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ABSTRACT
This article presents novel results on automated test gen-
eration for hybrid control systems, which involves the gen-
eration of both discrete and real-valued, potentially time-
continuous, input data to the system under test. Our gen-
eration techniques are allocated in two layers: The upper
layer contains a symbolic test case generator constructing
test cases as paths through an abstracted representation
model of the system under test. Different test strategies
designed to pursue various quality objectives lead to differ-
ent selections of symbolic test cases. Symbolic test cases
are transformed into feasible, i. e., executable, test cases
by constructing concrete sequences of input data, allowing
the execution of the pre-planned transition sequence. The
input data construction is performed by the lower layer con-
sisting of a constraint solver which applies interval analysis
techniques to identify the domains from where to pick the
appropriate test data. This process is made efficient by com-
bining subpaving with forward-backward interval constraint
propagation. On both layers learning algorithms are applied
in order to avoid the spending of computation time on paths
and sub-constraints, respectively, which are already known
not to contribute to the solution.
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Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.5 [Software Engineering]: Testing and Debugging

1. INTRODUCTION
Hybrid systems perform control tasks involving the process-
ing of both discrete and real-valued, potentially time-con-
tinuous (analog), data. As a consequence, testing hybrid
systems controllers requires the generation and evaluation
of discrete and analog I/O data written to and read from
interfaces of the system under test (SUT). This article con-
tributes to the problem of automated specification-based test
generation for hybrid systems: Test data are derived from
hybrid systems specifications describing the required behav-
ior of the SUT. As specification formalism we use time-
discrete input-output hybrid systems (TDIOHS) which are
suitable for describing sequential (possibly non-terminating)
time-discrete dynamical control systems. Our results, how-
ever, only rely on an appropriate internal representation of
the specification model, so that different formalisms can be
supported via transformation front-ends. In particular, our
concepts can be applied to hybrid variants of Statecharts [2].
Moreover, they also apply to structural software testing,
where the TDIOHS represent the control flow graphs of the
software units under test.

Testing is usually applied with the objective to investigate
specific quality objectives in the SUT, such as functional and
behavioral correctness with respect to given specifications,
stability in boundary situations and robustness against il-
legal environment behavior. These objectives induce test
strategies aiming at exercising specific portions of existing
specifications or of additional requirements elaborated by
the testing specialists. As a consequence the implementa-
tion of strategies in test suites requires the construction of
input sequences “driving” the SUT into states corresponding
to certain specification locations. For complex hybrid sys-
tems this task typically involves (1) the traversal of graphs
representing abstracted specification structure like control
locations, transitions and abstract labels, (2) the symbolic
interpretation of conditions, invariants, flows and actions
and (3) the generation and solution of constraints derived



from the guard conditions to be fulfilled in order to exer-
cise certain portions of the specification on the SUT. For
TDIOHS the sub-task (2) is simplified because flow condi-
tions and invariants do not appear explicitly in the specifi-
cation.

This article mainly contributes to the first and third sub-
task: With respect to (3), we focus on constraint solving
problems (CSPs) involving real-valued variables. Intuitively
speaking, CSPs specify the multi-dimensional sets S ⊆ R

n

from where input data to the SUT should be selected, in
order to stimulate a certain SUT execution path suggested
by the selected test strategy. The SAT solving methods for
Boolean problems and solvers for integral-valued CSPs are
obviously not sufficient when real valued variables and, in
particular, non-linear CSPs are involved. Moreover, they
do not possess “natural” extensions for solving real-valued
CSPs. Therefore we advocate the application of interval
analysis, where CSPs are solved by approximating the solu-
tion sets S ⊆ R

n by unions of non-intersecting intervals I ⊂
R

n (so-called subpavings). To avoid the complexity prob-
lems typically arising from direct application of subpaving
techniques, forward-backward interval constraint propaga-
tion is applied which turns out to be a very powerful contrac-
tor for shrinking intervals containing the solution. Moreover,
a detailed conflict analysis helps to avoid further subpavings
in “directions” already known to be incompatible with the
CSP to be solved.

For handling sub-task (1) described above, the constraint
solving techniques are combined with a symbolic test case
generator selecting paths through the transition graph of a
given TDIOHS according to a given strategy. This allows to
encapsulate all tasks concerning test coverage in a separate
layer. This layer also applies learning strategies by avoid-
ing to re-select sequences of symbolic transitions which are
infeasible because no inputs making the associated guard
evaluations true can be constructed.

Overview. Section 2 introduces the basic notions about
time-discrete input-output hybrid systems and interval anal-
ysis, introduces the formal notion of symbolic test cases and
describes several test strategies suitable for pursuing differ-
ent quality objectives. Sections 3 and 4 contain the main
results of this paper, where the symbolic test case genera-
tor is specified and our new solvers for typical constraints
induced by coverage goals for hybrid specification are de-
scribed. Section 5 contains the conclusions and describes
work in progress beyond the scope of this paper.

Related Work. Our TDIOHS differ from Henzinger’s hy-
brid automata (HA) introduced in [7] mainly by the fact that
TDIOHS do not model invariants and flow conditions in an
explicit way. TDIOHS basically represent time-discrete dy-
namical control systems where all flow conditions have been
handled beforehand, using discretized solutions.

The design of the symbolic test case generator described
in Section 3 has been influenced by the novel solutions for
graph traversal with the objective of implementing specific
strategies or, equivalently, coverage criteria suggested in [4].
The definitions and results from interval analysis used in
this paper are based on [8]. Interval analysis has been fre-

quently applied in combination with abstract interpretation
for various aspects of static software analysis; see, for exam-
ple, [5].

2. CONCEPTS AND TERMINOLOGY
2.1 Hybrid Systems
A time–discrete input–output hybrid system (TDIOHS) is a
tuple H = (Loc, Init, V, I,O, T rans) where Loc is a finite
set whose elements are called locations, V is a finite set of
(discrete and continuous) variables, I , O ⊆ V are sets of
input and output variables, respectively, with I ∩ O = ∅.
Let Guard denote the set of all quantifier-free predicates
over V , Init : Loc → Guard a function mapping locations
to predicates, Assign the set of all pairs (~x,~t) where ~x =
(x1, x2, . . .) is the vector of all variables in V − I (a.k.a.

controlled variables) and ~t = (t1, t2, . . .) ∈ T |V −I|, where
T is the set of all terms over V . Then Trans ⊆ Loc ×
Guard × Assign × Loc is the set of transitions. Labels =
{λ ∈ Guard × Assign | ∃l1, l2 ∈ Loc : (l1, λ, l2) ∈ Trans}
denotes the set of transition labels.

Let val ∈ dom|V | be a valuation of all variables occur-
ring in H, and let the value of v ∈ V and of the term t
over V under val be denoted by val(v) and val(t), respec-
tively. A run of a TDIOHS H is an infinite sequence of pairs
〈(l1, val1), (l2, val2), . . .〉 of locations and valuations which
satisfies the following properties: (1) val1(Init(l1)) = true,
(2) ∀i ∈ N ∃(l, g, (~x,~t), l′) ∈ Trans : l = li, l

′ = li+1,
vali(g) = true, vali+1(x1) = vali(t1), . . ., vali+1(x|V −I|) =
vali(t|V −I|). A k–bounded run is a run of a fixed length k ∈
N, i.e. the sequence of location-valuation pairs 〈p1, . . . , pk〉
is finite. The set of all k–bounded runs of H is denoted by
Run(H, k).

Let V (~t) denote the set of variables from V referenced in
term vector ~t and Stable(~x,~t) denote the variable compo-
nents xi of vector ~x whose values are unaffected by the as-
sociated assignment term ti in any valuation (so ti ≡ xi).
An input location l1 ∈ LocI ⊆ Loc is specified by the re-
quirement that every transition entering l1 only executes
assignments where input variables are copied to local vari-
ables xi ∈ V − (I ∪ O), that is,

LocI = { l1 ∈ Loc | ∀(l0, g, (~x,~t), l1) ∈ Trans :
V (~t) ⊆ I ∧O ⊆ Stable(~x,~t) }

An output location l1 ∈ LocO ⊆ L is characterized by the
requirement that all transitions entering this state perform
only assignments from local to output variables:

LocO = { l1 ∈ Loc | ∀(l0, g, (~x,~t), l1) ∈ Trans :

V (~t) ⊆ V − (I ∪O) ⊆ Stable(~x,~t) }

An internal processing location l1 ∈ LocP ⊆ Loc is charac-
terized by the requirement that entry assignments may only
read from and write to local variables:

LocP = { l1 ∈ Loc | ∀(l0, g, (~x,~t), l1) ∈ Trans :
V (~t) ⊆ V − (I ∪O) ∧O ⊆ Stable(~x,~t) }

A TDIOHS is called I/O safe if it possesses no other loca-
tions apart from input, processing and output locations, and
the free variables of all guards are members of V − I . These
conditions imply that input changes during processing steps
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Figure 1: Simplification of conjunctive guards.

are disregarded by the system: Only when a new input loca-
tion is entered the new input valuations are copied to local
variables, and are used by guards and assignment terms.

Two runs r = 〈(li, vali)|i ∈ N〉 and r′ = 〈(l′i, val
′
i)|i ∈ N〉 of

I/O safe TDIOHS are called I/O equivalent if they receive
the same sequence of input data in their input locations, pro-
duce the same output sequences in their respective output
locations and have an identical interleaving of these inputs
and outputs:

r ∼ r′ ≡ r|(LocI ∪ LocO) = r′|(LocI ∪ LocO)

In this definition r|M with M ⊆ Loc denotes the restriction
of run r to the subsequence of all pairs (l, val) with l ∈M .

I/O safe TDIOHS can be re-structured in several ways pre-
serving the possible runs of original and transformed sys-
tem up to I/O equivalence. For the purpose of this paper,
we illustrate this property by the following lemmas, con-
cerning the simplification of guards by means of additional
states and transitions. The transformation characterized by
Lemma 1 is illustrated in Figure 11.

Lemma 1. Let ε = (~x, ~x) denote the stable assignment
which does not change any local variables or outputs. Given
TDIOHS H1 and transition τ0 = (l0, g1∧g2, a, l1) ∈ Trans(H1),
construct a new TDIOHS H2 by setting

1. LocP (H2) = LocP (H1)∪{l0,1, l
′
0,1}, where l0,1, l

′
0,1 are

fresh location identifiers,

2. Trans(H2) = (Trans(H1) − T1) ∪ T2, where

T1 = {(l, g, b, l′) ∈ Trans(H1) | l = l0}
T2 = {(l0, g1, ε, l0,1), (l0,¬g1, ε, l

′
0,1)} ∪

{(l0,1, g2, a, l1), (l0,1,¬g2, ε, l
′
0,1)} ∪

{(l0,1, g, b,m) | (l0, g, b,m) ∈ Trans1 − {τ0}} ∪
{(l′0,1, g, b,m) | (l0, g, b,m) ∈ Trans1 − {τ0}}

which are the only changes from H1 to H2. Then H1 and
H2 perform I/O-equivalent runs.

1A full proof for this lemma can be found in the ex-
tended version of this paper which is available under
http://www.tzi.de/agbs/projects/hybris.

An analogous transformation exists for disjunctive guards:

Lemma 2. Let ε = (~x, ~x) denote the stable assignment
which does not change any local variables or outputs. Given
TDIOHS H1 and transition τ0 = (l0, g1∨g2, a, l1) ∈ Trans(H1),
construct a new TDIOHS H2 by setting

1. LocP (H2) = LocP (H1)∪{l0,1, l
′
0,1, l

′′
0,1}, where l0,1, l

′
0,1, l

′′
0,1

are fresh location identifiers,

2. Trans(H2) = (Trans(H1) − T1) ∪ T2, where

T1 = {(l, g, b, l′) ∈ Trans(H1) | l = l0}
T2 = {(l0,¬g1, ε, l0,1), (l0, g1, ε, l

′′
0,1), (l0,1,¬g2, ε, l

′
0,1),

(l0,1, g2, ε, l
′′
0,1), (l

′′
0,1, true, a, l1)} ∪

{(l′0,1, g, b,m) | (l0, g, b,m) ∈ Trans1 − {τ0}} ∪
{(l′′0,1, g, b,m) | (l0, g, b,m) ∈ Trans1 − {τ0}}

which are the only changes from H1 to H2. Then H1 and
H2 perform I/O-equivalent runs.

2.2 Interval Analysis
For any pair of (possibly real) numbers a and b, we identify
the interval [a, b] as {x ∈ R | a ≤ x ≤ b}. If either of a or b do
not belong to the interval then the corresponding “[” sign or
“]” would be replaced by “(” sign or “)”, respectively. In the
sequel we use the letters I, J, Ii, ... to represent an interval
in R. A box In ⊆ R

n is a Cartesian product of n intervals
in R. For simplicity, we might use I, J, ... to represent an
n-dimensional box as well.

Interval operations. Given two intervals [a, b] and [c, d], and

a binary operation op, we define the interval operation
◦
op

over these two intervals as [a, b]
◦
op [c, d] = {x op y | x ∈

[a, b], y ∈ [c, d]}. Likewise for unary operations we define:
◦
op ([a, b]) = {op(x) | x ∈ [a, b]}. As a result [a, b]

◦
· [c, d] =

[minS,maxS] where S = {a · c, a · d, b · c, b · d}; also [a, b]
◦
+

[c, d] = [a+c, b+d] and [a, b]
◦
− [c, d] = [a−d, b−c], for a proof

of these cases see [8]. Defining the interval function like this
might also cause partially defined functions, for instance in
case of division, if 0 occurs in the divisor interval then the
interval operation would no longer be total. In these cases
we would exclude the elements which cause incompleteness,
form the interval and then compute the interval operation.

Given a term t we identify its interval extension
◦
t as a term

in which all the operations are replaced by their interval
extension.

A subpaving of a box I is a union of (some of) its non-
intersecting (possibly connected in the borders) non-empty
subboxes. A bisector of a box I = [a1, b1] × ... × [ai, bi] ×
... × [an, bn] is a subbox J of it whose jth interval for some
1 ≤ j ≤ n is either [(aj +bj)/2, bj ] or [aj , (aj +bj)/2] and for
all 1 ≤ k 6= j ≤ n its kth interval is [ak, bk]. Now we define
the set BI of bisectors of I , the union of the sets Bi, which
are recursively defined as follows: B0 = {I} and for each
i ∈ N: Bi+1 is the set of bisectors over Bi. A subpaving of
I is called regular if it is a subset of BI .

Having a CSP c represented by c =
Vn

i=1
ci, where each ci

has less free variables than c and has a solution set S(ci),



a finite sub-solver φi for ci is a finite algorithm to compute
new intervals for some variables in ci where other variables
in ci are known, in such a way that the resulting subbox is
yet a subset of S(ci). For example let c = (x ≤ 1 ∧ x = ey),
then from the first constraint we can deduce that x ≤ 1.
Now let ci be x = ey; this results in x > 0. Hence from this
constraint and the previous one we obtain a new interval for
x which is (0, 1].

Given a constraint c and a box I , contracting c means re-
placing I with a smaller subbox J such that the solution set
S is still a subset of J , i.e. S ⊆ J ⊂ I . A contractor for c is
any operator that can contract it.

2.3 Test Cases and Strategies
A symbolic test case for TDIOHS H is a finite sequence of
transitions 〈t1, . . . tk〉 with ti = (li, gi, ai, l

′
i) ∈ Trans satis-

fying l1 ∈ Init and l′i = li+1 for i = 1, . . . , k−1. A symbolic
test case is feasible if valuations can be found, turning the
test case into a k-bounded run of H, that is,

∃val1, . . . , valk ∈ dom|V | :
r = 〈(l1, val1), . . . , (lk, valk)〉 ∈ Run(H, k) ∧
val1(g1) = . . . = valk(gk) = true

Note that the initialization condition for runs also implies
that val1(Init(l1)) = true. Further observe that for deter-
ministic H this enforces the execution of transitions ti while
for nondeterministic TDIOHS, this only offers the “chance”
for their execution.

In the run r, sequence 〈(vali|I) | i = 1, . . . , k〉 is called the
test (input) data and sequence 〈(vali|O) | i = 1, . . . , k〉 is
called the expected result. In these expressions, (f |X) de-
notes function domain restriction to elements from X.

A test strategy specifies a collection of symbolic test cases.
Numerous test strategies aiming at different quality objec-
tives exist. The strategies aiming at behavioral equivalence
between the SUT and its specification – most notably, the
well-known W method and variants thereof [3, 10] – are
of considerable theoretical value, but cannot be completely
covered in most practical test campaigns, since the number
of test cases required to prove behavioral correctness is ex-
tremely high for non-trivial sizes of the SUT state space.
Alternative strategies aim at requirements coverage, struc-
tural coverage, absence of specific failure types or uniform
statistical test case distribution [4].

To illustrate the test case and test data generation concepts
in this paper, we focus on the Modified Condition / Decision
Coverage (MCDC) and related coverage criteria for logical
expressions [1]. Quoting the standard [9], MCDC demands
that ‘Every point of entry and exit in the program has been
invoked at least once, every condition in a decision in the
program has taken all possible outcomes at least once, every
decision in the program has taken all possible outcomes at
least once, and each condition in a decision has been shown
to independently affect that decision’s outcome. A condi-
tion is shown independently to affect a decision’s outcome
by varying just that condition while holding fixed all other
possible conditions.’ Tests driven by the MCDC strategy
are likely to uncover faults where – due to an erroneous
guard implementation – the wrong transition is taken from
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Figure 2: Symbolic TDIOHS representation.

a given location. MCDC is required by the standard [9]
to be achieved when testing avionic software with highest
criticality level. Given an arbitrary TDIOHS H, the trans-
formations specified in Lemma 1 and 2 can be repeatedly ap-
plied until transformation reaches a fixed point. The result-
ing I/O-equivalent TDIOHS H′ only contains atomic guard
conditions, and MCDC coverage is equivalent to covering
each transition of H′. Observe that MCDC coverage is a
useful coverage goal both for structural software (e. g. mod-
ule) testing and specification-based testing, and that the
concepts described here apply to both testing areas: In the
former case, the TDIOHS models the control flow graph of
the software to be tested, whereas in the latter case the
TDIOHS represents the specification model. In both situ-
ations it is advisable to cover different valuations of guard
conditions as prescribed by the MCDC coverage goal.

3. SYMBOLIC TEST CASE GENERATION
Test case and test data generation is performed by means of
two interacting components operating on different levels of
abstraction. In this section, we describe the upper layer, the
symbolic test case generator, whose task it is to select sym-
bolic test cases according to the underlying strategy. These
test cases are delegated to the solver for generation of con-
crete test data. The solver’s feed-back about infeasibility
of (suffixes of) an abstract test case is used within the test
case generation layer for learning to avoid these infeasible
paths in future generations. Since testing always deals with
bounded runs, test cases are initially generated with a fixed
maximal length k. If the strategic goals cannot be met while
observing this bound, k is increased and longer symbolic test
cases are generated along “directions” where feasible paths
may still exist. These concepts will be illustrated now for the
MCDC coverage strategy introduced in Section 2.3. Appli-
cation of this strategy is prepared by repeated application of
the TDIOHS transformations specified in Lemma 1 and 2, so
that the resulting TDIOHS H is still equivalent to the initial
one but only possesses atomic (that is, non-conjunctive and
non-disjunctive) guard conditions. As a result, achieving
MCDC coverage is equivalent to exercising each transition
of H.

The central data structure used in the symbolic test case



generator is the symbolic test case tree (STCT) which cap-
tures (feasible and infeasible) bounded-length paths through
the transition graph of the TDIOHS H under consideration.
The nodes of an STCT correspond to locations l of H but
are augmented by a number n, so that (l, n) is a unique node
identifier in the tree. This is necessary since an H-location
may occur several times in the tree if it is reachable by more
than one path through the transition graph. Figures 2 and 3
show an TDIOHS transition graph and its associated STCT
for bounded maximal path length k = 5.

Given a TDIOHS H = (Loc, Init, V, I,O, T rans), we intro-
duce the associated STCT Stctk of length k by means of an
algorithm which also shows how to extend Stctk into some
Stctk+k′ if the original tree is insufficient to reach the cover-
age goals. Let “−” a fresh location symbol not contained in
Loc and τ0 a fresh transition symbol. Then the components
of an STCT are defined for k = 0, 1, 2, . . . as

Stctk = (Nk, Ek, Lk, φk, ψk, σk, πk, ρk)

which are typed as follows:

Nk ⊆ {(−, 0)} ∪ (Loc× N)
Ek ⊆ Nk × Labels×Nk

Lk ⊆ Nk

φk : {τ0} ∪ Trans→ N∗
k

ψk : Nk → {τ0} ∪ Trans
σk : Loc→ N

πk : Nk → Nk

ρk : Nk → Trans∗

Components Nk and Ek denote the sets of nodes and edges,
respectively, and Lk contains the leaves of the tree. The
mappings φk, ψk, σk, πk, ρk represent auxiliary data struc-
tures used for symbolic test case generation and learning
about infeasible paths: Function φk maps transitions t to
the list of nodes (l, n) in Stctk having t as target node. For
example, transition (l5, h, l6) in the TDIOHS of Figure 2 is
mapped to

φ5(l5, h, l6) = 〈(l6, 2), (l6, 4), (l6, 6), (l6, 8), (l6, 10)〉

in the STCT of Figure 3. If the test case generator learns
about the infeasibility of a path from the root of Stctk to the
node (l, n) then this node is deleted from φk(t) and the nodes
from all continuation paths of (l, n) are removed from the
respective images under φk. ψk maps a node (l, n) of Stctk
to the transition of H whose corresponding edge in Stctk
ends at (l, n). σk keeps track of the counters n = σ(l) to be
associated with H-locations l when inserting them as nodes
(l, n) into the tree. πk maps nodes to their parent nodes. ρk

maps a node (l, n) to the symbolic test case derived from the
Stctk path starting at the root and ending at (l, n). These
data structures are initialized as (recall that ε denotes the
trivial assignment which does not change anything)

N0 = {(−, 0)} ∪ (Loc× {1})
E0 = {((−, 0), Init(l′), ε, (l′, 1)) | l′ ∈ Loc}
L0 = N0 − {(−, 0)}
φ0 = {τ0 7→ 〈(l, 1) | l ∈ Loc〉}
ψ0 = {x 7→ τ0 | x ∈ N0}
σ0 = {l 7→ 2 | l ∈ Loc}
π0 = {(−, 0) 7→ (−, 0)} ∪ {(l, 1) 7→ (−, 0) | l ∈ Loc}
ρ0 = {x 7→ 〈 〉 | x ∈ N0}

Let STCT denote the type of an STCT as induced by the

component types introduced above. Algorithm expandStct ()
inputs an existing STCT and changes it by expanding each
leaf for one transition step, if a corresponding transition
exists in H and if the test case associated with the path from
the root to this leaf has not yet been marked as infeasible.

functionexpandStct (inout stct : STCT ) : B begin

let (N,E,L, φ, ψ, σ, π, ρ) = stct in begin

retval := false;
forall (l, n) ∈ {x ∈ L | φ(ψ(x)) 6= 〈 〉} do

forall (λ, l′) ∈ {(a, b) | (l, a, b) ∈ Trans} do

retval := true;
n′ := σ(l′);
N := N ∪ {(l′, n′)};
E := E ∪ {((l, n), λ, (l′, n′))};
L := (L− {(l, n)}) ∪ {(l′, n′)};
φ := φ⊕ {(l, λ, l′) 7→ φ(l, λ, l′) ⌢ 〈(l′, n′)〉};
ψ := ψ ⊕ {(l′, n′) 7→ (l, λ, l′)};
σ := σ ⊕ {l′ 7→ n′ + 1};
π := π ⊕ {(l′, n′) 7→ (l, n)};
ρ := ρ⊕ {(l′, n′) 7→ ρ(l, n) ⌢ 〈(l, λ, l′)〉};

enddo

enddo

expandStct := retval;
endlet

end

In this algorithm ⊕ denotes the functional overriding opera-
tor defined by (f⊕{x 7→ y})(z) = if z = x then y elsef(z).
Expanding the STCT by k > 0 steps is simply performed
by k-fold invocation of expandStct().

The complete symbolic test case generation algorithm spec-
ified in function generateStc() below references two generic
functions encapsulating the strategy-dependent part of the
generation algorithm: select() inputs the current state of the
STCT and the set C of all nodes in the tree which already
have been covered by previously generated test cases and re-
turns a “suggestion” for the next STCT node to be covered.
If, according to the underlying strategy, no more nodes need
to be reached or the paths to the remaining nodes are in-
feasible, the function returns the root node (−, 0). For the
MCDC coverage used in our example strategy, select() is
instantiated by a function which selects paths in the STCT
containing edges ((l, n), λ, (l′, n′)) whose associated transi-
tions (l, λ, l′) in H have not yet been covered at all. Func-
tion covered() is the second generic function referenced by
the generation algorithm below: It evaluates the TDIOHS
structure, the STCT and the STCT nodes covered so far and
returns true if the strategy-specific coverage goals have been
reached. For MCDC coverage, covered() just checks whether
the edges ((l, n), λ, (l′, n′)) covered so far in the STCT cor-
respond to all transitions (l, λ, l′) in H.

function select(in stct : STCT ;
in C : P(Loc× N)) : (Loc× N) begin

let (N,E,L, φ,ψ, σ, π, ρ) = stct in begin

T := {ψ(x) | x ∈ C};
U := {u ∈ Trans− T | φ(u) 6= 〈 〉};
if T = Trans ∨ U = ∅ then

select := (−, 0);
else

let t ∈ U in begin

select = head(φ(t));
endall



As shown below, the constraint solver is invoked by the gen-
erator by passing a symbolic test case tc = 〈t1, . . . , tp〉 as in-
put parameter. The solver returns the length q ∈ {0, . . . , p}
of the test case prefix which was feasible. For q < p, the
target STCT node corresponding to the first infeasible tran-
sition tq+1 and its subordinate STCT subtree are marked
as infeasible. This task is performed by the – strategy-
independent – algorithm infeasible() which inputs the STCT
and the target node associated with tq+1. Infeasibility is
recorded in the STCT data structure by removing STCT
nodes from the image sequences of transitions tq+1, . . . , tp
under φ.

procedure infeasible(inout stct : STCT ;
in x : N) begin

let (N,E,L, φ,ψ, σ, π, ρ) = stct in begin

t := ψ(x);
φ := φ⊕ {t 7→ φ(t) − x};
forall (x, λ, x′) ∈ E do

infeasible(stct, x′);
endall

In the algorithm above, φ(t)−x denotes the operation which
removes element x from sequence φ(t).

Now we are ready to present the complete generation algo-
rithm. Function generateStc initializes the STCT stct and
the set C of covered nodes. The proper generation algorithm
is performed within a loop that terminates when the cover-
age goals have been reached or when no further expansions
of the STCT are possible or acceptable. For a given STCT
version of maximal depth i ·k (i is the number of expansions
which have been performed so far) the algorithm proceeds
by selecting a new tree node x and generating the associated
symbolic test case ρ(x) which is passed to the solver. If at
least a prefix of ρ(x) was feasible, the associated nodes are
marked as covered by adding them to C. The target node
of the first infeasible transition in ρ(x) (if any) is passed to
procedure infeasible() which takes care of removing the in-
feasible STCT nodes from the range of φ. When the select()
operation returns (−, 0) this means that either the coverage
goal has been reached or the STCT has to be expanded.

function generateStc : B begin

stct := (N0, E0, L0, φ0, ψ0, σ0, π0, ρ0);
i := 0; C := ∅
while ¬covered (H,stct, C) ∧ i < maxExpansions

∧ expandStctBy (stct, k) do

i := i+ 1;
x := select(stct, C);
while x 6= (−, 0) do

m := solve(ρ(x));
n := #ρ(x);
if 0 < m then

C := C ∪ {πp(x) | p = n−m,n−m+ 1, . . . , n};
endif

if m < n then

infeasible(stct, πn−m−1(x));
endif

x := select(stct, C);
enddo

enddo

generateStc := covered (H,stct,C);
end
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Figure 3: Symbolic test case tree.

In this algorithm πp(x) denotes the p-fold application of the
parent function π.

A complementary algorithm which, due to the usual space
limitations, is not shown here, is applied after the STCT has
been expanded to a pre-defined maximal depth and some
transitions ti still remain to be covered: In this situation,
a new tree containing all “reversed” paths from the target
location l∗ of ti as root to the initial location of the TDIOHS
represented by the leaves of the tree is incrementally con-
structed by backward breadth-first search, starting at l∗. A
transition ti can be identified as unreachable if this tree can-
not be further expanded and each path in the tree contains
an infeasible node.

4. SOLVERS FOR HYBRID CONTROL CON-
STRAINTS

Aiming at test case generation, i.e. checking feasibility of
a symbolic test case 〈t1, . . . tk〉 with ti = (li, gi, (~x,~ti), l

′
i) ∈

Trans and, if so, generating appropriate test input data, our
constraint solver addresses satisfiability of non-linear arith-
metic constraints over real-valued variables plus Boolean
variables for encoding the control flow. If the ti are con-
cretely given (i.e., not symbolically characterized through a
predicate), test case generation amounts to finding a satis-
fying solution to the arithmetic constraint

Init(l1)[~x1/~x] ∧
k−1
^

i=1

gi[~xi/~x] ∧
k−1
^

i=1

(~x′ = ~ti)[~xi/~x, ~xi+1/~x
′] .

Existence of an interval subpaving I : Vk → I, where Vk =
{xi | x ∈ V, i ∈ N≤k}, satisfying this constraint in the sense
that

I |= Init(l1)[~x1/~x] (1)

I |= gi[~xi/~x] for each i < k (2)

I(xi+1) ⊇
◦
ti,x [~xi/~x](I) for each i < k and

each assignment (x, ti,x),
(3)

is a necessary and —if point intervals are admitted— suffi-
cient condition for real-valued satisfiability of the above con-

straint. Here,
◦
t denotes the interval lifting of term t, i.e. t



with all operators lifted to their interval extension, and con-
straint satisfaction for the guards and the init condition is in

the strong sense, i.e. I |= t1 ≤ t2 iff sup
◦
t1 (I) ≤ inf

◦
t2 (I),

etc. Extracting the valuations vali ∈ dom|V | for every step i
from the computed interval solution I works as follows. For
every i < k and for every input variable x ∈ I we choose
an arbitrary2 value vali(x) ∈ I(xi). The same is done for
the initial values of all controlled variables x ∈ V − I , i.e.
we select val0(x) ∈ I(x0) arbitrarily. For 1 < i ≤ k we
then calculate the values vali(x) of the controlled variables
x ∈ V − I from their respective terms ti−1,x. Please note
that every instance xi of a controlled variable x is defined by
exactly one term ti−1,x and every term ti−1,x contains (al-
ready assigned) variables xi−1 only. Obviously, combining
the respective locations and valuations yields a k-bounded
run 〈(l1, val1), . . . , (lk, valk)〉. An interval solution fulfill-
ing conditions (1) to (3) can be established by a split-and-
prune algorithm, as described below. Such an algorithm is
guaranteed to find a solution provided there is one which
interpretes all variables by non-point intervals, and often
also succeeds otherwise. The latter is achieved by exploit-
ing the structure of the problem, namely that the values
of non-input variables in some step i are functional images
(mediated through assignments) of those of the variables in
steps j < i. Thus, it makes sense to organize the search for
a satisfying interval solution as a (non-chronological) back-
track search nesting splits in temporally forward direction of
the transition sequence, while applying constraint propaga-
tion through contractors in arbitrary sequence and temporal
direction.

The algorithm operates on a rewriting of the constraints to
a form resembling three-address code, i.e. applies auxiliary
variables in a such a way that it has to process a conjunction
of constraints of the forms

bound ::= var ≥ rational const | var > rational const
| var < rational const | var ≤ rational const

triplet ::= var = var bop var
pair ::= var = uop var

only, where

bop ::= + | − | ∗ | / | . . .
uop ::= − | sin | exp | . . .

Observe that these syntactic restrictions require the intro-
duction of additional variables and conjuncts if compar-
isons between variables occur in the original constraint: For
z, w ∈ V , a constraint z < w is transformed into three con-
juncts, each using three-address code representation with
the syntactical restrictions as specified above, by introduc-
ing a slack variable s and an auxiliary variable h:

s > 0 ∧ h = w − z ∧ h = s

The algorithm then starts from the initial, unconstrained in-
terval assignment I(vi) = [min dom vi,max dom vi] for each
vi ∈ Vk and iterates the following steps:

1. Initialization: All bounds x ∼ c from the constraint, with
∼ ∈ {≥, >,<,≤}, are pushed onto an initially empty impli-
cation queue, which is the central data structure mediating
2Test strategies may refine this choice deterministically, e.g.
selecting either the mean value or some border value of
I(xi).

the constraint propagation process and permitting learning
from failed branches in the search tree. A set C of currently
unresolved triplets and pairs is filled with those triplets
u = v op w and pairs u = op v which are not satisfied

in the sense of (3), i.e. which violate I(u) ⊇ I(v)
◦
op I(w)

or I(u) ⊇
◦
op I(v), respectively.

2. Interval constraint propagation: A bound x ∼ c is re-
trieved from the implication queue and applied to the cur-
rent interval valuation I by intersecting I with the models
of the bound, thus replacing I with

I′ = I ⊕ [x 7→ I(x) ∩ {x ∈ R | x ∼ c}] .

If I′(x) 6= I(x) then the algorithm visits all triplets and
pairs containing x. For each such triplet or pair, it applies
the corresponding contractors (including those originating
from the possible reshufflings) over and over until no fur-
ther interval narrowing is achieved.3 The resulting new, i.e.
narrowed, bounds are pushed onto the implication queue.
If the contractors yield an empty interval for some of the
entailed variables then we proceed with conflict analysis in
step 4. Otherwise, we remove or add the current triplet
u = v op w or the current pair u = op v within the set
C of unresolved constraints, depending on whether it is sat-

isfied in the sense of u ⊇ v
◦
op w (or u ⊇

◦
op v, resp.),

corresponding to condition (3). We proceed with step 2 iff
the implication queue is non-empty. We are done if both
the implication queue and C are empty, having constructed
a satisfying assignment in the sense of conditions (1) to (3).

3. Splitting: If C is non-empty then we take some triplet
u = v op w or pair u = op v from C and split the interval
assignment, provided that it is not a point–interval, of some
of its right-hand variables by pushing a bound tighter than
the bounds assigned by I, e.g. a bisecting bound, to the
implication queue and proceed at step 2. We do not store
the converse of that bound as a possible backtracking point,
since an appropriate assertion will in case of conflict be gen-
erated by the conflict analysis scheme explained in step 4.
For the sake of efficiency, we give preference to triplets or
pairs containing input variables and to splitting these when
selecting the triplet or pair and the variable to be split.

4. Conflict analysis and backjumping: In order to be able
to tell reasons for conflicts (i.e., empty interval valuations)
encountered, our solver maintains an implication graph akin
to that known from propositional SAT solving (e.g., [11]):
all asserted bounds are recorded in a stack-like data struc-
ture which is unwound upon backtracking when the bounds
are retracted. Within the stack, each bound not originating
from a split, i.e. each bound a originating from a contrac-
tion, comes equipped with pointers to its antecedents. The
antecedent of a bound a is a triplet, pair or conflict clause c
containing the variable v plus a set of bounds for the other
free variables of c which triggered the contraction a. By
following the antecedents of a conflicting assignment, a rea-
son for the conflict can be obtained: reasons correspond
to cuts in the antecedent graph, and such reasons can be
“learned” for pruning the future search space by adding a
conflict clause containing the disjunction of the negations

3In practice, one stops as soon as the changes become neg-
ligible.



of the bounds in the reason. We use the unique implica-
tion point technique [11] to derive a conflict clause which
is general in that it contains few bounds and which is as-
serting upon backjumping to the last split level contributing
to the conflict, i.e. upon undoing all splits and contractions
younger than the chronologically youngest split among the
antecedents of the conflict.

(h2 = −2 · y)∧c2 :

(h3 = h1 + h2)∧c3 :

(h3 ≤ 100)∧c4 :

(x > 4 ∨ y ≤ 0 ∨ z > 2)cc1 : ∧

(z ≤ 0.1 ∨ h3 ≥ 6.2)∧cc2 :

h3 ≥ 6.2

x ≤ 3

h2 ≤ −8

h2 ≥ −2.8

h1 ≤ 9

cc1 cc2

c1

c3

z > 2

c2

(h1 = x · x)c1 :

y ≥ 4

x ≥ −2

Figure 4: Conflict analysis

An example of our conflict analysis scheme is depicted in
Fig. 4. Let x2 − 2y ≤ 100 be a fragment of a formula to
be solved. The decomposition of this fragment into triplets,
pairs and bounds c1, . . . , c4 and already learned conflict clauses
cc1, cc2 are shown on the left. Assume x ≥ −2 and y ≥ 4
have been asserted on split levels k1 and k2, and we are en-
tering a new split level k3 > max(k1, k2) by asserting x ≤ 3.
The resulting implication graph, ending in a conflict on h2,
is shown on the right. Edges relate implications to their an-
tecedents, dashed ellipses indicate the propagating clauses.
Following the implication chains from the conflict yields the
conflict clause ¬(x ≥ −2) ∨ ¬(x ≤ 3) ∨ ¬(y ≥ 4) which
becomes unit after backjumping to split level max(k1, k2),
then propagating x > 3.

Note that, in contrast to (generalized) no-good learning as
known from CSP, we are not confined to learning forbid-
den combinations of value assignments in the search space,
which here would amount to learning disjunctions of inter-
val disequations x 6∈ I with x being a problem variable
and I an interval. Instead, our algorithm may learn ar-
bitrary combinations of bounds over both problem and aux-
iliary variables, which has proven to be extremely powerful
upon benchmarks (cf. [6], where the detailed algorithm can
be found). The enormous speedups obtained from learn-
ing bounds x ∼ c rather than no-good intervals x 6∈ I can
be traced back to the stronger pruning of the search space:
while a no-good x 6∈ I would only prevent a future visit to
any subinterval of I , a bound x ≥ c, for example, blocks
visits to any interval whose left endpoint is at least c, no
matter how it is otherwise located relative to the current
interval valuation I(x). The number of visits to conflicting
interval assignments thus avoided is exponential in the num-
ber of variables in the problem, thus providing speedups in
the range of up to a million on constraint problems with
just some thousands of variables, reflecting a corresponding
pruning in the search space [6, Sect. 5].

5. CONCLUSIONS AND ONGOING WORK
We have presented methods and algorithms for automated
test case and test data generation of time-discrete input-
output hybrid systems (TDIOHS). The techniques presented
in this article have been implemented in a test automation
tool which is currently applied for testing embedded sys-

tems from the avionics and the railway domains (evaluation
results regarding the efficiency and scalability of the algo-
rithms described are currently compiled and will be shown
during the workshop presentation). For practical applica-
tion, the tool needs a collection of other solver components
whose description is outside the scope of this paper, but
which are required in order to allow for a wider range of test
applications. For example, specialized solvers are currently
implemented for handling linear constraint problems, and
input constraints for string variables may be specified using
regular expressions. In addition to the MCDC test cover-
age strategy described in this paper, additional strategies
are currently integrated into the tool: After having reached
MCDC coverage, additional test cases are constructed in
order to reach a uniform statistical distribution of paths
through the transition graph representing the system under
test. To this end, we follow the approach described in [4].
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