
op
en

E
TC

S
O

E
TC

S
/W

P
4/

C
S

M
–

01
/0

0

ITEA2 Project
Call 6 11025
2012 – 2015

Work Package 4: “Verification & Validation Strategy”
Work Package 7: Tool Chain

A SysML Test Model and Test Suite for the ETCS
Ceiling Speed Monitor
Technical report

Cécile Braunstein, Jan Peleska ∗, Uwe Schulze∗, Felix Hübner ∗∗,
Wen-ling Huang∗, Anne E. Haxthausen∗∗∗ and Linh Vu Hong∗∗∗

2014-05-11

This work is licensed under the "openETCS Open License Terms" (oOLT) dual Licensing:

This page is intentionally left blank

OETCS/WP4/CSM – 01/00 1

Work Package 4: “Verification & Validation Strategy”
Work Package 7: Tool Chain

OETCS/WP4/CSM – 01/00
2014-05-11

A SysML Test Model and Test Suite for the ETCS
Ceiling Speed Monitor
Technical report

Cécile Braunstein, Jan Peleska ∗, Uwe Schulze∗ and Felix Hübner ∗∗

University Bremen

Wen-ling Huang∗

University of Hamburg and University of Bremen, Germany

Anne E. Haxthausen∗∗∗ and Linh Vu Hong∗∗∗

DTU Computer Technical University of Denmark

- ∗ The authors’ research is funded by the EU FP7 COMPASS project under grant agreement no.287829.
- ∗∗ The author’s research is funded by Siemens in the context of the SyDE Graduate School on System Design
- ∗∗∗ The authors’ research is funded by the RobustRailS project funded by the Danish Council for Strategic
Research.

Technical Report

Prepared for openETCS@ITEA2 Project

This work is licensed under the "openETCS Open License Terms" (oOLT).

http://www.informatik.uni-bremen.de/syde/index.php?home-en

OETCS/WP4/CSM – 01/00 2

Abstract: This technical report contributes to the openETCS project, work packages WP4 –
Verification & Validation Strategy, and WP7 – Tool Chain.

In this technical report, a detailed model description of a train control system application is
given – this has been elaborated in the context of work package WP4 of the openETCS project.
The application consists of the ceiling speed monitoring (CSM) function for the European
Vital Computer, which is the main onboard controller for trains conforming to the European
Train Control System specification. The model is provided in SysML, and it is equipped with
a formal semantics that is consistent with the (semi formal) SysML standard published by
the Object Management Group (OMG). The model and its description are publicly available
on http://www.mbt-benchmarks.de, a website dedicated to the publication of models that are
of interest for the model-based testing (MBT) community, and may serve as benchmarks for
comparing MBT tool capabilities. The model described here is of particular interest for analysing
the capabilities of equivalence class testing strategies. The CSM application inputs velocity values
from a domain which could not be completely enumerated for test purposes with reasonable
effort.

We describe a novel method for equivalence class testing that – despite the conceptually infinite
cardinality of the input domains – is capable to produce finite test suites that are exhaustive under
certain hypotheses about the internal structure of the system under test. In the context of work
package WP7, this strategy has been implemented in the RT-Tester test automation tool which
has been made available for the openETCS project as part of WP7.

Keywords Model-based testing, Equivalence class partition testing, UML/SysML, European
Train Control System ETCS, Ceiling Speed Monitoring

Disclaimer: This work is licensed under the "openETCS Open License Terms" (oOLT) dual Licensing: European Union Public
Licence (EUPL v.1.1+) AND Creative Commons Attribution-ShareAlike 3.0 – (cc by-sa 3.0)

THE WORK IS PROVIDED UNDER openETCS OPEN LICENSE TERMS (oOLT) WHICH IS A DUAL LICENSE AGREEMENT IN-
CLUDING THE TERMS OF THE EUROPEAN UNION PUBLIC LICENSE (VERSION 1.1 OR ANY LATER VERSION) AND THE
TERMS OF THE CREATIVE COMMONS PUBLIC LICENSE ("CCPL"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR
OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS OLT LICENSE OR COPY-
RIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS
OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

http://creativecommons.org/licenses/by-sa/3.0/
http://joinup.ec.europa.eu/software/page/eupl/licence-eupl

This work is licensed under the "openETCS Open License Terms" (oOLT).

http://creativecommons.org/licenses/by-sa/3.0/
http://joinup.ec.europa.eu/software/page/eupl/licence-eupl

OETCS/WP4/CSM – 01/00 3

Table of Contents
1 Introduction... 1

1.1 A Test Model for the ETCS Ceiling Speed Monitor ... 1

1.2 Equivalence Class Partition Testing for the CSM.. 1

1.3 Fault Models and Completeness Results ... 2

2 The Ceiling Speed Monitoring Function – Functional Objectives ... 2

3 Model Description .. 2

3.1 Model Availability .. 2

3.2 Model Components ... 3

3.3 Model Semantics – Overview .. 3

3.4 Interfaces.. 4

3.5 SUT Attributes and Operations .. 5

3.6 Requirements .. 8

3.7 Behavioural Specification ... 8

3.8 Requirements Tracing ... 14

4 Formal Semantics – the Transition Relation... 18

4.1 Semantic Definition Scope... 18

4.2 State Transition System Semantics .. 18

4.3 State Space ... 18

4.4 Quiescent and Transient States .. 19

4.5 Initial State ... 19

4.6 Transition Relation – General Construction Rules ... 20

4.7 Transition Relation for the CSM... 23

4.7.1 Propositions Specifying Internal State and Outputs – ξi. ... 23

4.7.2 Propositions Specifying Input Conditions for Quiescent Classes – ϕI
i 23

4.7.3 Quiescent Post-State Condition – qpsc. .. 24

4.7.4 Transient Post-State Condition – tpsc. .. 24

4.7.5 Transient State Input Conditions – ϕI
q,i. ... 24

5 Input Equivalence Class Partitionings .. 27

5.1 Strategy Overview ... 27

5.1.1 I/O-Equivalence... 27

5.1.2 Input Equivalence Class Partitions... 27

5.1.3 Fault Model .. 28

5.1.4 Complete Test Strategy ... 29

5.2 Practical Construction of Input Equivalence Classes and Associated Partitionings 29

5.2.1 CSM I/O-Equivalence Classes .. 29

5.2.2 CSM Input Equivalence Class Partitions ... 30

5.3 Inter-Class Transitions .. 31

6 CSM Fault Model .. 31

7 Complete Test Suites for the CSM .. 33

7.1 Test Suite Construction – Overview ... 33

7.2 Application of the W-Method .. 33

8 Test Strength.. 35

8.1 Test Strength Assessment ... 35

8.2 Example 1.. 36

8.3 Example 2.. 36

8.4 Example 3.. 38

9 Heuristics for Constructing IECP Refinements ... 40

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 4

9.1 IECP Refinements for the CSM... 40

9.2 Overview of the Refinement Concept ... 41

9.3 Requirements-based IECP Refinement .. 41

9.3.1 Requirements-related Case Distinctions ... 41

9.3.2 Construction of the Requirements-based IECP Refinement... 42

9.3.3 Discussion ... 47

9.4 Boundary Value IECP Refinement ... 47

9.5 IECP Refinement by Sub-paving ... 49

9.6 Effects of IECP Refinements on W-Method Application .. 49

10 Test Procedures.. 52

10.1 Test Automation Tool .. 52

10.2 Test Categories ... 52

10.3 Tests of Categories 1 — 4 ... 52

10.4 Tests of Category 5 – IECP Tests .. 54

11 Related Work ... 56

12 Conclusion .. 57

13 Ongoing and Future Work ... 57

References ... 58

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 5

Figures and Tables

Figures

Figure 1. System interface of the ceiling speed monitor. ... 4

Figure 2. Block diagram with CSM (sequential behaviour)... 6

Figure 3. System requirements diagram. .. 9

Figure 4. Ceiling speed monitoring – top-level state machine.. 11

Figure 5. Ceiling speed monitoring state machine. ... 12

Figure 6. Graphical representation of the «satisfy» relation in a state machine diagram............................ 16

Figure 7. DFSM abstractions of the CSM, with configuration cases sb0 ∈ {0, 1}....................................... 34

Figure 8. Faulty SUT – Example 1. ... 37

Figure 9. Faulty SUT – Example 2. ... 39

Figure 10. Faulty SUT – Example 3. ... 40

Tables

Table 1. Requirements for the ceiling speed monitoring function.. 10

Table 2. Triggering of Train Interface commands and supervision statuses in ceiling speed monitoring
(from [28, Table 5]). ... 10

Table 3. Revocation of Train Interface commands and supervision statuses in ceiling speed monitoring
(from [28, Table 6]). ... 11

Table 4. Transitions between supervision statuses in ceiling speed monitoring (from [28, Table 7]).............. 11

Table 5. Requirements links to the SysML Elements... 15

Table 6. Constraints related to complex requirements listed in Table 5. ... 17

Table 7. Identification of basic states in machine CSM_ON .. 19

Table 8. DFSM Transition Table.. 32

Table 9. Input Alphabet AI .. 32

Table 10. DFSM states and associated I/O-equivalence classes. .. 33

Table 11. Extended input alphabet A′I satisfying AI ⊆ A
′
I 46

Table 12. Extended input alphabet AI containing boundary values. ... 50

Table 13. Test procedures .. 53

Table 14. Requirement-based Test procedures ... 54

Table 15. TP-002-OnlyCSM_ON Test suite... 54

Table 16. TP-002-OnlyCSM_ON-NOSB Test suite ... 54

Table 17. Mutants experiments results .. 55

Table 18. Test sequences that kills the mutant .. 55

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 6

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 1

1 Introduction

1.1 A Test Model for the ETCS Ceiling Speed Monitor

In 2011 the model-based testing benchmarks website www.mbt-benchmarks.org has been created
with the objective to publish test models that may serve as challenges or benchmarks for validating
testing theories and for comparing the capabilities of model-based testing (MBT) tools [24]. In
this technical report a novel contribution to this website is presented, a SysML model of the
Ceiling Speed Monitor (CSM) which is part of the European Vital Computer (EVC), the onboard
controller of trains conforming to the European Train Control System (ETCS) standard [6]. In
Section 2 the functional objectives for the CSM are described, and in Section 3 the detailed
model description is provided.

The static and behavioural semantics of SysML models have been defined in [21, 22] in a
semi-formal way, leaving certain “semantic variation points” open, so that they can be adjusted
according to project-specific requirements. For automated model-based testing, however, a
strictly formal semantics is required, so that concrete test data can be calculated from the model’s
transition relation using constraint solving techniques [12]. We therefore describe in Section 4
how a formal behavioural semantics is derived for the CSM model and present the associated
transition relation in propositional form.

We use state transition systems (STS) for encoding the operational semantics of concrete mod-
elling formalisms like SysML. STS are widely known from the field of model checking [5],
because their extension into Kripke Structures allows for effective data abstraction techniques.
The latter are also applied for equivalence class testing. Since state transition systems are a means
for semantic representation, testing theories elaborated for STS are applicable for all concrete
formalisms whose behavioural semantics can be expressed by STS. In [13] it is shown how the
semantics of general SysML models and models of a process algebra are encoded as STS. In
this technical report we illustrate how this is achieved for the concrete case of the CSM SysML
model.

1.2 Equivalence Class Partition Testing for the CSM

The CSM represents a specific test-related challenge: its behaviour depends on actual and allowed
speed, and these have conceptually real-valued data domains, so that – even when discretising
the input space – it would be infeasible to exercise all possible combinations of inputs on the
system under test (SUT). Therefore equivalence class partition (ECP) testing strategies have to
be applied for testing the CSM. While these strategies are well-adopted in a heuristic manner
in today’s industrial test campaigns, practical application of equivalence class testing still lacks
formal justification of the equivalence classes selected and the sequences of class representatives
selected as test cases: standard text books used in industry, for example [27], only explain the
generation of input equivalence class tests for systems, where the SUT reaction to an input
class representative is independent on the internal state. Moreover, the systematic calculation
of classes from models, as well as their formal justification with respect to test strength and
coverage achieved, is not yet part of today’s best practices in industry.

In contrast to this, formal approaches to equivalence class testing have been studied in the formal
methods communities; references to these results are given in Section 11. In the second main
part of this report (Section 5) we therefore describe a recent formal technique for equivalence
class testing and its application to testing the CSM. The theoretical foundations of this strategy
have been published by two of the authors in [12]. This technical report illustrates its practical

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 2

application and presents first evaluation details using a prototype implementation in an existing
MBT tool; the ECP tests are compared to test results obtained when applying other MBT coverage
strategies, such as transition cover or MC/DC coverage (Section 10).

1.3 Fault Models and Completeness Results

Our ECP strategy introduces test suites depending on fault models. This well adopted notion has
first been introduced in the field of finite state machine (FSM) testing [25], but is also applicable
to other formal modelling techniques. A fault model consists of a reference model, a conformance
relation and a fault domain. The latter is a collection of models whose behaviour may or may
not be consistent to the reference model in the sense of the conformance relation. The test suites
generated by the ECP strategy described here are complete with respect to the given fault model:
each system of the fault domain which conforms to the reference model will pass all the generated
tests (this means that the test suite is sound), and each system in the fault domain that violates
the conformity to the reference model will fail at least once when tested according to the test
suite (the test suite is exhaustive).

2 The Ceiling Speed Monitoring Function – Functional Objectives

The European Train Control System ETCS relies on the existence of an onboard controller in
train engines, the European Vital Computer EVC. Its functionality and basic architectural features
are described in the public ETCS system specification [6]. One functional category of the EVC
covers aspects of speed and distance monitoring, to accomplish the “. . . supervision of the speed
of the train versus its position, in order to assure that the train remains within the given speed
and distance limits.” [28, 3.13.1.1]. Speed and distance monitoring is decomposed into three
sub-functions [28, 3.13.10.1.2], where only one out of these three is active at a point in time:

1. Ceiling speed monitoring (CSM) supervises the observance of the maximal speed allowed
according to the current most restrictive speed profile (MRSP). CSM is active while the
train does not approach a target (train station, level crossing, or any other point that must be
reached with predefined speed).

2. Target speed monitoring (TSM) supervises the observance of the maximal distance-depending
speed, while the train brakes to a target, that is, a location where a given predefined speed
(zero or greater zero) must be met.

3. Release speed monitoring (RSM) applies when the special target “end of movement authority
(EOA)” is approached, where the train must come to a stop. RSM supervises the observance
of the distance-depending so-called release speed, when the train approaches the EOA.

In this technical report we present a complete formal model of the CSM function, with the
objective to derive a complete test suite from this model (Section 5).

3 Model Description

3.1 Model Availability

The ceiling speed monitor has been modelled using the OMG Systems Modeling Language (OMG
SysMLT M) [21]. The complete model is available for download under http://www.mbt-benchmarks.org.
This is a website dedicated to the publication of test models possessing features that are of general
interest for researchers and practitioners in the field of model-based testing (MBT). Moreover,

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 3

the models may serve as benchmarks for comparing test automation tools with respect to test
strength and tool performance. This has been further motivated in [24], where also suggestions
for MBT benchmarks are given. In this section, we give a comprehensive introduction into the
formal model.

3.2 Model Components

According to the model-based testing approach applied in this report, UML/SysML test models
are structured into the following basic components.

1. A package containing the system requirements (Fig. 3),

2. A block diagram (Fig. 1) identifying

• the system under test (SUT),

• its interface to the operational environment, and

• the test environment (TE) simulating the “real” operational environment during test
execution,

3. Subordinate block diagrams refining the internal structure of the SUT (Fig. 2) and the TE,
respectively,

4. State machines associated with the leaf blocks of the structural decompositions of SUT
(Fig. 4) and TE, and

5. Operations associated with blocks. These are referenced by state machines, when evaluating
guard conditions or performing actions.

3.3 Model Semantics – Overview

The detailed formal behavioural semantics of SysML test models has been described in [13,
pp. 88]. This semantics is consistent with the standards [22, 21], but fixes certain semantic
variation points in ways that are admissible according to the standards. In this technical report,
however, the semantic details will be explained as far as they are relevant for understanding the
model presented here: in the present section, the behavioural semantics of the CSM model is
informally explained, and in Section 4, the formal model semantics is specified by presenting its
transition relation.

The leaf components of the structural model decomposition execute concurrently. For the
model under consideration the SUT operates in a sequential manner, but concurrently with its
environment. In this test model, the behaviour of the TE is undetermined; this is interpreted
in the way that every possible sequence of input vectors to the SUT would be allowed. This
assumption is reasonable for the example considered here: due to robustness requirements, the
ceiling speed monitor must be able to cope with input sequences that may be unreasonable from
a physical point of view. TE components are introduced in situations where only certain types of
interactions between operational environment and SUT are possible.

The model executes according to the run-to-completion semantics defined for state machines
in [22]. The model is in a quiescent (or stable) state, if no transition can be executed without
an input change. In a quiescent model state, inputs may be changed. If these changes enable
a transition, the latter is executed. Since our SUT model is deterministic – this is typical for

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 4

Figure 1. System interface of the ceiling speed monitor.

safety-relevant applications – there is no necessity to handle situations where several transitions
are simultaneously enabled. The executed transition, however, may lead to a transient state,
that is, to a state where another transition is enabled. In the run-to-completion semantics this
new transition is also executed, and so forth until a quiescent state is reached. Conceptually, the
consecutive execution of model transitions is executed in zero time, so that input changes cannot
happen until the next quiescent state has been reached. Moreover, models admitting unbounded
sequences of transitions between transient states are considered as illegal, and this situation is
called a livelock failure.

3.4 Interfaces

The interfaces between SUT and its environment are specified in the internal block diagram
displayed in Fig. 1. All interfaces are represented as flow ports. The environment writes to SUT
input ports and reads from SUT output ports.

Ceiling speed monitoring is activated and de-activated by the speed and distance monitoring (SnD)
coordination function that controls CSM, TSM, and RSM: on input interface SnDMonitorIn,

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 5

variable csmSwitch specifies whether ceiling speed monitoring should be active (csmSwitch =

1) or passive, since target or release speed monitoring is being performed (csmSwitch = 0).
Furthermore, this interface carries variable SBAvailable which has value 1, if the train is equipped
with a service brake. This brake is then used for slowing down the train if it has exceeded the
maximal speed allowed, but not yet reached the threshold for an emergency brake intervention. If
SBAvailable = 0, the emergency brake shall be used for slowing down the train in this situation.
Input SBAvailable is to be considered as a configuration parameter of the train, since it depends
on the availability of the service brake hardware. Therefore this value can be freely selected at
start-of-test, but must remain constant during test execution.

Input interface OdometryIn provides the current speed value estimated by the odometer equip-
ment in variable Vest. Input interface SpeedRestrictionIn provides the current maximal velocity
defined by the most restrictive speed profile in variable VMRSP. Input interface NationalVal-
uesIn provides a control flag for the ceiling speed monitor: variable allowRevokeEB is 1, if
after an emergency brake intervention the brake may be automatically released as soon as the
estimated velocity of the train is again less or equal to the maximal speed allowed. Otherwise
(allowRevokeEB = 0) the emergency brakes must only be released after the train has come to a
standstill (Vest = 0). This input parameter is called a “national value”, because it may change
when a train crosses the boundaries between European countries, due to their local regulations.

Output interface DMIOut sends data from the SUT to the driver machine interface (DMI). It
carries five variables. DMICmd is used to display the supervision status to the train engine driver:
Value INDICATION may be initially present when CSM is activated, but will be immediately
overridden by one of the values NORMAL, OVERSPEED, WARNING, or INTERVENTION,
as soon as ceiling speed monitoring becomes active. Value NORMAL is written by the SUT to
this variable as long as the ceiling speed is not violated by the current estimated speed. Value
OVERSPEED has to be set by the CSM as soon as condition VMRSP < Vest becomes true. If the
speed increases further (the detailed conditions are described below), the indication changes from
OVERSPEED to WARNING, and from there to INTERVENTION. The latter value indicates
that either the train is slowed down until it is back in the normal speed range, or the emergency
brake has been triggered to stop the train. Furthermore, interface DMIOut contains the following
speed-related variables that are displayed as y/t-diagrams on the DMI.

• speedToDriver: the current estimated speed as given by variable Vest.

• permittedSpeedToDriver: the permitted maximal speed as given by the most restrictive speed
profile VMRSP.

• speedOnBoard: maximal speed allowed (VMRSP) as long as the train does not overspeed.
Otherwise it carries values VMRSP +δ, where δ > 0 specifies the margin from VMRSP to service
brake intervention and is calculated as described below.

Output interface TIout specifies the train interface from the CSM to the brakes, using variable
TICmd. If TICmd = NO_CMD, both service brakes (if existent) and emergency brakes are
released. If TICmd = SERVICE_BRAKE_CMD, the service brake is activated. If TICmd =

EMER_BRAKE_CMD, the emergency brake is triggered.

3.5 SUT Attributes and Operations

The CSM is modelled as an application with sequential behaviour. Therefore the SUT block on
the top-level interface diagram (Fig. 1) is refined into another block diagram that just carries the
SUT, as shown in Fig. 2.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 6

Figure 2. Block diagram with CSM (sequential behaviour).

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 7

As shown there, the SUT uses a local attribute sbiCmd which carries value SERVICE_BRAKE_CMD,
if the service brake should be used for slowing down the train to the admissible speed. If the
value EMER_BRAKE_CMD is assigned to sbiCmd, the emergency brake will be triggered in
this situation.

Operations dV_warning(float), dV_sbi(float), dV_ebi(float) return values that are used to de-
termine whether a warning should be indicated to the train engine driver (Vest > VMRSP +

dVwarning(VMRSP)), a service brake intervention should be triggered (Vest > VMRSP+dVsbi(VMRSP)),
or the emergency brake should be activated (Vest > VMRSP + dVebi(VMRSP)). In each case, the
calculation is performed according to the pattern

dVx(VMRSP) =


min{dVxmin + Cx · (VMRSP − Vxmin), dVxmax}

if VMRSP > Vxmin

dVxmin

if VMRSP ≤ Vxmin

(1)

which has been defined in [28, 3.13.9.2.3]. Here x can be replaced by warning, sbi (SBI = service
brake intervention), and ebi (EBI = Emergency Brake Intervention), and Cx is defined by

Cx =
dVxmax − dVxmin

Vxmax − Vxmin

The following minimal and maximal values apply [28, A.3.1]:

dVwarningmin = 4 dVsbimin = 5.5 dVebimin = 7.5

dVwarningmax = 5 dVsbimax = 10 dVebimax = 15

Vwarningmin = 110 Vsbimin = 110 Vebimin = 110

Vwarningmax = 140 Vsbimax = 210 Vebimax = 210

Inserting these values into Equation (1) results in

dVwarning(VMRSP) =

 min{ 13 + 1
30 · VMRSP, 5} if VMRSP > 110

4 if VMRSP ≤ 110
(2)

dVsbi(VMRSP) =

 min{0.55 + 0.045 · VMRSP, 10} if VMRSP > 110

5.5 if VMRSP ≤ 110
(3)

dVebi(VMRSP) =

 min{−0.75 + 0.075 · VMRSP, 15} if VMRSP > 110

7.5 if VMRSP ≤ 110
(4)

Operations calc_speed_to_driver() and calc_permitted_speed_to_driver() support the display of
the current estimated speed and the maximum speed, respectively, at the driver machine interface
by performing assignments to output variables:

speedToDriver = Vest

permittedSpeedToDriver = VMRSP

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 8

Operation calc_speed_onboard() displays the maximal speed VMRSP specified by the most re-
strictive speed profile in DMI interface variable speedOnBoard, as long as the train is not
overspeeding. As soon as Vest > VMRSP, this function calculates the service brake intervention
speed and displays it via speedOnBoard, that is,

speedOnBoard = VMRSP + dVsbi(VMRSP)

where dVsbi(VMRSP) is calculated according to Equation 3.

3.6 Requirements

Figure 3 shows the requirements reflected by the model. The requirement labels refer to the
sections of the ETCS standard document [28], from where they have been imported into the model.
To make this technical report sufficiently self-contained, we list the requirements applicable to
CSM in Table 1, and adapt the wording and the cross references to the technical report.

In requirement REQ-3.13.10.2.2, the traction cut-off command on the train interface is not
explicitly addressed in our model, because it will always be triggered in synchrony with a braking
command. We assume the existence of a driver software layer in the EVC that automatically
triggers traction cut-off if

• a traction cut-off interface is implemented for the EVC, and

• a service brake or emergency brake command is issued.

Requirement REQ-3.13.10.2.3 states that national values can only influence the usage of the
service brake when in TSM. We will therefore assume that the availability of the service brake
and its use for slowing down the train when the emergency braking condition is not yet fulfilled
is constant (i.e., SBAvailable = 0 or SBAvailable = 1) during CSM operation.

Requirement REQ-3.13.10.3.3 is described by two tables (see Table 2 and Table 3 below), it is
then decomposed into sub-requirements REQ-3.13.10.3.3.t1, . . . , REQ-3.13.10.3.3.r1, each of
them representing one line of these two tables.

Requirement REQ-3.13.10.3.4 is represented as a transition table, it is decomposed into sub-
requirements, one for each relevant cells of the table (see Table 4).

Requirement REQ-3.13.10.3.7 is “delegated” to the surrounding software of the CSM: it is
assumed in our model that the input VMRSP is always set by the CSM software environment in a
way that takes into account the min safe front end of the train.

3.7 Behavioural Specification

The behaviour of the ceiling speed monitor is modelled by the hierarchic state machine that is
associated with the SUT block of Fig. 2 and displayed in Fig. 4 (top-level state machine) and
Fig. 5 (lower-level state machine associated with composite state CSM_ON.

The top-level state machine controls activation and de-activation of the CSM. As soon as input
variable csmSwitch on interface SnDMonitorIn gets value 1, the CSM is activated, and it is
de-activated when csmSwitch falls back to 0. On activation, the auxiliary variable sbiCmd
is set to EMER_BRAKE_CMD, if the input variable SBAvailable carries value 0, indicating

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 9

Figure 3. System requirements diagram.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 10

Table 1. Requirements for the ceiling speed monitoring function.

id Description

REQ-3.13.10.2.1 The train speed indicated to the driver shall be identical to the speed used for the speed monitoring (i.e.
the estimated speed Vest).

REQ-3.13.10.2.2 Once a Train Interface command (traction cut-off, service brake or emergency brake) is triggered, the
on-board shall apply it until its corresponding revocation condition is met.

REQ-3.13.10.2.3 If there is no on-board interface with the service brake or if the use of the service brake command is not
allowed by a National Value (only in Target speed monitoring),whenever a service brake command is
specified, the emergency brake command shall be triggered instead.

REQ-3.13.10.2.4 The emergency brake command, which is triggered instead of the service brake command when an SBI
supervision limit is exceeded, shall be revoked according to the requirements specified for the revocation
of service brake command, unless the emergency brake command has been also triggered due to an EBI
supervision limit. In such case, the condition for revoking the emergency brake command due to EBI
supervision limit shall prevail.

REQ-3.13.10.2.5 The on-board shall revoke the Intervention status only when no brake command is applied by the speed
and distance monitoring function.

REQ-3.13.10.3.1 The on-board equipment shall display the permitted speed (VMRSP).

REQ-3.13.10.3.2 When the supervision status is Overspeed, Warning or Intervention, the on-board equipment shall display
the SBI speed (i.e. the FLOI speed; FLOI = First Line of Intervention).

REQ-3.13.10.3.3 The on-board shall compare the estimated speed with the ceiling supervision limits defined in [28,
3.13.9.2] and shall trigger/revoke commands to the train interface (service brake if implemented or
emergency brake) and supervision statuses as described in Table 2 (from [28, Table 5]) and Table 3
(from [28, Table 6]).

REQ-3.13.10.3.4 The on-board equipment shall execute the transitions between the different supervision statuses as
described in Table 4 (see [28, 4.6.1] for details about the symbols). This table takes into account the
order of precedence between the supervision statuses and the possible updates of the MRSP while in
ceiling speed monitoring (e.g. when a TSR is revoked; TSR = Temporary Speed Restriction).

REQ-3.13.10.3.5 When the speed and distance monitoring function becomes active and the ceiling speed monitoring is the
first one entered, the triggering condition t1 defined in Table 2 shall be checked in order to determine
whether the Normal status applies. If it is not the case, the on-board shall immediately set the supervision
status to the relevant value, applying a transition from the Normal status according to Table 4.

REQ-3.13.10.3.6 The Indication status is not used in ceiling speed monitoring. However, in case the ceiling speed
monitoring is entered and the supervision status was previously set to Indication, the on-board equipment
shall immediately execute one of the transitions from the Indication status, as described in Table 4.

REQ-3.13.10.3.7 The locations corresponding to a speed increase of the MRSP shall be supervised by the on-board
equipment taking into account the min safe front end of the train.

Table 2. Triggering of Train Interface commands and supervision statuses in ceiling speed monitoring
(from [28, Table 5]).

id TC Estimated speed TI SSE

REQ-3.13.10.3.3.t1 t1 Vest ≤ VMRSP — Normal Status

REQ-3.13.10.3.3.t2 t2 Vest > VMRSP — Overspeed Status

REQ-3.13.10.3.3.t3 t3 Vest > VMRSP + dVwarning — Warning Status

REQ-3.13.10.3.3.t4 t4 Vest > VMRSP + dVsbi SB Intervention Status

REQ-3.13.10.3.3.t5 t5 Vest > VMRSP + dVebi EB Intervention Status

TC: trigger condition
TI: command triggered on train interface to brakes
SB: trigger service brake command (if available, otherwise trigger emergency brake)
EB: trigger emergency brake command SSE: supervision status entered

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 11

Table 3. Revocation of Train Interface commands and supervision statuses in ceiling speed monitoring
(from [28, Table 6]).

id RC Estimated Speed TICR SSR

REQ-3.13.10.3.3.r0 r0 Standstill EB Intervention Status

REQ-3.13.10.3.3.r1 r1 Vest ≤ VMRSP SB, EBa Indication Status
Overspeed Status
Warning Status
Intervention Status (if SBI)
Intervention Status (if EB and
allowRevokeEB = 1)

aOnly if allowRevokeEB = 1.

RC: revocation condition
TICR: command revoked on train interface to brakes
SSR: supervision status revoked

Table 4. Transitions between supervision statuses in ceiling speed monitoring (from [28, Table 7]).

Normal Status < r1 < r1 < r1 < r0, r1

Indication Status

t2 > t2 > Overspeed Status

t3 > t3 > t3 > Warning Status

t4, t5 > t4, t5 > t4, t5 > t4, t5 > Intervention Status

The sub-requirements IDs associated with each cell in the transition table are of the form
REQ-3.13.10.3.4.rX.cY where X and Y are the row and column indexes, respectively.

Figure 4. Ceiling speed monitoring – top-level state machine.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 12

Figure 5. Ceiling speed monitoring state machine.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 13

that no separate service brake can be used for slowing down the train, so that the emergency
brake has to be used for this purpose. Conversely, when SBAvailable = 1, sbiCmd is set to
SERVICE_BRAKE_CMD.

While in composite state CSM_ON, do actions are executed as specified by operations
calc_permitted_speed_to_driver(), calc_speed_onboard(), and calc_speed_to_driver() introduced
above. The effect of these do actions is that variables permittedSpeedToDriver, speedOnBoard,
and speedToDriver are set consistently to the current values depending on Vest and VMRSP, respec-
tively, as described above. The do-actions are executed whenever all state machine transitions
are blocked, and the value of the left-hand side variable of the assignment performed by one of
these operations differs from the valuation of the right-hand side expression. As a consequence,
the necessary updates of these three output variables are executed in zero time after any input
change.

Subordinate state machine CSM_ON specifies the detailed behaviour of the CSM. Its execution
starts in basic state NORMAL, where the ‘NORMAL’ indication is displayed on the DMI and
brakes are released (TICmd = NO_CMD). When the speed increases above the maximal
speed allowed (Vest > VMRSP), the state machine transits to basic state OVERSPEED, where
the ‘OVERSPEED’ indication is displayed to the train engine driver. If the train continues
overspeeding until the warning threshold VMRSP + dVwarning(VMRSP) is exceeded, a transition into
the WARNING state is performed, accompanied by an indication change on the DMI. Accelerating
further until Vest > VMRSP+dVsbi(VMRSP) leads to a transition into basic state SERVICE_BRAKE,
where either the service brake or the emergency brake is triggered, depending on the value stored
before in variable sbiCmd. The DMI display changes to ‘INTERVENTION’.

The intervention status is realised by two basic state machine states, SERVICE_BRAKE and
EMER_BRAKE. From SERVICE_BRAKE it is still possible to return to NORMAL, as soon
as the speed has been decreased below the overspeeding threshold. When the train, however,
continues its acceleration until the emergency braking threshold has been exceeded (Vest >

VMRSP + dVebi(VMRSP)), basic state EMER_BRAKE is entered. From there, a state machine
transition to NORMAL is only possible if the train comes to a standstill, or if the national
regulations (variable allowRevokeEB) allow to release the brakes as soon as overspeeding has
stopped.

Observe that the run-to-completion semantics of state machines also allows for zero-time transi-
tions from, for example, NORMAL to EMER_BRAKE. If, while in basic state NORMAL, the
inputs change such that Vest > VMRSP + dVebi(VMRSP) becomes true1, the state machine transition
from NORMAL to OVERSPEED leads to a transient model state, because guard condition
Vest > VMRSP +dVwarning(VMRSP) is already fulfilled, and the state machine transits to WARNING.
Similarly, guards Vest > VMRSP + dVsbi(VMRSP) and Vest > VMRSP + dVebi(VMRSP) also evaluate
to true, so that the next quiescent state is reached in basic state EMER_BRAKE. Therefore
REQ-3.13.10.3.4.r5c1 which requires direct transitions from Normal status to Intervention status
is fulfilled by the CSM_ON state machine: if the guard conditions have the appropriate valu-
ations, the required target states can be reached in zero time, that is, in one observable EVC
processing cycle. Analogously, the state machine fulfils requirements REQ-3.13.10.3.4.r5c2,
REQ-3.13.10.3.4.r5c3, REQ-3.13.10.3.4.r4c1 without needing direct state machine transition
arrows between the respective state machine states.

1This would be an exceptional behaviour situation, caused, for example, by temporary unavailability of odometry
data, so that a “sudden jump” of Vest would be observed by the CSM.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 14

3.8 Requirements Tracing

SysML provides language elements for relating model elements to requirements, using the «sat-
isfy» relationship from model elements to requirements symbols in arbitrary SysML diagrams [21,
Section 16]. Exploiting this language feature supports

• model validation, and

• requirements-based testing.

In the former case, missing requirements can be detected if they cannot be linked to structural or
behavioural model elements in the appropriate way. In latter case, execution traces through the
model covering a given structural or behavioural model element represent test cases contributing
to the verification of all requirements related to the model element under consideration.

Tables 5 associates the SysML elements with the requirements they satisfied. “Submachine State”
and “Atomic State” are the top-level and state machine states, respectively. The “Constraints" are
the LTL formulas used to relate the most complex requirements to execution traces as explained
in the following paragraphs.

The complexity of «satisfy» relations between structural or behavioural model elements depends
on the complexity of the requirement and the way each requirement is reflected by the structural
and behavioural model. Consider, for example (see Table 1), requirement

REQ-3.13.10.2.1: The train speed indicated to the driver shall be identical to the speed
used for the speed monitoring (i.e. the estimated speed Vest).

Every model trace where the CSM is activated is suitable for verifying this requirement,
because the DMI variable speedToDriver is updated by the actual speed Vest via operation
calc_speed_to_driver(), whenever the ceiling speed monitor is active, that is, in composite state
CSM_ON. Therefore CSM_ON is linked to REQ-3.13.10.2.1 by the «satisfy» relation, as
expressed in Table 5, row 1.

SysML also allows to express traceability relationships in a graphical way, by drawing arrows
from model elements to requirements as shown in Fig. 6. This technique, however, tends to
clutter structural and behavioural diagrams as soon as more than a few requirements are involved.
Therefore the tabular notation in Table 5 is preferable and supported by most state-of-the-art
SysML modelling tools.

A more complex case of requirements tracing presents itself if one or more transitions are related
to a given requirement. This is the case for the requirement

REQ-3.13.10.2.2: Once a Train Interface command (traction cut-off, service brake
or emergency brake) is triggered, the on-board shall apply it until its corresponding
revocation condition is met.

As modelled in Fig. 5, we have two revocation conditions; one is reflected by the transition
from basic state SERVICE_BRAKE to NORMAL, the other from EMER_BRAKE to NORMAL.
Therefore both transitions are related to REQ-3.13.10.2.2, as specified in row 2 of Table 5.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 15

Table 5. Requirements links to the SysML Elements

No. Requirement ←− «satisfy»

1 REQ-3.13.10.2.1 «Composite State» CSM_ON

2 REQ-3.13.10.2.2 «Transition» [EMER_BRAKE - NORMAL]

«Transition» [SERVICE_BRAKE - NORMAL]

3 REQ-3.13.10.2.3 «Transition» [CSM_OFF - CSM_ON]

«Basic State» SERVICE_BRAKE

«Constraint» constraint_03

4 REQ-3.13.10.2.4 «Constraint» constraint_02

«Transition» [EMER_BRAKE - NORMAL]

«Constraint» constraint_01

5 REQ-3.13.10.2.5 «Transition» [EMER_BRAKE - NORMAL]

«Transition» [SERVICE_BRAKE - NORMAL]

6 REQ-3.13.10.3.1 «Submachine State» CSM_ON

7 REQ-3.13.10.3.2 «Basic State» OVERSPEED

«Basic State» SERVICE_BRAKE

«Basic State» WARNING

«Basic State» EMER_BRAKE

8 REQ-3.13.10.3.3.r0 «Transition» [EMER_BRAKE - NORMAL]

9 REQ-3.13.10.3.3.r1 «Transition» [OVERSPEED - NORMAL]

«Transition» [SERVICE_BRAKE - NORMAL]

«Transition» [WARNING - NORMAL]

«Transition» [EMER_BRAKE - NORMAL]

10 REQ-3.13.10.3.3.t1 «Basic State» NORMAL

11 REQ-3.13.10.3.3.t2 «Basic State» OVERSPEED

12 REQ-3.13.10.3.3.t3 «Basic State» WARNING

13 REQ-3.13.10.3.3.t4 «Basic State» SERVICE_BRAKE

14 REQ-3.13.10.3.3.t5 «Basic State» EMER_BRAKE

15 REQ-3.13.10.3.4.r1c3 «Transition» [OVERSPEED - NORMAL]

16 REQ-3.13.10.3.4.r1c4 «Transition» [WARNING - NORMAL]

17 REQ-3.13.10.3.4.r1c5 «Transition» [EMER_BRAKE - NORMAL]

«Transition» [SERVICE_BRAKE - NORMAL]

18 REQ-3.13.10.3.4.r3c1 «Transition» [NORMAL - OVERSPEED]

19 REQ-3.13.10.3.4.r4c1 «Constraint» constraint_08

20 REQ-3.13.10.3.4.r4c3 «Transition» [OVERSPEED - WARNING]

21 REQ-3.13.10.3.4.r5c1 «Constraint» constraint_10

«Constraint» constraint_09

22 REQ-3.13.10.3.4.r5c3 «Constraint» constraint_12

«Constraint» constraint_11

23 REQ-3.13.10.3.4.r5c4 «Transition» [WARNING - SERVICE_BRAKE]

«Transition» [SERVICE_BRAKE - EMER_BRAKE]

«Constraint» constraint_13

24 REQ-3.13.10.3.5 «Constraint» constraint_05

«Constraint» constraint_06

«Constraint» constraint_07

«Basic State» NORMAL

«Constraint» constraint_04

25 REQ-3.13.10.3.6 «Constraint» constraint_05

«Constraint» constraint_06

«Constraint» constraint_07

«Constraint» constraint_04

The constraints constraint_01,. . . ,constraint_13 are specified in Table 6.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 16

Figure 6. Graphical representation of the «satisfy» relation in a state machine diagram.

In the most complex case we have to handle situations where requirements are reflected by traces
visiting model state vectors2 fulfilling certain constraints, and these model state vectors have to
be visited by the traces in a specific order. Such a situation is reflected, for example, by

REQ-3.13.10.3.4: The on-board equipment shall execute the transitions between the
different supervision statuses as described in Table 4 (see [28, 4.6.1] for details about the
symbols). This table takes into account the order of precedence between the supervision
statuses and the possible updates of the MRSP while in ceiling speed monitoring (e.g.
when a TSR is revoked; TSR = Temporary Speed Restriction).

This requirement has been decomposed into atomic sub-requirements REQ-3.13.10.3.4.r1c3, . . . ,
REQ-3.13.10.3.4.r5c4, as explained in Section 3.6. Some of these sub-requirements are again
reflected by transitions, as specified in rows 15, 16, 17, 18, and 20 of Table 5. Requirement
REQ-3.13.10.3.4.r5c1, however, specifies the possibility to directly transit from NORMAL to
SERVICE_BRAKE or EMER_BRAKE. This cannot be specified by simply linking a behavioural
model element to the requirement, because we have avoided to draw direct state machine
transitions from NORMAL to SERVICE_BRAKE or EMER_BRAKE, since those transitions
are implicitly realised by the run-to-completion semantics, as explained above. Consider, for
example, the zero-time transition NORMAL −→ SERVICE_BRAKE. To cover this situation, we
need to

1. Enter NORMAL in a quiescent model state – this is specified by

[NORMAL ∧ Vest ≤ VMRSP]

2. Stay there until the speed exceeds VMRSP + dVsbi(VMRSP) but remains less or equal to VMRSP +

dVebi.
2A model state vector consists of valuations of inputs, outputs, and internal model variables, as well as of variable

valuations indicating the basic state machine states currently active.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 17

Formally this is expressed in LTL by

Finally([NORMAL ∧ Vest ≤ VMRSP] ∧

([NORMAL ∧ Vest ≤ VMRSP]

Until

[NORMAL ∧ Vest > VMRSP + dVsbi(VMRSP) ∧

Vest ≤ VMRSP + dVebi(VMRSP)]))

This is expressed by constraint_09 linked to REQ-3.13.10.3.4.r5c1 in Table 5 and specified in
Table 6. Similarly, covering the zero-time transition NORMAL −→ EMER_BRAKE requires a
trace satisfying

Finally([NORMAL ∧ Vest ≤ VMRSP] ∧

([NORMAL ∧ Vest ≤ VMRSP]

Until

[NORMAL ∧ Vest > VMRSP + dVebi(VMRSP)]))

(this is specified as constraint_10 in Table 6). Similar constraints are specified for REQ-
3.13.10.3.4.r4c1, REQ-3.13.10.3.4.r5c3, and REQ-3.13.10.3.4.r5c4, and for requirements REQ-
3.13.10.3.5 and REQ-3.13.10.3.6.

Table 6. Constraints related to complex requirements listed in Table 5.

«Constraint» LTL Formula

constraint_01 Finally[EMER_BRAKE ∧ ¬SBAvailable ∧ Vest > 0 ∧ Vest ≤ VMRSP ∧ ¬allowRevokeEB]

constraint_02 Finally[SERVICE_BRAKE ∧ ¬SBAvailable ∧ Vest ≤ VMRSP]

constraint_03 Finally[SERVICE_BRAKE∧¬SBAvailable∧Vest > VMRSP+dVsbi(VMRSP)∧Vest ≤ VMRSP+dVebi(VMRSP)]

constraint_04 Finally[CSM_OFF ∧ csmSwitch ∧ Vest > VMRSP ∧ Vest ≤ VMRSP + dVwarning(VMRSP)]

constraint_05 Finally[CSM_OFF ∧ csmSwitch ∧ Vest > VMRSP + dVwarning(VMRSP) ∧ Vest ≤ VMRSP + dVsbi(VMRSP)]

constraint_06 Finally[CSM_OFF ∧ csmSwitch ∧ Vest > VMRSP + dVsbi(VMRSP) ∧ Vest ≤ VMRSP + dVebi(VMRSP)]

constraint_07 Finally[CSM_OFF ∧ csmSwitch ∧ Vest > VMRSP + dVebi(VMRSP)]

constraint_08
Finally([NORMAL ∧ Vest ≤ VMRSP] ∧ ([NORMAL ∧ Vest ≤ VMRSP] Until [NORMAL ∧ Vest > VMRSP +

dVwarning(VMRSP) ∧ Vest ≤ VMRSP + dVsbi(VMRSP)]))

constraint_09 Finally([NORMAL ∧ Vest ≤ VMRSP] ∧ ([NORMAL ∧ Vest ≤ VMRSP] Until [NORMAL ∧ Vest > VMRSP +

dVsbi(VMRSP) ∧ Vest ≤ VMRSP + dVebi(VMRSP)]))

constraint_10 Finally([NORMAL ∧ Vest ≤ VMRSP] ∧ ([NORMAL ∧ Vest ≤ VMRSP] Until [NORMAL ∧ Vest > VMRSP +

dVebi(VMRSP)]))

constraint_11 Finally([OVERSPEED∧Vest ≤ VMRSP]∧ ([OVERSPEED∧Vest ≤ VMRSP] Until [OVERSPEED∧Vest >
VMRSP + dVsbi(VMRSP) ∧ Vest ≤ VMRSP + dVebi(VMRSP)]))

constraint_12 Finally([OVERSPEED∧Vest ≤ VMRSP]∧ ([OVERSPEED∧Vest ≤ VMRSP] Until [OVERSPEED∧Vest >
VMRSP + dVebi(VMRSP)]))

constraint_13 Finally([WARNING ∧ Vest ≤ VMRSP] ∧ ([WARNING ∧ Vest ≤ VMRSP] Until [WARNING ∧ Vest > VMRSP +

dVebi(VMRSP)]))

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 18

4 Formal Semantics – the Transition Relation

4.1 Semantic Definition Scope

In this section the formal behavioural semantics of the CSM model M written in SysML is
specified. The exposition is restricted to the situation where the CSM has already been switched
on; this scenario is completely captured by state machine CSM_ON depicted in Fig. 5. This
restriction is motivated by the fact that the activation/deactivation scenario for the CSM as shown
in state machine CSM (Fig. 4) is incomplete without the models for TSM and RSM. These model
components define the SUT behaviour when CSM is in state CSM_OFF.

4.2 State Transition System Semantics

The behaviour of the CSM SysML model M can be formalised by mapping M to a state
transition system (STS) S = (S , s0,R) with state space S , initial state s0 ∈ S and transition
relation R ⊆ S × S . An infinite sequence π = s.s1.s2 . . . of S-states is called a computation or a
path of S, if and only if it satisfies

s = s0 ∧ (∀i ∈ N : (si−1, si) ∈ R)

A finite computation prefix is called a trace.

The behavioural semantics of a SysML modelM is given by the set of computations that can be
executed by the state transition system S associated withM.

4.3 State Space

For mappingM to S, we use state spaces over variable valuations: let V be a finite set of variable
symbols for variables v ∈ V with values in some domain D =

⋃
v∈V Dv. The state space S of S is

the set of all variable valuations s : V → D with s(v) ∈ Dv. The variables of V are partitioned into
input variables, internal model variables, and output variables; for the CSM model this results in

V = I ∪ M ∪ O

I = {Vest,VMRSP, allowRevokeEB}

M = {`, sbiCmd}

O = {DMICmd,TICmd}

These variables have domains as introduced in Section 3, but here we use integer values instead
of enumeration types. The enumeration to integer association is defined in Fig. 1.

DVest = DVMRSP = [0, 350]

DallowRevokeEB = DsbiCmd = D` = {0, 1}

DTICmd = {0, 1, 2}

DDMICmd = {0, 1, 2, 3, 4}

Internal variable ` does not occur in the SysML model described in Section 3; it is used here
to reduce the state space: each of the basic states NORMAL, OVERSPEED, WARNING, as
well as the intervention states of the state machine in Fig. 5 are associated with specific outputs
on DMICmd. Therefore all basic states of this machine are completely identified if we have
a means to distinguish SERVICE_BRAKE from EMER_BRAKE in the case DMICmd = 4

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 19

(INTERVENTION). To this end, auxiliary variable ` will be set to 1 if the state machine of Fig. 5
resides in basic state SERVICE_BRAKE; otherwise ` will be set to 0. Using ` in this way allows
us to identify the basic states as specified in Table 7.

Table 7. Identification of basic states in machine CSM_ON

State Machine in Basic State Equivalent to

NORMAL DMICmd = 0

OVERSPEED DMICmd = 2

WARNING DMICmd = 3

SERVICE_BRAKE DMICmd = 4 ∧ ` = 1

EMER_BRAKE DMICmd = 4 ∧ ` = 0

We use a short-hand tuple notation for states: s = (d1, . . . , d7) with di ∈ D denotes the state
satisfying

s(Vest) = d1, s(VMRSP) = d2, s(allowRevokeEB) = d3,

s(`) = d4, s(sbiCmd) = d5,

s(DMICmd) = d6, s(TICmd) = d7

4.4 Quiescent and Transient States

The STS covered by our testing theory have state spaces that can be partitioned into disjoint sets
S = S Q ∪ S T , where S Q denotes quiescent states and S T transient states. In quiescent states,
the system is stable and cannot progress without a change of inputs. When these inputs change,
internal states and outputs remain unchanged. Transitions emanating from quiescent states may
lead to other quiescent states or to transient states. In contrast to this, each transient state has
exactly one post-state which is quiescent, and the transition to this post-state is immediate and
may change internal state variables and outputs only. The initial state s0 of the STS under
consideration is always quiescent.

From the intuitive interpretation of the CSM model, we see, for example, that the states si =

(Vest,VMRSP, allowRevokeEB, `, sbiCmd,DMICmd,TICmd),

s0 = (50, 100, 0, 0, 1, 0, 0)

s1 = (100.1, 100, 0, 1, 1, 4, 1)

s2 = (50, 100, 0, 0, 1, 4, 2)

are quiescent, while the states

s3 = (100.7, 100, 0, 0, 1, 0, 0)

s4 = (99.8, 100, 0, 1, 1, 4, 1)

s5 = (0, 100, 0, 0, 1, 4, 2)

are transient.

4.5 Initial State

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 20

The initial state corresponds to the CSM in its de-activated state. We associate the deactivation
state with encoding

s0 = (0, 0, 0, 0, 0, 0, 0)

and the first input change activates the CSM.

The existence of a service brake (sbiCmd = 1) is a configuration parameter of the train hardware.
Therefore it cannot be regarded as an input to the CSM that may change arbitrarily during its
execution, but as a constant value sbiCmd = sb0 ∈ {0, 1} that remains invariant during each test
execution.

4.6 Transition Relation – General Construction Rules

The transition relation R ⊆ S ×S specifying the possible state changes of the STS associated with
the CSM is infinite, since the input domains are infinite. The transition relation, however, can be
represented by means of a finite predicate R relating pre-states to post-states. R is a proposition
with free variables in V and V ′ = {v′ | v ∈ V}, the primed variable symbols denoting post-states.
The transition relation is specified by R via

R = {(s0, s1) ∈ S × S | R[s0(v)/v, s1(v)/v′ | v ∈ V]}

Predicate R[s0(v)/v, s1(v)/v′ | v ∈ V] results from R by replacing every unprimed variable v ∈ V
occurring in R by its pre-state value s0(v), and every primed variable v′ ∈ V ′ by its post-state
value s1(v).

The propositional representation of the transition relation is crucial for automated test data
generation: as explained in [23], concrete test data is calculated by means of constraint solving
techniques applied to formulas of the type

tc ≡ J(s0) ∧
n∧

i=1

R(si−1, si) ∧G(s0, . . . , sn)

where G(s0, . . . , sn+1) encodes a test objective and
∧n

i=1 R(si−1, si) asserts that every solution is
a trace of the model. Each R(si−1, si) is represented by means of R as a proposition where new
inputs to be selected in quiescent state si can be freely chosen by the solver, but their effect on
internal model variables and outputs is determined by R. Thus we are interested in propositional
representations R mainly for the purpose of tool construction.

While R is not uniquely determined in the general case, well-defined construction rules are
implied by [12], if R is to be applied for the purpose of equivalence class construction.

1. The canonic structure of R is

R ≡

k∨
i=0

(
ϕi(V) ∧ ψi(V,V ′)

)
where ϕi(V) is a proposition with free variables in V only, and ψi(V,V ′) has free variables in
V and V ′. ϕi(V) describes the precondition for a transition to fire, and ψi(V,V ′) specifies the
transition’s effect.

2. Each ϕi(V) specifies a set of reachable quiescent states, or a set of reachable transient states.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 21

3. All atomic propositions occurring in R and involving primed or unprimed internal state
variables or output variables v, v′, v ∈ M ∪ O, must be of the form

v = d or v′ = d, with d ∈ Dv

Recall that the domains of internal state and outputs variables are finite, therefore the number
of atomic propositions v = d is finite. Moreover, every atomic proposition involving variables
from I and M∪O can be transformed into a disjunction of conjunctions of atomic propositions
p with free variables from either I or M ∪ O only3.

4. For transitions emanating from quiescent states, ϕi(V) is constructed according to the rules

• Every state s satisfying ϕi(V) must be reachable and quiescent.

• For any reachable quiescent state s there is a unique ϕi(V) such that s satisfies ϕi(V).

• Every state s satisfying ϕi(V) has the same valuation of internal state and output
variables.

• For any reachable quiescent states s and r with the same valuation of internal state and
output variables, s and r satisfy the same ϕi(V).

Again, since the domains of internal state and outputs variables are finite, this construction
rule leads to a finite number of propositions ϕi(V). We assume that propositions ϕi(V), i =

0, . . . , k0 − 1 specify quiescent states.

5. For transitions emanating from transient states, ϕi(V) is constructed according to the rules

• Every state s satisfying ϕi(V) must be reachable and transient.

• For any transient state s there is a unique ϕi(V) such that s satisfies ϕi(V).

• There exists an index j, such that ϕ j(V) specifies a set of quiescent states according to
Rule 3, and every state s satisfying ϕi(V) has a post-state satisfying ϕ j(V).

• For any transient states s and r with post-states satisfying the same ϕ j(V), s and r satisfy
the same ϕi(V).

We assume that ϕk0+i(V), i = 0, . . . ,≤ k0−1 specify transient states. By construction of ϕi(V) and
ϕk0+i(V), the number of propositions specifying quiescent states according to Rule 4 is greater
than or equals the number of transient-state propositions built according to Rule 5. This is easy to
see, because each transient state s satisfying ϕk0+i(V) has a post-state satisfying the same ϕ j(V),
and this ϕ j(V) is unique. If the number of quiescent ϕi(V) is grater than the number of transient
ϕk0+i(V), then there are some reachable quiescent states which do not have any transient pre-states.
This may only occur for the quiescent state s0. As a consequence we can assume that proposition
ϕ0(V) specifies the quiescent initial state, and the propositions ϕk(V), k > 0, are ordered in such a
way that the quiescent post-states visited from transient states satisfying ϕk0+i(V) are all specified
by ϕi(V). The existence of ϕk0(V) depends on whether there is a transition from transient states
to s0 or if the initial state is never re-visited.

In the case of quiescent pre-states, ψi(V,V ′) is always the same proposition qpsc(V,V ′), where
“qpsc” stands for quiescent post-state condition.

qpsc(V,V ′) ≡

∨
x∈I

x′ , x

 ∧  ∧
v∈M∪O

v′ = v


3Consider, for example, atomic proposition x < m with Dx = R and Dm = {0, 1}. Then x < m ≡ (x < 0 ∧ m =

0) ∨ (x < 1 ∧ m = 1).

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 22

This specifies that at least one input variable must change its value during a transition from a
quiescent state, and all internal state and output valuations remain unchanged.

Transitions from transient states to quiescent states always leave inputs unchanged; this leads to
the complementary transient post-state condition

tpsc(V,V ′) ≡
∧
v∈I

v′ = v

so the effect of the transition from transient pre-state to quiescent post-state can be written as

ψk0+i(V,V ′) ≡ ψk0+i(V,V
′) ∧ tpsc(V,V ′)

where ψk0+i(V,V
′) is still to be determined.

As a consequence of Rule 4, every ϕi(V) characterising a subset of quiescent states is of the form

ϕi(V) ≡ ϕI
i (I) ∧ ξi(M ∪ O) (5)

ξi(M ∪ O) ≡
∧
m∈M

(m = dm
i) ∧

∧
y∈O

(y = dy
i), dm

i ∈ Dm, dy
i ∈ Dy (6)

so that ϕI
i (I) is a (generally non-atomic) proposition over free variables from I.

As a consequence of Rule 5 and of our numbering conventions, each ϕk0+i(V) characterising a
subset of transient states satisfies

∀s1, s2 ∈ S : s1(ϕk0+i) ∧ R(s1, s2)⇒ s2(ϕi)

This means that ϕk0+i(V) is constructed for transient states in such a way that all post-states of
the transient state set

Bi = {s ∈ S | s(ϕk0+i(V))}

are members of the same set
Ai = {s ∈ S | s(ϕi(V))}

of quiescent states. Therefore each ψk0+i(V,V ′) specifying the effect of a transition from transient
to quiescent state can be structured as

ψk0+i(V,V ′) ≡ ξi[m′/m, y′/y | m ∈ M, y ∈ O] ∧ tpsc(V,V ′)

where ξi[m′/m, y′/y | m ∈ m, y ∈ O] is the proposition specifying internal state and output values
for the associated set Ai of quiescent states, but each internal model state variable m and each
output variable y are replaced by their primed versions m′ and y′, respectively. Conversely, if
Bi can be reached from quiescent state set Ak by means of input changes satisfying a certain
proposition ϕI

k,i, these reachable elements s ∈ Bi satisfy ϕI
k,i ∧ ξk, since internal state values and

outputs do not change when transiting from an Ak-state to a Bi-state. As a consequence, the
proposition ϕk0+i(V) characterising Bi-states has a canonic structure

ϕk0+i(V) ≡
k0−1∨
q=0

(
ϕI

q,i(V) ∧ ξq(V)
)

(7)

where ϕI
q,i(V) ≡ false, if there are no transitions from Aq-states to Bi-states.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 23

Summarising, the systems covered by our equivalence class testing theory have a behavioural
semantics that can be expressed by an associated STS whose transition relation can be specified
by means of a proposition

R(V,V ′) ≡
k0−1∨
i=0

(
ϕI

i (I) ∧ ξi(M ∪ O) ∧ qpsc(V,V ′)
)
∨ (8)

k0−1∨
i=0

(
(
k0−1∨
q=0

ϕI
q,i(I) ∧ ξq(M ∪ O)) ∧ (9)

ξi[m′/m, y′, y | m ∈ M, y ∈ O] ∧ tpsc(V,V ′)
)

(10)

where k0 + 1 is the number of reachable quiescent state classes Ai, each determined by a specific
valuation of internal states and outputs, as specified by ξi.

4.7 Transition Relation for the CSM

With the preparations of the previous section at hand, we are now in the position to specify the
proposition R for the ceiling speed monitor, as applicable to all states of S that are reachable
from initial state s0. To this end, the propositions occurring in the canonic representation shown
in Equation (8) are specified one by one.

4.7.1 Propositions Specifying Internal State and Outputs – ξi.

The following combinations of internal state values and output values are reachable; this results
in k0 = 5 and in the following propositions.

ξ0(V) ≡ ` = 0 ∧ DMICmd = 0 ∧ TICmd = 0

ξ1(V) ≡ ` = 0 ∧ DMICmd = 2 ∧ TICmd = 0

ξ2(V) ≡ ` = 0 ∧ DMICmd = 3 ∧ TICmd = 0

ξ3(V) ≡ ` = 1 ∧ DMICmd = 4 ∧ TICmd = 2 − sb0

ξ4(V) ≡ ` = 0 ∧ DMICmd = 4 ∧ TICmd = 2

4.7.2 Propositions Specifying Input Conditions for Quiescent Classes – ϕI
i .

The input conditions for the 5 quiescent class A0, . . . , A4 – each class Ai associated with internal
state and output valuation ξi – are defined as follows.

ϕI
0(V) ≡ Vest ≤ VMRSP (11)

ϕI
1(V) ≡ VMRSP < Vest ∧ Vest ≤ VMRSP + dVwarning(VMRSP) (12)

ϕI
2(V) ≡ VMRSP < Vest ∧ Vest ≤ VMRSP + dVsbi(VMRSP) (13)

ϕI
3(V) ≡ VMRSP < Vest ∧ Vest ≤ VMRSP + dVebi(VMRSP) (14)

ϕI
4(V) ≡ (0 < Vest ∧ allowRevokeEB = 0) ∨ (VMRSP < Vest ∧ allowRevokeEB = 1) (15)

The propositions ϕI
i (V), ξi(V) cover the following quiescent state classes.

ϕI
0(V) ∧ ξ0(V) specifies the quiescent states associated with basic state NORMAL, while the train

speed does not exceed VMRSP.

ϕI
1(V) ∧ ξ1(V) specifies the quiescent states associated with basic state OVERSPEED, while the

train speed does not exceed the boundary for transiting to the WARNING state, and the speed
has not yet been reduced enough to transit back to NORMAL.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 24

ϕI
2(V) ∧ ξ2(V) specifies the quiescent states associated with basic state WARNING, while the

train speed does not exceed the boundary for transiting to the SERVICE_BRAKE state, and
the speed has not yet been reduced enough to transit back to NORMAL.

ϕI
3(V) ∧ ξ3(V) specifies the quiescent states associated with basic state SERVICE_BRAKE,

while the train speed does not exceed the boundary for transiting to the EMER_BRAKE
state, and the speed has not yet been reduced enough to transit back to NORMAL. Output
specification TICmd = 2−sb0 which is part of ξ3(V) requires that the service brake is triggered
(TICmd = 1) if such a brake is available (constant sb0 = 1); otherwise the emergency brake
is triggered (TICmd = 2).

ϕI
4(V) ∧ ξ4(V) specifies the quiescent states associated with basic state

EMER_BRAKE, while either

• the speed Vest is still greater zero and input allowRevokeEB = 0 forbids to return to
NORMAL before the train has come to a standstill, or

• the CSM may return to NORMAL as soon as Vest ≤ VMRSP because allowRevokeEB = 1,
but currently the estimated speed is still greater than VMRSP.

For building more fine-grained equivalence classes (see Section 5 below) it is important to
observe that the functions dVwarning(VMRSP), dVsbi(VMRSP), dVebi(VMRSP) contain internal case
distinctions as specified in Equations (2 — 4). Inserting these case distinctions into the inequalities
referencing these functions in propositions ϕI

i (V), i = 1, 2, 3 results in refined predicates

ϕI
1(V) ≡ (VMRSP ≤ 110 ∧ VMRSP < Vest ≤ VMRSP + 4) ∨ (16)

(110 < VMRSP ≤ 140 ∧ VMRSP < Vest ≤
31
30

VMRSP +
1
3

) ∨ (17)

(140 < VMRSP ∧ VMRSP < Vest ≤ VMRSP + 5) (18)

ϕI
2(V) ≡ (VMRSP ≤ 110 ∧ VMRSP < Vest ≤ VMRSP + 5.5) ∨ (19)

(110 < VMRSP ≤ 210 ∧ VMRSP < Vest ≤
209
200

VMRSP +
55

100
) ∨ (20)

(210 < VMRSP ∧ VMRSP < Vest ≤ VMRSP + 10) (21)

ϕI
3(V) ≡ (VMRSP ≤ 110 ∧ VMRSP < Vest ≤ VMRSP + 7.5) ∨ (22)

(110 < VMRSP ≤ 210 ∧ VMRSP < Vest ≤
43
40

VMRSP −
3
4

) ∨ (23)

(210 < VMRSP ∧ VMRSP < Vest ≤ VMRSP + 15) (24)

4.7.3 Quiescent Post-State Condition – qpsc.

For the CSM, this conditions is defined as follows.

qpsc ≡ (Vest
′,VMRSP

′, allowRevokeEB′) , (Vest,VMRSP, allowRevokeEB) ∧

`′ = ` ∧ DMICmd′ = DMICmd ∧ TICmd′ = TICmd ∧ sbiCmd′ = sb0

4.7.4 Transient Post-State Condition – tpsc.

For the CSM, this conditions is defined as follows.

tpsc ≡ Vest
′ = Vest ∧ VMRSP

′ = VMRSP ∧ allowRevokeEB′ = allowRevokeEB ∧

sbiCmd′ = sb0

4.7.5 Transient State Input Conditions – ϕI
q,i.

As explained in the previous section, the transient states of some class Bi are characterised by
disjunctions of predicates ϕI

q,i(V) ∧ ξq(V), where ϕI
q,i denotes the condition on input changes

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 25

required to reach Bi states from Aq states. These propositions are specified as follows.

ϕI
0,1(V) ≡ VMRSP < Vest ∧ Vest ≤ VMRSP + dVwarning(VMRSP) (25)

ϕI
0,2(V) ≡ VMRSP + dVwarning(VMRSP) < Vest ≤ VMRSP + dVsbi(VMRSP) (26)

ϕI
0,3(V) ≡ VMRSP + dVsbi(VMRSP) < Vest ≤ VMRSP + dVebi(VMRSP) (27)

ϕI
0,4(V) ≡ VMRSP + dVsbi(VMRSP) < Vest (28)

ϕI
1,2(V) ≡ ϕI

0,2(V) (29)

ϕI
1,3(V) ≡ ϕI

0,3(V) (30)

ϕI
1,4(V) ≡ ϕI

0,4(V) (31)

ϕI
2,3(V) ≡ ϕI

0,3(V) (32)

ϕI
2,4(V) ≡ ϕI

0,4(V) (33)

ϕI
3,4(V) ≡ ϕI

0,4(V) (34)

ϕI
1,0(V) ≡ Vest ≤ VMRSP (35)

ϕI
2,0(V) ≡ ϕI

1,0(V) (36)

ϕI
3,0(V) ≡ ϕI

1,0(V) (37)

ϕI
4,0(V) ≡ Vest = 0 ∨ (Vest ≤ VMRSP ∧ allowRevokeEB = 1) (38)

(39)

Again, taking into account the internal decisions in dVwarning(VMRSP), dVsbi(VMRSP), and dVebi(VMRSP),
the propositions representing these functions can be refined; this leads to

ϕI
0,1(V) ≡ VMRSP < Vest ∧

((VMRSP ≤ 110 ∧ Vest ≤ VMRSP + 4) ∨

(110 < VMRSP ≤ 140 ∧ Vest ≤
31
30

VMRSP +
1
3

) ∨

(140 < VMRSP ∧ Vest ≤ VMRSP + 5))

ϕI
0,2(V) ≡ (VMRSP ≤ 110 ∧ VMRSP + 4 < Vest ≤ VMRSP + 5.5) ∨

(110 < VMRSP ≤ 140 ∧
31
30

VMRSP +
1
3
< Vest ≤

209
200

VMRSP +
55

100
) ∨

(140 < VMRSP ≤ 210 ∧ VMRSP + 5 < Vest ≤
209
200

VMRSP +
55
100

) ∨

(210 < VMRSP ∧ VMRSP + 5 < Vest ≤ VMRSP + 10)

ϕI
0,3(V) ≡ (VMRSP ≤ 110 ∧ VMRSP + 5.5 < Vest ≤ VMRSP + 7.5) ∨

(110 < VMRSP ≤ 210 ∧
209
200

VMRSP +
55
100

< Vest ≤
43
40

VMRSP −
3
4

) ∨

(210 < VMRSP ∧ VMRSP + 10 < Vest ≤ VMRSP + 15)

ϕI
0,4(V) ≡ (VMRSP ≤ 110 ∧ VMRSP + 7.5 < Vest) ∨

(110 < VMRSP ≤ 210 ∧
43
40

VMRSP −
3
4
< Vest) ∨

(210 < VMRSP ∧ VMRSP + 15 < Vest)

Summarising, the transition relation of the CSM is specified by the following proposition, where
φi has been introduced in Equation (5), φk0+i in Equation (7), and all terms ϕI

i , qpsc, tpsc, ϕI
q,i,

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 26

and ξi have been specified above.

R ≡

k0−1∨
i=0

(
ϕi ∧ qpsc

)
∨

k0−1∨
i=0

(
ϕk0+i ∧ ξi[m′/m, y′/y | m ∈ M, y ∈ O] ∧ tpsc

)
(40)

k0 = 5 (41)

ϕ0 = ϕI
0 ∧ ξ0 (42)

ϕ1 = ϕI
1 ∧ ξ1 (43)

ϕ2 = ϕI
2 ∧ ξ2 (44)

ϕ3 = ϕI
3 ∧ ξ3 (45)

ϕ4 = ϕI
4 ∧ ξ4 (46)

ϕk0 =

4∨
q=1

(ϕI
q,0 ∧ ξq) (47)

ϕk0+1 = (ϕI
0,1 ∧ ξ0) (48)

ϕk0+2 = (ϕI
0,2 ∧ (ξ0 ∨ ξ1)) (49)

ϕk0+3 = (ϕI
0,3 ∧ (ξ0 ∨ ξ1 ∨ ξ2)) (50)

ϕk0+4 = (ϕI
0,4 ∧ (ξ0 ∨ ξ1 ∨ ξ2 ∨ ξ3)) (51)

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 27

5 Input Equivalence Class Partitionings

5.1 Strategy Overview

In this section we summarise the main results of the novel equivalence class partitioning method,
whose theory has been described in [12], before its application is illustrated in Section 5.2, using
the CSM as an example.

In the exposition below, variable symbols x,m, y are used with the convention that x ∈ I,m ∈
M, y ∈ O, and the symbols can be enumerated as I = {x1, . . . , xk}, M = {m1, . . . ,mp}, O =

{y1, . . . , yq}. We use notation ~x = (x1, . . . , xk), s(~x) = (s(x1), . . . , s(xk)), DI = Dx1 × · · · × Dxk

denotes the cartesian product of the input variable domains. Tuples ~m, ~y and DM and DO are
defined over model variables and outputs in an analogous way. By s ⊕ {~x 7→ ~c}, ~c ∈ DI we
denote the state s′ which coincides with s on all variables from M ∪ O, but returns values
s′(xi) = ci, i = 1, . . . , k for the input symbols.

5.1.1 I/O-Equivalence

Applying a trace ι = ~c1 . . . ~cn of input vectors ~ci ∈ DI to a STS (S , s0,R) residing in some
quiescent state s ∈ S , this stimulates a sequence of state transitions with associated output changes
as triggered by the inputs. Restricting this sequence to quiescent states, this results in a trace of
states τ = s1.s2 . . . sn such that si(~x) = ~ci, i = 1, . . . , n, and si(~y) is the last STS output resulting
from application of ~c1 . . . ~ci to state s. This trace τ is generally denoted by s/ι. The restriction of
s/ι to output variables is denoted by (s/ι)|O. Since transient states have unique quiescent post-
states, the restriction to quiescent states does not result in a loss of information, if the input trace
ι is known: the omitted transient states are some elements of s ⊕ {~x 7→ ~c1}, . . . , sn−1 ⊕ {~x 7→ ~cn},
and these states satisfy R(s ⊕ {~x 7→ ~c1}, s1), . . . ,R(sn−1 ⊕ {~x 7→ ~cn}, sn).

Two states s, s′ are I/O-equivalent, written s ∼ s′, if every non-empty input trace ι, when applied
to s and s′, results in the same outputs, that is, (s/ι)|O = (s′/ι)|O. Two STS S,S′ are I/O-
equivalent, if their initial states are I/O-equivalent. Note that for technical reasons, s ∼ s′ still
admits that s|O , s′|O.

5.1.2 Input Equivalence Class Partitions

Since I/O-equivalence is an equivalence relation, we can factorise STS state spaces by ∼, and the
resulting equivalence classes A ∈ S/∼ have the property that all s, s′ ∈ A yield the same output
traces (s/ι)|O = (s′/ι)|O for arbitrary non-empty input traces ι. For systems like the CSM, the
number of classes A is finite, so we can enumerate S/∼ = {A1, . . . , Ar}. Applying an arbitrary
input vector ~c ∈ DI to any state s ∈ Ai will always lead to a quiescent target state – denoted
by (s//~c) – in the same target class A j. Index j only depends on (i, ~c), since for s, s′ ∈ Ai all
corresponding states sk, s′k in s/ι = s1.s2sn, s′/ι = s′1.s

′
2s

′
n are I/O-equivalent for any

ι = ~c1 . . . ~cn, k = 1 . . . n.

Therefore (s//~c) ∈ A j if and only if (s′//~c) ∈ A j. One class A j, however, may contain elements
s ∼ s′ with different outputs, since I/O-equivalence only states that all future outputs will be
identical, when applying the same non-empty input trace to s, s′. Since DO = {~d1, . . . , ~d|DO |} is
finite, we can associate the value index h ∈ {1, . . . , |DO|} with the target class A j, if (s//~c)|O = ~dh.
Again, h only depends on (i, ~c), but not on the choice of s ∈ Ai.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 28

Applying ~c to elements from all classes A1, . . . , Ar, results in (not necessarily distinct) index pairs
j(~c, i), h(~c, i), i = 1, . . . , r. This induces a factorisation of the input domain DI : define X(~c) ⊆ DI

as the maximal set containing ~c, such that j(~c′, i) = j(~c, i) ∧ h(~c′, i) = h(~c, i), i = 1, . . . , r, holds
for all ~c′ ∈ X(~c).

Then the Input Equivalence Class Partitioning (IECP) I = {X(~c) | ~c ∈ DI} has the following
properties: (1) The elements of I are pairwise disjoint, (2) The union of all X ∈ I equals DI , (3)
I is finite, and (4) for all s ∈ Ai, ~c ∈ X, target states (s//~c) are contained in the same target class
A j(i,~c) and have the same output value dh(i,~c). Furthermore, each pair of input traces ι = ~c1 . . . ~cn,
ι′ = ~c′1 . . . ~c

′
n, when applied to the same state s, lead to the same output traces (s/ι)|O = (s/ι′)|O,

if ~c′i ∈ X(~ci) for each i = 1, . . . , n.

A given IECP I can be refined by selecting input sets I2 = {X1, X2, . . . } such that I2 also
fulfils the above properties (1), (2), (3), and such that every Xi is a subset of some X ∈ I. If
these conditions hold, I2 inherits property (4). Refinement is obviously reflexive, transitive and
anti-symmetric.

5.1.3 Fault Model

As reference models we use the STS representations S of models elaborated in concrete for-
malisms – like the CSM model presented in this paper – such that the expected behaviour of the
SUT is specified by S up to I/O-equivalence. We use I/O-equivalence as conformance relation.
The fault domainD specifies the set of potential systems under test, whose true behaviour can
be represented by an STS S′ ∈ D. For the equivalence class testing strategy, the fault domain
depends on the reference model S and two additional parameters m ∈ N and a refinement I2 of
I, the IECP associated with S. D(S,m,I2) contains all S′ satisfying

1. The states of S′ are defined over the same variable space V = I ∪ M ∪ O as defined for the
model S.

2. Initial state s′0 of S′ coincides with initial state s0 of S on I ∪ O.

3. S′ generates only finitely many different output values and internal state values.

4. The number of I/O-equivalence classes of S′ is less or equal m.

5. Let I′ be the IECP of S′ as defined above. Then

∀X ∈ I, X′ ∈ I′ :
(
X ∩ X′ , ∅⇒ ∃X2 ∈ I2 : X2 ⊆ X ∩ X′

)
6. S′ has a well-defined reset operation allowing to re-start the system, in order to perform

another test from its initial state.

Requirement 2 is well-founded, since initial states correspond to the system’s switched-off state.
Therefore we can assume that the implementation produces the same outputs as the reference
model as long as it is switched off – otherwise we would not start testing, because S and S′

differed already in the off-state.

The fault domainD(S,m,I2) is obviously increased by increasing m ∈ N, and/or further refining
I2:

m′ ≥ m ∧ I3 refines I2 ⇒ D(S,m,I2) ⊆ D(S,m′,I3)

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 29

5.1.4 Complete Test Strategy

The main result of the paper [12] states that, given reference model S and fixing (m,I2), it is
possible to generate a finite test suite from S, such that (a) this suite accepts every member of
D(S,m,I2) which is I/O-equivalent to S, and (b) at least one test of this suite fails for every
non-conforming member of D(S,m,I2) which violates the I/O-equivalence condition. Test
suites satisfying (a) are called sound, and those satisfying (b) are called exhaustive. Soundness
and exhaustiveness together is called complete. The test suite is generated as follows.

1. Select one representative input vector ~c(X) from each X ∈ I2.

2. Abstract S to a finite deterministic state machineM with I/O-equivalence classes A1, . . . , Ar

as states, input alphabet {~c(X) | X ∈ I2} and output alphabet DO (recall that DO is finite).
This DFSM is well-defined due to the properties of the A ∈ S/∼ and the X ∈ I2.

3. SinceM is a DFSM, the well known W-Method [29, 4] can be used to create a test suite that
is complete with respect to reference modelM, conformance relation DFSM-equivalence,
and the set of all DFSM over the same input/output alphabets as fault domain, whose numbers
of states do not exceed m.

4. A STS S′ is I/O-equivalent to S if and only if its DFSMM′ passes these tests, so thatM′ is
DFSM-equivalent toM.

5.2 Practical Construction of Input Equivalence Classes and
Associated Partitionings

The set-theoretic introduction of IECP in Section 5.1 have a propositional counterpart in the
formulas introduced above in the context of the transition relation. This propositional view is
needed for being able to calculate concrete representatives of IECP with the help of an constraint
solver.

5.2.1 CSM I/O-Equivalence Classes

Reviewing the CSM transition relation shown in Formulas (40 — 51), the identification of
quiescent I/O equivalence classes is straightforward: they are identical to or unions of the
quiescent state sets

Ai = {s ∈ S | s(ϕi)}, i = 0, . . . , 4, ϕi as defined in formulas (42 — 46) (52)

To see this, let us first show that each Ai only contains I/O-equivalent states, so that it is a subset
of an I/O equivalence class. This follows directly from the following observations about the CSM
transition relation.

1. If one quiescent state s from Ai can transit to a transient state s′ in set

B j = {s | s(ϕk0+ j)}, j = 0, . . . , 4

by an input change s′ = s⊕{(Vest,VMRSP, allowRevokeEB) 7→ (c1, c2, c3)} then all elements of
Ai can transit to B j with the same input change (Vest,VMRSP, allowRevokeEB) 7→ (c1, c2, c3).

2. All elements of B j have post-states in the same quiescent state set A j, uniquely determined
by the fact that these post-states must satisfy ξ j, that is, must have the same outputs and the
same internal state.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 30

From the calculations performed for the CSM transition relation (Section 4.7.5) we know that
ϕI

0,i ≡ ϕ
I
1,i, i = 2, 3, 4, ϕ0 ≡ ϕ

I
1,0, and ϕI

0,1 ≡ ϕ1. This implies that A0 and A1 are I/O-equivalent.
Similarly, it can be deduced that A0 ∪ A1, A2, A3, A4 are pairwise distinguishable with respect to
I/O-equivalence, so these four sets are the I/O-equivalence classes of the CSM’s STS.

5.2.2 CSM Input Equivalence Class Partitions

As described in Section 5.1.2, we need the refined quiescent state sets for the identification
of IECP, resulting from I/O-equivalence classes further partitioned in a way that the states of
each resulting set have identical output valuations. These are exactly the sets A0, . . . , A4 from
equation (52), since the formulas ϕi defining the Ai specify the constant output values.

The input equivalence class partitions introduced in Section 5.1.2 can be expressed in a proposi-
tional way by specifying

I = {X = {~c ∈ Di |

4∧
i=0

ϕI
q, ji[~c/(Vest,VMRSP, allowRevokeEB)]} | ji ∈ {0, . . . , 4} ∧ X , ∅} (53)

In this definition the ϕI
q, ji

are defined as in Equation (25 — 38), for q , ji, and ϕI
q,q ≡ ϕ

I
q, with ϕI

q
defined in Equation (11 — 15).

For the CSM, the feasible non-equivalent propositions Φk ≡
∧4

i=0 ϕ
I
q, ji

are

Φ1 ≡ ϕI
0,0 ∧ ϕ

I
1,0 ∧ ϕ

I
2,0 ∧ ϕ

I
3,0 ∧ ϕ

I
4,4

≡ ϕI
0,0 ∧ ϕ

I
4,4

≡ 0 < Vest ≤ VMRSP ∧ allowRevokeEB = 0

Φ2 ≡ ϕI
0,0 ∧ ϕ

I
1,0 ∧ ϕ

I
2,0 ∧ ϕ

I
3,0 ∧ ϕ

I
4,0

≡ ϕI
4,0

≡ Vest = 0 ∨ (Vest ≤ VMRSP ∧ allowRevokeEB = 1)

Φ3 ≡ ϕI
0,1 ∧ ϕ

I
1,1 ∧ ϕ

I
2,2 ∧ ϕ

I
3,3 ∧ ϕ

I
4,4

≡ ϕI
0,1 ∧ ϕ

I
4,4

≡ (VMRSP ≤ 110 ∧ VMRSP < Vest ≤ VMRSP + 4) ∨

(110 < VMRSP ≤ 140 ∧ VMRSP < Vest ≤
31
30

VMRSP +
1
3

) ∨

(140 < VMRSP ∧ VMRSP < Vest ≤ VMRSP + 5)

Φ4 ≡ ϕI
0,2 ∧ ϕ

I
1,2 ∧ ϕ

I
2,2 ∧ ϕ

I
3,3 ∧ ϕ

I
4,4

≡ ϕI
0,2 ∧ ϕ

I
4,4

≡ (VMRSP ≤ 110 ∧ VMRSP + 4 < Vest ≤ VMRSP + 5.5) ∨

(110 < VMRSP ≤ 140 ∧
31
30

VMRSP +
1
3
< Vest ≤

209
200

VMRSP +
55
100

) ∨

(140 < VMRSP ≤ 210 ∧ VMRSP + 5 < Vest ≤
209
200

VMRSP +
55
100

) ∨

(210 < VMRSP ∧ VMRSP + 5 < Vest ≤ VMRSP + 10)

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 31

Φ5 ≡ ϕI
0,3 ∧ ϕ

I
1,3 ∧ ϕ

I
2,3 ∧ ϕ

I
3,3 ∧ ϕ

I
4,4

≡ ϕI
0,3

≡ (VMRSP ≤ 110 ∧ VMRSP + 5.5 < Vest ≤ VMRSP + 7.5) ∨

(110 < VMRSP ≤ 210 ∧
209
200

VMRSP +
55

100
< Vest ≤

43
40

VMRSP −
3
4

) ∨

(210 < VMRSP ∧ VMRSP + 10 < Vest ≤ VMRSP + 15)

Φ6 ≡ ϕI
0,4 ∧ ϕ

I
1,4 ∧ ϕ

I
2,4 ∧ ϕ

I
3,4 ∧ ϕ

I
4,4 ∧

≡ ϕI
0,4

≡ (VMRSP ≤ 110 ∧ VMRSP + 7.5 < Vest) ∨

(110 < VMRSP ≤ 210 ∧
43
40

VMRSP −
3
4
< Vest) ∨

(210 < VMRSP ∧ VMRSP + 15 < Vest)

With these definitions, the IECP is given by

I = {X1, . . . , X6} (54)

Xi = {~c ∈ DI | Φi[~c/(Vest,VMRSP, allowRevokeEB)]}, i = 1, . . . , 6 (55)

The properties of this IECP will be discussed in the subsequent sections, and we will also discuss
the necessity for IECP refinements.

5.3 Inter-Class Transitions

With the IECP at hand, the state transition system representing the behavioural semantics of the
SysML state machine can be abstracted to a deterministic finite state machine (DFSM): Each Xi

introduced above, or a representative value of each Xi, represents an event of the state machine,
and the classes Ai, Bi are the DFSM states. The DFSM transition table is specified in Table 8.

For concrete tests we select representatives of each IEC, such as the ones specified in Table 9.
The set of these representatives is called the input alphabetAI .

6 CSM Fault Model

The fault model introduced in Section 5.1.3 is instantiated for the CSM as follows.

• The reference model for the CSM is the STS S defined in Section 4.

• We use I/O-equivalence as conformance relation, as introduced in Section 5.1.1.

• We will consider several fault domains, starting with

D(S,m = 6,I2 = I)

where m denotes the upper bound of I/O-equivalence classes occurring in (conforming or
non-conforming) implementations of S, and I is the IECP constructed in Section 5.2.2.

The assurance gained from performing a completed test suite with respect to fault domain
D(S,m = 6,I2 = I) will be discussed below in Section 8, and meaningful refinements of
D(S,m = 6,I2 = I) are introduced in Section 9.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 32

Table 8. DFSM Transition Table.

Source Input via Target DMICmd TICmd

A0 X1 ∪ X2 — A0 0 0

A0 X3 B1 A1 2 0

A0 X4 B2 A2 3 0

A0 X5 B3 A3 4 2-sb0

A0 X6 B4 A4 4 2

A1 X1 ∪ X2 B0 A0 0 0

A1 X3 — A1 2 0

A1 X4 B2 A2 3 0

A1 X5 B3 A3 4 2-sb0

A1 X6 B4 A4 4 2

A2 X1 ∪ X2 B0 A0 0 0

A2 X3 ∪ X4 — A2 3 0

A2 X5 B3 A3 4 2-sb0

A2 X6 B4 A4 4 2

A3 X1 ∪ X2 B0 A0 0 0

A3 X3 ∪ X4 ∪ X5 — A3 4 2-sb0

A3 X6 B4 A4 4 2

A4 X2 B0 A0 0 0

A4
⋃

i∈{1,3,4,5,6} Xi — A4 4 2

Table 9. Input AlphabetAI .

~ci Vest VMRSP allowRevokeEB Xi

~c1 60 90 0 X1

~c2 60 90 1 X2

~c3 152 150 0 X3

~c4 125 120 1 X4

~c5 66 60 0 X5

~c6 260 230 0 X6

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 33

7 Complete Test Suites for the CSM

7.1 Test Suite Construction – Overview

Applying the recipe for complete test strategies specified in Section 5.1.4, such a test suite can be
constructed for the CSM as follows.

1. The input alphabetAI consists of the vectors ~ci selected from each of the IEC {X1, . . . , X6},
as specified in Table 9.

2. For each of the two configurations “with service brake (sb0 = 1)”, and “without service brake
(sb0 = 0)” a DFSM is constructed with state space {q0 = A0 ∪ A1, q2 = A2, q3 = A3, q4 =

A4} and initial state A0 ∪ A1; these I/O-equivalence classes have been identified above in
Section 5.2.1. Each state machine operates on input alphabet AI and output alphabet DO,
and their transition functions are specified by Table 8.

The resulting DFSMs are shown in Figure 7, with sb0 ∈ {0, 1} to be fixed according to the
train configuration. In Table 10 the mapping of DFSM state names to I/O-equivalence classes
is shown.

3. For each of the two DFSM a test suite is constructed according to the W-method, as described
below.

Table 10. DFSM states and associated I/O-equivalence classes.

DFSM State DFSM State Name I/O-Equivalence Class

q0 Normal or Overspeed A0 ∪ A1

q2 Warning A2

q3 Service Brake Intervention A3

q4 Emergency Brake Intervention A4

7.2 Application of the W-Method

For application of the W-Method on the given DFSMs, we need to identify two sets of input
traces, the state-transition cover S TC and the characterisation set W [4, 29].

State-transition cover.

S TC is constructed as a set of traces fulfilling

1. The empty trace is a member of S TC.

2. For any reachable state q and any ~c ∈ AI , there is an input trace ι ∈ S TC such that

• q can be reached from the initial state of the DFSM by application of ι, and

• ι.~c ∈ S TC.

For the DFSMs under consideration, a state-transition cover is given by

S TC = {ε,~ci, ~c j.~ci | i = 1, . . . , 6, j = 4, . . . , 6}

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 34

Normal or
Overspeed

Warning Service Brake
Intervention

Emergency
Brake

Intervention

~c3/(2, 0)~c1,~c2/(0, 0)

~c4/(3, 0)
~c1,~c2/(0, 0) ~c1,~c2/(0, 0)

~c2/(0, 0)

~c5/(4, 2 � sb0)

~c6/(4, 2)

~c6/(4, 2)

~c6/(4, 2)~c5/(4, 2 � sb0)

~c1,~c3,~c4,~c5,~c6/(4, 2)~c3,~c4/(3, 0)

~c3,~c4,~c5/(4, 2 � sb0)

Output assignment actions (DMICmd,TICmd) = (α, β) are written as (α, β).

Figure 7. DFSM abstractions of the CSM, with configuration cases sb0 ∈ {0, 1}.

Characterisation set.

W is defined as a set of input traces distinguishing all DFSM states (recall that the DFSM under
consideration are minimal) in the sense that for every pair of DFSM states q, q′, there exists an
input trace τ ∈ W such that τ applied to q yields an output sequence which differs from the one
resulting from application of τ in state q′. For the case where the service brake differs from the
emergency brake (sb0 = 1), the single input

Wsb0=1 = {~c3}

distinguishes all states of DFSM, as can be directly seen in Figure 7. In the case where the
emergency brake is used for service brake intervention (sb0 = 0), we need additional input ~c1 to
distinguish DFSM states q3 and q4.

Wsb0=0 = {~c1, ~c3}

Test suite according to W-Method.

With S TC and W at hand, the W-Method asserts that the following test suite is complete for
the fault domain of all DFSMs over the same input and output alphabets, whose state space has
cardinality less or equal to m.

W(S TS) = S TC.(AI)max{m,n}−n.W

We use notation (A)k to denote the subset ofA∗ containing all traces of length zero to k.W(S TS)
consists of all input traces starting with a (potentially empty) trace from the state-transition cover,
continuing with a sequence of arbitrary inputs from the alphabet with length less or equal to
(max{m, n} − n) (including the empty sequence), and ending with an input sequence contained in

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 35

the transition cover. (A)0 just contains the empty trace, soW(S TS) is reduced to S TC.W, if
the fault domain of DFSM whose state space is less or equal to that of the reference DFSM is
considered.

Assuming that the minimal DFSM associated with the SUT implements at most two additional
states (m − n ≤ 2 implies m ≤ 6), the W-Method produces the following test suite for the the
minimal DFSM:

S TC.(AI)2.Wsb0=1 = {~c3} ∪

{~ci.~c3 | i = 1, . . . , 6} ∪

{~ci.~c j.~c3 | i, j = 1, . . . , 6} ∪

{~ci.~c j.~ck.~c3 | i, j, k = 1, . . . , 6} ∪

{~c j.~ci.~c3 | i = 1, . . . , 6, j = 4, . . . , 6} ∪

{~c j.~ci.~ck.~c3 | i, k = 1, . . . , 6, j = 4, . . . , 6} ∪

{~c j.~ci.~ck.~ch.~c3 | h, i, k = 1, . . . , 6, j = 4, . . . , 6}

S TC.(AI)2.Wsb0=0 = {~cg | g = 1, 3} ∪

{~ci.~cg | i = 1, . . . , 6, g = 1, 3} ∪

{~ci.~c j.~cg | i, j = 1, . . . , 6, g = 1, 3} ∪

{~ci.~c j.~ch.~cg | h, i, j = 1, . . . , 6, g = 1, 3} ∪

{~c j.~ci.~cg | i = 1, . . . , 6, j = 4, . . . , 6, g = 1, 3} ∪

{~c j.~ci.~ck.~cg | i, k = 1, . . . , 6, j = 4, . . . , 6, g = 1, 3} ∪

{~c j.~ci.~ck.~ch.~cg | h, i, k = 1, . . . , 6, j = 4, . . . , 6, g = 1, 3}

Since ι-equivalence implies τ-equivalence when τ is a prefix of ι, the test suite produced by the
W-Method can be reduced to the following:

TEST_SUITEsb0=1 = {~ci.~c j.~ck.~c3 | i, j, k = 1, . . . , 6} ∪

{~c j.~ci.~ck.~ch.~c3 | h, i, k = 1, . . . , 6, j = 4, . . . , 6}

TEST_SUITEsb0=0 = {~ci.~c j.~ch.~cg | h, i, j = 1, . . . , 6, g = 1, 3} ∪

{~c j.~ci.~ck.~ch.~cg | h, i, k = 1, . . . , 6, j = 4, . . . , 6, g = 1, 3}

8 Test Strength

8.1 Test Strength Assessment

The notion of test strength refers to the capability of test suites to uncover errors in an SUT. The
IECP testing strategy considered here is associated with a well-defined test strength, specified by
means of the fault model: all deviations of an SUT from I/O-equivalence to the reference model
S will be detected, provided that the true behaviour of the SUT can be specified by means of an
STS which is contained in the fault domain. Based on the fault domain, the discussion of test
strength is “transformed” into the question whether the size of the fault domain for which the test
suite has been created is sufficient to contain all erroneous behaviours we can reasonably expect.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 36

In the next three sections examples will be presented where the erroneous SUT behaviour can
already by uncovered with IECP test suites based on the fault domain D(S,m = 6,I2 = I)
specified in Section 6. The first example (Section 8.2) addresses a type of erroneous behaviour
that could not only be uncovered by the equivalence class testing strategy described in this report,
but is also guaranteed to be detected by test suites achieving transition coverage of the SysML
state machine model (see Section 10). The second example (Section 8.3) shows a type of failure
that is not guaranteed to be uncovered by test cases from a simple model coverage strategy
like transition or MC/DC coverage, because it introduces an additional basic state in the SUT’s
SysML state machine. Practical test execution documented in Section 10, however, shows that
the failure is “accidentally” uncovered with the transition coverage strategy by the model-based
testing tool used, due to suitable input values selected by the tool when trying to cover the
required transitions. The third example (Section 8.4) exhibits an even harder failure type, which
cannot be detected by any of the transition-based coverage strategies, as is documented by the
test results shown in Section 10.

In Section 9 we will discuss fault models associated with larger fault domains, based on true
refinements of I.

8.2 Example 1

Suppose that the implementation acts like the SysML state machine depicted in Fig. 8: from
basic state OVERSPEED there is a transition failure in the SysML state machine which links to
basic state EMER_BRAKE instead of NORMAL, when guard condition [Vest ≤ VMRSP] evaluates
to true. Note that the DFSM associated with S TS ′ now has one more state than the model’s
DFSMs, because OVERSPEED and NORMAL are no longer equivalent.

Assuming the case sb0 = 1 and applying TEST_SUITEsb0=1 introduced in Section 7, this failure
will be uncovered, for example, by test case

ι = ~c1.~c3.~c1.~c3

= (Vest = 60,VMRSP = 90, allowRevokeEB = 0).(152, 150, 0).(60, 90, 0).(152, 150, 0)

On the model S TS , this input will trigger output sequence

(DMICmd = 0,TICmd = 0).(2, 0).(0, 0).(2, 0)

whereas output sequence

(DMICmd = 0,TICmd = 0).(2, 0).(4, 2).(4, 2)

will be triggered by ι, when applied to S TS ′ representing the SUT.

8.3 Example 2

Suppose that the implementation has an additional control state NORMAL_2, as depicted in
Fig. 9. When the SUT is in the control state OVERSPEED and inputs satisfy Vest ≤ VMRSP,
the SUT’s state machine transits to the new basic state NORMAL_2. For this control state,
there is only one outgoing transition whose guard condition is Vest > VMRSP + dVebi, and target
control state is EMER_BRAKE. As a consequence, the SUT fails to issue warnings and to
trigger service brake intervention, after having entered NORMAL_2; only the emergency brake
intervention condition is handled correctly. The SUT failure remains hidden until a transition
sequence from NORMAL to OVERSPEED and back to NORMAL should be performed. Note
that the introduction of this additional basic state in the SUT’s SysML state machine leads to
a DFSM abstraction that has two more states than the DFSM abstraction of the original model,

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 37

Figure 8. Faulty SUT – Example 1.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 38

because basic states NORMAL and OVERSPEED are no longer equivalent, and NORMAL_2 is
non-equivalent to any of the other states.

Assuming again the case sb0 = 1 and applying TEST_SUITEsb0=1 introduced in Section 7, this
failure will be uncovered, for example, by test case

ι = ~c3.~c1.~c4.~c3

= (Vest = 152,VMRSP = 150, allowRevokeEB = 0).(60, 90, 0).(125, 120, 1).(152, 150, 0)

On the model S TS , this input will trigger output sequence

(DMICmd = 2,TICmd = 0).(0, 0).(3, 0).(3, 0)

whereas output sequence

(DMICmd = 2,TICmd = 0).(0, 0).(0, 0).(0, 0)

will be triggered by ι, when applied to S TS ′ representing the SUT.

Observe that this SUT failure would not be uncovered by every ordinary transition coverage
test strategy based on SysML state machine model. Transition coverage would be achieved, for
example, by the four test cases

TC_TEST_SUITE = {~c3.~c1, ~c3.~c4.~c1, ~c4.~c5.~c1, ~c5.~c6.~c2}

which fail to uncover the violation of I/O-equivalence.

8.4 Example 3

Suppose that the implementation has an additional control state NORMAL_2 as shown in the
mutant in Figure 10. When the SUT is in the control state Warning and inputs satisfy Vest ≤

VMRSP, the SUT’s state machine transits to the new basic state NORMAL_2. For this control state,
there is only one outgoing transition in SysML whose guard condition is Vest > VMRSP +dVwarning,
and target control state is Warning. Note that the introduction of this additional basic state in
the SUT’s SysML state machine leads to a DFSM abstraction that has two more states than the
DFSM abstraction of the original model, because basic states NORMAL and OVERSPEED are
no longer equivalent, and NORMAL_2 is non-equivalent to any of the other states.

Assuming again the case sb0 = 1 and applying TEST_SUITEsb0=1 introduced in Section 7, this
failure will be uncovered, for example, by test case

ι = ~c4.~c1.~c3

= (Vest = 125,VMRSP = 120, allowRevokeEB = 1).(60, 90, 0).(152, 150, 0)

On the model S TS , this input will trigger output sequence

(DMICmd = 3,TICmd = 0).(0, 0).(2, 0)

whereas output sequence

(DMICmd = 3,TICmd = 0).(0, 0).(0, 0)

will be triggered by ι, when applied to S TS ′ representing the SUT.

Observe that this SUT failure would not be uncovered by every ordinary transition coverage
test strategy based on SysML state machine model. Transition coverage would be achieved,
for example, by the test procedure TP-002 in Section 10 which fail to uncover the violation of
I/O-equivalence.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 39

Figure 9. Faulty SUT – Example 2.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 40

Figure 10. Faulty SUT – Example 3.

9 Heuristics for Constructing IECP Refinements

9.1 IECP Refinements for the CSM

The definition of IECP refinements given in Section 5.1.2 induces a construction mechanism
based on propositions. This is applied to the CSM as follows.

1. Choose a new proposition γ over free variables from I.

2. Strengthen each proposition Φk, k = 1, . . . , 6 defining an IEC by

ΦI
k,+ ≡ Φk ∧ γ

ΦI
k,− ≡ Φk ∧ ¬γ

3. Specify the refinement by

I2 = {Xk,+, Xk,− | k = 1, . . . , 6}

Xk,+ = {~c ∈ DI | Φk,+[~c/(Vest,VMRSP, allowRevokeEB)]}

Xk,− = {~c ∈ DI | Φk,−[~c/(Vest,VMRSP, allowRevokeEB)]}

4. Refine the old input alphabet by adding input vectors for each new Xk,+, Xk,− which does not
have a representative in the old alphabet.

Refinements of the original IECP are needed, for example, when it is suspected that the SUT
implements so-called trapdoors [1]: these are transitions whose trigger conditions are refinements

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 41

ϕI
q,i ∧ γ of trigger conditions ϕI

q,i in the original model. The SUT behaviour conforms to the
associated model transition for inputs satisfying ϕI

q,i ∧ ¬γ, but shows erroneous behaviour for
inputs satisfying ϕI

q,i ∧ γ. Trapdoors may occur in transitions from quiescent to quiescent, and in
transitions from quiescent to transient states. In the subsequent sections this and other motivations
for introducing refinements are discussed.

9.2 Overview of the Refinement Concept

In this section we present and discuss a heuristic for constructing IECP refinements resulting in
larger fault domains that are well-justified from the perspective of standards related to safety-
critical systems development in the avionic, automotive, and railway domains [26, 30, 14, 3].

Our heuristic involves the following refinement steps, and we suggest to apply these in the order
presented here.

1. Requirements-based IECP refinement

2. Boundary value IECP refinement

3. IECP refinement by sub-paving

9.3 Requirements-based IECP Refinement

9.3.1 Requirements-related Case Distinctions

In Section 4.7.5 we introduced the transient state input conditions ϕI
q,i. Intuitively speaking, each

of these conditions, when feasible and applied in quiescent state class q, triggers a well-defined
behaviour, namely the transformation of internal state and outputs performed by the transition
from transient state class Bi to its quiescent successor state class Ai. Since this transformation
is constant (it only depends on Bi), it reflects one system requirement or a part of it. As a
consequence, any disjunction occurring in such a condition ϕI

q,i reflects a case distinction for the
same requirement.

Example Condition

ϕI
0,1(V) ≡ VMRSP < Vest ∧ Vest ≤ VMRSP + dVwarning(VMRSP)

reflects the pre-condition for requirement REQ-3.13.10.3.3.t2 (see Table 2), concerning the
transition from NORMAL state to OVERSPEED state in the SysML state machine, with activation
of the overspeed indication at the driver machine interface. ϕI

0,1(V) is applied in A0, and triggers
a transition into B1 from where the overspeed indication is activated and the system stabilises
again in A1. Expanding dVwarning(VMRSP), we get

ϕI
0,1(V) ≡ VMRSP < Vest ∧

((VMRSP ≤ 110 ∧ Vest ≤ VMRSP + 4) ∨

(110 < VMRSP ≤ 140 ∧ Vest ≤
31
30

VMRSP +
1
3

) ∨

(140 < VMRSP ∧ Vest ≤ VMRSP + 5))

The disjunction inside the second conjunct covers the three case distinctions for transiting into
OVERSPEED (see definition of dVwarning(VMRSP) in Equation (2)). �

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 42

Similarly, the quiescent state conditions ϕI
i (I) = ϕI

i,i(I) specify stability requirements regarding
input changes that will not lead to any new system reaction, so disjunctions in ϕI

i,i(I) represent
case distinctions of these stability requirements.

Example Condition

ϕI
4(V) ≡ ϕI

4,4(V) ≡ (0 < Vest ∧ allowRevokeEB = 0) ∨ (VMRSP < Vest ∧ allowRevokeEB = 1)

describes the stability condition when in SysML state machine state EMER_BRAKE. There are
two cases to consider.

1. When the emergency brake command may only be revoked after the train has come to a
standstill (case allowRevokeEB = 0), any input condition satisfying 0 < Vest is a stability
condition when in basic state EMER_BRAKE.

2. When the emergency brake command may already be revoked as soon as Vest ≤ VMRSP (case
allowRevokeEB = 1), any input condition satisfying VMRSP < Vest is a stability condition
when in basic state EMER_BRAKE.

�

Standards for safety-relevant systems always demand that requirements should be completely
covered by tests (see, e.g.,[30, 6.4.4]). Therefore it is advisable to refine the IECP in such a way,
that the extended input alphabet resulting from this refinement covers all requirements-related
case distinctions.

9.3.2 Construction of the Requirements-based IECP Refinement

The mechanisable construction of the requirements-based IECP refinement is performed for the
CSM as follows.

1. Transform each ϕI
q,i and each ϕI

i,i into disjunctive normal form (DNF). This results in disjuncts
ϕI

q,i,h, such that

ϕI
q,i ≡

∨
j

ϕI
q,i,h

Define index set Iq as the set of all pairs (i, h) where ϕI
q,i,h is a disjunct in the DNF of ϕI

q,i.

2. Drop infeasible disjuncts. This can be performed by means of an SMT solver determining for
each disjunct whether it has at least one solution.

3. Refine the Φk, k = 1, . . . , 6 specifying the IECP of the CSM as described in Section 5.2.2 to
propositions

Φk,(j0,h0),...,(j4,h4) ≡

4∧
q=0

ϕI
q, jq,hq

where (jq, hq) ∈ Iq, q = 0, . . . , 4.

4. Create IECs in analogy to the rules given in Section 5.1.2, but this time using feasible
solutions Φk,(j0,h0),...,(j4,h4):

Xk,(j0,h0),...,(j4,h4) = {~c ∈ DI | Φk,(j0,h0),...,(j4,h4)[~c/(Vest,VMRSP, allowRevokeEB)]}

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 43

5. Determine the Xk,(j0,h0),...,(j4,h4) that are already represented by the existing members ~c of the
old alphabet.

6. For each of the remaining Xk,(j0,h0),...,(j4,h4), select a new member for the new, extended input
alphabet by letting a constraint solver find a solution ~c for

Φk,(j0,h0),...,(j4,h4)[~c/(Vest,VMRSP, allowRevokeEB)]

Example For the CSM, the requirements-based IECP-refinement leads to the following disjuncts
ϕI

q,i, j.

ϕI
0,0,0 ≡ ϕI

0(V) ≡ Vest ≤ VMRSP

ϕI
1,1,0 ≡ VMRSP ≤ 110 ∧ VMRSP < Vest ≤ VMRSP + 4

ϕI
1,1,1 ≡ 110 < VMRSP ≤ 140 ∧ VMRSP < Vest ≤

31
30

VMRSP +
1
3

ϕI
1,1,2 ≡ 140 < VMRSP ∧ VMRSP < Vest ≤ VMRSP + 5

ϕI
2,2,0 ≡ VMRSP ≤ 110 ∧ VMRSP < Vest ≤ VMRSP + 5.5

ϕI
2,2,1 ≡ 110 < VMRSP ≤ 210 ∧ VMRSP < Vest ≤

209
200

VMRSP +
55

100
ϕI

2,2,2 ≡ 210 < VMRSP ∧ VMRSP < Vest ≤ VMRSP + 10

ϕI
3,3,0 ≡ VMRSP ≤ 110 ∧ VMRSP < Vest ≤ VMRSP + 7.5

ϕI
3,3,1 ≡ 110 < VMRSP ≤ 210 ∧ VMRSP < Vest ≤

43
40

VMRSP −
3
4

ϕI
3,3,2 ≡ 210 < VMRSP ∧ VMRSP < Vest ≤ VMRSP + 15

ϕI
4,4,0 ≡ 0 < Vest ≤ VMRSP ∧ allowRevokeEB = 0

ϕI
4,4,1 ≡ VMRSP < Vest

ϕI
0,1,0 ≡ VMRSP ≤ 110 ∧ VMRSP < Vest ≤ VMRSP + 4

ϕI
0,1,1 ≡ 110 < VMRSP ≤ 140 ∧ VMRSP < Vest ≤

31
30

VMRSP +
1
3

ϕI
0,1,2 ≡ 140 < VMRSP ∧ VMRSP < Vest ≤ VMRSP + 5

ϕI
0,2,0 ≡ VMRSP ≤ 110 ∧ VMRSP + 4 < Vest ≤ VMRSP + 5.5

ϕI
0,2,1 ≡ 110 < VMRSP ≤ 140 ∧

31
30

VMRSP +
1
3
< Vest ≤

209
200

VMRSP +
55
100

ϕI
0,2,2 ≡ 140 < VMRSP ≤ 210 ∧ VMRSP + 5 < Vest ≤

209
200

VMRSP +
55

100
ϕI

0,2,3 ≡ 210 < VMRSP ∧ VMRSP + 5 < Vest ≤ VMRSP + 10

ϕI
0,3,0 ≡ VMRSP ≤ 110 ∧ VMRSP + 5.5 < Vest ≤ VMRSP + 7.5

ϕI
0,3,1 ≡ 110 < VMRSP ≤ 210 ∧

209
200

VMRSP +
55
100

< Vest ≤
43
40

VMRSP −
3
4

ϕI
0,3,2 ≡ 210 < VMRSP ∧ VMRSP + 10 < Vest ≤ VMRSP + 15

ϕI
0,4,0 ≡ VMRSP ≤ 110 ∧ VMRSP + 7.5 < Vest

ϕI
0,4,1 ≡ 110 < VMRSP ≤ 210 ∧

43
40

VMRSP −
3
4
< Vest

ϕI
0,4,2 ≡ 210 < VMRSP ∧ VMRSP + 15 < Vest

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 44

ϕI
1,2,i ≡ ϕI

0,2,i, i = 0, 1, 2, 3

ϕI
1,3,i ≡ ϕI

0,3,i, i = 0, 1, 2

ϕI
1,4,i ≡ ϕI

0,4,i, i = 0, 1, 2

ϕI
2,3,i ≡ ϕI

0,3,i i = 0, 1, 2

ϕI
2,4,i ≡ ϕI

0,4,i i = 0, 1, 2

ϕI
3,4,i ≡ ϕI

0,4,i i = 0, 1, 2

ϕI
1,0,0 ≡ ϕ1,0 ≡ Vest ≤ VMRSP

ϕI
2,0,0 ≡ ϕI

1,0,0

ϕI
3,0,0 ≡ ϕI

1,0,0

ϕI
4,0,0 ≡ Vest = 0

ϕI
4,0,1 ≡ 0 < Vest ≤ VMRSP ∧ allowRevokeEB = 1

This leads to the following refined predicates Φi j .

Φ10 ≡ ϕI
0,0,0 ∧ ϕ

I
1,0,0 ∧ ϕ

I
2,0,0 ∧ ϕ

I
3,0,0 ∧ ϕ

I
4,4,0

≡ ϕI
0,0,0 ∧ ϕ

I
4,4,0

≡ 0 < Vest ≤ VMRSP ∧ allowRevokeEB = 0

Φ20 ≡ ϕI
0,0,0 ∧ ϕ

I
1,0,0 ∧ ϕ

I
2,0,0 ∧ ϕ

I
3,0,0 ∧ ϕ

I
4,0,0

≡ ϕI
4,0,0

≡ Vest = 0

Φ21 ≡ ϕI
0,0,0 ∧ ϕ

I
1,0,0 ∧ ϕ

I
2,0,0 ∧ ϕ

I
3,0,0 ∧ ϕ

I
4,0,1

≡ ϕI
4,0,1

≡ 0 < Vest ≤ VMRSP ∧ allowRevokeEB = 1

Φ30 ≡ ϕI
0,1,0 ∧ ϕ

I
1,1,0 ∧ ϕ

I
2,2,0 ∧ ϕ

I
3,3,0 ∧ ϕ

I
4,4,1

≡ VMRSP ≤ 110 ∧ VMRSP < Vest ≤ VMRSP + 4

Φ31 ≡ ϕI
0,1,1 ∧ ϕ

I
1,1,1 ∧ ϕ

I
2,2,1 ∧ ϕ

I
3,3,1 ∧ ϕ

I
4,4,1

≡ 110 < VMRSP ≤ 140 ∧ VMRSP < Vest ≤
31
30

VMRSP +
1
3

Φ32 ≡ ϕI
0,1,2 ∧ ϕ

I
1,1,2 ∧ ϕ

I
2,2,1 ∧ ϕ

I
3,3,1 ∧ ϕ

I
4,4,1

≡ 140 < VMRSP ≤ 210 ∧ VMRSP < Vest ≤ VMRSP + 5

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 45

Φ33 ≡ ϕI
0,1,2 ∧ ϕ

I
1,1,2 ∧ ϕ

I
2,2,2 ∧ ϕ

I
3,3,2 ∧ ϕ

I
4,4,1

≡ 210 < VMRSP < Vest ≤ VMRSP + 5

Φ40 ≡ ϕI
0,2,0 ∧ ϕ

I
1,2,0 ∧ ϕ

I
2,2,0 ∧ ϕ

I
3,3,0 ∧ ϕ

I
4,4,1

≡ VMRSP ≤ 110 ∧ VMRSP + 4 < Vest ≤ VMRSP + 5.5

Φ41 ≡ ϕI
0,2,1 ∧ ϕ

I
1,2,1 ∧ ϕ

I
2,2,1 ∧ ϕ

I
3,3,1 ∧ ϕ

I
4,4,1

≡ 110 < VMRSP ≤ 140 ∧
31
30

VMRSP +
1
3
< Vest ≤

209
200

VMRSP +
55
100

Φ42 ≡ ϕI
0,2,2 ∧ ϕ

I
1,2,2 ∧ ϕ

I
2,2,1 ∧ ϕ

I
3,3,1 ∧ ϕ

I
4,4,1

≡ 140 < VMRSP ≤ 210 ∧ VMRSP + 5 < Vest ≤
209
200

VMRSP +
55
100

Φ43 ≡ ϕI
0,2,3 ∧ ϕ

I
1,2,3 ∧ ϕ

I
2,2,2 ∧ ϕ

I
3,3,2 ∧ ϕ

I
4,4,1

≡ 210 < VMRSP ∧ VMRSP + 5 < Vest ≤ VMRSP + 10

Φ50 ≡ ϕI
0,3,0 ∧ ϕ

I
1,3,0 ∧ ϕ

I
2,3,0 ∧ ϕ

I
3,3,0 ∧ ϕ

I
4,4,1

≡ VMRSP ≤ 110 ∧ VMRSP + 5.5 < Vest ≤ VMRSP + 7.5

Φ51 ≡ ϕI
0,3,1 ∧ ϕ

I
1,3,1 ∧ ϕ

I
2,3,1 ∧ ϕ

I
3,3,1 ∧ ϕ

I
4,4,1

≡ 110 < VMRSP ≤ 210 ∧
209
200

VMRSP +
55

100
< Vest ≤

43
40

VMRSP −
3
4

Φ52 ≡ ϕI
0,3,2 ∧ ϕ

I
1,3,2 ∧ ϕ

I
2,3,2 ∧ ϕ

I
3,3,2 ∧ ϕ

I
4,4,1

≡ 210 < VMRSP ∧ VMRSP + 10 < Vest ≤ VMRSP + 15

Φ60 ≡ ϕI
0,4,0 ∧ ϕ

I
1,4,0 ∧ ϕ

I
2,4,0 ∧ ϕ

I
3,4,0 ∧ ϕ

I
4,4,1

≡ VMRSP ≤ 110 ∧ VMRSP + 7.5 < Vest

Φ61 ≡ ϕI
0,4,1 ∧ ϕ

I
1,4,1 ∧ ϕ

I
2,4,1 ∧ ϕ

I
3,4,1 ∧ ϕ

I
4,4,1

≡ 110 < VMRSP ≤ 210 ∧
43
40

VMRSP −
3
4
< Vest

Φ62 ≡ ϕI
0,4,2 ∧ ϕ

I
1,4,2 ∧ ϕ

I
2,4,2 ∧ ϕ

I
3,4,2 ∧ ϕ

I
4,4,1

≡ 210 < VMRSP ∧ VMRSP + 15 < Vest

From the refined predicates additional members of the input alphabet are selected. This results in
a new alphabet as the one shown in Table 11.

The resulting test suite comprises the test cases of the old suite plus additional cases, the new
test suite can be expressed as an extension of the old one. Since (A ∪ B)3 = A3 ∪ A2.B ∪
A.B.(A ∪ B) ∪ B.(A ∪ B)2, for any subsets A, B of the input alphabet, the old input alphabet with
set A = {c1, . . . , c6}, and the new alphabet values contained in B = {c7, . . . , c17} result in the
following test suite.

TEST_SUITEsb0=1
′ = {~ci.~c j.~ck.~c3 | i, j, k = 1, . . . , 17} ∪

{~c j.~ci.~ck.~ch.~c3 | h, i, k = 1, . . . , 17, j = 4, 5, 6} ∪

= {~ci.~c j.~ck.~c3 | i, j, k = 1, . . . , 6} ∪

{~c j.~ci.~ck.~ch.~c3 | h, i, k = 1, . . . , 6, j = 4, 5, 6} ∪

{~ci.~c j.~ck.~c3 | i, j = 1, . . . , 6, k = 7, . . . , 17} ∪

{~ci.~ck.~c j.~c3 | i = 1, . . . , 6, j = 1, . . . , 17, k = 7, . . . , 17} ∪

{~ck.~ci.~c j.~c3 | i, j = 1, . . . , 17, k = 7, . . . , 17} ∪

{~c j.~ci.~ch.~ck.~c3 | i, h = 1, . . . , 6, k = 7, . . . , 17, j = 4, 5, 6} ∪

{~c j.~ci.~ck.~ch.~c3 | i = 1, . . . , 6, h = 1, . . . , 17, k = 7, . . . , 17, j = 4, 5, 6} ∪

{~c j.~ck.~ci.~ch.~c3 | i, h = 1, . . . , 17, k = 7, . . . , 17, j = 4, 5, 6}

�

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 46

Table 11. Extended input alphabetA′I satisfyingAI ⊆ A
′
I .

~ci VMRSP Vest allowRevokeEB Xi Xi j

~c1 90 60 0 X1 X10

~c2 90 60 1 X2 X21

~c3 150 152 0 X3 X32

~c4 120 125 1 X4 X41

~c5 60 66 0 X5 X50

~c6 230 260 1 X6 X62

~c7 90 0 1 X2 X20

~c8 90 93 0 X3 X30

~c9 112 115 1 X3 X31

~c10 211 212 0 X3 X33

~c11 90 95 1 X4 X40

~c12 150 156 0 X4 X42

~c13 220 226 1 X4 X43

~c14 205 215 0 X5 X51

~c15 230 244 1 X5 X52

~c16 55 100 0 X6 X60

~c17 200 215 1 X6 X61

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 47

9.3.3 Discussion

The requirements-based IECP refinement ensures that all case distinctions of requirements are
tested. As a consequence, all SUT failures will be detected, where in a certain SUT state all
inputs that should trigger the reaction for a given requirements sub-case are handled incorrectly.
Compared to the original IECP, this is a considerable improvement, because the original IECP is
only guaranteed to detect failures if all sub-cases of a requirement are incorrectly handled by the
SUT in a certain state.

Just as for the original IECP, however, the requirements-based IECP refinement relies on the
SUT implementing all control decisions, that is, all guard conditions specified in the original
SysML state machine, correctly. Failures are only allowed in the actions setting outputs and
internal states. This is of considerable value if SUT code is generated semi-automatically. A
qualified code-frame generator, for example, might derive a control procedure from the state
machine model, so that all control states, guard conditions, and state machine transitions are
generated with high reliability by the tool. However, the driver software implementing access to
the hardware output interfaces – in our example the DMI and the train interface acting on the
brakes – may have been implemented in a manual way, so that some actions will show erroneous
behaviour in certain states of the SUT.

For other development scenarios, in particular, when the SUT code has been developed from the
requirements in manual way, the test strength of the requirements-based IECP refinement is still
insufficient, because SUT failures in the handling of guard conditions are just as likely as failures
in the action implementations. These failure scenarios will be considered in the next refinements.

9.4 Boundary Value IECP Refinement

Let I2 = {X10 , X20 , X21 , . . . , X62} be the input equivalence class partitioning containing the 17
input equivalence classes constructed above by Φi j . Extend the old input alphabet to a new
input alphabet which includes input vectors of the boundary of each Xi j . Then the new input
alphabet (see Table 12) contains 31 inputs more then the old one, and the new test suite contains
4 · 483 = 442368 test cases, 4 · 483 − 4 · 173 = 442368 − 19652 = 422716 test cases more.

Since the CSM code does not depend on dealt-time conditions, this is still an acceptable number
of software tests. For hardware-in-the-loop tests, when timing constraints of the target hardware
and the operational environment have to be considered, however, it would be too time-consuming
to execute them all. A well-justified reduction heuristic in this case is to drop the tests of certain
boundary values for states where these boundaries are of no relevance.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 48

The following refined predicates Φi j,k contain the separate boundary conditions.

Φ10,0 ≡ 0 < Vest < VMRSP ∧ allowRevokeEB = 0

Φ10,1 ≡ 0 < Vest = VMRSP ∧ allowRevokeEB = 0

Φ20 ≡ Vest = 0

Φ21,0 ≡ 0 < Vest < VMRSP ∧ allowRevokeEB = 1

Φ21,1 ≡ Vest = VMRSP ∧ allowRevokeEB = 1

Φ30,0 ≡ VMRSP < 110 ∧ VMRSP < Vest < VMRSP + 4

Φ30,1 ≡ VMRSP = 110 ∧ VMRSP < Vest < VMRSP + 4

Φ30,2 ≡ VMRSP < 110 ∧ Vest = VMRSP + 4

Φ30,3 ≡ VMRSP = 110 ∧ Vest = VMRSP + 4

Φ31,0 ≡ 110 < VMRSP < 140 ∧ VMRSP < Vest <
31
30

VMRSP +
1
3

Φ31,1 ≡ VMRSP = 140 ∧ VMRSP < Vest <
31
30

VMRSP +
1
3

Φ31,2 ≡ 110 < VMRSP < 140 ∧ Vest =
31
30

VMRSP +
1
3

Φ31,3 ≡ VMRSP = 140 ∧ VMRSP < Vest =
31
30

VMRSP +
1
3

Φ32,0 ≡ 140 < VMRSP < 210 ∧ VMRSP < Vest < VMRSP + 5

Φ32,1 ≡ VMRSP = 210 ∧ VMRSP < Vest < VMRSP + 5

Φ32,2 ≡ 140 < VMRSP < 210 ∧ Vest = VMRSP + 5

Φ32,3 ≡ VMRSP = 210 ∧ Vest = VMRSP + 5

Φ33,0 ≡ 210 < VMRSP < Vest < VMRSP + 5

Φ33,1 ≡ 210 < VMRSP < Vest = VMRSP + 5

Φ40,0 ≡ VMRSP < 110 ∧ VMRSP + 4 < Vest < VMRSP + 5.5

Φ40,1 ≡ VMRSP = 110 ∧ VMRSP + 4 < Vest < VMRSP + 5.5

Φ40,2 ≡ VMRSP < 110 ∧ Vest = VMRSP + 5.5

Φ40,3 ≡ VMRSP = 110 ∧ Vest = VMRSP + 5.5

Φ41,0 ≡ 110 < VMRSP < 140 ∧
31
30

VMRSP +
1
3
< Vest <

209
200

VMRSP +
55
100

Φ41,1 ≡ VMRSP = 140 ∧
31
30

VMRSP +
1
3
< Vest <

209
200

VMRSP +
55
100

Φ41,2 ≡ 110 < VMRSP < 140 ∧ Vest =
209
200

VMRSP +
55
100

Φ41,3 ≡ VMRSP = 140 ∧ Vest =
209
200

VMRSP +
55
100

Φ42,0 ≡ 140 < VMRSP < 210 ∧ VMRSP + 5 < Vest <
209
200

VMRSP +
55
100

Φ42,1 ≡ VMRSP = 210 ∧ VMRSP + 5 < Vest <
209
200

VMRSP +
55

100

Φ42,2 ≡ 140 < VMRSP < 210 ∧ Vest =
209
200

VMRSP +
55
100

Φ42,3 ≡ VMRSP = 210 ∧ Vest =
209
200

VMRSP +
55
100

Φ43,0 ≡ 210 < VMRSP ∧ VMRSP + 5 < Vest < VMRSP + 10

Φ43,1 ≡ 210 < VMRSP ∧ Vest = VMRSP + 10

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 49

Φ50,0 ≡ VMRSP < 110 ∧ VMRSP + 5.5 < Vest < VMRSP + 7.5

Φ50,1 ≡ VMRSP = 110 ∧ VMRSP + 5.5 < Vest < VMRSP + 7.5

Φ50,2 ≡ VMRSP < 110 ∧ Vest = VMRSP + 7.5

Φ50,3 ≡ VMRSP = 110 ∧ Vest = VMRSP + 7.5

Φ51,0 ≡ 110 < VMRSP < 210 ∧
209
200

VMRSP +
55
100

< Vest <
43
40

VMRSP −
3
4

Φ51,1 ≡ VMRSP = 210 ∧
209
200

VMRSP +
55
100

< Vest <
43
40

VMRSP −
3
4

Φ51,2 ≡ 110 < VMRSP < 210 ∧ Vest =
43
40

VMRSP −
3
4

Φ51,3 ≡ VMRSP = 210 ∧ Vest =
43
40

VMRSP −
3
4

Φ52,0 ≡ 210 < VMRSP ∧ VMRSP + 10 < Vest < VMRSP + 15

Φ52,1 ≡ 210 < VMRSP ∧ Vest = VMRSP + 15

Φ60,0 ≡ VMRSP < 110 ∧ VMRSP + 7.5 < Vest

Φ60,1 ≡ VMRSP = 110 ∧ VMRSP + 7.5 < Vest

Φ61,0 ≡ 110 < VMRSP < 210 ∧
43
40

VMRSP −
3
4
< Vest

Φ61,1 ≡ VMRSP = 210 ∧
43
40

VMRSP −
3
4
< Vest

Φ62 ≡ 210 < VMRSP ∧ VMRSP + 15 < Vest

9.5 IECP Refinement by Sub-paving

After having considered all case distinctions related to requirements and all boundary value
situations, further refinements are motivated by the possibility of trapdoors implemented in the
SUT, so that erroneous behaviour is revealed in certain SUT states for unknown subsets of the
input classes obtained so far by the previous two refinement steps.

In principle, trapdoors triggered by a subset containing an interval vector of the input domain
with positive diameter can be detected by further refining the input classes using sub-paving, that
is, by partitioning the input classes using intersections with interval vectors [16]. In absence of
any hints concerning size and location of trapdoors inside the existing input classes, there is no
evidence, however, that this systematic partitioning will be more effective than just choosing
additional uniformly distributed random values from each input class, in addition to the inputs
systematically constructed in the previous steps.

9.6 Effects of IECP Refinements on W-Method Application

Since IECP refinements always increase the input alphabet, but do not refine the quiescent or
transient state classes, previous test suites performed for a coarser alphabet can be re-used, if the
following rules are applied.

1. The characterisation set W remain unchanged by refinements, since it uniquely identifies
states, and states are not refined by IECP refinements.

2. The state transition cover S TC is always extended in the following way.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 50

Table 12. Extended input alphabetAI containing boundary values.

~ci VMRSP Vest allowRevokeEB Xi Xi j ,k

~c1 90 60 0 X1 X10 ,0

~c2 90 60 1 X2 X21 ,0

~c3 150 152 0 X3 X32 ,0

~c4 120 125 1 X4 X41 ,0

~c5 60 66 0 X5 X50 ,0

~c6 230 260 1 X6 X62

~c7 90 0 1 X2 X20

~c8 90 93 0 X3 X30 ,0

~c9 112 115 1 X3 X31 ,0

~c10 211 212 0 X3 X33 ,0

~c11 90 95 1 X4 X40 ,0

~c12 150 156 0 X4 X42 ,0

~c13 220 226 1 X4 X43 ,0

~c14 205 215 0 X5 X51 ,0

~c15 230 244 1 X5 X52 ,0

~c16 55 100 0 X6 X60 ,0

~c17 200 215 1 X6 X61 ,0

~c18 90 90 0 X1 X10 ,1

~c19 90 90 1 X2 X21 ,1

~c20 110 113 0 X3 X30 ,1

~c21 90 94 0 X3 X30 ,2

~c22 110 114 0 X3 X30 ,3

~c23 140 143 1 X3 X31 ,1

~c24 120 124,3 1 X3 X31 ,2

~c25 140 145 1 X3 X31 ,3

~c26 210 212 0 X3 X32 ,1

~c27 150 155 0 X3 X32 ,2

~c28 210 215 0 X3 X32 ,3

~c29 211 216 0 X3 X33 ,1

~c30 110 115 1 X4 X40 ,1

~c31 90 95,5 1 X4 X40 ,2

~c32 110 115,5 1 X4 X40 ,3

~c33 140 146 1 X4 X41 ,1

~c34 120 125,95 1 X4 X41 ,2

~c35 140 146,85 1 X4 X41 ,3

~c36 210 218 0 X4 X42 ,1

~c37 150 157,3 0 X4 X42 ,2

~c38 210 220 0 X4 X42 ,3

~c39 220 230 1 X4 X43 ,1

~c40 110 116 0 X5 X50 ,1

~c41 60 67,5 0 X5 X50 ,2

~c42 110 117,5 0 X5 X50 ,3

~c43 210 215 0 X5 X51 ,1

~c44 200 214,25 0 X5 X51 ,2

~c45 210 225 0 X5 X51 ,3

~c46 220 235 1 X5 X52 ,1

~c47 110 118 0 X6 X60 ,1

~c48 210 226 1 X6 X61 ,1

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 51

• Whenever a quiescent state class is encountered for the first time during STC construc-
tion, all members of the alphabet are applied to the state.

Since this rule was already applied in the initial STC construction, the previous STC is always
a subset of the new STC.

Let S TC,AI denote the state transition cover and input alphabet associated with the old IECP,
and let S TC′,A′I denote the ones associated with the refined IECP. Providing that the previous
IECP has already been completely tested using the W-Method with test suite W(S TS), the
additional test cases to be performed with the refined IECP are

W′(S TS) −W(S TS) = (S TC′ − S TC).A′m0−n
I .W ∪

S TC.(A′I −AI).A′
m0−n−1
I .W ∪

S TC.AI .(A′I −AI).A′
m0−n−2
I .W ∪

S TC.A2
I .(A

′
I −AI).A′

m0−n−3
I .W ∪

. . .

S TC.Am0−n−1
I (A′I −AI).W

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 52

10 Test Procedures

10.1 Test Automation Tool

The tests for the CSM provided under www.mbt-benchmarks.org have been performed with
the model-based testing component RTT-MBT of the test automation tool RT-Tester [23]. RT-
Tester supports all test levels from unit testing to system integration testing and provides different
functions for manual test procedure development, automated test case, test data and test procedure
generation, as well as management functions for large test campaigns. The typical application
scope covers (potentially safety-critical) embedded real-time systems involving concurrency, time
constraints, discrete control decisions as well as integer and floating point data and calculations.
While the tool has been used in industry for about 15 years and has been qualified for avionic,
automotive and railway control systems under test according to the standards [26, 15, 3], its MBT
functionality is based on more recent extensions that have been validated during the last years in
various projects from the transportation domains and are now made available to the public.

10.2 Test Categories

The tests presented for the CSM under www.mbt-benchmarks.org can be structured according to
the following coverage strategies.

1. Test procedures aiming at basic state coverage

2. Test procedures aiming at transition coverage

3. Test procedures aiming at MC/DC coverage

4. Test procedures based on user defined test cases, aiming at requirements coverage

5. Test procedures based on input equivalence class partitioning principle described in this
technical report. These are described in Section 10.4.

10.3 Tests of Categories 1 — 4

Table 13 summarises the coverage achieved by the generated tests of categories 1 — 4. Each test
procedure is duplicated to take into account the different values of the flag SBAvailable, except
for the test procedure TP-005 that checks the behaviour only when service brakes are available.
TP-001-BCS is the test procedure realising the basic state coverage, TP-002-Transitions the
transition coverage and TP-003-MC/DC the MC/DC coverage. Requirement-based testing is
performed by the Test procedures TP-004 to TP-008. Table 14 defines the requirements associated
with each test procedure. TP-004 focuses on the DMI interface. TP-005 provides a test to check
the behaviour when the service brake is not available. TP-006 validates the special transition
when entering the ceiling speed monitoring with the indication status set to one. TP-007 and
TP-008 are the test procedure for testing the revocation and the triggering of DMICmd and
TICmd.

TP-002-OnlyCSM_ON, TP-002-OnlyCSM_ON-SNOSB

These two test procedures generated by the tool have allowRevokeEB equals 0 and are of the
form specified in Table 15 and Table 16. The two test procedures are able to kill the mutant in
Example 1 thanks to the sequence NORMAL→ OVERSPEED→ NORMAL. The second mutant is
not killed by the first test procedure but the sequence NORMAL→ OVERSPEED→WARNING in

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 53

Table 13. Test procedures

TP Name MCDC UD HITR TR BCS REQ

TP-001-BCS 42% 15% 0% 45% 100% 12%

TP-001-BCS-NOSB 42% 15% 0% 45% 100% 12%

TP-002-OnlyCSM_ON 57% 23% 0% 81% 100% 40%

TP-002-OnlyCSM_ON-NOSB 57% 23% 0% 81% 100% 36%

TP-002-Transition 64% 38% 100% 90% 100% 56%

TP-002-Transition-NOSB 78% 23% 100% 100% 100% 52%

TP-003-MCDC 85% 15% 0% 54% 100% 20%

TP-003-MCDC-NOSB 85% 30% 0% 54% 100% 20%

TP-004-3.13.10-DMIOutputs 85% 46% 100% 90% 100% 80%

TP-004-3.13.10-DMIOutputs-NOSB 85% 61% 100% 90% 100% 80%

TP-005-3.13.10-EBvsSB 64% 30% 20% 90% 100% 48%

TP-006-3.13.10-IndicationStatus 57% 38% 60% 63% 100% 24%

TP-006-3.13.10-IndicationStatus-NOSB 57% 46% 60% 63% 100% 28%

TP-007-3.13.10-RevokeCmd 57% 15% 0% 81% 100% 36%

TP-007-3.13.10-RevokeCmd-NOSB 64% 30% 0% 81% 100% 36%

TP-008-3.13.10-Trigger 85% 38% 100% 90% 100% 76%

TP-008-3.13.10-Trigger-NOSB 85% 69% 100% 90% 100% 84%

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 54

Table 14. Requirement-based Test procedures

Test Procedure Requirements

REQ-3.13.10.2.1

TP-004 REQ-3.13.10.3.1

REQ-3.13.10.3.2

REQ-3.13.10.2.3

TP-005 REQ-3.13.10.2.4

REQ-3.13.10.3.3.r1

TP-006 REQ-3.13.10.3.6

REQ-3.13.10.2.5

REQ-3.13.10.2.5

TP-007 REQ-3.13.10.3.3.r0

REQ-3.13.10.3.3.r1

TP-008 REQ-3.13.10.3.3.t[1-5]

REQ-3.13.10.3.4

the second test procedure can. Finally, these two procedures are not able to kill the mutant of
Example 3.

Table 15. TP-002-OnlyCSM_ON Test suite

(Vest,VMRSP) (192, 169) (0, 179) (183, 179) (183, 231) (183, 0) (0, 0) (4.5, 0) (4.5, 247)

State S_BRAKE NORM OVSP NORM E_BRAKE NORM WARN NORM

Table 16. TP-002-OnlyCSM_ON-NOSB Test suite

(Vest,VMRSP) (12.5, 6.5) (0, 6.5) (6.9, 6.5) (6.9, 7) (6.9, 1.5) (0, 1.5) (32, 1.5) (0, 1.5)

State S_BRAKE NORM OVSP NORM WARN NORM E_BRAKE NORM

The following tables summarise the experiments performed with the tests of categories 1 — 4, in
order to assess their strength. Mutant 1,2 and 3 refers to the Example 1,2 and 3, as presented
section 8. Table 17 shows the results obtained after running each test procedure against the 3
mutants. Whenever the test passed it means that the mutant was not detected by the test procedure.
However when the test failed, the test procedure could witness the erroneous behaviour and
therefore kill the mutant. Table 18 summarises the test sequences that killed the mutants for each
test procedure. None of the category 1 — 4 tests could kill mutant 3.

10.4 Tests of Category 5 – IECP Tests

In addition to the tests of categories 1 — 4 described above, an IECP test suite was generated,
based on a prototype implementation of the IECP test strategy described in Section 5 in RTT-
MBT. This implementation was used to generate IECP test cases for the lower-level state machine
CSM_ON modelling the behaviour of the active CSM with the input, output, and internal model
variables Vest, VMRSP, DMICmd, TICmd, DMIdisplaySBI. The tests were based further on the
assumptions sb0 = 1 and allowRevokeEB = 0

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 55

Table 17. Mutants experiments results

Test-Procedure Mutant 1 Mutant 2 Mutant 3

TP-001-BCS PASS PASS PASS

TP-001-BCS-NOSB PASS PASS PASS

TP-002-OnlyCSM_ON FAIL PASS PASS

TP-002-OnlyCSM_ON-NOSB FAIL FAIL PASS

TP-002-Transition FAIL FAIL PASS

TP-002-Transition-NOSB FAIL FAIL PASS

TP-003-MCDC PASS PASS PASS

TP-003-MCDC-NOSB PASS PASS PASS

TP-004-3.13.10-DMIOutput FAIL PASS PASS

TP-004-3.13.10-DMIOutput-NOSB FAIL PASS PASS

TP-005-3.13.10-EBvsSB FAIL PASS PASS

TP-006-3.13.10-IndicationStatus FAIL PASS PASS

TP-006-3.13.10-IndicationStatus-NOSB FAIL PASS PASS

TP-007-3.13.10-RevokeCmd FAIL FAIL PASS

TP-007-3.13.10-RevokeCmd-NOSB FAIL FAIL PASS

TP-008-3.13.10-Trigger FAIL FAIL PASS

TP-008-3.13.10-Trigger-NOSB FAIL FAIL PASS

Table 18. Test sequences that kills the mutant

Mutant Test Procedure sequences

Mutant 1

TP-002 NORM→ OVSP→NORM

TP-004 NORM→ OVSP→NORM

TP-005 NORM→ OVSP→NORM

TP-006 NORM→ OVSP→NORM

TP-007 NORM→ OVSP→NORM

TP-008 NORM→ OVSP→NORM

Mutant 2

TP-002 OVSP→ NORM→OVSP

TP-005 OVSP→ NORM→WARN

TP-007 OVSP→ NORM→WARN

TP-008 OVSP→NORM→OVSP

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 56

In addition to the IECP test suites introduced in Section 7, a refined test suite based on 66
input equivalence classes was performed; this suite provided full requirements coverage and
adds selected boundary value test cases. The generation of input classes, selection of the input
alphabet, and the application of the W-Method results in 1630 test cases, assuming no additional
states in the implementation (m = 4). The generation of the whole test suite took approx. 11
minutes. As expected, the IECP test suites killed the three mutants from Example 1 — 3. For
more details readers are referred to www.mbt-benchmarks.org.

11 Related Work

The test method described and illustrated in this technical report is a specific instance of partition
testing approaches, where the input domains of the SUT are divided into subsets, and small
numbers of candidates are chosen from each of these sets [19]. The formalisation of equivalence
classes is typically based on a uniformity hypothesis as introduced in [9]. In the context of safety-
relevant applications, the identification of subsets, as well as the selection of representatives
from each set, has to be justified. To this end, heuristic techniques such as the classification tree
method described in [11] have been implemented in interactive test automation tools. They enable
users to clearly represent the input combinations taken into account in a test suite. In absence
of a model for the required SUT behaviour, however, no formal justification of this selection
could be performed, since internal dependencies between input variables could not be formally
analysed. As a consequence, classes have been constructed on a per-input variable basis; this
resulted in partitions Xi1, Xi2, Xi3, . . . , structuring the domain of input variable xi ∈ I, i = 1, . . . , k.
To increase the confidence into the class selection, heuristics like strong equivalence class
testing have been applied, where it was tried to cover every possible combination (X1 j1 , . . . , Xk jk)
of classes, by choosing representatives from each of these vectors. In [20], this approach to
equivalence class testing is applied to an ATC (automatic train control) system which comprises
functionality similar to the one described in this report, but which is based on a national Italian
ATC specification. In order to further increase the confidence into the test strength achieved,
a grey-box test strategy is applied instead of “purely black-box”, so that a subset of internal
communication variables can be observed. In addition, equivalence class partition testing is
combined with other techniques, such as robustness tests and worst case tests.

The crucial contributions of model-based testing in this context consists in (1) providing insight
into the dependencies between input variables and the expected internal control decisions and
data transformations performed by the SUT, and (2) in taking into account the expected internal
state of the SUT. Contribution (1) allows us to identify input equivalence class partitions in
an automated way and to formally justify that these classes are adequate for the verification
objectives under consideration. Contribution (2) enables us to create an exhaustive finite test suite,
by applying the W-Method on a state machine resulting from an equivalence class abstraction of
the model. A random sequence of input vector applications according to the strong equivalence
class testing heuristics only uncovers a certain error, if the vector has been “accidentally” applied
in a SUT state where the error could be uncovered by the vector under consideration. In contrast
to this, our strategy “drives” the SUT systematically through its state space, so that – provided
that the SUT is a member of the fault domain – it is guaranteed that a suitable (state,input vector)
combination revealing the error will be applied in the resulting test suite.

In model-based testing, the idea to use data abstraction for the purpose of equivalence class
definition has been originally introduced in [10], where the classes are denoted as hyperstates,
and the concept is applied to testing against abstract state machine models. Our results presented
here surpass the findings described in [10] in the following ways: (1) while the authors of [10]
introduce the equivalence class partitioning technique for abstract state machines only, our

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 57

approach extracts partitions from the models’ semantic representation. Therefore an exhaustive
equivalence class testing strategy can be elaborated for any formalism whose semantics can be
expressed by state transition systems. (2) The authors sketch for white box tests only how an
exhaustive test suite could be created [10, Section 4]: the transition cover approach discussed
there is only applicable for SUT where the internal state (respectively, its abstraction) can be
monitored during test execution. (3) The authors only consider finite input sets whose values
have been fixed a priori [10, Section 2], whereas our approach allows for inputs from arbitrary
domains.

Applications of model-based testing in the railway domain are currently investigated by numerous
research groups and enterprises. The paper [7] reports on how a railway signalling manufacturer
successfully adopted and applied a two-step approach for the verification of two ATP systems
reducing their validation costs by about 70%4. In the first step MBT was applied by means
of the Simulink/Stateflow platform to test the compliance of the implementation of the ATP
system with the requirements, and in the second step abstract interpretation was applied by
means of the Polyspace tool in order to detect runtime errors like buffer overflows. The MBT
approach includes a form of automated back-to-back testing and an additional evaluation that
no unexpected behaviours have been introduced by the model-to-code translation process. In
contrast to our fully automated strategy, the test suites are created in a manual way (at least one
function for each requirement) and equivalence class testing is not covered in this approach. No
formal guarantees with respect to the test suites’ completeness have been made.

In [2] the TTCN-3 test language is applied in a case study of interlocking systems testing. The
results presented there take into account that in this application field the topology of the railway
network has to be considered; these aspects have not been covered by our approach presented in
this report, which is more applicable to onboard controllers whose behaviour is fairly independent
on a specific network topology.

In [8] the authors describe MBT strategies in a distributed real-time setting. The concepts are
applied to speed/distance monitoring for rolling stock trains travelling close to each other on the
same track and in the same direction. While their example also involves infinite input domains
(distance and speed), the problem of equivalence class selection is not considered. Our approach
could be applied “locally” to each of the controllers involved in that case study.

12 Conclusion

In this technical report, a SysML model for the Ceiling Speed Monitor of the ETCS onboard con-
troller has been presented and made publicly available on the website www.mbt-benchmarks.org,
for the purpose of testing theory evaluation and MBT tool comparisons. The model has been
represented in SysML, and a formal model semantics based on state transition systems has been
specified by presenting the model’s transition relation in propositional form.

A novel equivalence class testing strategy has been applied to derive tests from the CSM model in
an automated way. This strategy allows test suite creation depending on a given fault model and
guarantees completeness of the generated suites for all members of the associated fault domain.
The evaluation shows that for certain types of mutants, the equivalence class testing strategy
is significantly stronger than that of other test strategies, such as model transition coverage or
MC/DC coverage.

4In [18] the authors report cost reductions of at least 30%.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 58

13 Ongoing and Future Work

The mutations used for the evaluation in this technical report were mainly constructed for
illustration purposes. Currently, we are evaluating the test strength of IECP test suites in
comparison with other model coverage criteria, using large numbers of mutants created by a
random generator that mutates models and creates executable “SUT” code from each mutation.
These results will also be published on www.mbt-benchmarks.org.

The test suites described in this technical report focused on the active CSM only. We are currently
working on a completion of the ETCS speed supervision functions, elaborating SysML sub-
models for target speed monitoring and release speed monitoring. The resulting test suites will
then also consider the switching between these three supervision functions.

The CSM test model inspires further investigations with respect to product line testing [17]: the
system depends on a constant parameter sb0 marking the availability of a service brake to be used
for intervention purposes in case of speed restriction violations (Section 4.5). This parameter
is not an input to the SUT, but to be kept constant throughout a test suite, since it refers to the
trains’ hardware configurations. The SUT behaviour, however, depends on the value of sb0, so
two different test suites have to be produced and exercised on the SUT, one for sb0 = 0, the other
for sb0 = 1. This results in the challenge to identify in an automated way which test cases do not
depend on sb0, so that they have to be executed just once, and which cases have to be exercised
for every possible value of sb0.

References

[1] Robert V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-Wesley,
2000.

[2] Jens R. Calame, Nicolae Goga, Natalia Ioustinova, and Jaco van de Pol. TTCN-3 Testing of Hoorn-
Kersenboogerd Railway Interlocking. In Proceedings of the Canadian Conference on Electrical and
Computer Engineering (CCECE’06), pages 620–623. IEEE, 2006.

[3] CENELEC. EN 50128:2011 Railway applications - Communication, signalling and processing
systems - Software for railway control and protection systems. 2011.

[4] Tsun S. Chow. Testing software design modeled by finite-state machines. IEEE Transactions on
Software Engineering, SE-4(3):178–186, March 1978.

[5] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

[6] European Railway Agency. ERTMS – System Requirements Specification – UNISIG SUBSET-026,
February 2012. Available under http://www.era.europa.eu/Document-Register/Pages/Set-2-System-
Requirements-Specification.aspx.

[7] Alessio Ferrari, Gianluca Magnani, Daniele Grasso, Alessandro Fantechi, and Matteo Tempestini.
Adoption of Model-based Testing and Abstract Interpretation by a Railway Signalling Manufacturer.
International Journal of Embedded and Real-Time Communication Systems (IJERTCS), 2(2):42–61,
2011.

[8] Christophe Gaston, RobertM. Hierons, and Pascale Gall. An implementation relation and test
framework for timed distributed systems. In Hüsnü Yenigün, Cemal Yilmaz, and Andreas Ulrich,
editors, Testing Software and Systems, volume 8254 of Lecture Notes in Computer Science, pages
82–97. Springer Berlin Heidelberg, 2013.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 59

[9] Marie-Claude Gaudel. Testing can be formal, too. In PeterD. Mosses, Mogens Nielsen, and MichaelI.
Schwartzbach, editors, TAPSOFT ’95: Theory and Practice of Software Development, volume 915
of Lecture Notes in Computer Science, pages 82–96. Springer Berlin Heidelberg, 1995.

[10] Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte, and Margus Veanes. Generating finite state
machines from abstract state machines. ACM SIGSOFT Software Engineering Notes, 27(4):112–122,
July 2002.

[11] Matthias Grochtmann and Klaus Grimm. Classification Trees for Partition Testing. Software Testing,
Verification and Reliability, 3(2):63–82, 1993.

[12] Wen-ling Huang and Jan Peleska. Exhaustive model-based equivalence class testing. In Hüsnü
Yenigün, Cemal Yilmaz, and Andreas Ulrich, editors, Testing Software and Systems, volume 8254 of
Lecture Notes in Computer Science, pages 49–64. Springer Berlin Heidelberg, 2013.

[13] Wen-ling Huang, Jan Peleska, and Uwe Schulze. Test automation support. Technical Report D34.1,
COMPASS Comprehensive Modelling for Advanced Systems of Systems, 2013. Available under
http://www.compass-research.eu/deliverables.html.

[14] International Organization for Standardization. ISO 26262 - Road Vehicles - Functional Safety -
Part 8: Supporting Processes. 2009. ICS 43.040.10.

[15] ISO/DIS 26262-4. Road vehicles – functional safety – part 4: Product development: system level.
Technical report, International Organization for Standardization, 2009.

[16] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Éric Walter. Applied Interval Analysis. Springer-
Verlag, London, 2001.

[17] Beatriz Pérez Lamancha, Macario Polo Usaola, and Mario Piattini Velthuis. Software product line
testing - a systematic review. In Boris Shishkov, José Cordeiro, and Alpesh Ranchordas, editors,
ICSOFT (1), pages 23–30. INSTICC Press, 2009.

[18] Helge Löding and Jan Peleska. Timed moore automata: test data generation and model checking.
In Proc. 3rd International Conference on Software Testing, Verification and Validation (ICST’10).
IEEE Computer Society, 2010.

[19] Giuseppe Nicola, Pasquale Tommaso, Esposito Rosaria, Flammini Francesco, Marmo Pietro, and
Orazzo Antonio. A Grey-Box Approach to the Functional Testing of Complex Automatic Train
Protection Systems. In Mario Cin, Mohamed Kaâniche, and András Pataricza, editors, Dependable
Computing - EDCC 5, volume 3463 of Lecture Notes in Computer Science, pages 305–317. Springer,
2005.

[20] Giuseppe De Nicola, Pasquale di Tommaso, Rosaria Esposito, Francesco Flammini, and Antonio
Orazzo. A Hybrid Testing Methodology for Railway Control Systems. In Maritta Heisel, Peter
Liggesmeyer, and Stefan Wittmann, editors, Proceedings of SAFECOMP 2004, volume 3219 of
Lecture Notes in Computer Science, pages 116–129. Springer, 2004.

[21] Object Management Group. OMG Systems Modeling Language (OMG SysMLT M). Technical
report, Object Management Group, 2010. OMG Document Number: formal/2010-06-02.

[22] Object Management Group. OMG Unified Modeling Language (OMG UML), superstructure,
version 2.4.1. Technical report, OMG, 2011.

[23] Jan Peleska. Industrial-strength model-based testing - state of the art and current challenges. In
Alexander K. Petrenko and Holger Schlingloff, editors, Proceedings Eighth Workshop on Model-
Based Testing, Rome, Italy, 17th March 2013, volume 111 of Electronic Proceedings in Theoretical
Computer Science, pages 3–28. Open Publishing Association, 2013.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP4/CSM – 01/00 60

[24] Jan Peleska, Artur Honisch, Florian Lapschies, Helge Löding, Hermann Schmid, Peer Smuda, Elena
Vorobev, and Cornelia Zahlten. A real-world benchmark model for testing concurrent real-time
systems in the automotive domain. In Burkhart Wolff and Fatiha Zaidi, editors, Testing Software and
Systems. Proceedings of the 23rd IFIP WG 6.1 International Conference, ICTSS 2011, volume 7019
of LNCS, pages 146–161, Heidelberg Dordrecht London New York, November 2011. IFIP WG 6.1,
Springer.

[25] A. Petrenko, N. Yevtushenko, and G. v. Bochmann. Fault Models for Testing in Context, pages
163–177. Chapman&Hall, 1996.

[26] RTCA,SC-167. Software Considerations in Airborne Systems and Equipment Certification,
RTCA/DO-178B. RTCA, 1992.

[27] Andreas Spillner, Tilo Linz, and Hans Schaefer. Software Testing Foundations. dpunkt.verlag,
Heidelberg, 2006.

[28] UNISIG. ERTMS/ETCS SystemRequirements Specification, Chapter 3, Principles, volume Subset-
026-3. February 2012. Issue 3.3.0.

[29] M. P. Vasilevskii. Failure diagnosis of automata. Kibernetika (Transl.), 4:98–108, July-August 1973.

[30] RTCA SC-205/EUROCAE WG-71. Software Considerations in Airborne Systems and Equipment
Certification. Technical Report RTCA/DO-178C, RTCA Inc, 1140 Connecticut Avenue, N.W., Suite
1020, Washington, D.C. 20036, December 2011.

This work is licensed under the "openETCS Open License Terms" (oOLT).

	Introduction
	A Test Model for the ETCS Ceiling Speed Monitor
	Equivalence Class Partition Testing for the CSM
	Fault Models and Completeness Results

	The Ceiling Speed Monitoring Function – Functional Objectives
	Model Description
	Model Availability
	Model Components
	Model Semantics – Overview
	Interfaces
	SUT Attributes and Operations
	Requirements
	Behavioural Specification
	Requirements Tracing

	Formal Semantics – the Transition Relation
	Semantic Definition Scope
	State Transition System Semantics
	State Space
	Quiescent and Transient States
	Initial State
	Transition Relation – General Construction Rules
	Transition Relation for the CSM
	Propositions Specifying Internal State and Outputs – i.
	Propositions Specifying Input Conditions for Quiescent Classes – iI.
	Quiescent Post-State Condition – qpsc.
	Transient Post-State Condition – tpsc.
	Transient State Input Conditions – q,iI.

	Input Equivalence Class Partitionings
	Strategy Overview
	I/O-Equivalence
	Input Equivalence Class Partitions
	Fault Model
	Complete Test Strategy

	Practical Construction of Input Equivalence Classes and Associated Partitionings
	CSM I/O-Equivalence Classes
	CSM Input Equivalence Class Partitions

	Inter-Class Transitions

	CSM Fault Model
	Complete Test Suites for the CSM
	Test Suite Construction – Overview
	Application of the W-Method

	Test Strength
	Test Strength Assessment
	Example 1
	Example 2
	Example 3

	Heuristics for Constructing IECP Refinements
	IECP Refinements for the CSM
	Overview of the Refinement Concept
	Requirements-based IECP Refinement
	Requirements-related Case Distinctions
	Construction of the Requirements-based IECP Refinement
	Discussion

	Boundary Value IECP Refinement
	IECP Refinement by Sub-paving
	Effects of IECP Refinements on W-Method Application

	Test Procedures
	Test Automation Tool
	Test Categories
	Tests of Categories 1 — 4
	Tests of Category 5 – IECP Tests

	Related Work
	Conclusion
	Ongoing and Future Work
	References

