
HYBRIS - Efficient Specification and Analysis
of Hybrid Systems – Part I: The HybridUML

Profile for UML 2.0

Kirsten Berkenkötter Stefan Bisanz Ulrich Hannemann Jan Peleska
University of Bremen

P.O.B. 330 440
28334 Bremen, Germany

{kirsten, bisanz, ulrichh, jp}@informatik.uni-bremen.de

Figure 1: HYBRIS kicks.



Contents

I Introduction 4

1 Hybrid Systems and UML 5
1.1 Modeling Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 UML 2.0 and Real-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 UML 2.0 Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

II HybridUML 8

2 HybridUML Overview 9

3 HybridUML MOF-based Metamodel 11
3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 ContainableElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 DirectedRelationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.4 ModelElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.5 NamedElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.6 RedefinableElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.7 Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 AnalogReal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Boolean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.4 Counterclock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.5 DataType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.6 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.7 EnumerationLiteral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.8 Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.9 Primitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.10 Real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.11 String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.12 TypedElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 AlgebraicExpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 BooleanExpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.4 ConstraintKind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.5 DifferentialExpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.6 Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.7 IntegerExpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.8 Slot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.9 StringExpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.10 ValueSpecification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 ActualParameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



3.4.2 FormalParameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.3 MultiplicityElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.4 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.5 Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.6 Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.7 SignalAccessKind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.8 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.9 Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.10 VariableAccessKind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.11 VariableSlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.1 AgentConnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.2 AgentConnectorEnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.3 AgentInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.4 AgentPort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.5 AgentPortSlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.6 SignalConnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.7 SignalInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.8 SignalPort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.9 VariableConnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.10 VariableInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.11 VariablePort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Modes and Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.1 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.2 AgentInstance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.3 CallActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.4 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.5 ModeActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.6 ModePseudostate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.7 ModePseudostateKind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.8 ModeTransition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.9 SendActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.10 SignalTrigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.11 UpdateActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 HybridUML Profile 40
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 AnalogReal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.3 StructuredDataType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Expressions and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.1 AlgebraicExpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 DifferentialExpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 InvariantExpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.4 RTConstraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.5 RTExpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Communication Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.1 AgentConnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 AgentConnectorEnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.3 AgentInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.4 AgentPort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.5 RTSignal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.6 SignalConnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.7 SignalConnectorEnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.8 SignalEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2



4.4.9 SignalInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.10 SignalPort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.11 VariableConnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.12 VariableConnectorEnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.13 VariableInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.14 VariablePort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.1 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6.1 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6.2 ModePseudostate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6.3 ModePseudostateKind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.4 ModeRegion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.5 ModeState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.6 ModeTransition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.7 ModeSendActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.8 ModeTransitionActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.9 ModeUpdateActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3



Part I

Introduction

4



Chapter 1

Hybrid Systems and UML

1.1 Modeling Hybrid Systems

A real-time system is called hybrid if it processes time-continuous variables in addition to discrete-range param-
eters. The (piecewise) continuous evolution over dense time of real or complex observables occurs naturally in
physical models and in the development of (embedded) control systems monitoring some continuous observables
(e.g. temperature, speed) via analog sensors and setting others (e.g. voltage, thrust) using actuators.

Hybrid systems have been studied extensively in various research communities since the early nineties.
The definition and investigation of the Duration Calculus (see [ZRH93, Rav95, RRS03] and further references
given there) provided fundamental contributions to understanding Hybrid Systems. The introduction of Hybrid
Automata [Hen96] demonstrated the feasibility of verification by model checking for hybrid specifications. The
applicability of hybrid automata to large-scale systems was improved by the introduction of hierarchical hybrid
specifications [AGLS01]. Alternative hierarchical approaches closer to the Statecharts formalism have been
described in [KMP00] (together with a proof theory) and [BBB+99] (verification by model checking).

Though today numerous formalisms and verification approaches are available for hybrid systems, their
application in an industrial “real-world”-context is still rare. According to our analysis, two main causes are
responsible for this situation:

• The syntax developed for hybrid formalisms within research communities was too specialized and not
supported by conventional software engineering tools available to practitioners.

• While the underlying theories supported formal verification by theorem proving or model checking, they
did not support the development of optimized code for embedded control systems.

With respect to the first cause we suggest to augment existing well-accepted formalisms of software engi-
neering by new specification constructs describing time-continuous behavior. From today’s point of view, the
Unified Modeling Language UML 2.0 (see [OMG05b, OMG05a])is the best candidate for such an approach: It is
currently the most widely known software-engineering formalism supported by a variety of tools. Furthermore,
language extension is an inherent feature of UML, therefore well-constructed UML tools should support this
extension as well.

The second cause is related to both practical and theoretical considerations: From a practitioner’s point of
view, the effort invested into formal specification and verification – which will certainly be considerably higher
than the effort spent on elaborating informal conventional specifications – is only justified if the specifications
can be easily transformed into executable systems. For example, we do not expect that the amount of time
required for developing executable code by step-wise refinement will ever be widely accepted among project
leaders and developers of embedded systems.

From a theoretic point of view, the problem is even more subtle: If a transformation into executable code
is available, how can the consistency between high-level specification semantics and execution behavior of the
low-level implementation using conventional programming languages and operating systems be ensured? A
practical consequence of this problem consists in the fact that the simulation facilities provided by many case
tools never declare which formal high-level semantics has been used as a reference for the encoded simulation
behavior.

In “classical” UML, the definition of a universal formal semantics has been deliberately avoided. Instead,
the various language constructs are only associated with a general informal meaning so that their purpose in
various modeling situations becomes clear. In [RJB99, pp. 105] this approach is motivated by the fact that the

5



semantic interpretation of specification constructs depends on the specific project context, and precise behavior
is only obtained by transformation into the target programming language. While this avoids the obligation to
prove consistency between executable system and high-level specification semantics, it still poses the problem
that in general, it will be infeasible to capture the potential behavior of software written in Java, C/C++, or
Ada, when executed in a specific target environment.

1.2 UML 2.0 and Real-Time

UML 2.0 offers a wide range of possibilities for modeling software systems. Nevertheless, real-time and hybrid
constructs are not covered. Real-time systems are systems whose results are not only dependent on computation
but also on the time that the computation needs. Hybrid systems are a specialization of real-time systems as
they consist of time-discrete and time-continuous observables. Both kinds of system are often used in domains
like avionics, chemical processes, or automotive control, so there is also a safety-critical background in many
cases.

For this reason, specification, simulation, verification, etc. are strongly needed for developing these kinds
of system. This is potentially possible when using UML as specification language, but not without extensions.
We therefore propose a UML 2.0 profile that is capable of modeling real-time and hybrid systems; HybridUML.
With this profile it is possible to develop formal specifications with UML that can be used for further purposes
like model checking.

HybridUML is based on CHARON [AGLS01, ADE+01, ADE+03] which is a formal specification language
for modeling hybrid systems. It offers ways of describing both structure and behavior of such a system in a
hierarchical way, so that models become scalable and more manageable. The profile takes a subset of UML,
modifies it according to CHARON and gives it precise semantics. It also adds useful constructs for modeling
hybrid systems not covered by CHARON like events.

Modeling with HybridUML requires using only the elements defined in the profile as only these have seman-
tics. It is highly recommended to work with these elements and not using other constructs known from common
UML. It is also an aim of the profile to reduce modeling elements to a set of well-understood ones as this makes
models better understandable.

1.3 UML 2.0 Profiles

UML 2.0 offers profiles as a powerful extension mechanism for tailoring UML to specific working areas. Based
on a metamodel like the Meta Object Facility (MOF, [OMG06]) or usually UML itself, a profile specifies new
model elements called stereotypes.

Thermostat
�profile�

�apply�

HybridUML

Figure 1.1: Profile Application by Package

Stereotypes customize the used metamodel in different ways: introducing a new terminology, e.g. for En-
terprise Java Beans, introducing new syntax, either for elements without syntax or new symbols for elements
with syntax, introducing new semantics and constraints, or adding further information like transformation rules
from model to code. A set of stereotypes forms a profile.

A profile can be applied by a model or a package in a model. All stereotypes can be used as modeling
elements. As every stereotype extends an already known element, the model is still a valid UML model if the
profile is taken away. Profile application is visualized by a dependency with the keyword �apply� attached
(see Fig. 1.1). The profile itself is a package and therefore depicted like this with the keyword �profile� above
its name.

As described before, stereotypes extend elements of the metamodel in use, i.e. they extend a class of the
metamodel. Information can be added but not taken away as the model has to be valid without the profile.
Generalization respectively specialization of stereotypes is allowed. In the profile, the keyword �stereotype�
marks the extended element while its name is given below (see Fig. 4.2). In the model that applies the profile,
the name of the stereotype in guillemets is used as a keyword (see Fig. 4.1).

An extension is always binary, i.e. a stereotype is dependent on exactly one element of the underlying
metamodel. It is depicted by an arrow with filled arrowhead. The extension can be marked as {required}, i.e.

6



the stereotype is always created if an instance of the extended class is created. In other words, the extension is
mandatory in this case.

1.4 Outline

7



Part II

HybridUML

8



Chapter 2

HybridUML Overview

Besides the UML 2.0 Profile, we define an independent metamodel for HybridUML. This is done to visualize
the HybridUML modeling elements and their relationships independently. On the one hand, the HybridUML
profile tailors UML 2.0 to the area of hybrid systems, so it can be used with UML 2.0 tools that support profiles.
On the other hand, the metamodel gives us the possibility to show exactly the used elements without the need
to support other obfuscating constructs.

To achieve a consistent view of the syntax and semantics of HybridUML, the metamodel consists of three
main parts:

• Abstract Syntax
The backbone of HybridUML is defined by means of the Meta Object Facility (MOF). Model elements
and their relationships between one another are defined.

• Concrete Syntax
The concrete Syntax of HybridUML is given by a mapping from the HybridUML Profile to the HybridUML
abstract syntax.

• Semantics
Semantics of HybridUML are given with respect to the abstract syntax.

HybridUML
MetamodelUML 2.0

UML 2.0 Model
Class Level

UML 2.0 Model
Object Level

HybridUML
Profile

HybridUML

HybridUML

HybridUML Model
Class Level Agent Level

Agent Instance Level
HybridUML Model

Object Level

MOF 2.0

Figure 2.1: HybridUML with respect to UML metalevels

If we consider HybridUML in the UML family of languages as shown in Fig. 2.1, MOF is the basis for all
modeling approaches. We also speak of a metametamodel. The UML metamodel is an instance of MOF, just
as the HybridUML metamodel. At this level, we define (specification) languages. The HybridUML profile is
also located at the metamodel level, but it is not a language itself but an extension of UML. It is also related to
the HybridUML metamodel, as it defines its concrete syntax. This is done by a mapping from the HybridUML
metamodel constructs to the HybridUML profile.

The next step is the model level, where we define concrete models with our specification language developed
on the metamodel level. In case of UML, this would be classes, in case of the HybridUML metamodel, we speak

9



of agents. In the profile, specific agent classes are used that extend UML classes to fulfill the needs of agents.
The last step is the instance level, where the classes, respectively agents are instantiated. On this level, we have
objects, respectively agent instances.

10



Chapter 3

HybridUML MOF-based Metamodel

The HybridUML metamodel describes all elements that can be used in a HybridUML model and represents the
abstract syntax of HybridUML. These elements are further subdivided into six packages to group them with
respect to their purpose. There are the Basics package, the Types package, the Expressions package, the Data
package, the Communications package, and the Modes and Agents package.

Expressions

Types

Communications

Basics Modes and AgentsData

Figure 3.1: HybridUML Metamodel

The << import >>-dependencies between these packages show that a package depends on another one, i.e.
it uses classes defined there. To give an example, the Communications package uses classes defined in the Basics
package and in the Data package while it is used itself by the Modes and Agents package.

3.1 Basics

The Basics package of the HybridUML metamodel introduces basic modeling concepts like NamedElements
or RedefinableElements shared by other modeling constructs. Most of these concepts are modeled as abstract
classes, so the concrete classes can use them by means of inheritance. Solely Generalization is a concrete class
that can be used directly.

Most important is ModelElement as this is the most basic class at all. Every element used in a HybridUML
model must be inherited from ModelElement.

3.1.1 ContainableElement

Description
A ContainableElement is a kind of NamedElement that is capable of hierarchical modeling, i.e. containing

other ContainableElements. A ContainableElement can be contained by at most one container, whereas each
container can include many ContainableElements. ContainableElement is abstract and must be used by its
concrete specializations.
Associations

• containedElement:ContainableElement[0..*]
• container:ContainableElement[0..1]

11



source
{subsets end, union}
target
{subsets end, union}

1

1

0..*

0..*incoming
{subsets rel, union}

{subsets rel, union}

Relationshiprel 0..*

ModelElement

NamedElement

name:String[0..1]

end
2..*

RedefinableElement Generalization

specific

general

1 0..1

0..*1

{subsets target}

{subsets source}

0..10..*

ContainableElement

0..*0..1

redefinedElement

containedElement

DirectedRelationship

gen

outgoing

Figure 3.2: Basics package

Attributes
None.

Wellformedness Rules
• containedElement->forAll(c1,c2 | c1<>c2) All containedElements differ from each other.
• containedElement->forAll(c1 | c1<>self) A ContainableElement cannot contain itself.

3.1.2 DirectedRelationship

Description
Directed Relationship is a kind of Relationship that works only in one direction, from a source to a target

that are both NamedElements. These can be part of zero or many DirectedRelationships which are a subset of all
Relationships of an element. DirectedRelationship is abstract and must be used by its concrete specializations.
Associations

• target:NamedElement[1]
Attributes

None.
Wellformedness Rules

None.

3.1.3 Generalization

Description
Generalization is a kind of DirectedRelationship that models inheritance. The source of a generalization is a

specific RedefinableElement and its target a general RedefinableElement. The source inherits from the target,
the concrete inheritance is dependant on the concrete RedefinableElement that uses generalization.
Associations

• general:RedefinableElement[1]
Attributes

None.
Wellformedness Rules

None.

12



3.1.4 ModelElement

Description
A model consists of ModelElements. Therefore ModelElement is the most basic element in this package.

Every element used in a model must be derived from ModelElement. ModelElement itself is abstract and must
be used by its concrete specializations.
Associations

None.
Attributes

None.
Wellformedness Rules

None.

3.1.5 NamedElement

Description
NamedElement is a kind of ModelElement that may have a name. It is abstract and must be used by its

concrete specializations. NamedElement can be parts of Relationships and DirectedRelationships.
Associations

• rel:Relationship[0..*]
• outgoing:DirectedRelationship[0..*]

Attributes
• name:String[0..1]

Wellformedness Rules
• name->size()=1 implies (name<>’’) A name cannot be empty.

3.1.6 RedefinableElement

Description
RedefinableElement is a kind of NamedElement with the additional possibility to be redefined. They can be

used in Generalizations. RedefinableElement is abstract and can only be used by its concrete specializations.
Associations

• redefinedElement:RedefinableElement[0..1]
• gen:Generalization[0..1]

Attributes
None.

Wellformedness Rules
• redefinedElement->size()=1 implies

(redefinedElement<>self)
A RedefinableElement cannot redefine itself.

• gen->forAll
(g:Generalization |

g->target<>self)

A Generalization that originates at a NamedElement
cannot have the same NamedElement as a target.

3.1.7 Relationship

Description
Relationship is a kind of ModelElement that is used to model Relationships between NamedElements. A

Relationship relates at least one ModelElement (to itself). Each ModelElement can be part of zero or many
Relationships.
Associations

• end:NamedElement[2..*]
Attributes

None.
Wellformedness Rules

None.

13



3.2 Types

In the package Types, the idea of TypedElements and DataTypes is introduced. Several primitive types like Real,
Integer, Boolean, and String are defined. To cope with the continuous-valued variables and time, AnalogReal
and it subtypes Clock and CounterClock are used. In addition, enumerations are a data type that has a set of
literals as its value domain.

DataType

TypedElementNamedElement

RedefinableElement

EnumerationLiteral

Primitive

StringReal Boolean

CounterclockClock

AnalogReal Integer

Enumeration

0..1

type 0..11..*lits

0..*

Figure 3.3: Types package

3.2.1 AnalogReal

Description
AnalogReal is a kind of Real and therefore also a Primitive, a DataType, and a NamedElement by inheritance.

It is used as data type of continuous-valued variables.
Associations

None.
Attributes

None.
Wellformedness Rules

• name=’AnalogReal’ The name of the data type is AnalogReal.

3.2.2 Boolean

Description
Boolean is a kind of Primitive and therefore also a DataType and a NamedElement by inheritance. It is

used as data type of variables with values in {true, false}.
Associations

None.

14



Attributes
None.

Wellformedness Rules
• name=’Boolean’ The name of the data type is Boolean.

3.2.3 Clock

Description
Clock is a kind of AnalogReal and therefore also a Real, a Primitive, a DataType, and a NamedElement by

inheritance. It is used as data type of variables that model time.
Associations

None.
Attributes

None.
Wellformedness Rules

• name=’Clock’ The name of the data type is Clock.

3.2.4 Counterclock

Description
CounterClock is a kind of AnalogReal and therefore also a Real, a Primitive, a DataType, and a NamedEle-

ment by inheritance. It is used as data type of variables that model time, but in contrast to Clock it is an
egg-timer where time flows downwards.
Associations

None.
Attributes

None.
Wellformedness Rules

• name=’CounterClock’ The name of the data type is CounterClock.

3.2.5 DataType

Description
DataType is a NamedElement whose name gives the type of a variable. It is abstract and can only be used

by its concrete specializations.
Associations

None.
Attributes

None.
Wellformedness Rules

• name->size()=1 A DataType must have a name.

3.2.6 Enumeration

Description
Enumeration is a DataType and therefore also a NamedElement. The name of the Enumeration is the

name of the specified DataType. An Enumeration consists of EnumerationLiterals that together form the set
of possible values a variable of this type can possess. Enumeration is also a RedefinableElement.
Associations

• lits:EnumerationLiteral[1..*]
Attributes

None.
Wellformedness Rules

15



• name->size()=1 An Enumeration must have a name.
• lits->forAll(l1,l2 | l1.name<>l2.name) All EnumerationLiterals must have distinct names.
• redefinedElement->size()=1 implies

(redefinedElement.oclIsTypeOf(Enumeration)
and
let r:Enumeration=

redefinedElement.oclAsType(Enumeration)
in

((r.lits->size()>self.lits->size())
and
(r.lits->forAll(l1 |
self.lits->exists (l2 | l1=l2)))))

An Enumeration can only redefine another Enumer-
ation by adding additional EnumerationLiterals. Re-
moving of EnumerationLiterals is not allowed.

• (redefinedElement->size()=1 implies
(gen ->size()=1)) and

(gen->size()=1 implies
(redefinedElement->size()=1)) and

gen->forAll (g:Generalization |
g.specific implies

redefinedElement->includes(g.specific))

An Enumeration is redefined by means of generaliza-
tion.

• rel->size()=0 There are no relationships.

3.2.7 EnumerationLiteral

Description
An EnumerationLiteral is a NamedElement whose name defines a value of an Enumeration.

Associations
None.

Attributes
None.

Wellformedness Rules
• name->size()=1 An EnumerationLiteral must have a name.
• rel->size()=0 There are no relationships.

3.2.8 Integer

Description
Integer is a kind of Real and therefore also a Primitive, a DataType, and a NamedElement by inheritance.

It is used as data type of variables with values in Z.
Associations

None.
Attributes

None.
Wellformedness Rules

• name=’Integer’ The name of the data type is Integer.

3.2.9 Primitive

Primitive is a DataType and therefore also a NamedElement. Is is abstract and can only be used by its concrete
specializations.
Description
Associations

None.
Attributes

None.
Wellformedness Rules

• name->size()=1 An Primitive must have a name.
• rel->size()=0 There are no relationships.

16



3.2.10 Real

Description
Real is a kind of Primitive and therefore also a DataType and a NamedElement by inheritance. It is used

as data type of variables with values in R.
Associations

None.
Attributes

None.
Wellformedness Rules

• name=’Real’ The name of the data type is Real.

3.2.11 String

Description
String is a kind of Primitive and therefore also a DataType and a NamedElement by inheritance. It is used

as data type of variables with values in A∗ where A∗ is the set of finite sequences of Alphabet A. The alphabet
is given by concrete syntax.
Associations

None.
Attributes

None.
Wellformedness Rules

• name=’String’ The name of the data type is String.

3.2.12 TypedElement

Description A TypedElement is a kind of RedefinableElement and therefore also a NamedElement by inher-
itance. Each TypedElement has a DataType. TypedElement is abstract and must be used by its concrete
specializations.
Associations

• type:DataType[0..1]
Attributes

None.
Wellformedness Rules

• redefinedElement->size()=1 implies
(redefinedElement.oclIsTypeOf

(TypedElement)
and
let r:TypedElement=

redefinableElement.oclAsType
(TypedElement)

in
(((r.type.oclIsKindOf(Real)) and

(self.type.oclIsTypeOf(Integer)))
or
(self.type.redefinedElement.oclIsKindOf(r.type)))))

A TypedElement can only redefine another Type-
dElement. In this case, either the data types conform
to another by specialization (e.g. Integer conforms to
Real) or by redefinition (the type of the redefining
variable is a redefinition of the type of the redefined
variable).

3.3 Expressions

The Expressions package defines elements used to model expressions and constraints. In general, expressions
are used to model the concrete expressions needed in a model like algebraic terms, while constraints are used
to attach Expressions to ModelElements.

Concrete elements used in HybridUML models are Constraints that attach Expressions to ModelElements.
These can be either AlgebraicExpressions that model algebraic terms which evaluate to real numbers, IntegerEx-
pressions that model algebraic terms which evaluate to integers, DifferentialExpressions that model algebraic
terms evaluating to real numbers over time, and BooleanExpressions that model logical terms which evaluate
to true or false. Furthermore StringExpressions evaluate to strings.

17



ValueSpecification

0,,1

1spec

0..*0..1

value

EnumerationLiteral

0..1

1..*lit

Slot NamedElement RedefinableElement

expr
0..*1

ModelElementTypedElement

0..*

1..*constrainedElement

Expression

body:String kind:ConstraintKind

Constraint

AlgebraicExpression DifferentialExpressionBooleanExpressionStringExpression

IntegerExpression inv
alge
flow
guard
pre
post

<<enumeration>>
ConstraintKind

Figure 3.4: Expressions package

3.3.1 AlgebraicExpression

Description
AlgebraicExpression is a kind of Expression and therefore also a ValueSpecification, a TypedElement, and

a NamedElement by inheritance. It is used to model expressions that can be evaluated to a real value.
Associations

None.
Attributes

None.
Wellformedness Rules

• type.oclIsKindOf(Real) An AlgebraicExpression evaluates to Real.

3.3.2 BooleanExpression

Description
BoolanExpression is a kind of Expression and therefore also a a ValueSpecification and a NamedElement by

inheritance. Is is used to model expressions that can be evaluated to a boolean value.
Associations

None.
Attributes

None.
Wellformedness Rules

• type.oclIsTypeOf(Boolean) A BooleanExpression evaluates to Boolean.

3.3.3 Constraint

Description
A Constraint is used to attach an expression to ModelElements. An expression can be contained by zero

or many constraints while a constraint holds always one expression. Constraints are RedefinableElements and
therefore also NamedElements by inheritance.
Associations

• constrainedElement:ModelElement[1..*]
• expr:Expression[1]

Attributes

18



• kind:ConstraintKind[1]
Wellformedness Rules

• (redefinedElement->size()=1) implies
(redefinedElement->

oclIsTypeOf(Constraint)
and
let r:Constraint=

redefinedElement.oclAsType(Constraint)
in

((r.expr<>self.expr) and
(r.constrainedElement=

self.constrainedElement))
)

A Constraint can only redefine another Constraint
by changing the associated Expression. The con-
strainedElement cannot be changed.

• ((kind=inv) or (kind=guard) or
(kind=pre) or (kind=post)) implies

expr.oclIsTypeOf(BooleanExpression)

A Constraint that is an invariant, a guard, a precon-
dition, or a postcondition has an attached Boolean-
Expression.

• (kind=flow) implies
expr.oclIsTypeOf(DifferentialExpression)

A Constraint that is a flow condition has an attached
DifferentialExpression.

• (kind=alge) implies
expr.oclIsTypeOf(AlgebraicExpression)

A Constraint that is an algebraic condition has an
attached AlgebraicExpression.

3.3.4 ConstraintKind

Description
ConstraintKind is an enumeration that lists all possible kinds a Constraint can have, i.e. flow condition,

algebraic expression, invariant, guard condition, post condition, or pre condition.
Associations

None.
Attributes

• inv
• flow
• alge
• guard
• pre
• post

Wellformedness Rules
None.

3.3.5 DifferentialExpression

Description
DifferentialExpression is a kind of Expression and therefore also a ValueSpecification and a NamedElement

by inheritance. Is is used to model expressions that can be evaluated to a real value over time.
Associations

None.
Attributes

None.
Wellformedness Rules

• type.oclIsKindOf(Real) A DifferentialExpression evaluates to Real.

3.3.6 Expression

Description
Expression is a kind of ValueSpecification and of NamedElement. It is used to model all kinds of expressions.

Expression is abstract and must be used by its concrete subtypes.
Associations

None.
Attributes

• body:String[1]

19



Wellformedness Rules
• rel->size()=0 There are no outgoing relationships.
• type->size()=1 Expressions have a type.

3.3.7 IntegerExpression

Description
IntegerExpression is a kind of AlgebraicExpression and therefore also an Expression, a ValueSpecification,

and a NamedElement. Is is used to model expressions that can be evaluated to an integer value.
Associations

None.
Attributes

None.
Wellformedness Rules

• type.oclIsKindOf(Integer) An IntegerExpression evaluates to Integer.

3.3.8 Slot

Description
A Slot is a TypedElement that attaches ValueSpecifications to a TypedElement, i.e. it links a TypedElement

and its value(s). It is possible that a value is absent, it is also possible that there is more than one value attached
to a TypedElement. A Slot is a RedefinableElement and a NamedElement by inheritance. Slot is abstract and
must be used by its concrete specializations.
Associations

• spec:TypedElement[1]
• value:ValueSpecification[0..*]
• lit:EnumerationLiteral[0..*]

Attributes
None.

Wellformedness Rules

20



• redefinedElement->size()=0 A Slot is not redefined.
• outgoing->size()=0 A Slot is not part of DirectedRelationships.
• name=spec.name A Slot has the same name as its associated Type-

dElement that is used as specification.
• (type=spec.type) The type of a Slot conforms to the type of its asso-

ciated TypedElement.
• spec.type.oclIsTypeOf(String) implies

(lit->size()=0) and
(value->forAll(oclIsTypeOf

(StringExpression))))

If the associated TypedElement has as type String,
the value specification must be a StringExpression.

• spec.type.oclIsTypeOf(Real) implies
(lit->size()=0) and
(value->forAll(oclIsKindOf

(AlgebraicExpression))))

If the associated TypedElement has as type Real, the
value specification must be an AlgebraicExpression.

• spec.type.oclIsKindOf(AnalogReal) implies
(lit->size()=0) and
(value-> forAll(oclIsKindOf

(DifferentialExpression) or
value->forAll(oclIsKindOf

(AlgebraicExpression))))

If the associated TypedElement has as type Real, the
value specification must be a DifferentialExpression
or an AlgebraicExpression.

• spec.type.oclIsTypeOf(Integer) implies
(lit->size()=0) and
(value->forAll(oclIsKindOf

(IntegerExpression))))

If the associated TypedElement has as type Integer,
the value specification must be an IntegerExpression.

• spec.type.oclIsTypeOf(Boolean) implies
(lit->size()=0) and
(value->forAll(oclIsTypeOf

(BooleanExpression))))

If the associated TypedElement is of type Boolean,
the value specification must be a BooleanExpression.

• spec.type.oclIsTypeOf(Enumeration) implies
((value->size()=0)

If the associated TypedElement is of type Enumer-
ation, the value specification must be an Enumera-
tionLiteral.

3.3.9 StringExpression

Description
StringExpression is a kind of Expression and therefore also a a ValueSpecification and a NamedElement by

inheritance. Is is used to model expressions that can be evaluated to a String.
Associations

None.
Attributes

None.
Wellformedness Rules

• type.oclIsKindOf(String) A StringExpression evaluates to String.

3.3.10 ValueSpecification

Description A ValueSpecification is a TypedElement and therefore also a RedefinableElement and a NamedEle-
ment by inheritance. A ValueSpecification describes the definition of a value.
Associations

None.
Attributes

None.
Wellformedness Rules

• type->size()=1 A ValueSpecification has a type.
• rel->size()=0 There are no outgoing relationships.
• redefinedElement->size()=0 ValueSpecifications are not redefined.
• name->size()=0 A ValueSpecification does not have a name.

21



3.4 Data

The package Data describes the usage of data and data types in HybridUML Models. This can be either
in form of Variables or in form of Signals equipped with Parameters. We distinguish ActualParameters and
FormalParameters.

Variables can be grouped in Structures to define a new data type.. Here, Operations can be used to work
on these variables. Pre- and postconditions of operations are defined by constraints. VariableSlots are used to
assign ValueSpecifications to Variables.

Variables, signals, and operations are MultiplicityElements, i.e. there is an lower and upper bound. Access
to variables is given by its VariableAccessKind that can be either readOnly or readWrite. Similarly, signals have
a SignalAccessKind that is send or receive.

RedefinableElement DataType

<<enumeration>>

send
receive

SignalAccessKind

<<enumeration>>
VariableAccessKind

readOnly
readWrite

IntegerExpression
lowerBound

upperBound

TypedElement

Signal

kind:SignalAccessKind kind:VariableAccessKind

Variable

0..1

1 0..1

1

1..*

vars

Parameter

ActualParameter

FormalParameter

params0..*

0..1

params

specs
0..*

1
0..1

Slot

0..1

ops

spec1

0..1

StructureMultiplicityElement

0..*

0..1

VariableSlot Constraint

0..1

postpre 11

0..10..1

Operation

Figure 3.5: Data package

3.4.1 ActualParameter

Description
ActualParameter is a kind of Parameter and of VariableSlot and therefore also a Slot, a Variable, a Multi-

plicityElement, a TypedElement, a RedefinableElement, and a NamedElement by inheritance. It is used as a
actual parameter, i.e. it assigns ValueSpecifications to FormalParameters.
Associations

• spec:FormalParameter[1]
Attributes

None.
Wellformedness Rules

• redefinedElement->size()=0 An ActualParameter is not redefined.

3.4.2 FormalParameter

Description

22



FormalParameter is a kind of Parameter and therefore also a Variable, a MultiplicityElement, a TypedEle-
ment, a RedefinableElement, and a NamedElement by inheritance. It is used for specifying formal parameters
of Agents, Modes, Operations, and Signals.
Associations

None.
Attributes

None.
Wellformedness Rules

• name->size()=1 A FormalParameter must have a name.

3.4.3 MultiplicityElement

Description
MultiplicityElement is RedefinableElement and therefore also a NamedElement. Is is used to model sets of

elements with a given upper and lower boundary to model the size() of the set. To allow expression like n + 4,
the boundaries are IntegerExpressions. MultiplicityElement is abstract and can only be used by its concrete
specializations.
Associations

• upperBound:IntegerExpression[1]
• lowerBound:IntegerExpression[1]

Attributes
None.

Wellformedness Rules
• upperBound≥lowerBound The upper boundary must be greater or equal than

the lower boundary.
• redefinedElement->size()=1 implies

(redefinedElement.
oclIsTypeOf(MultiplicityElement)

and
let r:MultiplicityElement=

redefinedElement.oclAsType
(MultiplicityElement)

in
((r.upperBound<>self.upperBound) or
(r.lowerBound<>self.lowerBound)))

A MultiplicityElement can only redefine another
MultiplicityElement by replacing the IntegerExpres-
sions for the upper and lower boundary.

3.4.4 Operation

Description
An Operation is a TypedElement and a MultiplicityElement and therefore also a NamedElement and a

RedefinableElement by inheritance. An Operation may have parameters and is associated to a pre- and post-
condition to describe the behavior of the Operation. The type of the return value is the type of the operation,
if there is no return value, the operation has no type.
Associations

• pre:Constraint[1]
• post:Constraint[1]
• params:FormalParameter[0..*]

Attributes
None.

Wellformedness Rules

23



• name->size()=0 An Operation must have a name.
• pre.kind=pre The kind of the precondition constraint must be pre.
• post.kind=post The kind of the postcondition constraint must be

post.
• lowerBound=1 The lower boundary is one.
• rel->size()=0 An Operation is not involved in Relationships.
• params->forAll(p1, p2 |

p1.name<>p2.name)
Parameters must have distinct names.

• redefinedElement->size()=1 implies
(redefinedElement.oclIsTypeOf(Operation))
and
(let o:Operation=

redefinedElement.oclAsType(Operation)
in

((o.pre<>self.pre) or
(o.post<>self.post) or
((o.params->size() ≤

self.params->size()) and
(o.params->forAll(p1 |

self.params->includes(p1) or
self.params->one(p2 |

p2.redefinedElement=p1))))

An Operation can only redefine another Operation
by changing the pre- or postcondition or by redefin-
ing or adding parameters.

3.4.5 Parameter

Description
A Parameter is a Variable and therefore also a MultiplicityElement, a RedefinableElement, and a NamedEle-

ment. Parameters are always read-only. Parameter is abstract and can only be used by its concrete specializa-
tions.
Associations

None.
Attributes

None.
Wellformedness Rules

• kind=readOnly Parameters are always read-only.
• redefinableElement->size()=1 implies

redefinableElement.oclIsTypeOf(Parameter)
Parameters can only redefine other Parameters.

• rel->size()=0 A Parameter is not part of Relationships.
• type.oclIsTypeOf(Real) or

type.oclIsTypeOf(Integer) or
type.oclIsTypeOf(Boolean) or
type.oclIsTypeOf(String) or
type.oclIsTypeOf(Enumeration) or
type.oclIsTypeOf(Structure)

A Parameter is either an Integer, a Real, a Boolean,
a String, an Enumeration or a Structure.

• type.oclIsTypeOf(Structure) implies
type->flatten()->select(x |

x.oclIsKindOf(Variable))->forAll
(v | not v.oclIsKindOf(AnalogReal))

If the type of the variable is Structure, then no part
of this structure may be AnalogReal.

3.4.6 Signal

Description
Signal is a MultiplicityElement and therefore also a RedefinableElement and a NamedElement by inheritance.

A Signal has zero or many FormalParameters. Its kind is given as a SignalAccessKind that is either receive or
send.
Associations

• params:FormalParameter[0..*]
Attributes

• kind:SignalAccessKind[1]

24



Wellformedness Rules
• name->size()=1 A Signal must have a name.
• lowerBound->size()=1 The lowerBound is always 1.
• params->forAll (p1,p2 |

p1.name<>p2.name)
Parameters must have distinct names.

• rel->size()=0 Signals are not part of Relationships.
• redefinedElement->size()=1 implies

(redefinedElement.oclIsTypeOf(Signal)
and
let r:Signal=

redefinedElement.oclAsType(Signal)
in

((r.kind=self.kind) and
(r.params->size()≤

self.params->size()) and
(r.params->forAll

(p1 | self.params->includes(p1) or
self.params->one(p2 |

p2.redefinedElement=p1))))

A Signal can only redefine another Signal of the same
kind. The number of parameters cannot be reduced
and all parameters of the redefined signal must be
included in the parameters of the redefining signal
or redefined by that. Parameters can be added but
not removed.

3.4.7 SignalAccessKind

Description
A signal can be either sent or received.

Associations
None.

Attributes
• send
• receive

Wellformedness Rules
None.

3.4.8 Structure

Description
Structure is a kind of DataType and therefore also a NamedElement by inheritance. It is also a Package-

ableElement and a RedefinableElement. Each Structure consists of Variables and Operations. The name of a
Structure is the name of the DataType is supports. Structures can be used in Generalizations.
Associations

• vars:Variable[1..*]
• ops:Operation[0..*]

Attributes
None.

Wellformedness Rules

25



• name->size()=1 Structures must have a name.
• vars.forAll(v1,v2 | v1.name<>v2.name) The name of all included variables must be distinct.
• ops.forAll(o1,o2 | o1.name<>o2.name) The name of all included operations must be distinct.
• redefinedElement->size()=1 implies

(redefinedElement.oclIsTypeOf
(Structure) and

let r:Structure=
redefinedElement.oclAsType

(Structure)
in

((r.vars->size()≤
self.vars->size()) and

(r.vars->forAll(v1 |
self.vars->includes(v1) or
self.vars->one(v2 |

v2.redefinedElement=v1))) and
(r.ops->size()≤

self.ops->size()) and
(r.ops->forAll(o1 |

self.ops->includes(o1) or
self.ops->one(o2 |

o2.redefinedElement=o2))))

A Structure can only redefine another Structure.
Variables can only be added but not removed, vari-
ables can also be redefined. The same holds for op-
erations.

• (redefinedElement->size()=1 implies
(gen->size()=1)) and

(gen->size()=1 implies
(redefinedElement->size()=1)) and

gen->forAll (g:Generalization |
g.specific implies

redefinedElement->includes(g.specific))

A Structure is redefined by means of generalization.

3.4.9 Variable

Description
Variable is a kind of MultiplicityElement and a kind of TypedElement and therefore also a RedefinableEle-

ment and a NamedElement by inheritance. Each Variable has a name and a type.
Associations

None.
Attributes

None.
Wellformedness Rules

• name->size()=1 Each variable must have a name.
• lowerBound=1 The lowerBound of a variable is always one.
• rel->size()=0 Variables are not part of Relationships.
• redefinedElement->size()=1 implies

redefinedElement.oclIsTypeOf(Variable)
A Variable can only redefine another Variable.

3.4.10 VariableAccessKind

Description
A variable can be either readOnly or readWrite.

Associations
None.

Attributes
• readOnly
• readWrite

Wellformedness Rules
None.

26



3.4.11 VariableSlot

Description
A VariableSlot is a kind of Slot and therefore also a TypedElement, RedefinableElement, and a NamedEle-

ment by inheritance. It is used to associate a Variable with a ValueSpecification.
Associations

• spec:Variable
Attributes

None.
Wellformedness Rules

• rel->size()=0 A VariableSlot is not involved in Relationships.
• spec.oclIsTypeOf(Structure) and

spec.value->size()≥1 implies
spec.vars->flatten()->forAll

(v:Variable |
v.oclIsTypeOf(Real) implies

value->isUnique(s |
s.oclIsTypeOf(AlgebraicExpression))

and
v.oclIsTypeOf(Integer implies

value->isUnique(s |
s.oclIsTypeOf(IntegerExpression))

and
v.oclIsTypeOf(AnalogReal) implies

value->isUnique(s |
s.oclIsTypeOf(AlgebraicExpression)
or
s.oclIsTypeOf(DifferentialExpression)))

and
v.oclIsTypeOf(Boolean) implies

value->isUnique(s |
s.oclIsTypeOf(BooleanExpression))

and
v.oclIsTypeOf(String) implies

value->isUnique(s |
s.oclIsTypeOf(StringExpression))

and
v.oclIsTypeOf(Enumeration) implies

lit->isUnique(l)))

If the type of the VariableSlot is Structure, then there
exists one ValueSpecification for each Variable in the
structure that conforms to the type of this variable.

3.5 Communications

The Communications package describes the way in which communication structures are modeled. Basically,
there are AgentConnectors that connect AgentPorts and AgentPortSlots that are the instances of AgentPorts.
Each port owns an AgentInterface that determines the direction of communication. These classes are all abstract
and must be used by their concrete specializations.

There are two ways to communicate: by shared variables and by signal transmission. Therefore concrete
communication is modeled either by VariableConnectors, VariablePorts, and VariableInterfaces, or by Signal-
Connectors, SignalPorts, and SignalInterfaces.

3.5.1 AgentConnector

Description
AgentConnectors are Relationships that are used to model communication lines between two or more Agent-

Ports or AgentPortSlots. They are abstract and can only be used by their concrete specializations.
Associations

• end:AgentPort[2..*]
Attributes

None.

27



AgentConnector
2..*
end

1..*
rel AgentConnectorEnd

ModelElementRelationship

AgentPort AgentInterface
provided

required

1 0..1

0..11

RedefinableElement

SignalConnector VariableConnector Slot

1

0..1

spec

SignalInterfaceAgentPortSlot

sig1

0..1

VariableInterface

Variable

var1

0..1

SignalPort SignalVariablePort

Figure 3.6: Communications package

Wellformedness Rules
• end->forAll(e1,e2 | e1<>e2) All ends of the connector must be distinct.
• end->select(e | e.oclIsTypeOf(AgentPort))->

size()<=1
There is at most one end of the connector that is an
AgentPort.

3.5.2 AgentConnectorEnd

Description
AgentConnectorEnd is a ModelElement that is used to model the end of a connector. AgentConnectorEnd

is abstract and can only be used by its concrete specializations.
Associations

None.
Attributes

None.
Wellformedness Rules

None.

3.5.3 AgentInterface

Description
AgentInterface are RedefinableElements and therefore also NamedElements by inheritance. They are used

to model interfaces which support either shared variable or signal communication. AgentInterface is abstract
and can only be used by its concrete specializations.
Associations

None.
Attributes

None.
Wellformedness Rules

• redefinedElements->size()=1 implies
redefinedElement.oclIsTypeOf

(AgentInterface)

An AgentInterface can only redefine another
AgentInterface.

3.5.4 AgentPort

Description
AgentPorts are RedefinableElements and therefore also NamedElements by inheritance. They are used to

bind interfaces to Agents and are therefore interaction points of Agents. Each AgentPort owns one required or
provided interface. AgentPort is abstract and can only be used by its concrete specializations.
Associations

• required:AgentInterface[0..1]
• provided:AgentInterface[0..1]

Attributes
None.

Wellformedness Rules

28



• required->size()+provided->size()=1 There is exactly one required or provided AgentIn-
terface.

• redefinedElement->size()=1 implies
(redefinedElement.oclIsTypeOf(AgentPort)
and
(required->size()=1 implies

(self.required.redefinedElement=
redefinedElement.required)) and

(provided->size()=1 implies
(self.provided.redefinedElement=

redefinedElement.provided)))

An AgentPort can only redefine another AgentPort
by redefining the associated AgentInterface.

• outgoing->size()=0 AgentPorts are not used in DirectedRelationships.
• (required->size()=1 implies

(required.name=self.name)) and
(provided->size()=1 implies

(provided.name=self.name))

The name of the port is the name of the associated
interface.

3.5.5 AgentPortSlot

Description
An AgentPortSlot is the instance specification of an AgentPort. It is a kind of Slot and therefore also a

TypedElement, a RedefinableElement and a NamedElement by inheritance.
Associations

• spec:AgentPort[1]
Attributes

None.
Wellformedness Rules

29



• name=spec.name The name of the AgentPortSlot is the name of its
associated AgentPort.

• redefinedElement->size()=0 An AgentPortSlot is not redefined.
• rel->size()=0 An AgentPortSlot is not part of relationships.
• spec.oclIsTypeOf(SignalPort) implies

value->size()=0 and
lit->size()=0

If the associated AgentPort is a SignalPort, then
there is no value of literal in the slot.

• spec.oclIsTypeOf(AgentPort) implies
required.var->union(provided.var)->

flatten()->forAll(v:Variable |
v.oclIsTypeOf(Real) implies

value->isUnique(s |
s.oclIsTypeOf(AlgebraicExpression))

and
v.oclIsTypeOf(Integer implies

value->isUnique(s |
s.oclIsTypeOf(IntegerExpression))

and
v.oclIsTypeOf(AnalogReal) implies

value->isUnique(s |
s.oclIsTypeOf(AlgebraicExpression)
or

s.oclIsTypeOf(DifferentialExpression)))
and
v.oclIsTypeOf(Boolean) implies

value->isUnique(s |
s.oclIsTypeOf(BooleanExpression))

and
v.oclIsTypeOf(String) implies

value->isUnique(s |
s.oclIsTypeOf(StringExpression))

and
v.oclIsTypeOf(Enumeration) implies

lit->isUnique(l)))

If the associated AgentPort is a VariablePort, there
exists a ValueSpecification for this variable.

3.5.6 SignalConnector

Description
SignalConnector is a kind of AgentConnector and therefore also a Relationship by inheritance. Is is used to

connect SignalPorts and their instances to model signal communication ways.
Associations

• end:AgentPort[2..*]
Attributes

None.
Wellformedness Rules

• end->forAll(e |
e.oclIsTypeOf(SignalPort) or
(e.oclIsTypeOf(AgentPortSlot) and

e.spec.oclIsTypeOf(SignalPort)))

All ends are SignalPorts or instances of SignalPorts.

3.5.7 SignalInterface

Description
SignalInterface is a kind of AgentInterface and therefore also a RedefinableElement and a NamedElement

by inheritance. Each SignalInterface represents one Signal.
Associations

• signal:Signal[1]
Attributes

None.

30



Wellformedness Rules
• name=signal.name The name of the interface is the name of the associ-

ated signal.
• redefinedElement->size()=1 implies

(redefinedElement.oclIsTypeOf
(SignalInterface) and

let r:SignalInterface=
redefinedElement.oclAsType

(SignalInterface)
in

(self.signal.redefinedElement=
r.signal))

A SignalInterface can only redefine another Signal-
Interface by redefining the associated signal.

3.5.8 SignalPort

Description
SignalPort is a kind of AgentPort and therefore also a RedefineableElement and a NamedElement by inher-

itance. Each SignalPort owns one required or provided SignalInterface.
Associations

None.
Attributes

None.
Wellformedness Rules

• required->union(provided)->forAll
(oclIsTypeOf(SignalInterface))

The owned interface is a SignalInterface.

• redefinedElement->size()=1 implies
redefinedElement.oclIsTypeOf

(SignalPort)

A SignalPort can only redefine another SignalPort.

3.5.9 VariableConnector

Description
VariableConnector is a kind of AgentConnector and therefore also a Relationship by inheritance. Is is used

to connect VariablePorts and their instances to model shared variable communication ways.
Associations

• end:AgentPort[2..*]
Attributes
Wellformedness Rules

• end->forAll(e |
e.oclIsTypeOf(VariablePort) or
(e.oclIsTypeOf(AgentPortSlot) and

e.spec.oclIsTypeOf(VariablePort)))

All ends are VariablePorts or their instances.

3.5.10 VariableInterface

Description
VariableInterface is a kind of AgentInterface and therefore also a RedefinableElement and a NamedElement

by inheritance. Each VariableInterface represents one shared Variable.
Associations

• var:Variable[1]
Attributes

None.
Wellformedness Rules

31



• name=var.name The name of the interface is the name of the associ-
ated variable.

• redefinedElement->size()=1 implies
(redefinedElement.oclIsTypeOf

(VariableInterface) and
let r:VariableInterface=

redefinedElement.oclAsType
(VariableInterface)

in
(self.var.redefinedElement=r.var))

A VariableInterface can only redefine another Vari-
ableInterface by redefining the associated shared
variable.

3.5.11 VariablePort

Description
VariablePort is a kind of AgentPort and therefore also RedefinableElements and NamedElements by inheri-

tance. Each VariablePort owns one required or provided VariableInterface.
Associations

None.
Attributes

None.
Wellformedness Rules

• required->union(provided)->forAll
(oclIsTypeOf(VariableInterface))

The owned interface is a VariableInterface.

• redefinedElement->size()=1 implies
redefinedElement.oclIsTypeOf

(VariablePort)

A VariablePort can only redefine another Variable-
Port.

• type.oclIsKindOf(Primitive) or
type.oclIsTypeOf(Enumeration) or
type.oclIsTypeOf(Structure)

The type of a Variable is Primitive, Enumeration or
Structure.

3.6 Modes and Agents

The package Modes and Agents includes the main modeling elements in HybridUML: Agents, AgentInstances,
and Modes. An Agent is used to model the structure of a system, it is itself structured hierarchically by
AgentInstances. An Agent that contains AgentInstances is called composite Agent in contrast to basic Agents.
The behavior of a basic Agent is given by a Mode. The behavior of a composite Agent is given by the parallel
composition of the Modes of the included basic Agents.

A Mode is a hierarchical statemachine, a Mode can therefore include other Modes. Each Mode owns a set
of different constraints: flow conditions that describe the valuation of a variable over time, algebraic conditions
that are evaluated continously, and invariants that must evaluate to true as long as this Mode is active. The
interaction points of Modes are ModePseudostates, namely entry and exit points. Each Mode has at least
one default entry and one default exit point. ModeTransitions start and end at ModePseudostates. Each
ModeTransition has a guard constraint that determines if the transition is activated or not. A signal is used
to trigger a transition. If the transition is taken, one or more ModeActivities can be performed that describe
operation calls, signal sending or variables updates.

3.6.1 Agent

Description
An Agent is a kind of RedefinableElement, a kind of ContainableElement, and a kind of DataType and

therefore also by inheritance a NamedElement. It is the main modeling construct for modeling structure. An
Agent consists of zero to many Parameters, zero to many local Variables, zero to many AgentPorts that provide
global Variables and Signals, and zero to many Operations. An Agent that owns a hierarchical internal structure
is a composite Agent and owns also connectors. An Agent without internal structure is a basic Agent that owns
a Mode.
Associations

32



TypedElement

MultiplicityElement

0..1

0..*
params

pseudos

DirectedRelationship

1

0..1 effect

ModelElement

SignalTrigger

0..* get

0..1 0..*

1 sig

Signal SendActivity
1
sig

0..*

1

0..* trigger

ModeActivity

NamedElement

de
dx
entry
exit
junction

<<enumeration>>
ModePseudostateKind

ModePseudostate

kind:ModePseuostateKind
1 target

incoming 0..* outgoing0..*

1 source

12..* Mode

isLeafMode:Boolean

ModeTransition

0..1

0..* flow

ValueSpecification

value1

1..*

UpdateActivity

0..1

params
0..*

CallActivity

0..1
put
0..*

ActualParameter

0..1
op

1

0..1
0..*

var1

Variable

initState0..1

1

0..* subagents

0..*

AgentPort

agentmode
0..1 0..1

0..* alge

0..1

0..1 inv

0..1

params

0..1

0..*

SpecificationParameter

Constraint0..1
guard

0..1

AgentConnector

1

ports

spec
1

Agent

isCompositeAgent:Boolean

DataType

ContainableElement

RedefinableElement

1

conns0..*

0..1

0..* locals

params0..*

0..1

AgentPortSlot

0..*

0..*

1

ports

1

locals
0..*VariableSlot

Operation

AgentInstance

Figure 3.7: Modes and Agents package

• params:SpecificationParameter[0..*]
• locals:Variable[0..*]
• ports:AgentPort[0..*]
• mode:Mode[0..1]
• subagents:AgentInstance[0..*]
• conns:AgentConnector[0..*]
• ops:Operation[0..*]

Attributes
• /active:Boolean
• /isComposite:Boolean

Wellformedness Rules

33



• name->size()=1 An Agent must have a name.
• isComposite: subagents->size()≥1 An Agent is a composite Agent if there is at least

one subagent.
• active: mode->size()=1 An Agent is active if there is an associated Mode.
• isComposite=true implies

mode->size()=0
A composite Agent owns no Mode.

• params->union(locals)->union
(ports->select(p |

p.oclIsTypeOf(VariablePort))->
forAll(v1,v2 |

v1.name<>v2.name)

All parameters, local and global variables have dis-
tinct names.

• containedElement->forAll(c |
c.oclIsTypeOf(Agent))

All containedElements are Agents.

• subagents->forAll(s |
containedElement->includes(a |

s.spec=a))

All contained AgentInstances are instances of con-
tained Agents.

• redefinedElement->size()=1 implies
redefinedElement.subagents->size()=0 and
redefinedElement.mode->size()=0

An Agent can only be redefined if there are no sub-
agents and no mode.

• redefinedElement->size()=1 implies
((redefinedElement.locals->size()

≤locals->size()) and
(redefinedElement.ports->size()

≤ports->size()) and
(redefinedElement.params->size()

≤params->size()) and
(redefinedElement.ops->size()

≤ops->size()) and
(redefinedElement.locals->forAll(l1 |

locals->includes(l1) or
locals->includes(l2 |

l2.redefinedElement=l1))) and
(redefinedElement.ports->forAll(p1 |

ports->includes(p1) or
ports->includes(p2 |

p2.redefinedElement=p1))) and
(redefinedElement.params->forAll(p1 |

params->includes(p1) or
params->includes(p2 |

p2.redefinedElment=p1))) and
(redefinedElement.ops->forAll(o1 |

ops->includes(o1) or
ops->includes(o2 |

o2.redefinedElement=o1))))

An Agent is redefined by adding or redefining vari-
ables, ports, parameters, and operations.

• redefinedElement->size()=1 implies
gen->size()=1

An Agent is redefined by Generalization.

3.6.2 AgentInstance

Description
An AgentInstance is MultiplicityElement and a TypedElement and therefore also a RedefinableElement and

a NamedElement by inheritance. The type of an AgentInstance is given by the corresponding Agent that serves
as specification for the AgentInstance. The initial state of variables can be given as a Constraint.
Associations

• spec:Agent[1]
• initState:Constraint[0..1]
• ports:AgentPortSlot[0..*]
• locals:AgentInstance[0..*]
• params:ActualParameter[0..*]

34



Attributes
None.

Wellformedness Rules
• ports->forAll(p1 |

spec.ports->isUnique(p2 |
p2.spec=p1))

For each AgentPortSlot of the instance there exists
an AgentPort in the associated Agent.

• locals->forAll(l1 |
spec.locals->isUnique(l2 |

l2.spec=l1))

For each VariableSlot of the instance there exists a
Variable in the associated Agent.

• params->forAll(p1 |
spec.params->isUnique(p2 |

p2.spec=p1))

For each ActualParameter of the instance there ex-
ists a FormalParameter in the associated Agent.

• initState.kind=BooleanExpression The initState is a BooleanExpression.
• type.oclIsKindOf(spec) The type of the AgentInstance is the associated

Agent.
• outgoing->size()=0 An AgentInstance is not involved in DirectedRela-

tionships.
• redefinedElment->size()=0 An AgentIntstance is not redefined.

3.6.3 CallActivity

Description
A CallActivity is a ModeActivity that is used to model an operation call with actual parameters.

Associations
• op:Operation[1]
• params:ActualParameter[0..*]

Attributes
None.

Wellformedness Rules
• op.params->forAll(p1 |

params->isUnique(p2 |
p2.spec=p1))

For each parameter of the Operation there is an Ac-
tualParameter that has as spec this parameter.

3.6.4 Mode

Description
A Mode is a kind of ContainableElement, and therefore also a NamedElement by inheritance. It is used as

main modeling element for modeling behavior. A Mode consists of at least two ModePseudostates that are the
default entry and exit point and may own more ModePseudostates. It may have zero to many flow conditions,
zero to many algebraic condition, and at most one invariant condition. In addition, FormalParameters can be
used.
Associations

• params:SpecificationParameter[0..*]
• flow:Constraint[0..*]
• alge:Constraint[0..*]
• inv:Constraint[0..1]
• agent:Agent[0..1]
• pseudos:ModePseudostate[2..*]

Attributes
• isLeafMode:Boolean
• isTopLevelMode:Boolean

Wellformedness Rules

35



• name->size()=1 A Mode has a name.
• rel->size()=0 A Mode is not involved in Relationships.
• containedElement->forAll(e |

e.oclIsTypeOf(Mode))
All contained elements are Modes.

• isLeafMode: containedElement->size()=0 A Mode without contained Submodes is a leaf mode.
• isTopLevelMode: container->size()=0 A Mode without container is called top-level Mode.
• containedElement->forAll(e |

e.agent=self.agent)
Submodes belong to the same Agent as their Mode.

• params->forAll(p1,p2 |
p1.name<>p2.name)

All parameters have distinct names.

• flow->forAll(kind=flow) The flow constraints are of kind flow.
• flow->forAll(f|

f.constrainedElement->includes(self) and
f.constrainedElement->includes(c |

agent->locals->includes(c) or
agent->ports->includes(p |

p.oclIsTypeOf(VariablePort) and
p.var=c) and

c.oclIsKindOf(AnalogReal)))

A flow constraint constrains the Mode itself and a lo-
cal or global variable of the Agent the Mode belongs
to. The variable must be of type AnalogReal.

• alge->forAll(kind=alge) The algebraic constraints are of kind alge.
• alge->forAll(f|

f.constrainedElement->includes(self) and
f.constrainedElement->includes(c |

agent->locals->includes(c) or
agent->ports->includes(p |

p.oclIsTypeOf(VariablePort) and
p.var=c) and

c.oclIsKindOf(Real)))

An algebraic constraint constrains the Mode itself
and a local or global variable of the Agent the Mode
belongs to. The variable must be of kind Real.

• inv->forAll(kind=inv) The invariant is of kind inv.
• inv->forAll(f|

f.constrainedElement->includes(self))
An invariant constraint constrains the Mode itself.

• pseudos->one(p | p.kind=de) There is one ModePseudostate that is of kind default
entry.

• pseudos->one(p | p.kind=dx) There is one ModePseudostate that is of kind default
exit.

• isLeafMode=true implies
(pseudos.size()=2)

A leaf Mode has exactly two ModePseudostates: a
default entry one and a default exit one.

• isTopLevelMode=true implies
pseudos->size()≥3 and
pseudos->includes(p |

p.kind=entry)

A top-level Mode has at least three ModePseu-
dostates: one default entry point, one default exit
point, and one entry point that marks the initial
point.

• pseudos->forAll(p |
p.outgoing->forAll(t |

t.trigger->forAll(tr |
agent.ports->includes(p |

p.oclIsTypeOf(SignalPort) and
p.sig=tr.sig))))

The triggers of all transitions of a Mode must refer to
a signal supported by a SignalPort of the associated
Agent.

• pseudos->forAll(p |
p.outgoing->forAll(t |

t.effect->select(e |
e.oclIsTypeOf(SendActivity))->

forAll(s |
agent.ports->includes(p |

p.oclIsTypeOf(SignalPort)
and
p.sig=s.sig))))

The SendActivities of all transitions of a Mode must
refer to a signal supported by a SignalPort of the
associated Agent.

36



• pseudos->forAll(p |
p.outgoing->forAll(t |

t.effect->select(e |
e.oclIsTypeOf(CallActivity))->

forAll(c |
agent.ops->includes(o |

o=c.op))))

The CallActivities of all transitions of a Mode must
refer to an operation supported by the associated
Agent.

• pseudos->forAll(p |
p.outgoing->forAll(t |

t.effect->select(e |
e.oclIsTypeOf(UpdateActivity))->

forAll(u |
agent.vars->includes(v |

v=u.var) or
agent.ports->includes(p |

p.oclIsTypeOf(VariablePort)
and
p.var=v.var))))

The UpdateActivities of all transitions of a Mode
must refer to a variable supported by the associated
Agent either as local or as global variable.

3.6.5 ModeActivity

Description
ModeActivity is a ModelElement that is used to describe the activities that are performed if a ModeTransition

is taken. ModeActivity is abstract and must be used by its concrete specializations.
Associations

None.
Attributes

None.
Wellformedness Rules

None.

3.6.6 ModePseudostate

Description
A ModePseudostate is a NamedElement that is used to model entry, exit, and junction points of Modes.

ModePseudostates are sources and targets of ModeTransitions.
Associations

• outgoing:ModeTransition[0..*]
Attributes

• kind:ModePseudostateKind[1]
Wellformedness Rules

• rel->forAll(oclIsTypeOf(ModeTransition)) All relationships are ModeTransitions.
• outgoing->forAll(t1,t2 |

(t1.target=t2.target) implies
((t1.trigger.signal<>

t2.trigger.signal) or
((t1.trigger.signal=

t2.trigger.signal) and
(t1.guard.expr<>

t2.guard.expr))))

Two transitions with the same target must have ei-
ther distinct triggers or the same trigger but distinct
guards.

• outgoing->size()≥1 implies
((kind=dx) or
(kind=exit))

Only (default) exit points can own transition.

• ((kind=exit) implies
(outgoing->size()≥1)

Exit points must have outgoing transitions.

3.6.7 ModePseudostateKind

Description

37



ModePseudostateKind describes the different kinds of ModePseudostates. There are default entry points
de, default exit points dx, entry points, and exit points.
Associations

None.
Attributes

• de
• dx
• entry
• exit

Wellformedness Rules
None.

3.6.8 ModeTransition

Description
ModeTransition is a kind of DirectedRelationship that is used to connect a target and a source ModePseu-

dostate. It has at most one guard, at most one trigger and zero to many effects that either send signals, call
operations, or update variables.
Associations

• target:ModePseueostate[1]
• trigger:SignalTrigger[0..1]
• guard:Constraint[0..1]
• effect:ModeActivity[0..*]

Attributes
None.

Wellformedness Rules
• guard->size()=1 implies

guard.kind=guard
A Constraint that describes a guard must be of kind
guard.

• guard->constrainedElement=self The guard condition constrains the ModeTransition.
• (target.kind=de) or

(target.kind=entry)
A target of a ModeTransition is a (default) entry
point.

3.6.9 SendActivity

Description
A SendActivity is a kind of ModeActivity. It assigns actual parameters to a signal.

Associations
• sig:Signal[1]
• put:ActualParameter[0..*]

Attributes
None.
• sig.params->forAll

(p1 | put.spec=p1)
For each parameter of the associated signal there ex-
ists an actual parameter.

3.6.10 SignalTrigger

Description
SignalTrigger is a ModelElement that is used to describe that a specific Signal triggers a ModeTransition.

The signal has actual parameters.
Associations

• sig:Signal[1]
• get:ActualParameter[0..*]

Attributes
None.

Wellformedness Rules
• sig.params->forAll

(p1 | get.spec=p1)
For each parameter of the associated signal there ex-
ists an actual parameter.

38



3.6.11 UpdateActivity

Description
An UpdateActivity is a kind of ModeActivity and that associates a Variable with a ValueSpecification.

Associations
• var:Variable[1]
• value:ValueSpecification[1..*]

Attributes
None.

Wellformedness Rules
• value.spec=var The variable of the UpdateActivity is the specifica-

tion for the associated ValueSpecification.

39



Chapter 4

HybridUML Profile

In this part, we define the HybridUML profile, based on the UML Superstructure Specification [OMG05a] as
the reference metamodel. We define stereotypes for modeling datatypes not provided by UML 2.0, for time, for
specific expressions and constraints, for communication based on shared variables and signals, for agents, and
modes.

In a HybridUML model, these stereotypes as well as the datatypes mentioned in section 4.1 should be used.
Other modeling elements do not have semantics with respect to HybridUML.

4.1 Data

In HybridUML, only typed variables are used. UML 2.0 defines Integer, UnlimitedNatural, Boolean, and String
as datatypes. Integer, Boolean, and String are needed out of these. Instances of Integer-typed variables are
values out of N while instances of Boolean-typed variables are values out of {true, false}. Instances of String-
typed variables are finite sequences of characters from a finite alphabet, e.g. Unicode.

Further, real-valued variables are needed as these are not covered by UML 2.0. We extend PrimitiveType
for getting a Real datatype in HybridUML. To distinguish between real-valued variables that can be changed
exclusively discretely and real-valued variables whose value may also vary while time is passing, also AnalogReal
variables are introduced as a further specialization of Real.

For better readability, StructuredDataType is introduced in HybridUML as an extension of DataType.
Variables which represent related information are merged in a structure that can be used as datatype afterwards.

4.1.1 AnalogReal

Description AnalogReal is a specialization of Real (see Fig. 4.2) that defines an analog real number. AnalogReal
variables are used in Modes to describe the time-continuous behavior of analog variables in flow conditions,
algebraic expressions, and invariants.
Attributes No additional attributes.
Associations No additional associations.
Constraints No additional constraints.
Semantics AnalogReal instances are values of R. The value is changing over time according to a given RTEx-
pression in the context of a Mode. See Mode for further details.
Notation

Graphical Notation AnalogReal will appear as the type of attributes (see Fig. 4.1). The corresponding
RTExpression that describes the behavior of an AnalogReal-typed variable is given in Modes.

Textual Notation

4.1.2 Real

Description Real is an extension of Classes::Kernel::PrimitiveType (see Fig. 4.2) that defines a real-valued
number.
Attributes No additional attributes.
Associations No additional associations.

40



<<agent>>

public
x:AnalogReal

t:Clock
data:ThermostatData

private

Thermostat
(m:Real, M:Real)

Figure 4.1: Usage of AnalogReal Variables

�stereotype�

�stereotype�

PrimitiveType
(from Kernel) Real

AnalogReal

Figure 4.2: Stereotype for Real Numbers

Constraints No additional constraints.
Semantics Real instances are values of R.
Notation

Graphical Notation Real appears as the type of attributes (see Fig. 4.1 and Fig. 4.4).

Textual Notation

4.1.3 StructuredDataType

Description StructuredDataType is an extension of Classes::Kernel::DataType (see Fig. 4.3) that defines a
datatype consisting of different variables, i.e. a structure or - object-oriented - a class without methods.

(from Kernel)
DataType

StructuredDataTypebase
�stereotype�

Figure 4.3: Stereotype for StructuredDataType

Attributes No additional attributes.
Associations No additional associations.
Constraints

• There are only attributes, no operations, i.e.
base.ownedOperation->size = 0

• All attributes are typed. i.e.
base.ownedAttribute->forAll(type->size = 1)

• All attributes are typed by DataType, i.e. PrimitiveType, Enumeration, or StructuredDataType:
base.ownedAttribute->forAll(type->forAll(oclIsKindOf(DataType)))

• The type of an attribute is not UnlimitedNatural, i.e.
not base.ownedAttribute->forAll(type->exists (oclIsTypeOf(UnlimitedNatural)))

Semantics StructuredDataType groups variables to a structure for simplifying usage of variables. Semantics
of variables of the structure are according to the types of the variables.
Notation

Graphical Notation In a HybridUML Model, StructuredDataType is used as a stereotype. Elements with
this stereotype will have a name (see Fig. 4.4) and are grouped in a class diagram named package Structured-
DataTypes.

In diagrams of a HybridUML model, these names will be given as the datatype of the corresponding variable
of an Agent (see Fig. 4.1).

41



K:Real

�dataType�

θ:Real

package StructuredDataTypes

ThermostatData

h:Real

Figure 4.4: Notation of StructuredDataType in Definition

: Heater : Controller

class Thermostat(20,22)

x

{t = 0}

on()
off()

xon()
off()

{x = data.θ}

{x = data.θ} {data.h = 5}
{data.K = 0.1}
{data.θ = 20}

Figure 4.5: Usage of StructuredDataTypes and Constraints

Parts of the structure are referenced in dot-notation, i.e. name of the variable whose type is a Structured-
DataType, followed by a dot, followed by the name of the part (see Fig. 4.5).

Textual Notation

4.2 Expressions and Constraints

For describing variables whose values evolve continuously over time, different expressions are needed, i.e. dif-
ferential expressions and algebraic expressions. Furthermore, invariant expressions are used for defining state
invariants. We therefore introduce RTExpression as an abstract extension of Expression. DifferentialExpression,
AlgebraicExpression, and InvariantExpression are the concrete subtypes used in modeling.

Often, Expressions are used in combination with Constraints to attach them to a model element, e.g.
invariants in states. We therefore introduce RTConstraint as a Constraint that always is used in combination
with RTExpression.

4.2.1 AlgebraicExpression

Description AlgebraicExpression is a specialization of RTExpression (see Fig. 4.8). It describes non-differential
terms that can be dependent on variables that change over time. AlgebraicExpressions are evaluated continu-
ously to assign a value to an AnalogReal at every moment in time.

Attributes No additional attributes.
Associations No additional associations.
Constraints

• Attribute symbol contains the AlgebraicExpression. It must give a mathematical, non-differential term.
All variable names in symbol must correspond to variables in the model:
Let V be the set of variables in the Mode owning the AlgebraicExpression and Vnum the set of variables
of type Real, AnalogReal, or Integer. Then Vnum ⊆ V . If the set of variables in symbol is Vs, then
Vs ⊆ Vnum. Furthermore, the evaluated variable v must be of type AnalogReal, i.e. v ∈ Va.

Semantics An AlgebraicExpression is a function f : Rn → R
Notation

Graphical Notation Mathematical term, non-differential, e.g. x = f(y, z) where y and z may be time-
continuous variables.

42



Textual Notation

4.2.2 DifferentialExpression

Description DifferentialExpression is a specialization of RTExpression (see Fig. 4.8). It describes differential
terms dependent on time.

Attributes No additional attributes.
Associations No additional associations.
Constraints

• Attribute symbol contains the DifferentialExpression. It must give a differential equation dependent on
time. All variable names in symbol must correspond to variables in the model:
Let V be the set of variables in the Mode owning the DifferentialExpression and Vnum the set of variables
of type AnalogReal, Real, or Integer. Then Vnum ⊆ V . Let Vs be the set of variables in symbol. Then
Vs ⊆ Vnum. Furthermore, the differentiated variable v must be of type AnalogReal, i.e. v ∈ Va.

Semantics A DifferentialExpression is a differentiable function f : Rn → R.
Notation

Graphical Notation Mathematical term, e.g. ẋ = f(x, u), where ẋ is dx
dt .

Textual Notation

4.2.3 InvariantExpression

Description InvariantExpression is a specialization of RTExpression (see Fig. 4.8). It is used to model invari-
ants in Modes. Attributes No additional attributes.

Associations No additional associations.
Constraints

• Attribute symbol contains the InvariantExpression. It must give an invariant as logical expression. All
free variable names in symbol must correspond to variables in the model:
Let V be the set of variables in the Mode owning the InvariantExpression and Vs the set of free variables
in symbol. Then Vs ⊆ V .

Semantics An InvariantExpression is an invariant given as logical expression.
Notation

Graphical Notation Logical expression, e.g. x ≤ c.

Textual Notation

4.2.4 RTConstraint

Description RTConstraint is an extension of Classes::Kernel::Constraint. It holds an RTExpression that defines
the constraint.

RTConstraint
Constraint

(from Kernel) base

{required} �stereotype�

Figure 4.6: Stereotype for RTConstraint

Attributes No additional attributes.
Associations No additional associations
Constraints

• The given specification must be an RTExpression, i.e.
base.specification->forAll(oclIsKindOf(RTExpression))

Semantics According to the included RTExpression. For details, see RTExpression, Agent, and Mode.
Notation

43



Graphical Notation RTConstraint is visualized in the same way as UML 2.0 constraints, i.e. an RTExpres-
sion term given in curly brackets (see Fig. 4.5). In Modes, brackets are used (see Fig. 4.7).

OnOff

statemachine ControllerMode

[ inv: x ≤ M ]

init [ flow: ẋ = data.h-data.K·x ]
[x=m]/on()

[ inv: x ≥ m ]

[x=M]/off()

[ flow: ẋ = -data.K·x ]

Figure 4.7: Usage of Constraints in Modes

Textual Notation

4.2.5 RTExpression

Description RTExpression is an extension of Classes::Kernel::Expression (see Fig. 4.8). It defines mathematical
and logical terms that may be dependent on time. RTExpression is an abstract metaclass that cannot be
instantiated.

Expression

DifferentialExpression

RTExpression

AlgebraicExpression InvariantExpression

(from Kernel) {required}

�stereotype� �stereotype��stereotype�

�stereotype�

Figure 4.8: Stereotypes for RTExpressions

Attributes No additional attributes.
Associations No additional associations.
Constraints

• The real-time expression is given in attribute symbol as a string, just as in Expression. The expression
must be mathematically or logically evaluable.

Semantics Semantics are given by the concrete subtypes.
Notation Notation is given by the concrete subtypes.

4.3 Time

For modeling time, we need clocks. This is done by using a variable of type AnalogReal that uses a differential
equation for modeling the flow of time. Therefore we inherit from AnalogReal to get Clock. Beside clocks, timers
are useful. A timer is set with a value and counts downwards until null. This is also modeled by inheriting from
AnalogReal to achieve Timer.

We do not use the UML 2.0 time model as it has no formal semantics and is not powerful enough for our
purposes.

4.3.1 Clock

Description A Clock is a specialization of AnalogReal (see Fig. 4.9). The flow of time is specified by a
DifferentialEquation.

Attributes No additional attributes.
Associations No additional associations.

44



�stereotype�

�stereotype�

�stereotype�
Clock

AnalogReal

Timer

Figure 4.9: Stereotype for Clock

Constraints Let t be the value of a Clock instance. Then the following expression always holds:
ṫ = 1

Semantics Time flow is expressed by DifferentialExpression ṫ = 1 where t is the value of a Clock instance.
As Clock instances are variables, their value can be set in assignments.

Notation

Graphical Notation Clocks are modeled as attribute of type Clock, e.g. x : Clock. As the differential equation
is explicitly given, it is not added as a constraint following the variable (see Fig. 4.10).

<<agent>>

public
x:AnalogReal

t:Clock
data:ThermostatData

private

Thermostat
(m:Real, M:Real)

Figure 4.10: Usage of Clock Variables

Textual Notation

4.3.2 Timer

Description A Timer is a specialization of AnalogReal (see Fig. 4.9). The flow of time is specified by a
DifferentialEquation.

Attributes No additional attributes.
Associations No additional associations.
Constraints Let t be the value of a Timer instance. Then the following expression always holds:

ṫ = −1 ∧ t ≥ 0
Semantics Time flow is expressed by DifferentialExpression ṫ = −1 where t is the value of a Timer instance.

t cannot undershoot 0. As each Timer instance is a variable, its value can be set in assignments.
Notation

Graphical Notation Timers are modeled as attribute of type Timer, e.g. x : Timer. As the differential
equation is explicitly given, it is not added as a constraint following the variable. Therefore the notation is the
same as for Clocks (see Fig. 4.10).

Textual Notation

4.4 Communication Structures

There are two different mechanisms Agents use for communication purposes. The first one is communication over
shared variables, the second one is communication via signals. Both of these are implemented in HybridUML
in the same way.

In UML 2.0, ports are used for defining communication structures. These can own required and provided
interfaces. Ports are linked by connectors whose ends are connector ends. We therefore introduce AgentPort,

45



AgentInterface, AgentConnector and AgentConnectorEnd as abstract stereotypes. Concrete subclasses are
SignalPort, VariablePort, SignalInterface, etc.

Communication via shared variables works by using VariableInterfaces that own exactly one variable each
which is the shared variable. A VariablePort owns exactly one VariableInterface. This is either required or
provided. A required VariableInterface means read access to the variable, a provided VariableInterface means
read/write access. This is visualized by a white- respectively black-filled port. The lollipop notation for
interfaces is not used. VariableConnectors are solid lines that link VariablePorts of the same type, i.e. they own
VariableInterfaces that mirror the same global variable.

Communication via signals work in the same way. A SignalInterface owns exactly one signal of type RTSignal.
A SignalPort owns exactly one required or provided SignalInterface. Here, required means the ability of receiving
that signal while provided means the ability to send that signal. SignalConnectors link SignalPorts. There is
exactly one sender involved in a connection.

We introduce RTSignal as a means for asynchronous communication between Agents. They are extensions
of Signal whose parameters are either Integer, Real, AnalogReal, Boolean, String, or StructuredDataType.
SignalEvents that are extensions of SignalTrigger carry RTSignals. They are used as triggers in Modes. Never-
theless, we prefer the term event as this is more common in statemachines.

4.4.1 AgentConnector

Description AgentConnector is an extension of CompositeStructures::InternalStructures::Connector (see Fig. 4.11).
AgentConnector is an abstract class that cannot be instantiated. Instead, its concrete subclasses SignalCon-
nector and VariableConnector are used.

(from InternalStructures)
Connector

AgentConnector

�stereotype� �stereotype�

{required}

VariableConnector SignalConnector

base

�stereotype�

Figure 4.11: Stereotype for AgentConnector

Attributes No additional attributes.
Associations No additional associations.
Constraints

• All ConnectorEnds are AgentConnectorEnds, i.e.
base.end->forAll(oclIsTypeOf(AgentConnectorEnd))

Semantics Semantics are given by the subtypes VariableConnector and SignalConnector.
Notation Notation is given by the subtypes VariableConnector and SignalConnector.

4.4.2 AgentConnectorEnd

Description AgentConnectorEnd is an extension of CompositeStructures::InternalStructures::ConnectorEnd
(see Fig. 4.12). AgentConnectorEnds are the ends of AgentConnectors and always attached to AgentPorts.
AgentConnector is an abstract class that cannot be instantiated. Instead, its subtypes SignalConnector and
VariableConnector are used.

ConnectorEnd
(from InternalStructures) AgentConnectorEnd

�stereotype� �stereotype�

{required} �stereotype�

VariableConnectorEnd SignalConnectorEnd

base

Figure 4.12: Stereotype for AgentConnectorEnd

Attributes No additional attributes.

46



Associations No additional associations.
Constraints

• All AgentConnectorEnds are attached to AgentPorts, i.e.
base.role->forAll(oclIsTypeOf(AgentPort))

Semantics AgentConnectorEnds are the ends of AgentConnectors. They are always linked to AgentPorts.
Notation AgentConnectorEnd does not have a notation.

4.4.3 AgentInterface

Description AgentInterface in an extension of Classes::Interfaces::Interface (see Fig. 4.13). An AgentInterface
is either a VariableInterface used for communication via shared variables or a SignalInterface used for com-
munication via signals. AgentInterface is an abstract class that cannot be instantiated. Instead, its concrete
subtypes SignalInterface and VariableInterface are used.

(from Interfaces) AgentInterface

�stereotype� �stereotype�

Interface {required}

VariableInterface SignalInterface

base

�stereotype�

1

Signal
(from Communications)

ownedSignal

Figure 4.13: Stereotype for AgentInterface

Attributes No additional attributes.
Associations No additional associations.
Constraints

• AgentInterfaces do not own operations, i.e.
base.ownedOperation->size = 0

• AgentInterfaces are not nested, i.e.
base.nestedInterfaces->size = 0

• Each AgentInterface owns exactly one attribute, i.e.
base.ownedAttribute->size = 1

Semantics AgentInterfaces are used by AgentPorts in HybridUML. Concrete semantics are given by the
subtypes VariableInterface and SignalInterface.

Notation Notation is given by the subtypes VariableInterface and SignalInterface.

4.4.4 AgentPort

Description An AgentPort is an extension of CompositeStructures::Ports::Port (see Fig. 4.14). It owns only
required and provided AgentInterfaces. AgentPorts are always both service ports and behavioral ports, i.e. they
are interaction points of Agents and connected to a statemachine called Mode. Each AgentPort owns exactly
one AgentInterface. AgentPort is an abstract class that cannot be instantiated. Instead, its concrete subtypes
SignalPort and VariablePort are used.

Attributes No additional attributes.
Associations No additional associations.
Constraints

• AgentPorts are service ports, i.e. they specify the functionality of the Agent they belong to:
base.isService = true

47



(from Ports)
Port

AgentPort

�stereotype� �stereotype�

{required} �stereotype�

VariablePort SignalPort

base

Figure 4.14: Stereotype for AgentPort

• AgentPorts are behavior ports, i.e. they are connected to the Mode of the Agent they belong to:
base.isBehavior = true

• AgentPorts own only AgentInterfaces, i.e.
base.required->forAll(oclIsTypeOf(AgentInterface)) and
base.provided->forAll(oclIsTypeOf(AgentInterface))

• Each AgentPort owns exactly one required or provided AgentInterface, i.e.
base.exists(required) implies (base.required->size = 1 and base.provided->size = 0) and
base.exists(provided) implies (base.required->size = 0 and base.provided->size = 1)

• AgentPorts own exactly one AgentInterface at all, i.e.
if base->exists(required) then not(base->exists(provided)) endif and
if base->exists(provided) then not(base->exists(required)) endif

Semantics AgentPorts are used in connection with AgentInterfaces. They are access points for Agents.
AgentPorts are connected by AgentConnectors. Concrete Semantics are given by VariablePort and SignalPort.

Notation Notation is given by the subtypes VariablePort and SignalPort.

4.4.5 RTSignal

Description RTSignal is an extension of CommonBehaviors::Communications::Signal (see Fig. 4.15). It defines
an asynchronous message that may carry parameters.

Signal
RTSignal(from Common Behaviors)

{required}
base

�stereotype�

Figure 4.15: Stereotype for RTSignal

Attributes No additional attributes.
Associations No additional associations.
Constraints

• The parameters owned by VariableInterface are typed, i.e.
base.ownedAttribute->forAll(type->size = 1)

• All attributes are typed by DataType, i.e. PrimitiveType, Enumeration, or StructuredDataType:
base.ownedAttribute->forAll(type->forAll(oclIsKindOf(DataType)))

• The type of an attribute is not UnlimitedNatural, i.e.
not base.ownedAttribute->forAll(type->exists (oclIsTypeOf(UnlimitedNatural)))

Semantics RTSignals have semantics in combination with SignalEvents in Modes. See SignalEvent and
Mode for further details.

Notation

Graphical Notation Signals are given by their name, followed by the parameters in parenthesis (see Fig. 4.30).

Textual Notation

48



4.4.6 SignalConnector

Description SignalConnector is a specialization of AgentConnector (see Fig. 4.11). It links SignalPorts whose
required and provided interfaces must be instances of the same SignalInterface, i.e. they send or receive the
same RTSignal.

Attributes No additional attributes.
Associations No additional associations.
Constraints

• All ConnectorEnds are SignalConnectorEnds, i.e.
base.end->forAll(oclIsTypeOf(SignalConnectorEnd))

• All SignalConnectorEnds mirror the same SignalInterface, i.e. the same global variable:
base->forAll(e1, e2:SignalConnectorEnd | e1.role = e2.role)

• There is exactly one sender involved in a connection, i.e.
base->exists(e1:SignalConnectorEnd | e1.role->exists(provided)

and forAll(e2:SignalConnectorEnd | e1 <> e2 implies not e2.role->exists(provided)))

Semantics A SignalConnector connects SignalPorts. All ends of the connector are used to send or receive
the same RTSignal. This signal is defined by the SignalInterface owned by the SignalPorts.

Notation

Graphical Notation SignalConnectors are solid lines between ports (see Fig. 4.16). It is possible that one
or both ends of the connector are attached to ports of Agent instances with a multiplicity. This is a shorthand
notation that must be expanded.

: Heater : Controller

class Thermostat(20,22)

x

{t = 0}

on()
off()

xon()
off()

{x = data.θ}

{x = data.θ} {data.h = 5}
{data.K = 0.1}
{data.θ = 20}

Figure 4.16: Usage of Connectors, Interfaces, and Ports

In the first case, there is a multiple Agent instance at exactly one end of the connector (see Fig. 4.17). This
means that there are in fact as many Agent instances as the multiplicity defines. If the non-multiple end of the
connector is a sending port, there is exactly one connector end for each of the multiple Agent instances (see
Fig. 4.18).

: Agent1 : Agent2[3]

Figure 4.17: Shorthand Notation Case 1a)

If the multiple end is a sending port (see Fig. 4.19), there is exactly one connector from each sending port
to the receiving port (see Fig. 4.19):
In the second case, there are multiple Agent instances at both ends of the connector (see Fig. 4.21. This means
that there are in fact as many Agent instances as the multiplicities define on both ends. On one end, there
must be a sending port (black-filled). Then, there is one connector from each sending port to each port of the
receiving instances (see Fig. 4.22).

Textual Notation

49



: Agent1

: Agent2

: Agent2

: Agent2

Figure 4.18: Shorthand Notation Expanded Case 1a)

: Agent2[3]: Agent1

Figure 4.19: Shorthand Notation 1b)

: Agent1

: Agent2

: Agent2

: Agent2

Figure 4.20: Shorthand Notation Expanded Case 1b)

: Agent2[2]: Agent1[2]

Figure 4.21: Shorthand Notation Case 2

: Agent2

: Agent2

: Agent1

: Agent1

Figure 4.22: Shorthand Notation Expanded Case 2

4.4.7 SignalConnectorEnd

Description SignalConnectorEnd is a specialization of AgentConnectorEnd (see Fig. 4.12). It is an end of a
SignalConnector. SignalConnectorEnds are always attached to SignalPorts.

Attributes No additional attributes.
Associations No additional associations.
Constraints

• All SignalConnectorEnds are attached to SignalPorts, i.e.

50



base.role->forAll(oclIsTypeOf(SignalPort))

Semantics SignalConnectorEnds are the ends of SignalConnectors. They are always linked to SignalPorts.
Notation
SignalConnectorEnd does not have a notation.

4.4.8 SignalEvent

Description SignalEvent is an extension of SignalTrigger (see Fig. 4.23). It is used in correspondence with
ModeTransitions.

SignalEvent
SignalEvent(from Common Behaviors)

{required} �stereotype�
base

Figure 4.23: Stereotype for SignalEvent

Attributes No additional attributes.
Associations No additional associations.
Constraints

• The associated signal is an RTSignal, i.e.
base.signal.oclIsTypeOf(RTSignal)

Semantics Semantics are given in ModeTransition and Mode.
Notation

Graphical Notation SignalEvents have notation in correspondence to their associated RTSignal, i.e. the
name of the RTSignal with the parameters in parenthesis is used.

Textual Notation

4.4.9 SignalInterface

Description SignalInterface is a specialization of AgentInterface (see Fig. 4.13). A SignalInterface is associated
to one RTSignal.

Attributes No additional attributes.
Associations

• ownedSignal:Signal[1]

Constraints

• The owned signal of the SignalInterface is an RTSignal, i.e.
self.ownedSignal.oclIsTypeOf(RTSignal)

• SignalInterfaces do not own attributes, i.e.
base.ownedAttribute->size = 0

Semantics SignalInterfaces are used by SignalPorts in HybridUML. They represent asynchronous messages
send from one Agent to another one. Each interface owns an RTSignal for that purpose. Concrete semantics
are given in SignalConnector.

Notation

Graphical Notation SignalInterfaces own exactly one RTSignal, its name is given as the name of the Signal-
Interface, respectively as the name of the SignalPort that owns the interface. SignalInterfaces are only visualized
in combination with ports (see Fig. 4.16).

Textual Notation

51



4.4.10 SignalPort

Description A SignalPort is a specialization of AgentPort (see Fig. 4.14). It owns one required or provided
SignalInterface.

Attributes No additional attributes.
Associations No additional associations.
Constraints

• SignalPorts own only SignalInterfaces, i.e.
base.required->forAll(oclIsTypeOf(SignalInterface)) and
base.provided->forAll(oclIsTypeOf(SignalInterface))

• A required interface means sending a signal.

• A provided interface means receiving a signal.

Semantics SignalPorts are used in connection with SignalInterfaces. They are access points for Agents.
SignalPorts are connected by SignalConnectors.

Notation

Graphical Notation In composite structure diagrams, SignalPorts are depicted like ports, i.e. a rectangle on
the boundary of the owning classifier. Instead of visualizing the attached SignalInterfaces in lollipop-notation,
a required SignalInterface is a white-filled rectangle and a provided SignalInterface is a black-filled rectangle
(see Fig. 4.16). As every port is connected to a Mode, the state symbol that indicates behavior ports will be
omitted.
In class diagrams, only the RTSignal owned by the SignalInterface of the port will be shown (see Fig. 4.27).

Textual Notation

4.4.11 VariableConnector

Description VariableConnector is a specialization of AgentConnector (see Fig. 4.11). VariableConnectors link
VariablePorts whose required or provided VariableInterfaces must be instances of the same VariableInterface,
i.e. they mirror the same global variable.

Attributes No additional attributes.
Associations No additional associations.
Constraints

• All ConnectorEnds are VariableConnectorEnds, i.e.
base.end->forAll(oclIsTypeOf(VariableConnectorEnd))

• All VariableConnectorEnds mirror the same VariableInterface, i.e. the same global variable:
base->forAll(e1, e2:VariableConnectorEnd | e1.role = e2.role)

Semantics A VariableConnector connects VariablePorts. All ends of the connector mirror the same variable.
This variable is defined by the VariableInterface owned by a VariablePort.

Notation

Graphical Notation AgentConnectors are solid lines between ports (see Fig. 4.16).
If the port belongs to an Agent instance with multiplicity, this is a shorthand notation with the following
meaning: there is exactly one connector end for every instance involved.

: Agent2[2]: Agent1[2]

Figure 4.24: Shorthand Notation Case

Textual Notation

52



: Agent2

: Agent2

: Agent1

: Agent1

Figure 4.25: Shorthand Notation Expanded Case

4.4.12 VariableConnectorEnd

Description VariableConnectorEnd is a specialization of AgentConnectorEnd (see Fig. 4.12). VariableCon-
nectorEnds are the ends of VariableConnectors. They are always attached to VariablePorts.

Attributes No additional attributes.
Associations No additional associations.
Constraints

• All VariableConnectorEnds are attached to VariablePorts, i.e.
base.role->forAll(oclIsTypeOf(VariablePort))

Semantics VariableConnectorEnds are the ends of VariableConnectors. They are always linked to Vari-
ablePorts.

Notation VariableConnectorEnd does not have a notation.

4.4.13 VariableInterface

Description VariableInterface is a specialization of AgentInterface (see Fig. 4.13). A VariableInterface is
associated to one global variable that must be of type Integer, Real, AnalogReal, Boolean, String, or Struc-
turedDataType.

Attributes No additional attributes.
Associations No additional associations.
Constraints

• The property owned by VariableInterface is typed, i.e.
base.ownedAttribute->forAll(type->size = 1)

• All attributes are typed by DataType, i.e. PrimitiveType, Enumeration, or StructuredDataType:
base.ownedAttribute->forAll(type->(oclIsKindOf(DataType)))

• The type of an attribute is not UnlimitedNatural, i.e.
not base.ownedAttribute->forAll(type->exists (oclIsTypeOf(UnlimitedNatural)))

Semantics VariableInterfaces are used by VariablePorts in HybridUML. They represent global variables.
Each interface owns a property that mirrors the value of a global variable, i.e. the properties of connected
interfaces must have the same value. Concrete semantics for this is given in VariableConnector.

Notation

Graphical Notation VariableInterfaces own exactly one property, its name is given as the name of the
VariableInterface, respectively as the name of the VariablePort that owns the interface. VariableInterfaces are
only visualized in combination with VariablePorts (see Fig. 4.16).

Textual Notation

4.4.14 VariablePort

Description A VariablePort is a specialization of AgentPort (see Fig. 4.14). It owns one required or provided
VariableInterface.

Attributes No additional attributes.
Associations No additional associations.
Constraints

53



• VariablePorts own only VariableInterfaces, i.e.
base.required->forAll(oclIsTypeOf(VariableInterface)) and
base.provided->forAll(oclIsTypeOf(VariableInterface))

• A required interface means read access, i.e.
if (base->exists(required)) then

post: self.required.ownedAttribute = self.required.ownedAttribute@pre

• A provided interface means read/write access, i.e. normal behavior.

Semantics VariablePorts are used in connection with VariableInterfaces. They are access points for Agents.
VariablePorts are connected by VariableConnectors.

Notation

Graphical Notation In composite structure diagrams, VariablePorts are depicted like ports, i.e. a rectangle
on the boundary of the owning classifier. Instead of visualizing the attached VariableInterface in lollipop-
notation, a required VariableInterface is a white-filled rectangle and a provided VariableInterface is a black-filled
rectangle (see Fig. 4.16. As every port is connected to a Mode, the state symbol that indicates behavior ports
will be omitted. The name of the global variable mirrored by the attached VariableInterface is given near the
port.
In class diagrams, only the variable owned by the VariableInterface of the port will be shown (see Fig. 4.27).

Textual Notation

54



4.5 Agents

The main building block for modeling architectural structure within HybridUML is the Agent. Agents can be
combined of other Agents, respectively Agent instances, by parallel composition, and can be grouped together
enclosing them with a hiding operator. For precise interface descriptions we distinguish local and global variables
and signals. HybridUML allows communication between concurrent agents via shared variables as well as via
message passing to model multicasting of signals. The behavior of an Agent is described by a set of Modes, i.e.
statecharts, and the set of allowed initial states might be restricted.

In HybridUML, Agents are extensions of classes. They consist of VariablePorts, SignalPorts, private vari-
ables, Modes, initState, and parameters.

VariablePorts are interaction points for communication via shared variables, whereas SignalPorts are inter-
action points for communication via asynchronous messages, i.e. signals. Beside the VariablePorts, there are
also private variables only used by the Agent and its Mode(s). Modes are used for describing the behavior of
an Agent. initState specifies the allowed initial values of variables in Agent instances. Parameters are used
for better scalability. They specify constants that can be used in invariants and other expressions used in the
Agent instance and its Mode(s).

4.5.1 Agent

Description An Agent is an extension of CompositeStructures::StructuredClasses::Class (see Fig. 4.26) that
can own an internal structure (see Fig. 4.28). The internal structure consists of Agent instances. Agents com-
municate by AgentPorts and AgentConnectors, i.e. by shared variables (VariablePorts and VariableConnectors)
or signals (SignalPorts and SignalConnectors).

0..1Class
Agent

ConstraintProperty

StateMachine{required}
(from StructuredClasses)

�stereotype�

*

(from Constraint)(from Classes)

0..1{subsets ownedAttribute} {subsets ownedRule}

(from BehaviorStatemachines)base
{subsets
ownedBehavior}

1

\mode

\initState\parameter

Figure 4.26: Stereotype for Agent

Attributes No additional attributes.
Associations

• \parameter:Property[*] {subsets ownedAttribute}

• \initState:Constraint[0..1] {subsets ownedRule}

• \mode:StateMachine[0..1] {subsets ownedBehavior}

Constraints

• Agents do not hold operations, i.e.
base.ownedOperation->size = 0

• All attributes and parameters are typed, i.e.
base.ownedAttribute->forAll(type->size = 1)

• All attributes are typed by DataType, i.e. PrimitiveType, Enumeration, or StructuredDataType:
base.ownedAttribute->forAll(type.oclIsKindOf(DataType))

• The type of an attribute is not UnlimitedNatural, i.e.
not base.ownedAttribute->forAll(type->exists(oclIsTypeOf(UnlimitedNatural)))

• All parameters are read-only, i.e.
self.parameter->forAll(isReadOnly = true)

• All parts of the internal structure are Agent instances, i.e.
base.part->forAll(oclIsTypeOf(Agent))

55



• All ports of the Agent are AgentPorts, i.e.
base.ownedPort->forAll(oclIsTypeOf(AgentPort))

• All connectors are AgentConnectors, i.e.
base.ownedConnector->forAll(oclIsTypeOf(AgentConnector))

• The behavior of an Agent is described by a StateMachine called Mode, i.e.
self.mode->forAll(oclIsTypeOf(Mode))

• There is no behavior besides Modes, i.e.
base.ownedBehavior->size = 0

• If the Agent has an internal structure, there is no Mode, i.e.
base->exists(part) implies self.mode->size = 0

• If the Agent has no internal structure, there is exactly one Mode, i.e.
not base->exists(part) implies self.mode->size = 1

• The Mode of an Agent has exactly the same attributes as the Agent, i.e.
self.mode->size = 1 implies

self.mode->forAll(ownedAttribute->forAll (a1 | base.ownedAttribute->exists
(a2 | a1 = a2)))

• All parameters of the Mode of an Agent are parameters of the Agent itself, i.e.
self.mode->size = 1 implies

self.mode->forAll(parameter->forAll (p1 | self.parameter->exists (p2 | p1 = p2)))

• Each Agent that owns a Mode is a Thread, i.e.
self.mode->size = 1 implies base.isActive = true

• initState is an InvariantExpression, i.e.
self.initState->forAll(oclIsTypeOf(InvariantExpression))

• The expression given in initState must correspond to the variables of the Agent:
Let Vi be the set of variables in initState and V the set of variables of Agent A. Then Vi ⊆ V .

Semantics
Notation

Graphical Notation Agents are depicted like UML classes with internal structure. In a class diagram, the
internal structure is visualized as aggregated classes (see Fig. 4.27). The parameter list of each Agent is given
behind its name in parenthesis in the first compartment of the class symbol.

off() x:AnalogReal

Controller

off()

<<agent>>

<<agent>> <<agent>>

1 1

public
x:AnalogReal

t:Clock
data:ThermostatData

private

signal

on()

HeaterMode

public

Thermostat
(m:Real, M:Real)

Heater

ControllerMode

on()

signal

Figure 4.27: Usage of Agents in Class Diagram

56



VariablePorts and their included VariableInterfaces and variables are given as attributes in the second
compartment of the class symbol. In the class diagram, only the name and type of the included variable is
given.
The same holds for Signal ports and their included SignalInterfaces and signals. They are also given as attributes
in the second compartment of the class symbol. In the class diagram, only the name and parameters of the
included signal is given.
Attributes of the Agent, i.e. private variables, are also listed in the second compartment of the class symbol.
They are listed with name and type.
To better distinguish between global variables, private variables, and signals, the second compartment is sub-
divided in maximal three parts named public, private, and signal. The corresponding variables and signals are
listed beneath the keyword.
Optionally, in the third compartment of the class symbol the Mode of the Agent is given. This is the name
of the Mode followed by concrete parameters listed inside parentheses. A parameter of a Mode may also be a
parameter of the Agent, i.e. the concrete value is given in an Agent instance.

: Heater : Controller

class Thermostat(20,22)

x

{t = 0}

on()
off()

xon()
off()

{x = data.θ}

{x = data.θ} {data.h = 5}
{data.K = 0.1}
{data.θ = 20}

Figure 4.28: Usage of Agents in Composite Structure Diagram

The internal structure of composite Agents is shown in a composite structure diagram. The name of the Agent
is given in the upper left corner with the keyword class before it. After that, the concrete parameters of the
composite Agent follow. The internal structure is given in the main compartment.
Agent instances are visualized as objects in composite structure diagrams (see figure 4.28). Behind the objects’
name and type the concrete parameters are given in parenthesis in the first compartment of the object symbol.
If there are multiple instances of an Agent, the multiplicity is given in brackets after the Agent instances name.
This is a shorthand notation as we do not want to show instances with the same parameters and initial values
repeated. In fact, there are as many Agent instances as the multiplicity defines. In the second compartment, the
respective initState is given as a constraint, i.e. in curly brackets. Here read/write access of global variables is
shown as ports with required and provided interfaces (see Fig. 4.28). The same holds for posting and receiving
signals.
The Mode of the Agent is given in a statechart diagram. The name of the Mode with the keyword statemachine
before it is given in the upper left corner of the diagram (see Fig. 4.30).

Textual Notation

57



4.6 Modes

The behavior of a basic agent is described by a Statecharts formalism, in a fashion which became popular with
Harel’s Statemate statecharts []. In particular the use of hierarchy allows for improved structuring ....

Modes describe sets of states by grouping them according to constraints....

4.6.1 Mode

The behavior of Agents is described by hierarchical StateMachines called Mode. Each Mode contains exactly
one Region, so there is no parallel behavior modeled inside. It is entered and left by control points, which are
partitioned into entry and exit points. Every Mode has a default entry point de and a default exit point dx.

A Mode that is not contained by any other Mode is called top-level Mode. Each top-level Mode has a single
non-default entry point called init point, and no non-default exit point. A Mode that is contained by another
Mode is called Submode. A Mode without Submodes is called leaf Mode.

Top-level Modes are connected to an Agent. They use the variables defined in this Agent. Analog variables
are updated according to constraints while the state machine is in a Mode. Discrete variables are only updated
when a transition is taken. Modes can have parameters for better scalability. Preemption is modeled by using
the default exit point dx as source of a group transition.

To achieve this behavior, we extend StateMachine to Mode and consequently Region to ModeRegion, State
to ModeState, Pseudostate to ModePseudostate, PseudostateKind to ModePseudostateKind, and Transition
to ModeTransition. Furthermore, we extend Activity to ModeTransitionActivity and its subtypes ModeUp-
dateActivity and ModeSendActivity for modeling the allowed activities while taking a transition, i.e. assigning
values to variables and posting RTSignals.

58



Description Mode is an extension of StateMachines::BehaviorStatemachines::StateMachine. It describes
the behavior of an Agent. Each Mode contains exactly one region, i.e. there is no parallel behavior inside a
Mode. Modes can be built up hierarchically. As each Mode has exactly one default entry and one default exit
point, there are at least two connection points. Modes can have parameters that are set by the Agent the Mode
belongs to.

StateMachine
Mode

{required}

isTopLevelMode:Boolean

Pseudostate

base(from BehaviorStatemachines)

{subsets connectionPoint}

1

2..*

�stereotype�

\point

(from BehaviorStatemachines)

Figure 4.29: Stereotype for Mode

Attributes

• isTopLevelMode:Boolean

Associations

• point:Pseudostate [2..*] subsets connectionPoint

Constraints

• All parameters are typed. i.e.
base.formalParameter->forAll(type->size = 1)

• All parameters are typed by DataType, i.e. PrimitiveType, Enumeration, or StructuredDataType:
base.formalParameter->forAll(type->forAll(oclIsKindOf(DataType)))

• The type of a parameter is not UnlimitedNatural, i.e.
not base.formalParameter->forAll(type->exists (oclIsTypeOf(UnlimitedNatural)))

• All parameters are constants, i.e.
base.parameter->forAll(isReadOnly = true)

• There is no return result, i.e.
base.returnResult->size = 0

• There is no specification beside the Mode itself, i.e.
base.specification->size = 0

• Modes will not be redefined, i.e.
base.redefinedBehavior->size = 0

• There are no operations, i.e.
base.ownedOperation->size = 0

• Each Mode has exactly one region, i.e.
base.region->size = 1

• All Pseudostates are ModePseudostates, i.e.
self.point->forAll(oclIsTypeOf(ModePseudostate))

• Each Mode has exactly one default entry and exit point, i.e.
self.point->select(v | v.kind = defaultEntry)->size = 1 and
self.point->select(v | v.kind = defaultExit)->size = 1

• Each top-level mode has exactly one non-default entry point and no non-default exit point, i.e.
self.isTopLevelMode=true implies

self.point->select(p | p.kind = entryPoint)->size = 1 and
not(self.point->exists(p | p.kind = exitPoint))

59



• Each Mode has a default transition from de to dx, i.e.
base.region->forAll(transitions->exists

(t | t.target.kind = defaultExit and t.source.kind = defaultEntry))

• We do not redefine Modes, i.e. it is not possible to inherit from a Mode:
base.redefinedClassifier->size = 0

60



Semantic Domain
.
Notation

Graphical Notation Modes are visualized the same way as UML 2.0 StateMachines (see Fig. 4.30). The
identity transition from de to dx is not visualized explicitly as every Mode has it. Parameters are given behind
the name of the Mode in parenthesis. The invariant is marked inv, the flow conditions with flow and the
algebraic expressions with alge. As both are constraints, they are given in brackets.

OnOff

statemachine ControllerMode

[ inv: x ≤ M ]

init [ flow: ẋ = data.h-data.K·x ]
[x=m]/on()

[ inv: x ≥ m ]

[x=M]/off()

[ flow: ẋ = -data.K·x ]

Figure 4.30: Notation for Mode

Textual Notation

4.6.2 ModePseudostate

Description ModePseudostate is an extension of StateMachines::BehaviorStatemachines::Pseudostate. Mod-
ePseudostates are used as entry and exit points for Modes. Further, they connect multiple transitions into more
complex ones.

(from BehaviorStatemachines)
Pseudostate

ModePseudostate
�stereotype�{required}

base

Figure 4.31: Stereotype for ModePseudostate

Attributes No additional attributes.
Associations No additional associations.
Constraints

• Each ModePseudostate is of kind ModePseudostateKind, i.e.
base.kind.oclIsTypeOf(ModePseudostateKind)

• A ModePseudostate is either entryPoint, exitPoint, defaultEntry, defaultExit, or junction.
base.kind = (entryPoint or exitPoint or defaultEntry or defaultExit or junction)

Semantics Semantics are given in Mode.
Notation

Graphical Notation entryPoints are depicted as small circles on the border of a Mode (see Fig. 4.30) with
an optional name attached to it.
exitPoints are depicted as small solid black-filled circles on the border of a Mode with an optional name attached
to it.
defaultEntry points are not depicted explicitly as every Mode has exactly one; transitions to the defaultEntry
point end at the boundary of the Mode. defaultExit points are not depicted explicitly as every Mode has exactly
one; transitions starting at the defaultExit point start at the boundary of the Mode.
junction points are depicted as small black-filled circles inside Regions.

Textual Notation

61



4.6.3 ModePseudostateKind

Description ModePseudostateKind is an extension of StateMachines::BehaviorStatemachines::PseudostateKind.
It extends ModePseudostateKind by the following literal values:

• defaultEntry

• defaultExit

defaultEntry
defaultExit

(from BehaviorStatemachines)
PseudostateKind
�enumeration�

ModePseudostateKind
�stereotype�

{required}

Figure 4.32: Stereotype for ModePseudostateKind

Attributes No additional attributes.
Associations No additional associations.

4.6.4 ModeRegion

Description ModeRegion is an extension of StateMachines::BehaviorStatemachines::Region. It contains Mod-
eStates and ModeTransitions. Each Mode consists of one ModeRegion. Orthogonal ModeRegions are not
allowed.

Region
(from BehaviorStatemachines) ModeRegion

�stereotype�{required}
base

Figure 4.33: Stereotype for ModeRegion

Attributes No additional attributes.
Associations No additional associations.
Constraints

• All transitions are ModeTransitions, i.e.
base.transitions->forAll(oclIsTypeOf(ModeTransition))

• All vertices are either ModePseudostates or ModeStates, i.e.
base.subvertex->forAll(v | v.oclIsTypeOf(ModePseudostate) or v.oclIsTypeOf(ModeState))

• All ModePseudostates in a ModeRegion are junction points, i.e.
base.subvertex->select(v | v.oclIsTypeOf(ModePseudostate))->forAll(kind = junction)

Semantics Semantics are given in Mode.
Notation As orthogonal regions are now allowed, there is no notation for region. They are just the space

inside a Mode.

4.6.5 ModeState

Description ModeState is an extension of StateMachines::BehaviorStatemachines::State. Each Mode consists
of ModeStates. ModeStates are always Submodes.

In addition to invariants, there are flows and algebraic expressions. A flow is a DifferentialExpression that
describes how the values of analog variables changes over time. An AlgebraicExpression is a non-differential
expression that includes variables that change over time. Both are evaluated while the Mode resists in this
state.

Attributes No additional attributes.
Associations

• stateFlow: Expression[*]

• algExpression: Expression[*]

Constraints

62



(from BehaviorStatemachines)
State

ModeState

Expression

{required}

(from Kernel)

base

stateFlow algExpression* *

�stereotype�

Figure 4.34: Stereotype for ModeState

• ModeState is never a composite state, i.e.
base.isComposite = false

• ModeState is never orthogonal, i.e.
base.isOrthogonal = false

• ModeState is never simple, i.e.
base.isSimple = false

• ModeState is always a Submode, i.e. a submachine:
base.isSubmachineState = true

• There is no do activity, i.e.
base.doActivity->size = 0

• There is no entry activity, i.e.
base.entry->size = 0

• There is no exit activity, i.e.
base.exit->size = 0

• ModeStates have exactly one region, i.e.
base.region->size = 1

• ModeStates are attached to a Mode, i.e.
base.submachineState->forAll(oclIsTypeOf(Mode)) and
base.submachineState->size = 1

• Triggers are not deferred, i.e.
base.deferrableTrigger->size = 0

• There is at most one invariant of type RTConstraint, i.e.
base.stateInvariant->forAll(oclIsTypeOf(RTConstraint)) and
base.stateInvariant->forAll(specification->forAll(oclIsTypeOf(InvariantExpression)))

• Each stateFlow is a DifferentialExpression, i.e.
self.stateFlow->forAll(oclIsTypeOf(DifferentialExpression))

• Each algExpression is an AlgebraicExpression, i.e.
self.algExpression->forAll(oclIsTypeOf(AlgebraicExpression))

Semantics Semantics are given in Mode.
Notation ModeStates are always Submodes, therefore see Fig. 4.30).

4.6.6 ModeTransition

Description ModeTransition is an extension of StateMachines::BehaviorStatemachines::Transition. It connects
a target and a source ModePseudoState. ModeTransitions are taken due to guard constraints or SignalEvents.
A ModeTransition may have an associated effect that updates some variables or emits a SignalEvent.

A transition that originates at a default exit point of a Mode is called group transition. Group transitions
are taken to interrupt the execution of that Mode. After that, the Mode must be entered again through the
default entry point to resume the execution of the Mode.

Attributes No additional attributes.
Associations No additional associations.
Constraints

63



Transition
(from BehaviorStateMachines) ModeTransition

{required}
base

�stereotype�

Figure 4.35: Stereotype for ModeTransition

• All triggers are SignalEvents, i.e.
base.trigger->forAll(oclIsTypeOf(SignalEvent))

• All guards are InvariantExpressions, i.e.
base.guard->forAll(oclIsTypeOf(InvariantExpression))

• All effects are ModeTransitionActivities, i.e.
base.effect->forAll (oclIsTypeOf(ModeTransitionActivity))

• The source of a ModeTransition is a ModePseudostate, i.e.
base.source.oclIsTypeOf(ModePseudostate)

• The target of a ModeTransition is a ModePseudostate, i.e.
base.target.oclIsTypeOf(ModePseudostate)

Semantics Semantics are given in Mode.
Notation

Graphical Notation ModeTransition is depicted by an arrow with open arrowhead (see Fig. 4.30). The
guard constraint is given in brackets. After that, the SignalEvent is given. The effect, i.e. a ModeSendActivity
or a ModeUpdateActivity, is separated from the guard and the event by a slash.
The default transition from de to dx of each Mode is not visualized.

Textual Notation

4.6.7 ModeSendActivity

Description ModeSendActivity is a specialization of ModeTransitionActivity. It is an Activity that is used for
sending RTSignals.

Attributes No additional attributes.
Associations No additional associations.
Constraints

• The String given as body of the Activity must be sending an RTSignal. Let Ss be the set of RTSignals in
body, then Ss ⊆ S

Semantics The given RTSignal is posted.
Notation

Graphical Notation ModeSendActivity is visualized by the RTSignal (see Fig. 4.30). See RTSignal for
further details.

Textual Notation

4.6.8 ModeTransitionActivity

Description ModeTransitionActivity is an extension of CommonBehaviors::BasicBehaviors::Activity (see Fig. 4.36).
It is an abstract class that cannot be instantiated. Instead, its concrete subtypes ModeSendActivity and Mode-
UpdateActivity are used.

Attributes No additional attributes.
Associations No additional associations.
Constraints No additional constraints.
Semantics Semantics are given by the subtypes ModeSendActivity and ModeUpdateActivity.
Notation Notation is given by the subtypes ModeSendActivity and ModeUpdateActivity.

64



�stereotype�

(from BasicBehavior)
Activity

ModeTransitionActivity

�stereotype�

{required}
base

�stereotype�

ModeSendActivity ModeUpdateActivity

Figure 4.36: Stereotype for ModeTransitionActivity

4.6.9 ModeUpdateActivity

Description ModeUpdateActivity is a specialization of ModeTransitionActivity (see Fig. 4.36). It updates
variable values of Agents.

Attributes No additional attributes.
Associations No additional associations.
Constraints

• The String given as body of the Activity must be an expression that updates variables V of an Agent: Let
Vs be the set of variables in body, then Vs ⊆ V . Let Qs be the set of valuations in body, then Qs ⊆ Q
with Q valuations of Agent.

Semantics
Variables of the Agent that owns the Mode to that the ModeTransitionActivity belongs are updated.
Notation

Graphical Notation ModeUpdateActivity is an assignment that assigns a new value to a variable, e.g.
x = y + 10

Textual Notation

65



Bibliography

[ADE+01] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivančić, V. Kumar, I. Lee, P. Mishra, G. Pappas,
and O. Sokolsky. Hierarchical hybrid modeling of embedded systems. Lecture Notes in Computer
Science, 2211:14–31, 2001.

[ADE+03] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivančić, V. Kumar, I. Lee, P. Mishra, G. Pappas, and
O. Sokolsky. Hierarchical hybrid modeling and analysis of embedded systems. Proceedings of the
IEEE, 91(1):11–28, January 2003.

[AGLS01] Rajeev Alur, Radu Grosu, Insup Lee, and Oleg Sokolsky. Compositional refinement for hierarchical
hybrid systems. In Proceedings of the 4th International Workshop on Hybrid Systems: Computation
and Control, volume 2034 of Lecture Notes in Computer Science, pages 33–48, 2001.

[BBB+99] Tom Bienmller, Jrgen Bohn, Henning Brinkmann, Udo Brockmeyer, Werner Damm, Hardi Hungar,
and Peter Jansen. Verification of automotive control units. In Correct System Design, volume 1710
of Lecture Notes in Computer Science, pages 319–341, 1999.

[Hen96] Thomas A. Henzinger. The theory of Hybrid Automata. In Proceedings of the 11th Annual Sympo-
sium on Logic in Computer Science (LICS), pages 278–292. IEEE Computer Society Press, 1996.

[KMP00] Y. Kesten, Z. Manna, and A. Pnueli. Verification of clocked and hybrid systems. Acta Informatica,
36(11):836–912, 2000.

[OMG05a] Object Management Group. Unified Modeling Language: Superstructure, version 2.0.
http://www.omg.org/docs/formal/05-07-04.pdf, July 2005.

[OMG05b] Object Management Group. Unified Modeling Language (UML) Specification: Infrastructure, ver-
sion 2.0. http://www.omg.org/docs/ptc/04-10-14.pdf, July 2005.

[OMG06] Object Management Group. Meta Object Facility (MOF) 2.0 Core Specification.
http://www.omg.org/docs/formal/06-01-01.pdf, January 2006.

[Rav95] A. P. Ravn. Design of embedded real-time computing systems. Technical Report ID-TR 1995-170,
ID/DTU, Lyngby, Denmark, October 1995. dr. techn. dissertation.

[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language – Reference
Manual. Addison-Wesley, 1999.

[RRS03] Mauno Rönnkö, Anders P. Ravn, and Kaisa Sere. Hybrid Action Systems. Theoretical Computer
Science, 290:937–973, January 2003.

[ZRH93] Chaochen Zhou, A. P. Ravn, and M. R. Hansen. An extended duration calculus for hybrid real-time
systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems, volume
763 of Lecture Notes in Computer Science, pages 36–59. The Computer Society of the IEEE, 1993.
Extended abstract.

66

http://www.omg.org/docs/formal/05-07-04.pdf
http://www.omg.org/docs/ptc/04-10-14.pdf
http://www.omg.org/docs/formal/06-01-01.pdf

	I Introduction
	1 Hybrid Systems and UML
	1.1 Modeling Hybrid Systems
	1.2 UML 2.0 and Real-Time
	1.3 UML 2.0 Profiles
	1.4 Outline


	II HybridUML
	2 HybridUML Overview
	3 HybridUML MOF-based Metamodel
	3.1 Basics
	3.1.1 ContainableElement
	3.1.2 DirectedRelationship
	3.1.3 Generalization
	3.1.4 ModelElement
	3.1.5 NamedElement
	3.1.6 RedefinableElement
	3.1.7 Relationship

	3.2 Types
	3.2.1 AnalogReal
	3.2.2 Boolean
	3.2.3 Clock
	3.2.4 Counterclock
	3.2.5 DataType
	3.2.6 Enumeration
	3.2.7 EnumerationLiteral
	3.2.8 Integer
	3.2.9 Primitive
	3.2.10 Real
	3.2.11 String
	3.2.12 TypedElement

	3.3 Expressions
	3.3.1 AlgebraicExpression
	3.3.2 BooleanExpression
	3.3.3 Constraint
	3.3.4 ConstraintKind
	3.3.5 DifferentialExpression
	3.3.6 Expression
	3.3.7 IntegerExpression
	3.3.8 Slot
	3.3.9 StringExpression
	3.3.10 ValueSpecification

	3.4 Data
	3.4.1 ActualParameter
	3.4.2 FormalParameter
	3.4.3 MultiplicityElement
	3.4.4 Operation
	3.4.5 Parameter
	3.4.6 Signal
	3.4.7 SignalAccessKind
	3.4.8 Structure
	3.4.9 Variable
	3.4.10 VariableAccessKind
	3.4.11 VariableSlot

	3.5 Communications
	3.5.1 AgentConnector
	3.5.2 AgentConnectorEnd
	3.5.3 AgentInterface
	3.5.4 AgentPort
	3.5.5 AgentPortSlot
	3.5.6 SignalConnector
	3.5.7 SignalInterface
	3.5.8 SignalPort
	3.5.9 VariableConnector
	3.5.10 VariableInterface
	3.5.11 VariablePort

	3.6 Modes and Agents
	3.6.1 Agent
	3.6.2 AgentInstance
	3.6.3 CallActivity
	3.6.4 Mode
	3.6.5 ModeActivity
	3.6.6 ModePseudostate
	3.6.7 ModePseudostateKind
	3.6.8 ModeTransition
	3.6.9 SendActivity
	3.6.10 SignalTrigger
	3.6.11 UpdateActivity


	4 HybridUML Profile
	4.1 Data
	4.1.1 AnalogReal
	4.1.2 Real
	4.1.3 StructuredDataType

	4.2 Expressions and Constraints
	4.2.1 AlgebraicExpression
	4.2.2 DifferentialExpression
	4.2.3 InvariantExpression
	4.2.4 RTConstraint
	4.2.5 RTExpression

	4.3 Time
	4.3.1 Clock
	4.3.2 Timer

	4.4 Communication Structures
	4.4.1 AgentConnector
	4.4.2 AgentConnectorEnd
	4.4.3 AgentInterface
	4.4.4 AgentPort
	4.4.5 RTSignal
	4.4.6 SignalConnector
	4.4.7 SignalConnectorEnd
	4.4.8 SignalEvent
	4.4.9 SignalInterface
	4.4.10 SignalPort
	4.4.11 VariableConnector
	4.4.12 VariableConnectorEnd
	4.4.13 VariableInterface
	4.4.14 VariablePort

	4.5 Agents
	4.5.1 Agent

	4.6 Modes
	4.6.1 Mode
	4.6.2 ModePseudostate
	4.6.3 ModePseudostateKind
	4.6.4 ModeRegion
	4.6.5 ModeState
	4.6.6 ModeTransition
	4.6.7 ModeSendActivity
	4.6.8 ModeTransitionActivity
	4.6.9 ModeUpdateActivity




