
Symbolic Test Case Generation for Time-Discrete Hybrid Systems

Jan Peleska∗

University of Bremen, Germany

jp@tzi.de

Martin Fränzle†, Tino Teige†

University of Oldenburg, Germany

{fraenzle|teige}@informatik.uni-oldenburg.de

Abstract

In this article we present a model-based test case
specification and associated test data generation meth-
ods for embedded systems processing Boolean, integral
and real-valued variables. Testing experts are relieved
from the task of constructing input data to the system
under test in an explicit way and manually calculating
the expected reactions. Instead, test cases are specified
by means of temporal logic formulae using the Dura-
tion Calculus, allowing to describe classes of concrete
runs which are considered equivalent for the test objec-
tives to be investigated. The concrete input data to the
system under test and its expected reactions are auto-
matically generated using an approach based on interval
analysis. Following this approach, test data generation
is handled as an interval constraint solving problem.
The basic solution technique based on pavings of the
solution set and bi-partitioning algorithms are acceler-
ated by using a tightly integrated combination of inter-
val constraint propagation and a variety of novel tech-
niques originating from Boolean SAT solving methods,
which have been adapted for the mixed Boolean, integer
and real-valued variable setting.

1 Introduction

Motivation. Following [22], a test case is a set of test
inputs, execution conditions, and expected results de-
veloped for a particular objective. In practice, test case
construction from specifications is often performed in
two steps: First, the specification model is analyzed
for a variety of paths through the model which might
be suitable for checking the verification objective in

∗Partly supported by the Deutsche Forschungsgemeinschaft
DFG as part of the priority programme SPP 1064 on Soft-

ware Specification – Integration of Software Specification Tech-

niques for Applications in Engineering (SPP 1064, HYBRIS,
http://www.tzi.de/agbs/projects/hybris).

†Partly supported by the Deutsche Forschungsgemeinschaft
DFG as part of the Transregional Collaborative Research Cen-
ter “Automatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS, http://www.avacs.org).

mind. Second, (potentially timed) sequences of input
data are elaborated in order to enforce the guard condi-
tions required to cover one of these paths in a concrete
run of the SUT. Following this observation from prac-
tical test case design, we introduce symbolic test cases
as equivalence classes of runs, that is, bounded execu-
tions of the system under test (SUT), such that each
run is equally well suited to investigate the verification
objective. Equivalence classes are characterized by im-
plicit specifications, restricting the set of all runs that
are possible according to the SUT specification model
by means of temporal logic formulae. We consider the
construction of this formula, that is, the characteris-
tics to be satisfied by a run in order to establish SUT
compliance with a certain verification objective, as the
critical task for the testing experts, whereas the con-
crete data construction should be automated as far as
possible. The objective of this article is therefore to
describe the complete chain of methods required, from
modeling the SUT and elaborating symbolic test case
specifications, to construction of concrete sequences of
input data to the SUT and calculation of expected re-
sults.

Overview. The first part of this contribution deals
with specification formalisms for the required SUT be-
havior and its associated test cases. In Section 2, the
basic modeling technique for SUTs is introduced: We
focus our investigation on time-discrete input-output
hybrid systems (TDIOHS); these are state-based reac-
tive systems with shared variable I/O, operating on
Boolean, integer and real variables. The class of time-
discrete input-output hybrid systems is more restrictive
than the Hybrid Automata described in [13]. However,
TDIOHS induce a programming model which is widely
used for embedded systems: Tasks are controlled by
main loops starting with the transfer of input to in-
ternal state variables. After that, calculations are per-
formed during a processing phase, using internal vari-
ables only. A main loop cycle is ended by copying up-
dated values from internal to output variables. Time
is regarded as an external resource which is updated

during the input phase. In Section 3 we introduce
a discrete variant of the duration calculus (DC) for
specifying symbolic test cases. Duration is abstracted
by the number of computation steps performed during
bounded test executions. Compared to other variants
of temporal logic, DC is distinguished by the possibility
to express how “often” and how “long” certain prop-
erties hold during these executions. These capabilities
are illustrated in Section 4.

The remainder of this article focuses on the tech-
niques allowing to construct concrete test data and as-
sociated SUT outputs leading to runs which are admis-
sible executions of the SUT model, at the same time
satisfying the constraints imposed by the test case spec-
ification. Regardless of the external representation of
logical constraints, such as used in transition guards
of the SUT model or in test case specifications, a uni-
form internal representation for logical constraints is
required. The associated syntax and its interpretation
are described in Section 5. Given an SUT model H,
the possible runs of bounded length k can be encoded
as a logical formula ψk

H over this syntax, as will be de-
scribed in Section 6. Encoding the restrictions imposed
by the test case in an analogous way yields a second
logical formula BMC (φ, k) (Section 7), so that the con-
crete test data, leading to admissible runs of the model
which are compliant with the symbolic test case specifi-
cation, can be obtained as solutions of ψk

H∧BMC (φ, k).

For the solution of logical formulae involving
Boolean, integer and real-valued variables we advo-
cate an approach based on interval analysis, so that
ψk
H ∧ BMC (φ, k) can be regarded as an interval con-

straint solving problem. The basic approach for solving
these problems by constructing pavings of the solution
set using bi-partitioning techniques, requires exponen-
tial time and is known to be too slow even for situations
involving only small numbers of variables. However,
the number of bi-partitioning steps can be considerably
reduced by application of interval constraint propaga-
tion. Moreover, recent techniques for lazy clause eval-
uation, conflict-driven learning and non-chronological
backtracking, originating from SAT solvers for Boolean
problems can be adapted for our objectives. As de-
scribed in Section 8, the tight integration of these al-
gorithms result in a highly efficient machinery suitable
to construct concrete test data for industrial-size prob-
lems.

We close with a discussion of the results achieved
and references to related work in Section 9.

2 Time-Discrete Hybrid I/O Automata

A time-discrete input-output hybrid system
(TDIOHS) is a tuple H = (Loc, Init, V, I, O, T rans)

where Loc is a finite set of locations and V is a finite
set of (discrete and continuous) variables. I, O ⊆ V
are sets of input and output variables, respectively,
with I ∩ O = ∅. Init : Loc → Guard is a function
mapping locations to predicates describing the ini-
tial states, where Guard denotes the quantifier-free
predicates over V . Assign is the set of all pairs
(~x,~t), where ~x = (x1, x2, . . .) is the vector of all
variables in V − I (a.k.a. controlled variables) and
~t = (t1, t2, . . .) ∈ T |V −I|, in which T is the set of all
arithmetic terms over variables V , involving the usual
arithmetic operators including transcendental ones.
Trans ⊆ Loc × Guard × Assign × Loc is the set of
transitions. Labels = {λ ∈ Guard × Assign | ∃l1, l2 ∈
Loc : (l1, λ, l2) ∈ Trans} is the set of transition labels.

Let val ∈ V al =
∏

v∈V dom(v) be a valuation
of all variables occurring in H, and let the value of
v ∈ V and of the term t over V under val be de-
noted by val(v) and val(t), respectively. A state of
the TDIOHS H is a pair (l, v) ∈ Loc × V al. A com-
putation step in H is a pair ((l1, val1), (l2, val2)) of
states such that ∃(l, g, (~x,~t), l′) ∈ Trans : l = l1, l

′ =
l2, val1(g) = true ∧ val2(~x) = val1(~t). We write
(l1, val1) −→ (l2, val2) if there exists a computation
step ((l1, val1), (l2, val2)).

A run of a TDIOHS H is an infinite sequence
〈(l1, val1), (l2, val2), . . .〉 of states which satisfies the
properties (1) Initiation: val1(Init(l1)) = true and
(2) Consecution: ∀i ∈ N : (li, vali) −→ (li+1, vali+1).
A k–bounded run is a run of a fixed length k ∈ N, i.e.
the sequence of states 〈p1, . . . , pk〉 is finite. The set of
all k–bounded runs of H is denoted by Run(H, k).

The TDIOHS H is called deterministic if in ev-
ery possible run 〈(l1, val1), (l2, val2), . . .〉 of H only one
transition is enabled at a time:
∀i ∈ N; τ1 = (li, g, a, l), τ2 = (li, g

′, a′, l′) ∈ Trans :
vali(g) = true ∧ vali(g′) = true ⇒ τ1 = τ2

Let V (~t) denote the set of variables from V refer-
enced in ~t and Stable(~x,~t) denote the variable com-
ponents xi of vector ~x whose values are unaffected by
the associated assignment term ti in any valuation (so
ti ≡ xi). An input location l1 ∈ LocI ⊆ Loc is speci-
fied by the requirement that every transition entering
l1 only executes assignments where input variables are
copied to local variables xi ∈ V − (I ∪O), that is,

LocI = { l1 ∈ Loc | ∀(l0, g, (~x,~t), l1) ∈ Trans :

V (~t) ⊆ I ∧O ⊆ Stable(~x,~t) }

An output location l1 ∈ LocO ⊆ L is characterized
by the requirement that all transitions entering this
state perform only assignments from local to output

2

variables:

LocO = { l1 ∈ Loc | ∀(l0, g, (~x,~t), l1) ∈ Trans :

V (~t) ⊆ V − (I ∪O) ⊆ Stable(~x,~t) }

An internal processing location l1 ∈ LocP ⊆ Loc is
characterized by the requirement that entry assign-
ments may only read from and write to local variables:

LocP = { l1 ∈ Loc | ∀(l0, g, (~x,~t), l1) ∈ Trans :

V (~t) ⊆ V − (I ∪O) ∧O ⊆ Stable(~x,~t) }

A TDIOHS is called I/O safe if it possesses no other
locations apart from input, processing and output loca-
tions, and the free variables of all guards are members
of V − I. These conditions imply that input changes
during processing steps are disregarded by the system:
Only when a new input location is entered the new
input valuations are copied to local variables, and are
used by guards and assignment terms.

For the remainder of this paper we require all
TDIOHS to be deterministic and I/O safe. For the
purpose of test case specifications (see Section 4) it
is useful to introduce auxiliary variables and associ-
ated assignments for each TDIOHS, so that these vari-
ables’ valuations contain information about the parts
of the TDIOHS which have been covered by the test
case executions. To this end, we introduce two fami-
lies of variables: For locations l, inl evaluates to true

as long as the TDIOHS resides in l. For a transition
τ = (l0, g, a, l1) variable tgdτ (“triggered τ”) evaluates
to true as soon as location l1 is entered via τ and re-
mains true until l1 is left again. Formally speaking, V
is partitioned into V = Vb∪Va (“behavioural variables”
Vb and “auxiliary variables” Va), such that

Vb ∩ Va = ∅
Va = { tgdτ | τ ∈ Trans } ∪ { inl | l ∈ Loc }
∀l ∈ Loc; τ ∈ Trans : dom(tgdτ) = dom(inl) = B

I ∪O ⊂ Vb

∀g ∈ Guard : V (g) ⊂ Vb

∀l1 ∈ Loc, val ∈ V al : val(Init(l1)) = true ⇒
(val(inl1) = true∧
(∀l ∈ Loc− { l1 } : val(inl) = false) ∧
(∀τ ∈ Trans : val(tgdτ) = false))

∀τ = (l1, g, a, l2) ∈ Trans; val1, val2 ∈ V al :
(l1, val1) −→ (l2, val2) ∧ val1(g) = true ⇒

((∀l ∈ Loc : val2(l) ⇔ (l = l2)) ∧
(∀τ ′ ∈ Trans : val2(tgdτ ′) ⇔ (τ ′ = τ))

Observe that these definitions are only meaningful if
the TDIOHS is deterministic. In particular we require
that there exists only one initial location l1 and valua-
tion val with val(Init(l1)) = true.

Example 1. Fig. 1 shows an example of a TDIOHS
H1 operating on variables from V = I ∪ O ∪ L ∪ Va

with input variables I = {ain, bin}, output variables

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

?

?

?

?

?
�

.......
.......
.......
.....

�

-

.......
.......

.......
.....

6

-
@
@R

�

l0

l1

l2l6

l3

l4l5

Init(l0)
def
= (n = 0 ∧ y = 0 ∧ t = 0 ∧ ¬fail)

[β(a, b, t)]/(t := 0)

[true]/(y := c)

l7

[true]/

[¬β(a, b, t)]/

(n := n + 1; t := 0)

[true]/(a := ain; b := bin)

[n > 10]/

(y := 0, fail = true)

[3 ≤ t ∧ β(a, b, t)]/(c := φ(a, b), n := −1)(a := ain; b := bin)

[true]/

(a := ain; b := bin)

(t := t + 1)

[t < 3 ∧ β(a, b, t)]/[true]/

(a := ain;

φ(a, b)
def
= sin(a · b)

[¬β(a, b, t)]/

(a := ain;

b := bin)

b := bin)

β(a, b, t)
def
= (a2 · exp(−b) > 1 − t

30
)

Figure 1: TDIOHS H1 of Example 1.

O = {y, fail}, and local variables L = {a, b, c, n, t}.
Variable fail is Boolean-valued, n, t are integers and
the other variables are real-valued. The basic task of
H1 is to monitor inputs ain, bin and transform them
into outputs y = φ(a, b). To this end, a stability condi-
tion on inputs, β(a, b, t), has to be observed: Outputs
y = φ(a, b) may only be written after β(a, b, t) held
stably for 3 input cycles. If inputs ain, bin are so un-
stable that more than 10 changes between β(a, b, t) and
¬β(a, b, t) occur before a stable phase of 3 time units
has been reached, H1 terminates (location l7) and sets
its failure output fail to true. After β(a, b, t) has be-
come stable, the output y = φ(a, b) is updated as long
as β(a, b, t) holds (locations l3, l4, l5), after that y re-
mains unchanged until β(a, b, t) holds stably once more.

Following the definitions above, H1 has input loca-
tions LocI = {l1, l3}, output locations LocO = {l5, l7}
and internal processing locations LocP = {l2, l4, l6}.
We assume that l0 is the only admissible initial loca-
tion, so Init(l) = false for l 6= l0. To ease read-
ability, guard conditions are written in square brack-
ets and assignments (~x,~t) are written in programming
style xi = ti, xj = tj , . . ., omitting all variables from
Stable(~x,~t). The auxiliary variables from set Va and
the operations thereon are not explicitly shown in
Fig. 1, but introduced and manipulated according to
the rules defined above. �

3

3 Duration Calculus

As will be explained in the next section, abstract test
cases are equivalence classes of k-bounded TDIOHS
runs. To specify these classes, an assertion technique
is required, so that membership of a run r to an equiv-
alence class is characterized by r’s compliance with the
assertion. Candidates for specifying these types of as-
sertions are trace logic [25], linear time temporal logic
(LTL) [17] or the duration calculus (DC) [24] advo-
cated by the authors for this purpose. The particular
suitability of DC will be motivated in Section 4; the
present section briefly introduces DC syntax and se-
mantics. Observe that several versions of DC semantics
exist, each of particular suitability in its own applica-
tion domain. Apart from differing expressive power
in the admissible formulae, the most notable distinc-
tion consists in the notion of time: The original DC
versions [24] were based on dense-time models, in [9]
the advantages of discrete-time models are elaborated,
and [21] does introduce a variant featuring both dedi-
cated operators for counting computation steps and for
metric time. As computation steps or sampling rounds
are natural entities for test case generation, where one
stimulus per sampling point has to be generated, we
will employ a version of DC where temporal operators
refer to computation steps.

Given a TDIOHS H = (Loc, Init, V, I, O, T rans),
the syntax of a DC formula φ is specified by

φ ::= Σ〈state predicate〉〈rel〉〈nat. number〉 |
¬φ | (φ ∧ φ) | (φ ⌢ φ)

〈rel〉 ::= < | ≤ | > | ≥ | = | 6=

where the state predicates are arbitrary quantifier-free
predicates over variables from V , built from arithmetic
expressions over the variables of H (involving basic op-
erations +,−, ·, /, sin, exp, . . .) by means of relations
=, <,≤, >,≥, 6= and Boolean connectives. In partic-
ular, all guard expressions of a TDIOHS are members
of Predicates, but Predicates also contains expressions
involving auxiliary variables from Va, which are not
admissible in guard expressions.

As semantic models to be associated with DC for-
mulae we use k-bounded runs of the TDIOHS H. Let
DC denote the set of all syntactically valid DC formu-
lae. The interpretation [[]]r : DC → B with respect
to run r ∈ Run(H, k), r = 〈(l1, val1), . . . , (lk, valk)〉 is
inductively defined by

[[ΣP ω m]]r
def
= |{i ∈ {1, . . . , k} | vali(P)}| ω m ,

[[¬φ]]r
def
= ¬[[φ]]r , [[φ ∧ ψ]]r

def
= [[φ]]r ∧ [[ψ]]r ,

[[φ ⌢ ψ]]r
def
= ∃m ∈ {0, . . . , k} :

[[φ]]〈(l1,val1),...,(lm,valm)〉 ∧

[[ψ]]〈(lm+1,valm+1),...,(lk,valk)〉 ,

where ω ∈ {=, <,≤, >,≥, 6=} and m ∈ N. Intuitively
speaking, ΣP ≥ m holds if the valuation of P is true

in at least m computation steps of the run r. The
chop operator ⌢ allows assertions of the type φ ⌢ ψ,
meaning that run r can be split into an initial part
satisfying φ, followed by a part satisfying ψ.

With the interpretation [[]]r as above, we can intro-
duce additional operators for DC formulae as syntactic
abbreviations:

♦φ
def
= (true ⌢ φ ⌢ true)

�φ
def
= ¬♦¬φ

(η ω m)
def
= (Σtrue ω m)

(ΣP = η)
def
= (Σ(¬P) = 0)

⌈P ⌉
def
= (ΣP = η ∧ η > 0)

Note that ♦φ actually means “in some subsegment of
the run, φ holds”, i.e. ranges only over the bounded
horizon of the finite run under inspection. Likewise,
�φ means “in all subsegments of the run, φ holds”.
η denotes the length of the run in computation steps,
and ⌈P ⌉ expresses that predicate P invariably holds
throughout the run, which has nontrivial length.

4 Symbolic Test Cases

A symbolic test case TC(φ) for a given TDIOHS H
is an equivalence class of bounded runs specified by a
DC formula φ. Formally speaking,

TC(φ) = {r ∈ Run(H, k) | k ∈ N ∧ [[φ]]r}

The term symbolic is used since the concrete test data
(i. e., sequences of inputs to the system under test
and expected output data from the SUT) is not de-
termined, as long as the test case is only specified
by φ. If suitable valuations can be found so that at
least one bounded run of H lets φ evaluate to true

then TC(φ) is feasible, otherwise infeasible. A run
r ∈ TC(φ) is called a concrete test case. Sequence
〈(vali|I) | i = 1, . . . , k〉 is called the test (input) data
and sequence 〈(vali|O) | i = 1, . . . , k〉 is called the ex-
pected result. In these expressions, (f |X) denotes func-
tion domain restriction to elements from X . If the DC
formula φ only refers to auxiliary variables from Va

then the test case is called abstract : The DC formula
then only refers to locations and transitions but never
to valuations of guards and assignments.

Example 1 (continued): Symbolic Test Cases.
This example shows how typical test case definitions
can be performed by only referring to the locations

4

and transitions to be covered during test executions.

(1) Maximal bounds of test execution runs. A standard
test strategy consists in exploring the SUT only up to
a certain depth k, meaning that test executions should
not have more than k computations steps. Using the

DC symbol η, this is expressed as Cbnd
def
= (η ≤ k).

(2) Normal and exceptional behavior test cases. One
of the basic strategies of test case design is the distinc-
tion between tests exercising the SUT under normal
and under exceptional conditions. For H1 introduced
in Section 2, exceptional behavior consists in unstable
inputs (i. e., changes between β(a, b, t) and ¬β(a, b, t)
over a period of more than 10 cycles. This always leads
to termination in location l7. As a consequence, excep-
tional behavior test cases can be characterized by con-

dition Cex
def
= Σinl7 ≥ 1, while normal behavior fulfills

assertion Cnorm
def
= Σinl7 = 0.

(3) Decision coverage. For structural testing, test cases
specify that certain regions of the specification model
or the software code should be covered by test execu-
tions. The decision coverage goal, for example, requires
that each transition of the specification model (or each
branch in the control flow graph of the code) should be
exercised at least once during a test suite. A test case
for covering some transition τ of H1 is characterized by

formula Cτ
def
= Σtgdτ ≥ 1. Test case generation for de-

cision or multiple condition/decision coverage has been
discussed in more detail in [2].

(4) Optimally stable behavior. A test case exercis-
ing the SUT under optimal environment conditions
requires to have stable changes from ¬β(a, b, t) to
β(a, b, t) without ever “bouncing” back to ¬β(a, b, t).
This means that paths along locations l2 → l3 → l6
should not occur. Using DC, this is expressed as

Copt
def
= ¬♦(⌈inl2⌉ ⌢ ⌈inl3⌉ ⌢ ⌈inl6⌉)

(5) Frequency ratio of different behaviors. One of the
advantages of DC when compared to other temporal
logics like LTL consists in the possibility to count how
often certain computation steps are performed or how
often certain conditions evaluate to true or false.
This can be used to specify frequency ratios of different
types of SUT behavior to be observed during test exe-
cutions. Assume, for example, that we wish to specify
a test case where the SUT spends twice as many execu-
tion steps in states where β(a, b, t) holds than is states
satisfying ¬β(a, b, t). Assume further that this ratio
should be roughly valid throughout the test, so that
β(a, b, t) holds in 200 out of 300 execution steps, with
an acceptable deviation of ±10. This can be expressed
as

Cratio
def
= �(η = 300 ⇒ 190 ≤ Σβ(a, b, t) ≤ 210)

(6) Boundary tests. A typical test objective is tor ex-
plore boundary conditions in the SUT behavior. For
H1, a boundary test consists in creating the maxi-
mal instability still counting as normal behavior. This
means that the limit value n = 10 should be reached
during the test execution. The corresponding DC as-

sertion is Climit1

def
= ♦⌈n = 10⌉. A boundary test that

always exercises instability to the admissible limit can
be specified by

Climit2

def
= �(♦(⌈inl2⌉ ⌢ ⌈inl3⌉) ⇒

♦(⌈inl2 ∧ n = 10⌉ ⌢ ⌈inl3⌉))

5 Logic

Our approach to automated testing exploits arith-
metic constraint solving for test case generation and
test evaluation. The constraint solver underlying our
approach (to be described in Sect. 8) addresses satis-
fiability of non-linear arithmetic constraints over real-
valued and integer variables plus Boolean variables for
encoding the control flow, i.e. the input constraint for-
mulae are built from quantifier-free constraints over the
reals, integers and from propositional variables using
arbitrary Boolean connectives. The atomic constraints
are relations between potentially non-linear terms in-
volving transcendental functions, like sin(x + ωt) +
ye−t ≤ z + 5. By the front-end of our constraint
solver, these constraint formulae are rewritten to equi-
satisfiable, quantifier-free constraint formulae in con-
junctive normal form, with atomic propositions ranging
over propositional variables and arithmetic constraints
confined to a form resembling three-adress code. Thus,
the internal syntax of constraint formulae is as follows:

formula ::= {clause ∧}∗clause
clause ::= ({bound ∨}∗bound) |

(bound ∨ equation)
bound ::= variable comp rational const
comp ::= < | ≤ |> | ≥

variable ::= arith var | boolean var
arith var ::= real var | int var
equation ::= triplet | pair

triplet ::= arith var = arith var bop arith var
pair ::= arith var = uop arith var
bop ::= + | − | ∗ | / | . . .
uop ::= − | sin | exp | . . .

Such constraint formulae are interpreted over valua-
tions σ ∈ (BV → B) × (RV → R) × (IV → Z), where
BV , RV , and IV are the sets of Boolean, real-valued,
and integer variables, respectively. Let V ar := BV ∪
RV ∪ IV be the set of all variables. B is identified with
the subset {0, 1} of R such that any rational-valued
bound on a Boolean variable v corresponds to a literal
v or ¬v. The definition of satisfaction is standard: a

5

constraint formula φ is satisfied by a valuation iff all its
clauses are satisfied, i.e. iff at least one atom is satis-
fied in any clause, where the term atom refers to both
bounds and equations. Satisfaction of atoms is wrt. the
standard interpretation of the arithmetic operators and
ordering relations over the reals.

6 Predicative encoding of TDIOHS

In order to perform test case generation by con-
straint solving techniques, we generate a symbolic rep-
resentation of runs of length k ∈ N as in bounded model
checking [3]. There are various ways of doing this, all
with specific strengths and weaknesses. We present
here one particular form of such an unrolling which is
very similar to the one used by Audemard et al. for
BMC of linear hybrid automata [1], albeit modify it to
non-linear, yet time-discrete case of TDIOHS.

Let H = (Loc, Init, V, I, O, T rans) be a TDIOHS.
In order to encode a transition sequence of H of some
given length k ∈ N, we proceed as follows:

(1) For each discrete state σ ∈ Loc we take k Boolean
variables σi, with 1 ≤ i ≤ k. The value of σi encodes
whether the automaton H is in state σ in step i. Here,
we take “one-hot” encoding, i.e. σi = true iff H is in
state σ in step i. With one-hot encoding, there con-
sequently is, for any i ≤ k, exactly one σ ∈ Loc such
that σi holds, which is enforced in the symbolic repre-
sentation of the run through the formula

∧k
i=1

(
∑

σ∈Loc σ
i = 1

)

,

where
∑

σ∈Loc σ
i = 1 abbreviates an equi-satisfiable

CNF fragment over triplets and bounds that is ob-
tained by introduction of helper variables. For exam-
ple, σ1+σ2+σ3 = 1 denotes the CNF (false ≥ 1∨h1 =
σ1+σ2)∧(false ≥ 1∨h2 = h1+σ3)∧(h2 ≤ 1)∧(h2 ≥ 1)
with fresh helper variables h1, h2 and false being a
Boolean variable defined by the clause (false ≤ 0).

(2) For each transition τ ∈ Trans we take k−1 Boolean
variables τ i, with 1 ≤ i ≤ k−1. The value of τ i encodes
via one-hot encoding whether the ith move in the run
is transition τ . Wellformedness of the unrolling in the
sense that exactly one transition is taken in each step
is guaranteed by conjunctively adding the CNF

∧k−1
i=1

(
∑

τ∈Trans τ
i = 1

)

to the formula.

(3) For each continuous and discrete state component
x ∈ V \I we take k−1 (real-valued or integer) variables
xi. The value of xi+1 encodes the value of x after the
ith transition in the run. For each 1 ≤ i ≤ k − 1 and
each y ∈ I we do, furthermore, take one (real-valued
or integer) variable yi representing the respective input
value in the ith step of the run. This allows us to
formalize the assignments effected by transitions by

∧k

i=2

∧

τ∈Trans

∧

x∈V \I

(

τ i ≤ 0 ∨ xi = ti−1
x

)

,

where ti−1
x denotes the term t assigned to x by transi-

tion τ , yet with all occurrences of variables z ∈ V be-
ing substituted by zi−1. Note that an equi-satisfiable
triplet form of the equation xi = ti−1

x may again be
obtained through introduction of helper variables.
(4) The interplay between discrete states and transi-
tions requires that τ i implies σi = 1 and σ′i+1 = 1 for
τ = (σ, g, a, σ′). This can be expressed by the CNF

∧k−1
i=1

∧

τ∈Trans

∧

x∈V \I
((

τ i ≤ 0 ∨ σi ≥ 1
)

∧
(

τ i ≤ 0 ∨ σ′i+1 ≥ 1
))

.
(5) Furthermore, enabledness of the transition, i.e. va-
lidity of the transition guard, is enforced through the
CNF

∧k−1
i=1

∧

τ∈Trans

(

τ i ≤ 0 ∨ gi
)

,
where gi denotes the guard g with all occurrences of
variables z ∈ V being substituted by zi.
(6) Finally, we have to add constraints describing the
allowable initial states through the guarded linear con-
straint system

∧

σ∈Loc

(

σ1 ≤ 0 ∨ init1
σ

)

,

where init1
σ denotes Init(σ) with all occurrences of

variables z ∈ V being substituted by z1. Conjunction
of (1) to (6) yields a formula ψk

H formalizing the runs of
H of length k. Satisfying valuations of ψk

H are, after re-
moval of helper variables, in one-to-one correspondence
to the runs of H of length k. Using standard tech-
niques from predicative semantics [12], above transla-
tion scheme can be extended to both shared variable
and synchronous message-passing parallelism, thereby
yielding formulae of size linear in the number of par-
allel components. The same applies for hierarchical
automata models, like e.g. StateCharts [4].

7 Encoding the Test Case Specification

In order to be able to generate runs through the
TDIOHS which satisfy the test case specification given
as a DC formula φ, we need to obtain an encoding
within the constraint logics of Sect. 5 of traces of length
k ∈ N satisfying φ. [9] provides a polynomial solution
for this. Given φ and k, this procedure generates a
propositional formula BMC (φ, k) in CNF form of size
O(k3 · |φ|).

BMC (φ, k) contains some auxiliary variables beyond
the problem variables occurring freely in φ. Ignoring
these, the models satisfying BMC (φ, k) are in one-to-
one correspondence to the runs of length ≤ k satisfying
φ, with the same naming convention applied for distin-
guishing the different temporal instances of variables
as in Sect. 6. I.e., there is a satisfying valuation of
BMC (φ, k) with xi = v iff there is a run of length ≤ k
satisfying φ with x in step k having value v.

Due to this correspondence in the naming conven-
tions, the constraint formula ψk

H ∧ BMC (φ, k) formal-

6

izes all runs of H of length at most k which satisfy the
test case specification φ.

8 Solver

For generating concrete test cases we use the solver
technology we introduced in [10]. This approach
exploits the similarities of interval constraint prop-
agation (ICP) (e.g. [6, 5]) and DPLL SAT solving
(e.g. [19, 7, 8]). Recent algorithmic enhancements
of propositional SAT solving like lazy clause evalu-
ation, conflict-driven learning (see below), and non-
chronological backjumping that were instrumental to
the enormous performance gains in SAT solving are
thus adapted to ICP-based arithmetic constraint solv-
ing. This tight integration of algorithms from both
domains has proven to be very powerful, tackling arith-
metic formulae with thousands of real-valued, integer
and Boolean variables, thereby providing speedup fac-
tors of over a million compared to versions lacking SAT-
based conflict-driven learning [10, Sect. 5].

Constraint-Solving Algorithm. Instead of real-
and integer-valued valuations of variables, our con-
straint solving algorithm manipulates interval-valued
valuations ρ ∈ (BV → IB) × (RV → IR) × (IV → IZ),
where IB = 2B \ ∅ and IR (resp. IZ) is the set of non-
empty convex subsets of R (resp. Z). (Note that this
definition covers the open, half-open, and closed non-
empty intervals over R and Z, including unbounded
intervals.) Slightly abusing notation, we write ρ(x)
for ρIB

(x), ρIR
(x) or ρIZ

(x) when ρ = (ρIB
, ρIR

, ρIZ
) and

x ∈ BV , x ∈ RV or x ∈ IV , respectively. If both σ and
η are interval assignments then σ is called a refinement
of η iff σ(v) ⊆ η(v) for each v ∈ V ar. Given ε > 0,
we call an interval valuation ρ ε-consistent with a con-
straint formula φ iff ∀x ∈ V ar : supρ(x) − inf ρ(x) ≤ ε
and each clause of φ contains at least one consistent
atom. Consistency of atoms is defined as follows:

ρ |= x ∼ c iff ρ(x) ⊆ {u | u ∈ R, u ∼ c}

for x ∈ V ar, c ∈ Q,

ρ |= x = y ◦ z iff ρ(x) ∩ ρ(y)◦̂ρ(z) 6= ∅

for x, y, z ∈ RV ∪ IV , ◦ ∈ bop,

ρ |= x = ◦y iff ρ(x) ∩ ◦̂ρ(y) 6= ∅

for x, y ∈ RV ∪ IV , ◦ ∈ uop,

where ◦̂ is a conservative interval extension of operation
◦, i.e. satisfies i1◦̂i2 ⊇ {x ◦ y | x ∈ i1, y ∈ i2} for all
intervals i1 and i2 [18].

An interval valuation ρ is called inconsistent with a
formula (or clause, atom) φ iff there is no ε-consistent
refinement η of ρ for any ε > 0. Deciding inconsis-
tency of an atom (yet not, in general, a formula) and
ε-consistency of a formula over an interval valuation is

straightforward. If ρ is neither ε-consistent nor incon-
sistent with φ then we call φ inconclusive on ρ.

SAT-based interval constraint solving. We
present here an algorithm that, given an ε > 0 and
a constraint formula φ, exploits SAT-solving and inter-
val constraint propagation (ICP, for short) to find an
ε-consistent valuation of φ, if existent, and reports in-
consistency of the formula otherwise. The underlying
idea of our algorithm is that the two central operations
of ICP-based arithmetic constraint solving —interval
contraction by constraint propagation and by interval
splitting— correspond to asserting bounds on variables
v ∼ c with v ∈ V ar, ∼∈ {<,≤,≥, >} and c ∈ Q. Like-
wise, the decision steps and unit propagations in DPLL
proof search correspond to asserting literals. A uni-
fied DPLL- and ICP-based proof search on a formula
φ from the formula language of Sect. 5 can thus be
based on asserting or retracting atoms of the formula
language, thereby in lockstep refining or widening an
interval valuation ρ that represents the current set of
candidate solutions:

1. Proof search on φ starts with an empty set of
asserted atoms and the interval valuation ρ being
the minimal element wrt. the refinement relation on
interval valuations, i.e. all intervals being maximal
({false, true} for Boolean variables and R (resp. Z) or
—if the variable has a bounded range— a maximal sub-
range thereof for real-valued (resp. integer) variables).
2. It continues with searching for unit clauses in φ, i.e.
clauses that have only one inconclusive (on ρ) atom
left and all other atoms being inconsistent with the
current interval valuation ρ. If such a clause is found
then its unique unassigned atom is asserted. (The ef-
fect of asserting an atom will become apparent in step
3.) The asserted atom stems from the formula φ or
some learned conflict-clause and may thus be an arbi-
trary bound, triplet, or pair. Step 2 is repeated until
all unit clauses have been processed.

3. If there is an asserted atom a that is inconclusive
under the current interval valuation ρ then the contrac-
tors corresponding to a are applied to ρ. In the case
of triplets and pairs, these contractors are the usual
contractors of ICP (cf., e.g., [20, 14]). Given a con-
straint φ and an interval valuation ρ, so-called contrac-
tors compute another interval valuation C(φ, ρ) such
that C(φ, ρ) ⊆ ρ and C(φ, ρ) contains all solutions of
φ in ρ. For bounds a = v ∼ c, contraction amounts to
replacing ρ(v) with ρ(v) ∩ {x ∈ R | x ∼ c}, no matter
whether they are literals or bounds on real-valued or
integer variables. In case of triplets and pairs, the con-
tractions obtained are in turn asserted as bounds (this
is redundant for contractions stemming from bounds,
as the asserted atoms would be equal to the already

7

asserted bound which effected the contraction).

This step is repeated until no further contraction is
obtained (In practice, one stops as soon as the changes
become negligible.), or until contraction detects a con-
flict in the sense of some interval ρ(v) becoming empty.
In case of a conflict, some previous splits (cf. step 4)
have to be reverted, which is achieved by backtracking
—thereby undoing all assertions being consequences of
the split— and by asserting the complement of the pre-
vious split. Furthermore, a reason for the conflict can
be recorded as a conflict clause, thus pruning the re-
maining search space (see below). If no conflict arose
then, if new unit clauses resulted from the contraction,
the algorithm continues at step 2, otherwise at 4.

4. The algorithm checks whether ρ is ε-consistent with
φ and stops if so. Otherwise, it applies a splitting step:
it selects a variable v ∈ V ar that is interpreted by a
non-point interval (i.e., |ρ(v)| > 1) and splits its in-
terval ρ(v) by asserting a bound that contains v as a
free variable and which is inconclusive on ρ. (Note that
being inconclusive on ρ(v) implies that the set of mod-
els of the bound neither covers ρ(v) nor is disjoint to
ρ(v). I.e., the asserted bound splits ρ(v) into two non-
trivial parts. Consequently, the complement of such
an assertion also is a bound and is inconclusive on ρ
too.) Thereafter, the algorithm continues at 2. If no
such variable v exists then the search space has been
exhausted and the algorithm stops with result “unsat-
isfiable”.

Conflict-driven Learning. In order to be able to
tell reasons for conflicts (i.e., empty interval valua-
tions) encountered, our solver maintains an implication
graph akin to that known from propositional SAT solv-
ing [23]: all asserted atoms are recorded in a stack-like
data structure (unwound upon backtracking, when the
assertions are retracted). Within the stack, each asser-
tion not originating from a split, i.e. each assertion a
originating from a contraction (including unit propaga-
tions), comes equipped with pointers to its antecedents.
In this case, a is a bound, i.e. a literal or a inequation
v ∼ c. The antecedent of a is an atom b containing
the variable v plus a set of bounds for the other free
variables of b which triggered the contraction a.

By following the antecedents of a conflicting assign-
ment, a reason for the conflict can be obtained: rea-
sons correspond to cuts in the antecedent graph, and
such reasons can be “learned” for pruning the future
search space by adding a conflict clause containing the
disjunction of the negations of the atoms in the rea-
son. We use the unique implication point technique
[23] to derive a conflict clause which is general in that
it contains few atoms and which is asserting upon back-
jumping to the last decision level contributing to the

conflict, i.e. upon undoing all decisions and contrac-
tions younger than the chronologically youngest deci-
sion among the antecedents of the conflict.

(x > 4 ∨ y ≤ 0 ∨ b)c1 :

(¬b ∨ h1 = x · x)∧c2 :

(¬b ∨ h2 = −2 · y)∧c3 :

(¬b ∨ h3 = h1 + h2)∧c4 :

(¬b ∨ h3 ≥ 6.2)∧c5 :

h3 ≥ 6.2

x ≤ 3

b ≥ 1

h2 ≤ −8

h2 ≥ −2.8

h1 ≤ 9

c1 c5

c2

c4

c3

y ≥ 4

x ≥ −2

Figure 2: Conflict analysis.

An example of our conflict analysis scheme is de-
picted in Fig. 2. Let the clause set c1, . . . , c5 be a frag-
ment of a formula to be solved. Assume x ≥ −2 and
y ≥ 4 have been asserted on decision levels k1 and k2,
resp., and another decision level is opened by assert-
ing x ≤ 3. The resulting implication graph, ending
in a conflict on h2, is shown on the right. Edges re-
late implications to their antecedents, dashed ellipses
indicate the propagating clauses. Following the impli-
cation chains from the conflict yields the conflict clause
¬(x ≥ −2) ∨ ¬(x ≤ 3) ∨ ¬(y ≥ 4) which becomes unit
after backjumping to decision level max(k1, k2), prop-
agating x > 3.

Generating Concrete Test Cases. Whenever the
above constraint solving algorithm stops with an ε-
consistent valuation ρ, we start a second phase that
concretizes the candidate trace encoded by ρ. (Note
that ρ encodes a bundle of concrete, real-valued valua-
tions, as it provides non-point intervals for most of the
entailed variables. Each of those real-valued valuations
may or may not satisfy the formula, i.e. may or may
not be a concrete run of the system.) We do so by suc-
cessively replacing the intervals for input variables y
given by ρ(y) with concrete values in ρ(y). In between,
we continue with ICP and -if necessary- backtracking
and choice in order to refine ρ, thus enhancing the like-
lyhood of finding a concrete test case. Therefore, the
algorithm proceeds as follows:

5. The algorithm selects a variable yj ∈ I and a step
number 1 ≤ i < k such that |ρ(yi

j)| > 1, i.e. ρ(yi
j) is

non-point, if such an yi
j exists. It then takes an arbi-

trary value vi
j ∈ ρ(yi

j), replaces the interval ρ(yi
j) by

the point interval ρ′(yi
j) = {vi

j}, and continues at step
2. (Classical heuristics from testing suggest to either

take the mean value vi
j =

inf ρ(yi
j)+sup ρ(yi

j)

2 or some ex-

tremal value in ρ(yi
j).) If no such yi

j exists then we
have completed construction of the test case. The re-
sult of this step is an ε-consistent valuation that assigns
point intervals to all inputs. Thus, we have concrete

8

values for all inputs and interval-based, overapproxima-
tive reasoning narrowed down to interval width ε has
not detected conflicts. The ε-consistent valuation thus
obtained makes existence of a corresponding concrete
path likely. Note that, due to inclusion of the con-
cretization step 5 into the overall backtrack search, the
concretized trace may well deviate from the candidate
trace found after step 4. This happens if the candidate
trace turns out to be non-concretizable. Backtracking
can alter both the choices of transitions and internal
states as well as of input valuations when this situa-
tion occurs.

Test case execution. Test execution obtained after
step 5 amounts to successively, in time steps i = 1 to
k, feeding the input sequence

〈(ρ(y1
1), . . . , ρ(y1

n)), . . . , (ρ(yk−1
1), . . . , ρ(yk−1

n))〉 ,

where {y1, . . . , yn} = I, into the SUT, and
to record its answers 〈(z2

1 , . . . , z
2
m), . . . , (zk

1 , . . . , z
k
m)〉,

where {z1, . . . , zm} = O.

Now, in order to check whether the test was success-
ful, we once again return to constraint solving, thus
completing a test-and-prove cycle. Based on the inter-
val valuation ρ obtained from concretization (step 5),
we narrow the intervals for the outputs based on the
observed values:

6. The algorithm replaces ρ with

ρ′ = x 7→

{

ρ(x) ∩ [zi
j , z

i
j] if x = zi

j , zj ∈ O,

ρ(x) otherwise.

If the constraint solver, after continuing at step 2, can
complete this to an δ-consistent valuation for some
arbitrarily chosen δ < ε then the test is considered
successful and the solver terminates, reporting “test
passed”. Otherwise, the test did actually activate an-
other path in the model than we have expected. We
then try whether the outcome nevertheless is reason-
able by starting solving from scratch, yet taking into
account the concrete input valuations supplied to the
SUT and the measured responses observed on the SUT:

7. Restart the solver at step 1 with the constraint
system ψk

H ∧ Inp ∧ Out , where ψk
H is the constraint

formula from Sect. 6 which formalizes the dynamics
of H, Inp =

∧

yj∈I,1≤i<k(yi
j = vi

j) encodes the in-
put valuation chosen in the concrete test case, and
Out =

∧

zj∈O,2≤i≤k(zi
j ≥ zi

j) ∧ (zi
j ≤ zi

j) encodes the
knowledge about the outputs obtained through mea-
surements on the SUT. If this run yields “unsatisfiable”
then we have discovered a deviation between H and the
SUT and thus terminate with result “test failed”.

8. Otherwise, we restart the solver with the constraint
system ψk

H ∧BMC (φ, k)∧ Inp ∧Out . If this yields un-
satisfiable then we terminate with “test inconclusive”

as not terminating after step 7 implies that the SUT
behaves as demanded by H, yet failing now implies
that the path taken does not correspond to the test
goal. Otherwise, i.e. if no inconsistency is found, we
terminate with “test passed”.

9 Discussion and Related Work

The main contribution of this paper is twofold.
First, we present a more abstract and more convenient
way to specify test cases, namely by stating a DC for-
mula specifying the shape of a set of symbolic test
cases. Apart from being more convenient for testing
experts than explicit construction of test input data
and associated SUT outputs, the approach also has
the technical benefit to avoid explicit internal repre-
sentation of test cases by lists or trees representing the
concrete runs. Instead, all “candidate runs” which are
suitable to check a given test objective are represented
by a single propositional constraint formula automat-
ically generated from the DC specification. In con-
trast to mere backtracking search in a tree represen-
tation of test cases, this representation permits use of
SAT-solving and constraint-solving techniques to effi-
ciently traverse the search space. Second, by solving
the constraint formula ψk

H ∧ BMC (φ, k) to construct
concrete test cases, the powerful learning mechanism
described in Sect. 8, which previously was applied to
the system model ψk

H only, does now also cover the test
case specification BMC (φ, k). Thus, we have unified
learning on both layers, being able to accelerate both
through the recent advances in SAT-based bounded
model-checking. To the best of our knowledge, no
equivalent techniques operating with real-valued vari-
ables in an undecidable domain (involving, a.o., tran-
scendental functions) has been investigated in the lit-
erature. Other approaches to test-case generation us-
ing SAT-solving either target finite state systems, as
in the realm of hardware verification (e.g. [15]), or are
confined to decidable domains like formulas containing
uninterpreted function symbols with equality or purely
linear arithmetic [11]. Our test case generation and test
evaluation algorithm, while being an offline algorithm,
nevertheless contains a feedback between the constraint
solving procedure on the one hand and the SUT on the
other hand. The SUT is invoked with input data gener-
ated by the solver, the output data then again are used
by the solver to further prune its search space and eval-
uate the test outcome. This test-and-prove cycle can be
considered as an offline version of the algorithm imple-
mented in UppAal-TRON [16]. TRON is an online
test generation and evaluation tool for real-time sys-
tems (modeled as networks of timed automata), where
symbolic state-space traversal by the test generator is

9

performed while the SUT is evolving, with the result-
ing reachable state set later on being refined based on
the response observed from the SUT.

Though this paper focusses on the concepts of a
method integration for automating test generation, a
majority of the techniques described have already been
implemented: For the purpose of generating test cases
achieving multiple condition/decision coverage against
specification models or control flow graphs of concrete
code, the interval constraint solving methods have been
implemented in a tool and are currently evaluated using
industrial-sized applications from the fields of railway
and avionics control systems [2]. The accelerations by
means of methods originating from Boolean SAT solv-
ing problems have been implemented and evaluated in
a constraint solving tool for large arithmetic formu-
lae [10]. The translation of DC formulae to SAT prob-
lems has been investigated in [9].

References

[1] G. Audemard, M. Bozzano, A. Cimatti, and R. Se-
bastiani. Verifying industrial hybrid systems with
MathSAT. ENTCS, 89(4), 2004.

[2] B. Badban, M. Fränzle, J. Peleska, and T. Teige.
Test automation for hybrid systems. In Pro-
ceedings of the Third International Workshop on
SOFTWARE QUALITY ASSURANCE (SOQUA
2006), Portland Oregon, USA, November 2006.

[3] A. Biere, A. Cimatti, and Y. Zhu. Symbolic model
checking without BDDs. In TACAS’99, volume
1579 of LNCS. Springer, 1999.

[4] U. Brockmeyer. Verifikation von STATEMATE
Designs. Doctoral dissertation, Dpt. of Comp. Sci-
ence, Universität Oldenburg, Germany, 1999.

[5] J. G. Cleary. Logical arithmetic. Future Comput-
ing Systems, 2(2):125–149, 1987.

[6] E. Davis. Constraint propagation with interval
labels. Artif. Intell., 32(3):281–331, 1987.

[7] M. Davis, G. Logemann, and D. Loveland. A
machine program for theorem proving. Commun.
ACM, 5:394–397, 1962.

[8] M. Davis and H. Putnam. A Computing Proce-
dure for Quantification Theory. Journal of the
ACM, 7(3):201–215, 1960.

[9] M. Fränzle. Take it NP-easy: Bounded model
construction for duration calculus. In W. Damm
and E. R. Olderog, editors, Formal Techniques in
Real-Time and Fault-Tolerant Systems 2002, vol-
ume 2469 of LNCS, pages 245–264. Springer, 2002.

[10] M. Fränzle, C. Herde, S. Ratschan, T. Schubert,
and T. Teige. Interval Constraint Solving Using
Propositional SAT Solving Techniques. In Pro-
ceedings of the CP 2006 First International Work-

shop on the Integration of SAT and CP Tech-
niques, pages 81–95, 2006.

[11] G. Hamon, L. de Moura, and J. Rushby. Gener-
ating efficient test sets with a model checker. In
2nd International Conference on Software Engi-
neering and Formal Methods, pages 261–270, Bei-
jing, China, Sept. 2004. IEEE Computer Society.

[12] E. C. R. Hehner. Predicative programming. Com-
mun. ACM, 27:134–151, 1984.

[13] T. Henzinger. The theory of hybrid automata.
In Proceedings of the 11th Annual Symposium on
Logic in Computer Science, pages 278–292. IEEE
Computer Society Press, 1996.

[14] T. J. Hickey, Q. Ju, and M. H. van Emden. Inter-
val arithmetic: from principles to implementation.
Journal of the ACM, 48(5):1038–1068, 2001.

[15] H.-M. Koo and P. Mishra. Test generation using
sat-based bounded model checking for validation
of pipelined processors. In GLSVLSI ’06: Pro-
ceedings of the 16th ACM Great Lakes symposium
on VLSI, pages 362–365. ACM Press, 2006.

[16] K. G. Larsen, M. Mikucionis, and B. Nielsen. Test-
ing real-time embedded software using uppaal-
tron: an industrial case study. In the 5th ACM
international conference on Embedded software,
pages 299 – 306. ACM Press, 2005.

[17] Z. Manna and A. Pnueli. The Temporal Logic
of Reactive and Concurrent Systems, volume 1.
Springer, 1992.

[18] R. E. Moore. Interval Analysis. Prentice Hall, NJ,
1966.

[19] M. W. Moskewicz, C. F. Madigan, Y. Zhao,
L. Zhang, and S. Malik. Chaff: Engineering an
Efficient SAT Solver. In Proc. of the 38th Design
Automation Conference (DAC’01), June 2001.

[20] A. Neumaier. Interval Methods for Systems of
Equations. Cambridge Univ. Press, 1990.

[21] P. Pandya. Interval duration logic: Expressiveness
and decidability. ENTCS, 65(6), 2002.

[22] SC-167. Software Considerations in Airborne Sys-
tems and Equipment Certification. RTCA, 1992.

[23] L. Zhang, C. Madigan, M. Moskewicz, and S. Ma-
lik. Efficient Conflict Driven Learning in a Boolean
Satisfiability Solver. In IEEE/ACM International
Conference on Computer-Aided Design, 2001.

[24] Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn.
A calculus of durations. Information Processing
Letters, 40(5):269–276, 1991.

[25] J. Zwiers. Compositionality, Concurrency, and
Partial Correctness — Proof Theories for Net-
works of Prcoesses and Their Relationship, volume
321 of LNCS. Springer, 1989.

10

