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Abstract: This article proposes the integration of the HybridUML specification formalism
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The benefit is an executable real-time simulation with an integrated verification/validation

component, which combines the advantages of the previously separate approaches by pro-

viding an accurate, (partially) time-continuous model that can be checked for consistency
between static invariants and dynamical behavior in terms of a complete UML model. The

integration is illustrated by means of a train system specification – the BART case study.
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1 INTRODUCTION

The Unified Modeling Language (UML) [12,
13, 15] is accepted as the standard model-

ing language in software engineering. It is a
graphical language comprising several types
of diagrams for modeling different aspects

of a system. The Object Constraint Lan-
guage OCL [5] extends the diagrammatical
part of UML with a textual language for

formulating additional constraints on the
model and thus specifying detailed aspects
that cannot be expressed graphically.

A wide variety of CASE tool support
exists for UML in general, however, OCL is

supported by only a few UML tools. Among

the first was the system USE (UML Specifi-
cation Environment) [14], which is a tool for

verifying and validating UML models con-
sisting of class diagrams and OCL invari-
ants and pre- and postconditions. Verifica-

tion and validation is performed manually
by the user by creating and manipulating
system states in terms of UML object dia-

grams and letting the tool check the OCL

constraints. The combination of a partic-

ular system state with a set of constraints

that are not satisfied are either interpreted

as (1) a faulty system state which is veri-
fied against the given constraint specifica-
tion, or as (2) a faulty constraint that is

exposed by a correct system state. The lat-
ter contributes to the validation of the con-
straint specification. To facilitate this pro-

cess, USE allows to group state manipula-
tion commands into procedures.

HybridUML [3, 4] is an extension of
UML that facilitates the modeling of sys-
tems with discrete and time-continuous as-

pects – so-called hybrid systems. The need
to model time-continuous behavior arises in

the context of (often embedded) real-time

systems which interact directly or indirectly
with their physical environment. Con-

trollers themselves behave inherently dis-
cretely, whereas many aspects of the phys-
ical environment appear in an analog fash-

ion. The environmental specification, i.e.
the expected behavior of the environment
of such systems is an important part of

their specification. The first benefit of Hy-

bridUML is the ability to model the envi-



ronment as it is, rather than a discretized
interpretation of the environment. Further,

controllers observe and affect this environ-

ment, which ideally would take place in-
finitely fast and thus would proceed approx-

imately time-continuously. The deviation of

a real controller’s discrete implementation
from the ideal time-continuous execution is

mainly given by the controller’s hardware

capabilities, therefore it is desirable to cre-
ate a controller model that abstracts from

the particular hardware restrictions, in the
same way as the environment is modeled.

HybridUML extends the concept of Hy-

brid Automata (see e.g. [11]); more pre-
cisely, it is based on hierarchical hybrid

specifications as proposed in [1]. The lat-

ter introduces the notion of hierarchy and
therefore facilitates the application to large-

scale systems. The widely known hierarchi-

cal state machines without continuous time
called Statecharts were introduced in [9]; a

formal semantics is given in [6]. The Dura-
tion Calculus, which is not suitable for di-

rect adaption to the graphical UML, is a

noteworthy formalism in that it contributes
fundamentally to the understanding of hy-

brid systems. [18] Further presentations of

projects and results in the field of hybrid
systems are subsumed by the DFG priority
programme Kondisk. [8]

Technically, HybridUML is a UML 2.0
profile, i.e. a collection of UML stereotypes

that are applied to existing UML 2.0 lan-

guage elements, because UML itself does
not provide adequate means for modeling

hybrid systems (see [2] for a survey). How-
ever, standard UML benefits like wide ac-
ceptance in computer science and engineer-

ing as well as tool support are combined
with particular important features for (hy-
brid) systems modeling: (1) Formal seman-

tics are assigned by a transformation to a se-
mantically well-defined low-level language.
(2) Transformed models are directly exe-

cutable. There is no gap between the se-
mantics of the model and its implementa-

tion, because the encoded behavior is the

semantics of the model.
In [19], the abilities of USE were demon-

strated by specifying, validating and ver-

ifying the train system known from the
BART case study. The BART case study

description [17] informally describes a por-

tion of the Advanced Automatic Train Con-
trol (AATC) system that is being developed

for the Bay Area Rapid Transit (BART)

system. BART provides a commuter rail
service for part of the bay area of San

Francisco, California. The overall objec-

tive of the case study is to specify a sys-
tem within the given infrastructure, that

controls speed and acceleration of trains in
the system. This system has to respect sev-

eral constraints, two central ones being the

following safety requirements: (1) A train
should never get so close to another train

in front that if the train in front stopped

suddenly, the (following) train would hit it.
(2) A train should stay below the maximum

speed that the current segment of the track

can handle. Related case studies are, e.g.
the “generalized railroad crossing” [10] or

the “radio-based train control” [4]. The lat-
ter is one of two case studies within the

scope of the DFG priority programme Soft-

ware Specification. [7]
The specification in [19] comprises three

parts: One part describes the structure of

the system by means of a class diagram and
a set of OCL invariants, which in particu-
lar include the safety constraints mentioned

above. The second part specifies the be-
havior of an operations center1 in terms of

an algorithm for calculating safe accelera-
tions and speed commands for the trains.
This is given in terms of system state ma-

nipulating procedures, which are defined in
a Pascal-like notation and make heavy use
of OCL expressions. In order to test the

specification, the third part specifies how
the system state changes after 0.5 seconds
have passed, i.e., the physical behavior of

trains is specified. The specification parts
were tested against each other by repeatedly
calculating new commands for the trains on

a sample track and moving the trains ahead
in time and place. The downside of this

specification technique is that the behav-

ioral and physical specifications are quite

1Previously called “station computer”.



detached from the structural specification.
In this paper, the OCL as it is uti-

lized by the USE tool is merged with Hy-

bridUML, therefore the main benefits are:
(1) The usage of continuous time provides

a more accurate model, containing a more

realistic description of the physical environ-
ment.
(2) The behavioral specification is modeled
by means of UML, i.e. it is defined by state

machines. These are more comprehensi-

ble than the a.m. state manipulating proce-
dures. The separation into parallel hierar-

chic state machines additionally facilitates

the handling of the complexity of the be-
havioral description.
(3) The complete system specification is

unified within a single (UML) model. The
behavioral specification is attached to the

respective classes, OCL constraints are in-

tegrated into the corresponding state ma-
chines.

The aim is to compile this complete
specification into an executable real-time

simulation. During execution, the OCL ex-

pressions included in the specification are
evaluated by the USE component. If the

simulation runs into a deadlock because an

invariant is violated and no valid action is
available, an inconsistency is found and the
modeller can be supported in inspecting the

relevant part of the model.
In the following sections, (parts of) the

BART case study are specified by means of

HybridUML and OCL.2 In section 2, the
static structure is modeled. Section 3 adds

the behavioral specification, which includes
several kinds of OCL constraints. In sec-
tion 4, the execution semantics are sketched.

Finally, the simulation-integrated verifica-
tion and validation concept is discussed in
section 5.

2 ARCHITECTURE

Within the case study, the main building
blocks are:

2For the purpose of this article, several simpli-

fications are applied to the case study.

TrainModel. There are physical trains that
move along physical (track) segments. This

constitutes the embedding environment of

the computer system.
OperationsCenter. The operations center is

the central part of the computer system.

TrainController. A local controller is lo-
cated on each train. The operations center

calculates commanded accelerations and ve-

locities for each train, whereas the local con-
trollers simply perform some safety checks

on the commands from the operations cen-
ter before applying them.

Fig. 1: Packages of the BART model.

The most abstract UML view of the

complete model is the set of correspond-
ing packages which is shown in Fig. 1. The

static structure of the train model is shown

in Fig. 4, and Fig. 2 contains the class di-
agram of the operations center: An Oper-
ationsCenter contains one RemoteTrainCon-
troller for each physical train to be con-
trolled. Each RemoteTrainController con-
sists of several basic agent instances. A ba-

sic agent instance is an active object, i.e.
an object with a separate thread of control.
In contrast, composite agents like Remote-
TrainController only subsume other agents
and have no own behavior. Its components
are:
RangeController. This component contin-

uously calculates a velocity-dependant dis-
tance. It must be long enough, so that
all further calculations for the train’s move-
ment only need to consider track segments

and obstacles within this range.
SegmentController. This controller keeps

track of relevant segments, e.g. the segments



in range are calculated here. Segments may
be closed, i.e. the train is not allowed to

leave the respective segment.3 The near-

est of such segments in front of the train is
determined, too.

ObstacleController. The obstacle controller

computes a potential acceleration4 for the
train based on obstacles, which are (a) the

next closed segment provided by the seg-

ment controller and (b) the train ahead.
Of course, corresponding hazards should be

avoided, therefore the resulting speed must
be low enough.

CivilSpeedController. The civil speed con-

troller calculates a proposed acceleration
that takes the civil speeds (i.e. the max-

imum allowed speeds) of the segments in

range into account. Again, too high speeds
should be avoided.

AccelerationController. It always chooses

the lower of both calculated accelerations.

Fig. 2: Architecture of the Operations Cen-
ter.

Since version 2.0 of UML, the compos-
ite structure of classifiers can be defined and
illustrated by means of Composite Struc-
ture Diagrams. With the HybridUML pro-

3In the original case study description, a closed

gate corresponds to a closed segment.
4The acceleration can be negative, i.e. it can be

a deceleration.

file, this diagram type is utilized in order to
assign shared variables (and signals, which

are not discussed here) to agents, i.e. there

are variables that are accessible by several
agents. Within class diagrams, these vari-

ables appear as attributes of the respec-

tive agent. Therefore, shared variables and
signals provide mechanisms for interobject

communication.

See for example the composite struc-
ture view of RemoteTrainController in Fig. 3.

Here it is defined that RemoteTrainController
provides two variables a cmd and v cmd,

which is shown by the black rectangular

port symbols at the bottom of the dia-
gram. They are defined in the model of

the class diagram of Fig. 2 (but not shown

there, because the agents’ details are hid-
den in the diagram). Both originate from

the contained ac:AccelerationController, i.e.

both agents share the respective variable.
Since RemoteTrainController is a compos-

ite agent and therefore has no own behav-
ior, the value of a cmd and v cmd has to

be calculated by ac. ac itself shares fur-

ther variables with csc:CivilSpeedController
and oc:ObstacleController which provide

each a proposed acceleration (a civil cmd,

a obstacle cmd) and an aimed velocity
(v civil cmd, v obstacle cmd). These vari-
ables are only read by ac, as indicated by
the white rectangular port symbols. In
the same fashion, rc:RangeController and
sc:SegmentController distribute the (visibil-
ity) range s range and the end of the next

closed segment x end nextClosedSeg.3 Fur-
ther, sc prepares the civil speed v civil[s] and
an acceleration a civil[s] for each segment s
in range. The acceleration a civil[s] is calcu-
lated such that the train’s velocity would be
v civil[s] within the current distance to the

segment. Each of these variables are read by
csc, which chooses the appropriate (i.e. the
lowest) acceleration and the corresponding
velocity. Finally, note that constants can

be modeled by only using white ports, as is
done with dot a max.



Fig. 3: Composite Structure view of the Re-
mote Train Controller.

Fig. 4: Architecture of the Physical Train

Model.

3 BEHAVIOR

The behavior of each basic agent is defined

by a single top-level mode which is a special

(i.e. a stereotype of) StateMachine. In ad-
dition to conventional (discrete) statechart

features, a mode contains (1) algebraic and
flow constraints as well as (2) invariant con-
straints. Algebraic and flow constraints de-

fine time-continuous evolutions of variables
by means of algebraic or differential equa-
tions, which are of the form <variable>

= <oclexpression> or dot(<variable>) =

<oclexpression>, respectively. While the

running system resides in the corresponding

mode, the values of the respective variables
are enforced to accord to these constraints.

An invariant constraint controls if the sys-
tem is allowed to reside in a certain mode.

Technically, iff the invariant constraints of

all active modes evaluate to true, time can
pass. Otherwise, only discrete steps (i.e. fir-

ing of transitions) – which are assumed to

take no time – are allowed, until a mode
configuration is reached so that all invari-

ant constraints are satisfied.

Figure 6 shows the behavior of Obsta-
cleController. Since its top-level mode Run-
ning is always active, the variables x obstacle
and s obstacle are continuously updated:

x obstacle is the absolute position of the

nearest obstacle on the track. Besides the
nearest closed segment in range, the pre-

ceding train (if there is one) and the desti-

nation segment (i.e. the target of the jour-
ney) is considered. This algebraic con-

straint is specified using OCL: the subex-

pression Set(rtc.sc.dest.x end) uses naviga-
tion in the current system state (via the

RemoteTrainController instance to the Seg-
mentController instance) to construct a set

including only the position of the destina-

tion of the controlled train. Then the po-
sition of the next closed gate (kept in the

attribute x end nextClosedSeg) and the po-

sition of the next train’s rear (rtc.next.x act-
rtc.next.l) are added to this set. The min()
operation is not predefined in OCL, it is
rather used here as a shortcut for a larger
expression that evaluates to the minimal el-

ement of a set of real numbers, ignoring un-
defined elements. Note that the evolution
of x obstacle defines mathematically a con-
tinuous function with respect to time, ex-
cept for discontinuous points that (manda-

torily) coincide with discrete steps defined
by SegmentController’s behavior (which is
not shown here).5 From x obstacle, the rel-

ative position s obstacle is directly being de-
rived.

Inside Running, the obstacle controller
distinguishes between two modes: Decel-
erate is active, iff there is an obstacle in
range, otherwise Accelerate is the active sub-
mode. This is enforced by the combina-

5It is the end position x end nextClosedSeg of the

nearest closed segment in range that introduces

discrete points to the function.
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Fig. 5: Snapshot of calculation of accelera-

tion for obstacle in range

tion of the respective invariants and tran-

sition guards, which model an urgent mode

change. Without the mode invariants, the
transitions would have been non-urgent, i.e.

they would not have been mandatory to fire

when enabled.6 While decelerating, the re-

quired (negative) acceleration is calculated

such that the train stops exactly in front
of the obstacle. Particularly, an additional

acceleration that originates from the seg-

ment’s (physical) grade is taken into ac-
count. The target velocity is constantly set

to zero. Figure 5 illustrates the velocity evo-

lution resulting from the calculated acceler-
ation a obstacle cmd; rtc.x act is the actual

position of the train, rtc.v act is the actual

speed.
In the mode of acceleration, the tar-

get velocity is set to v max which is the
maximum speed of the train. It is as-
sumed that the Agent CivilSpeedController
always overrides the target speed by a lower
value, therefore v max will not become effec-

tive. The applied acceleration is progres-

sive, thus the acceleration itself increases
while accelerating.7 This is directly speci-

fied within a flow condition by its derivative

dot(a obstacle cmd) with respect to time.
This dot notation is introduced here as an
extension of OCL. Expressions using this

extension can be evaluated numerically in
an environment comprising a sequence of

6A sketch of HybridUML’s simulation seman-

tics is given in section 4. For a detailed descrip-

tion, the reader is referred to [4].
7The acceleration itself changes constantly,

given by dot a max.

system states representing the system’s con-
figuration at succesive points in time, i.e.

during a discretized execution of the model.

Since HybridUML’s low-level language is
based on C/C++, tools like Matlab can be

used to create the appropriate code.

The behavior of the basic agent Civil-
SpeedController is shown in Fig. 9. Its spec-

ification is more elaborate than that of Ob-
stacleController, but the applied language

features are the same.

It determines an appropriate com-
manded acceleration a civil cmd that does

not cause a violation of civil speeds. There-

fore, two aspects are taken into account:
(1) the civil speed of the current segment,

and (2) the civil speeds of the following seg-

ments in range. Assuming that the train
runs slower than current civil speed (mi-

nus a relative velocity dv safe which de-

fines a lower bound for a range of critical
velocities), the submode AdjustingForCivil-
SpeedAhead is active. The incoming tran-
sition activates the mode, and the mode’s

invariant condition allows the controller to

stay there. Within the mode, the result-
ing acceleration a civil cmd is set to the

minimum acceleration from the set of ac-

celerations a civil[]. Each acceleration of
this set corresponds to the civil speed of

a segment in range. The calculation is
based on the segment’s distance from the
train. AdjustingForCivilSpeedAhead is illus-

trated by a scenario, shown in Fig. 7 as a
graph of the velocity with respect to the

position on the track: Provided that the
train’s position is rtc.x act and its veloc-
ity is rtc.v act, there are three segments in

range.8 From the distances s civil[] (be-
tween the train and the respective start po-
sitions of the segments in range) and the ve-

locities v civil[], the accelerations a civil[] are
calculated. They result in the shown veloc-
ity evolutions. These values are provided by
agent SegmentController and are based on

the formula (segInRange.at(s).v civil^2

- rtc.v act^2) / (2*s civil.at(s)).

The agent CivilSpeedController keeps

8The current segment technically is not in

range.



Fig. 6: Behavioral specification of the Obstacle Controller.

track of the minimum acceleration

a civil min by updating it every time a

lower acceleration is provided through

a civil[]. This is modeled by the tran-
sition connected to mode Running and

its invariant. The calculation is done by

recalcCivilMin, which is specified by its post
condition:

context

CivilSpeedController::recalcCivilMin

post:

index_civil_min =

Sequence{1..MAX_SEG_IN_RANGE}->iterate

(i; i_min = 1

| if (a_civil.at(i) <

a_civil.at(i_min)

then i

else i_min)

and

a_civil_min =

a_civil.at(index_civil_min)

and

v_civil_min =

v_civil.at(index_civil_min)

In submode AdjustingForCivilSpeedAhead,
the commanded acceleration a civil cmd
is adjusted by an additional acceleration

which is expected to be effective on the seg-
ments in range, due to their physical grade.

From the segments in range, the minimum

grade acceleration is chosen. Further, the
civil speed v civil min that corresponds to

a civil min is chosen as the commanded ve-
locity.

If the actual velocity of the train is

getting critical, i.e. if it is at least the civil
speed of the current segment minus dv safe
(rtc.sc.currentSeg.v_civil - dv_safe),
then the CivilSpeedController changes to
mode RestrictingToCurrentCivilSpeed and
stays there unless the actual velocity
falls below this speed again. Within Re-
strictingToCurrentCivilSpeed, the controller
commands either (a) Maintaining of the
current velocity or (b) Decelerating. The
cooperation of these two submodes is mod-
eled by their invariant constraints and the
two transitions between them: Maintaining
may be active, as long as the current speed
is below the civil speed. Exactly when
the civil speed is reached, Decelerating
becomes active. Deceleration may proceed

as long as the velocity is critical, but can be
pre-empted by Maintaining. This way, the
transition from Maintaining to Decelerating
is modeled as urgent transition, whereas
the transition originating at Decelerating is
non-urgent.

While Decelerating, the maximum de-
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Fig. 7: Snapshot of calculation of acceleration for civil speed

celeration is utilized in order to reach the

lowest critical speed (again). In mode

Maintaining, a zero acceleration is applied.
Since here no additional grade accelera-

tion is considered, the train may particu-

larly become faster, and therefore a mode
change to Decelerating can occur again. Fig-

ure 8 shows an example of how the restric-
tion to the current civil speed is realized:
The assumed setting consists of two seg-

ments with the same civil speed, but with
different grades segment.a grade = 0 and
segment.next.a grade > 0. First, the con-

troller adjusts for the civil speed of a seg-
ment in front (1). Then, the current speed is
maintained and remains constant, because

no additional acceleration is effective (2).
On the next segment, the grade accelera-
tion increases the velocity up to the civil
speed (3), which results in decelerating (4).
A second iteration of maintaining (5) and
decelerating (6) occurs, but the controller
now decides to switch to Maintaining before

the lower velocity bound is reached (7).
As mentioned earlier, the physical envi-

ronment is an integral part of the complete
model. It is specified in the same way as the

controller part(s), by means of agents and
modes. For example, the expected behavior

v segment.v civil = segment.next.v civil

segment.x end = segment.next.x begin

dv safe
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Fig. 8: Illustrated functionality of submode

RestrictingToCurrentCivilSpeed of the Civil
Speed Controller.

of the physical train is shown in Fig. 10,
which is associated with the basic agent

Train of Fig. 4.
The train is assumed to be either ac-

celerating or braking. It gets the re-
quired (positive or negative) acceleration

a ctrl from its controller and decides, de-
pending on the acceleration’s algebraic sign,

whether to apply propulsive power or to ac-

tivate the brake. In any case, the train sat-
isfies physical laws: (1) Its overall accelera-

tion is the sum of all effective accelerations
– the braking deceleration, the propulsive



Fig. 9: Behavioral specification of the Civil Speed Controller.

acceleration and the environmental acceler-
ation introduced by the current segment’s

grade. (2) The train’s velocity always de-
pends on the overall acceleration, i.e. its
rate of change is the acceleration. (3) The

train’s position always is the consequence
of its velocity, i.e. its alteration rate is the
velocity. Additionally, the position of the
train implies the current segment on which
the train is located. This is modelled by

both the transition and the invariant at-
tached to mode Running.

There are two top-level invariants which

define fundamental safety constraints for
the complete model:
(1) The train’s velocity is never allowed to

exceed the current segment’s civil speed.
(2) The train must not touch (i.e. crash
into) the train in front.
The benefit of these invariants is discussed
in section 5. Invariant (2) uses a side-effect
free operation wcsd() of the Train instance
that calculates the worst case stopping dis-
tance of that train. It is specified by an

OCL post condition:

context Train::wcsd():Real post:

return = -(v^2)/

2*(a_wcsp+currentSeg.a_grade)

It is assumed that even under the worst

condition a train is able to brake with a
deceleration of a wcsp. The acceleration



Fig. 10: Expected Behavior of the Physical
Train.

caused by the grade of the current segment

is added to this value.

4 SEMANTICS

An execution of a HybridUML model is

an interleaving of discrete and continuous
steps. A discrete step is taken by a sin-
gle basic agent by means of firing one tran-

sition. When all invariants of all agents’
actual mode configurations are satisfied, a
continuous step can be taken – all agents

concertedly let time pass and apply the
currently active algebraic and flow condi-
tions. Thus, the execution semantics of a
HybridUML model is defined as follows; for
a detailed description, the reader is referred
to [4].
(1) It is determined if a continuous step

would be admissible, i.e. the active invari-

ants are checked. If any invariant is violated
(i.e. evaluates to false), then no continuous

step is allowed and therefore time cannot

pass.
(2) For each agent, the set of enabled tran-

sitions is calculated.

(3) If at least one transition is enabled,
one enabled transition is chosen non-

deterministically. It constitutes the possible

discrete step.
(4) The choice between discrete and contin-

uous step is non-deterministic, if both are

possible. If only one is allowed, that one is
applied. If neither is possible, the simula-

tion is deadlocked.
(5) The chosen step is taken, the respective

calculations are performed and the execu-

tion continues with enumeration step (1).
Note that not only strict alternations of dis-

crete and continuous steps are allowed, but

also are sequences of discrete steps and se-
quences of continuous steps.

Amongst discrete steps, there is no pri-

oritization. This design decision is made for
two reasons: The semantics are easier, and

the dispute for the right prioritization9 is

avoided.

5 VERIFICATION AND

VALIDATION

A shortcoming of HybridUML’s execution

semantics – which is no speciality of Hy-

bridUML but a usual problem with be-
havioral specifications – is the possibility

of deadlock as mentioned in enumeration
step (4) of section 4. This situation particu-
larly occurs, when the execution is in an un-

stable state (i.e. a state that does not allow

time to pass) but offers no execution contin-
uation that establishes a stable state again.

Being in an unstable state means that at
least one of the invariants within the cur-
rent mode configurations evaluates to false.
In order to analyze the situation (and to
enhance the model), the relevant portions
of the affected invariants have to be identi-

fied. This can be achieved by means of the
USE tool: USE supports the evaluation of
OCL invariants with respect to a given sys-

tem state. An implementation for simulat-
ing HybridUML models including OCL can

internally employ USE methods to evaluate

9UML proposes higher priority for inner tran-

sitions, whereas outer transitions have priority ac-

cording to the Statemate semantics [6].



OCL expressions.
When a deadlock occurs because of vio-

lated invariants, the interpretation is either

(1) that the system state in not correct with
respect to the invariants. Assuming that

the invariants are yet validated and there-

fore properly describe static aspects of the
model, the checking for deadlock is a veri-

fication step. However, if the system state

is considered correct, then (2) the failed in-
variants have to be faulty themselves. This

is the start of a validation step which has
to be continued by an informal analysis of

the respective invariants in order to correct

them.
Proper GUI components of USE can

then assist the user in inspecting the cur-

rent system state in a diagrammatic way
as well as in inspecting the violated OCL

constraints, e.g. by means of its evaluation

browser that shows an OCL expression as
a tree of subexpressions together with their

values.

Note that the top-level invariants from
section 3 are used to restrict the admissible

state space of the model directly, since there
cannot be any transition exiting a top-level

mode. Therefore, these invariants always

must evaluate to true.

6 CONCLUSION

This paper has demonstrated the benefits of
combining the specification formalism Hy-
bridUML and the USE approach for valida-

tion and verification. OCL has been applied
to specify constraints on the modes, i.e. in-

variants, algebraic and flow constraints, as

well as guard conditions attached to tran-
sitions and post conditions defining the re-

sult of operations. Since OCL is the stan-

dard UML supplement for the specification
of constraints on (parts of) a model, it was

a straight-forward approach to apply OCL
to HybridUML.

As an application example, a train

control system according to the BART

case study was chosen. Parts of the Hy-
bridUML/OCL specification have been pre-

sented in detail, in order to (1) explain the

features of HybridUML and (2) to exemplify
how OCL constraints can be embedded into

the specification. Particularly, top-level in-

variant constraints are attached to top-level
modes of basic agent’s behavioral specifica-

tion. They directly act as constraints to the

complete model, because a top-level mode is
always active and cannot be left.

In contrast to the previous work in [19]
the HybridUML/OCL model comprises

structural and behavioral specifications in

one single unified model, completely speci-
fied by means of UML. It consists of class

and composite structure diagrams and state

machines.
HybridUML facilitated the modeling of

time-continuous properties of the system in

terms of flow and algebraic conditions. The
model has got its semantics by transforma-

tion into a semantically well-defined low-

level language. This results in an executable
program that simulates the specified system

in real-time. The simulation semantics have

been introduced briefly.
The adaption of HybridUML’s seman-

tics wrt. automated test data generation
is currently investigated: The aim is to

trigger selected executions of the system

rather than random simulation runs. Addi-
tionally, the system can be separated into
a simulation part and an external part,

e.g. into an externally implemented (hard-
ware) controller and its simulated environ-
ment. This approach facilitates not only

a complete system simulation but also the
specification-based automated test of exter-
nal controllers. Such kinds of tests are ap-

plied yet for discretized real-time systems,
e.g. to Airbus aircraft controllers. [16]

Is has been pointed out that the USE
approach is suitable to (1) verify system
states with respect to the top-level invari-

ant constraints and to (2) validate the top-
level invariant constraints themselves. It
is a matter of interpretation whether the

comparison between system state and in-
variant constraints is a verification or vali-

dation step: If the invariant constraints are

assumed to reflect proper restrictions on the
model, then the system state is verified. If

the system state is supposed to reflect an



admissible snapshot of the object model,
and invariants are violated, then the com-

parison contributes to the validation of the

invariants. Of course, the (failed) invariants
have to be analyzed informally.

Since the executable HybridUML sim-

ulation fundamentally relies on the evalu-
ation of OCL expressions, and particularly

of the invariant constraints of the model, an

(implemented) integration of the USE tool
into the executable simulation as a “USE

component” would be highly desirable. The
USE component could support the analyz-

ing of invariant violations in terms of graph-

ical presentations of the system state. Mod-
elers could inspect the failed expressions in

order to backtrack the cause of a failed ex-

ecution, which is indicated by a deadlock of
the simulation.

Further topics on the verification and

validation of HybridUML/OCL models to
be investigated in future work are amongst

others: (1) Deadlocks are not the only way

a HybridUML simulation may fail. For ex-
ample, livelocks can occur, when no contin-

uous simulation step is and never will be
possible, but always a discrete step is al-

lowed. Detection of these situations is de-

sirable. (2) The HybridUML specification is
accompanied by an architectural specifica-

tion and by a physical constraints specifica-
tion (which are not discussed in this article)
that define environmental restrictions for

the execution of HybridUML models, e.g.
available CPUs and cluster nodes as well
as required frequencies for the discrete rep-

resentation of time-continuous calculations.
The integration of these parts into the UML
model with utilization of OCL has to be in-

vestigated.

REFERENCES

[1] Rajeev Alur, Radu Grosu, Insup Lee,

and Oleg Sokolsky. Compositional re-

finement for hierarchical hybrid systems.

In Proceedings of the 4th International

Workshop on Hybrid Systems: Compu-

tation and Control, volume 2034 of Lec-

ture Notes in Computer Science, pages

33–48, 2001.

[2] Kirsten Berkenkötter. Using UML

2.0 in real-time development - a

critical review. SVERTS Workshop

at the �UML� 2003 Confer-

ence, October 2003. http://www-

verimag.imag.fr/EVENTS/2003/SVERTS/.

[3] Kirsten Berkenkötter, Stefan Bisanz,

Ulrich Hannemann, and Jan Peleska. Hy-

bridUML Profile for UML 2.0. SVERTS

Workshop at the �UML� 2003 Con-

ference, October 2003. http://www-

verimag.imag.fr/EVENTS/2003/SVERTS/.

[4] Kirsten Berkenkötter, Stefan Bisanz, Ul-

rich Hannemann, and Jan Peleska. Ex-

ecutable HybridUML and its Applica-

tion to Train Control Systems. In

H. Ehrig, W. Damm, J. Desel, M. Große-

Rhode, W. Reif, E. Schnieder, and

E. Westkämper, editors, Integration of

Software Specification Techniques for

Applications in Engineering, volume

3147 of Lecture Notes in Computer Sci-

ence. Springer Verlag, September 2004.

ISBN: 3-540-23135-8.

[5] Boldsoft, Rational Software Corpora-

tion, and IONA. Response to the

UML 2.0 OCL RfP (ad/2000-09-03), Jan-

uary 2003. http://www.klasse.nl/ocl/ocl-

subm.html.

[6] Werner Damm, Bernhard Josko, Hardi

Hungar, and Amir Pnueli. A composi-

tional real-time semantics of STATEM-

ATE designs. Lecture Notes in Computer

Science, 1536:186–238, 1998.

[7] Priority Programme Software Spec-

ification – Integration of Software

Specification Techniques for Applica-

tions in Engineering. http://tfs.cs.tu-

berlin.de/projekte/indspec/SPP.

[8] S. Engell, G. Frehse, and E. Schnieder,

editors. Modelling, Analysis and Design

of Hybrid Systems, volume 279 of Lec-

ture Notes in Control and Information

Sciences. Springer Verlag, 2002. ISBN 3-

540-43812-2.

[9] David Harel. Statecharts: A visual for-

malism for complex systems. Science of

Computer Programming, 8(3):231–274,

June 1987.

http://www-verimag.imag.fr/EVENTS/2003/SVERTS/
http://www-verimag.imag.fr/EVENTS/2003/SVERTS/
http://www-verimag.imag.fr/EVENTS/2003/SVERTS/
http://www-verimag.imag.fr/EVENTS/2003/SVERTS/
http://www.klasse.nl/ocl/ocl-subm.html
http://www.klasse.nl/ocl/ocl-subm.html
http://tfs.cs.tu-berlin.de/projekte/indspec/SPP
http://tfs.cs.tu-berlin.de/projekte/indspec/SPP


[10] Constance Heitmeyer and Nancy Lynch.

The generalized railroad crossing: A case

study in formal verification of real-time

systems. In IEEE Real-Time Systems

Symposium, pages 120–131. IEEE Com-

puter Society, 1994.

[11] Thomas A. Henzinger. The theory of hy-

brid automata. In Proceedings of the

11th Annual Symposium on Logic in

Computer Science (LICS), pages 278–

292. IEEE Computer Society Press, 1996.

[12] OMG. UML 2.0 Infrastructure

Specification, OMG Adopted Spec-

ification. http://www.omg.org/cgi-

bin/apps/doc?ptc/03-09-15.pdf, Septem-

ber 2003.

[13] OMG. UML 2.0 Superstructure

Specification, OMG Adopted Spec-

ification. http://www.omg.org/cgi-

bin/apps/doc?ptc/03-08-02.pdf, August

2003.

[14] Mark Richters. A UML-based Spec-

ification Environment, last revision

2001. http://www.db.informatik.uni-

bremen.de/projects/USE.

[15] James Rumbaugh, Ivar Jacobson, and

Grady Booch. The Unified Modeling

Language – Reference Manual, Second

Edition. Addison-Wesley, 2004.

[16] Verified Systems. RT-Tester 6.x – User

Manual. Technical Report Verified-INT-

014-2003, Verified Systems International

GmbH, Bremen, 2004.

[17] Victor L. Winter and Sourav Bhat-

tacharya. High Integrity Software.

Kluwer Academic Publishers Press.,

2001.

[18] Chaochen Zhou, A. P. Ravn, and M. R.

Hansen. An extended duration calculus

for hybrid real-time systems. In Hybrid

Systems, pages 36–59. The Computer So-

ciety of the IEEE, 1993. Extended ab-

stract.

[19] Paul Ziemann and Martin Gogolla. Val-

idating OCL specifications with the USE

tool - an example based on the BART

case study. In Thomas Arts and Wan

Fokkink, editors, Proc. 8th Int. Work-

shop Formal Methods for Industrial

Critical Systems (FMICS’2003), vol-

ume 80 of ENTCS. Elsevier, 2003.

http://www.omg.org/cgi-bin/apps/doc?ptc/03-09-15.pdf
http://www.omg.org/cgi-bin/apps/doc?ptc/03-09-15.pdf
http://www.omg.org/cgi-bin/apps/doc?ptc/03-08-02.pdf
http://www.omg.org/cgi-bin/apps/doc?ptc/03-08-02.pdf
http://www.db.informatik.uni-bremen.de/projects/USE
http://www.db.informatik.uni-bremen.de/projects/USE

	INTRODUCTION
	ARCHITECTURE
	BEHAVIOR
	SEMANTICS
	VERIFICATION AND VALIDATION
	CONCLUSION

