterizations, such that 
the configuration parameters can be incrementally refined while generating sequences 
of consecutive test cases.  
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Moreover, the question of test suite completeness also needs to address the configuration 
space, in addition to the input domains of the SUT and its internal state and output domains. 
This leads to the second research goal related to product line testing. 

• Extend the complete testing theories elaborated in the context of Objective 2 to 
parameter spaces. 

 
Objective 4. Enable complete property-oriented testing of autonomous systems. 

 
This last objective is concerned with the application and evaluation of the results achieved 
during the research on objectives 1 – 3. We will investigate property-oriented testing of cyber-
physical systems (CPS) with mixed discrete and time-continuous observables and associated 
control state components. As application domains, case studies from robotics, autonomous 
vehicles, and railway control systems6 will be selected and executed in collaboration with the 
international partners listed in Section 2.7. All three domains present interesting challenges from 
the hybrid systems domain. The first two domains contain additional challenges regarding the  

• dynamicity of configurations, and the 
• evolving behavior due to learning effects. 

 
All objectives depend on the utilization of symbolic methods and SMT solvers in a crucial way. 
 
 
2.3 Work programme incl. proposed research methods 
 
The work packages specified in this proposal are in one-to-one correspondence with the 
objectives described above; they are shown in Figure 3. It should be emphasized that the work 
programme specified here is not to be performed by the persons alone, for whom the funding 
has been applied for in this proposal: the funded persons are integrated into the team specified 
in Section Error! Reference source not found., who jointly work on this research programme. 
The funded persons will, however, contribute to each of the work packages defined below. 
 
The effort spent on each work package is shown in Figure 4. The effort of 72 PM for the two 
funded persons (see Section Error! Reference source not found.) is complemented by 78 PM 
of the project group funded by other resources, as described in Section Error! Reference 
source not found.. The following milestones have been planned. 

• M1 (Year 1, End of IV). The main results for WP1 have been elaborated7. First 
publications about the investigated methods and algorithms are made. 

• M2 (Year 2, End of IV). The main results for WP2 and WP3 have been produced. First 
publications about the methods and algorithms investigated in WP2 and WP3 are made. 

• M3 (Year 3, End of III). The case studies of WP4 have been completed, and the 
adaptations, extensions, and, based on the feedback from case studies, improvements 
of the results obtained in WP1, WP2, WP3 have been performed. Further publications 
on WP1, WP2, WP3, which are now justified by the experimental evaluations are 
submitted. 

• M4. (Year 3, End of IV). Final reporting has been completed. 
 
The main focus of the funded PhD student will be on WP1, WP3, and WP4, but an in-depth 
understanding of the foundations and results associated with WP2 is necessary for the 
successful investigation of the topics in WP3. The funded post-doc will contribute to work 
packages WP1, WP2, WP3 uniformly; for WP4 she has supervision and evaluation 
responsibilities. The work on WP1, WP2, WP3 in Year 3 focuses on technical improvements 
based on the feedback obtained during the case studies, and on publication of the results 
obtained for each work package, based on the experimental evaluation in the case studies. 
 

                                                
6 in particular, automated train protection systems 
7 see specification of outputs at the end of each WP description 
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Figure 3. Work packages derived from project objectives. 

 
Figure 4. Work programme – effort table. 
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WP1. Model-based product line testing with symbolic constraint processing. The starting 
point for this work package is the simple product line testing support currently implemented in 
the RT-Tester tool: configuration parameters are considered as a special class of inputs that 
can only be set once at system startup and remain invariant while the system is running. In this 
work package, this simple approach will be extended to comprehensive support for 
configuration handling in product line testing. 
 
As a first step, we will extend the equivalence class testing theory for nondeterministic Kripke 
structures or Extended Finite State Machines (EFSMs) from (Huang and Peleska, 2017a) to 
parameterized systems. This requires extending the equivalence class calculation method 
presented there to parameters, which are special inputs, to be set only once on system startup 
and to remain invariant during the execution. This results in symbolic state machine 
abstractions whose input alphabet consists of constraints Xi involving guard conditions on inputs 
in combination with invariant parameters. Symbolic tests cases can be represented by symbolic 
input sequences 
 

X1.X2.X3 … 
 
More complex, so-called adaptive test cases, are represented by trees branching according to 
the SUT reactions, which influences the selection of the next input (Hierons, 2004; Petrenko 
and Yevtushenko, 2011). Using SMT solvers, concrete test input data can be calculated by 
solving the constraint formula shown in Figure 5. Each Xi  is a formula with free variables 
representing either inputs x or parameters p. While the input variables x can be freely chosen 
for the solution of each Xi, all parameters p keep their initial value s0(p). 
 
In the second step, this concept will be extended to concurrent SysML state machines, each 
machine abstracted according to Step 1. We will experiment with constructing symbolic product 
automata from the individual abstracted FSMs but expect that this will lead to combinatorial 
explosion problems. Therefore, the main focus of Step 2 will be on search techniques from 
artificial intelligence which help to find paths through the abstracted concurrent system, leading 
to the specified test goal, such that concrete test data can again be constructed by means of 
SMT solvers. 
 
Output WP1. Publication(s) on method and algorithms for symbolic constraint processing and 
its applications in product line testing. Prototype implementation in RT-Tester. 
 

 
 
Figure 5. Constraint for concrete test data generation presence of configuration parameters. 

 
 
WP2. Complete partition testing strategies for infinite-state systems. Elaboration of finite 
testing theories for infinite-state systems typically tries to partition input domains, state spaces, 
output domains, and configuration spaces in such a way that Gaudel’s uniformity hypothesis 
(Gaudel, 1995) is fulfilled in each partition. If the hypothesis is fulfilled, it suffices to test single 
representatives from each partition in order to conclude that the SUT will behave correctly 
everywhere. If the partition is finite, it is usually possible to prove a regularity hypothesis, 
showing that each test case representative can be chosen to be finite, because all relevant 
partition classes have been covered after finitely many test steps. For the class of Kripke 
structures or EFSMs with infinite input domains and finite domains for internal states and 
outputs, we have already proven the existence of suitable theories (Huang and Peleska, 2016a, 
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2017a). Initial investigations from our own group (Peleska et al., 2014b) and more recent 
research from others (see, e.g. (Petrenko, 2016; Taromirad and Mousavi, 2017)) have shown 
that the restriction to finite state and output domains can be relaxed when one is either willing to 
accept lesser test strength or when switching from black-box to grey-box testing, so that some 
internal information about the SUT can be exploited. We will analyze these results and extend 
them in such a way that necessary and sufficient conditions for the existence of complete 
testing theories are elaborated. We will try to prove or disprove our conjecture that complete 
theories with full fault coverage can be elaborated for hybrid systems whose time-continuous 
evolutions show piecewise linear behavior. This conjecture is based on decidability 
investigations about hybrid systems, such as (Henzinger et al., 1998), and on our own result 
(Huang and Peleska, 2017b). Based on the latter result, we will first prove that a regularity 
condition8 of the observation language is not only sufficient (this already has been shown), but 
also necessary for the existence of finite complete testing theories. With this result at hand, we 
will investigate for various formalisms, which subsets of models fulfil this regularity condition. 
For test oracles of hybrid systems, we will extend the existing oracle concept for time-discrete 
observations (Peleska, 2013b) to time-continuous ones, following the approach of (Mohaqeqi 
and Mousavi, 2016). 
 
For certain model classes, the algorithms for generating complete test suites will be 
implemented in RT-Tester. In contrast to other test tools which also apply symbolic techniques   
(Jard and Jéron, 2005), (Sijtema et al., 2011), our implementation can guarantee complete fault 
coverage for a well-specified fault domain. 
 
Output WP 2. Publication(s) of methods and algorithms for complete MBT theories applicable 
to infinite-state systems. Prototype implementation in RT-Tester. Integration of FSM-related 
algorithms into the fsmlib-cpp (Peleska et al., 2017). 
 
 
WP 3. Property-oriented testing for mixed model/formula specifications. It is well known 
that for most formalisms of interest in the CPS domain, property-oriented testing can be 
theoretically solved by MBT alone: for a given property, it is possible to generate a most non-
deterministic model9 M which just fulfils the property (and, of course, its implications) but 
“nothing more”. As a consequence, one could in theory derive a complete test suite from M 
which verifies that the SUT is a refinement of this model. This shows that the SUT fulfils the 
same property as M. In practice, however, this approach is not advisable: the nondeterministic 
model M will usually have far less states than the real SUT. It is well known from FSM testing 
theory that the number of test cases to be constructed for a complete suite is exponential in the 
difference between the number of (assumed) SUT states and the number reference model 
states. As a consequence, constructing tests from M alone will frequently lead to test suites of 
infeasible size. 
 
Our results obtained for testing a restricted class of safety-properties (Huang et al., 2017; 
Huang and Peleska, 2017c) indicate that another approach is far more promising: tests are 
generated by means of a method taking into account both the full reference model showing all 
behaviors and its abstraction to a model which is specialized according to the property to be 
tested. The abstracted model can be automatically generated from the full model, applying the 
property to be tested as an “abstraction recipe”. As a first step, we will generalize this approach 
to a wider class of safety-properties specified in LTL. To this end, the automated abstraction 
technique also needs to be extended to this wider class of properties. This solution, however, 
still leaves us with the disadvantage that the effort for creating the full model has to be invested.  
 

                                                
8 This regularity condition applies to languages with infinite alphabets; their grammar can be 
specified using the classical regular expression notation in combination with a symbolic notation 
specifying subsets of the alphabet. The “classical” regular languages that can be generated by 
FSMs are just a special case of this more general regularity notion. 
9 e.g., a Büchi automaton, or a nondeterministic process in a process algebra 
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Therefore, in a second step, it will be investigated how partial models can be used instead of 
complete functional models, since it is desirable to reduce the modeling time for situations 
where it is already known that only a given set of properties should be tested, and not the 
complete system behavior. To facilitate this step in practice, we will investigate how learning-
based testing methods (see, e.g. (Khosrowjerdi et al., 2017)) can help to construct partial 
models from SUT observations in an automated way. This approach seems promising, since 
the partial model is only used to determine the “search depth” for exploring the SUT. The test 
oracles are directly derived from the property specification.  
 
In a third step, the theory will be extended to CPS with dynamic configurations and evolving 
behavior, so that Objective 4 described above can be fulfilled. This challenge will be solved by 
means of a novel testing approach exploiting the fact that in tests with finite duration, only 
finitely many different configurations can be reached, and only finitely many learning steps can 
lead to updates of the rules governing the system behavior.10 As a consequence, it is not 
necessary to apply higher-order logic for investigating these dynamic changes, as is often 
required in the formal verification of mobile processes and systems with evolving behavior 
(Sangiorgi, 2003). Instead, the SUT can only perform finitely many configuration and mode 
changes that can be selected from pre-defined finite sets. The elements of each set are 
symbolic constraints capturing equivalence classes of behaviors or configuration states. It 
remains to show whether these finite sets can be selected in such a way that from finitely many 
tests, conclusions about the SUT behavior in presence of arbitrary possible configurations can 
be drawn. Again, the investigations in (Henzinger et al., 1998) and further publications of the 
same author indicate which kinds of systems can be completely verified with finitely many tests. 
 
Outputs WP3. Publication(s) about methods and algorithms for complete property-oriented 
testing. Prototype implementation in RT-Tester. Integration of FSM-related algorithms into the 
fsmlib-cpp (Peleska et al., 2017). 
 
 
WP 4. Property-oriented testing for autonomous systems. In this work package, three case 
studies will be defined in cooperation with the research partners listed in Section 2.7, covering 
the application domains robotics, autonomous vehicles, and automated train protection. As 
SUTs, simulations of robots, vehicles, and trains will be used. For each case study, a list of 
safety-critical or mission-critical properties will be derived from the system requirements. The 
fault domains ensuring complete fault coverage will be specified. The test strategies from WP3 
will be applied to test the SUT with respect to property violations. For each system, mutations 
will be generated that are either inside or outside the fault domain where completeness can be 
guaranteed. For each test suite, the (1) effort for test generation, (2) test suite size, (3) test 
execution time, and (4) number of killed mutants11 are measured and used as input to the 
overall evaluation. 
 
Outputs WP4. Publication(s) about the evaluation of the methods elaborated in WP1 – WP3, 
when applied to the case studies. Publication of test models and evaluation data on suitable 
web sites, such as www.mbt-benchmarks.org. 
 
 
2.4 Data handling 
 
All project results will be presented on international conferences and will be published in 
journals. We expect 3 dissertations to be completed on topics related to the project. Algorithms 
related to finite state machines will be made publicly available through the open source library 
(Peleska et al., 2017). Other algorithms will be implemented in the RT-Tester tool which is also 

                                                
10 These facts are ensured by the finite variability of real-world real-time systems that cannot 
change their behavior with infinite or unboundedly accelerating speed. 
11 This number will be 100% for SUTs inside the fault domain but may be less for SUTs outside 
the domain. 
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freely available to academic partners for non-commercial applications. Experimental data will be 
made available on the MBT benchmarks website (“Embedded Systems Testing Benchmarks 
Site,” 2011). 
 
2.5 Other information 
 
none 
 
2.6 Descriptions of proposed investigations involving experiments on humans, human 

materials or animals 
 
None 
 
 
2.7 Information on scientific and financial involvement of international cooperation 

partners 
 
It is planned to cooperate with the following international research partners for the exchange of 
scientific results and for the definition and evaluation of case studies. There is no financial 
involvement of these partners – they have their own funding. 
 
Denmark Technical University, Prof. Anne E. Haxthausen. We have a long-standing 
cooperation with Prof. Haxthausen, concerning the application of formal methods to the railway 
domain, see, for example, (Haxthausen et al., 2011; Haxthausen and Peleska, 2000, 2015). In 
this project, we will cooperate for the definition, execution, and evaluation of the case study in 
the railway domain. 
 
University of York, Professors Ana Cavalcanti and Jim Woodcock. The cooperation with 
Professors Cavalcanti and Woodcock started during the COMPASS project (“COMPASS - 
Comprehensive Modelling for Advanced Systems of Systems,” 2014), where we investigated 
verification and MBT of Systems of Systems, see (Nielsen et al., 2015), (Cavalcanti et al., 
2015). Together with other British scientists, Ana Cavalcanti and Jim Woodcock have received 
a major grant from the British Engineering and Physical Sciences Research Council for 
investigating simulation and testing methods for mobile autonomous robots; the project will start 
in April 2018, see (EPSRC, 2018).  From this project, we will receive requirements regarding the 
testing of autonomous learning systems and input for defining and evaluating the robotics case 
study we have planned. Conversely, the British research team plans to use RT-Tester in their 
testing experiments. 
 
University of Leicester, Prof. Mohammad Mousavi. Prof. Mousavi is a specialist on MBT, 
with special emphasis on product line and cyber-physical systems testing. We will cooperate 
with him in the context of extending testing theories by exploiting grey-box knowledge about the 
SUT, and furthermore in the case studies regarding autonomous CPS behavior in the 
automotive domain. 
 
Computer Research Institute of Montreal CRIM, Prof. Alexandre Petrenko. Prof. Petrenko 
is a specialist on model-based testing, with special emphasis on FSM and EFSM testing. During 
the last years, he has become one of the key players researching symbolic methods in MBT, 
with objectives and results complementing our own strategies. We plan to cooperate with him 
for the investigation of completeness results that are achievable with symbolic approaches and 
for researching the necessary restrictions that cannot be relaxed without giving up the finiteness 
of complete test suites and test cases. 
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