Visual-inertial tracking with sparse 3D information

DFKI Localization Workshop 2011

Markus Miezal (markus.miezal@dfki.de)
Research Department Augmented Vision
German Research Center for Artificial Intelligence
Contents

1. Augmented Vision Department
 • Core activities and competences
 • Project: Capture
 • Project: Cognito

2. Visual-inertial tracking with optical flow

3. Future Work
Augmented Vision Department

Core activities:

- Sensor fusion:
 - (body) motion tracking
 - activity recognition

- Computer vision:
 - 3D reconstruction
 - object recognition

- Visualization and rendering:
 - information visualization
 - realistic rendering
 - collaborative interaction

28 fulltime researchers
Application domains:

- Virtual engineering
- Ambient assisted living
- Safety and Security

Software platforms:

- **Argos**: data-driven parallel framework for scientific prototyping
- **Odysseys**: system for realistic rendering and collaborative work
Capture

3D-scene reconstruction with high resolution and high dynamic range spherical images

- Using special camera:
 - Civetta (360° x 180° HDR images, resolution 7393x14786 pixels)
Capture

- Structure From Motion
 - Camera positions + sparse 3D points cloud

- Multiple View Stereo
 - Dense 3D points cloud

- Surface Reconstruction
 - Untextured 3D model

- Texture Mapping
 - Output: textured 3D model

Capture process:
- Capture multiple views
- Use SfM to estimate camera positions
- Use MVS to create dense 3D points cloud
- Use SfM again to reconstruct surface
- Apply texture mapping to generate textured 3D model
Future work: Localization
Cognito

Cognitive Workflow Capturing and Rendering with On-Body Sensor Networks

- Sensor fusion mainly for upper body tracking
- SLAM used for global localization (provided by the University of Bristol)
 - Pure monocular visual SLAM
 - Metric and alignment by given marker
Cognito

Future work: Add Visual-inertial data to SLAM system
Visual-inertial tracking with optical flow
Sensor qualities

- Absolute measurements
- Occlusion
- Usually slow
- Motion blur
- No alignment
- Usually unknown scale

CamIMU

- Fast
- Metric and alignment
- Relative Measurements
- Eventually drifts
Sensor fusion

- EKF with state \((s_w, \dot{s}_w, \ddot{s}_w, q_{sw}, \omega_s, b_\omega) \)^T
- Time update (100 Hz):
 - Constant acceleration
 - Constant rotation speed
- Measurement:
 - IMU: \(y_\omega \) and \(y_a \) (100 Hz)
 - Vision: 2D/3D correspondences (reprojection error) (25 Hz)
• IMU induces a drift when only a few 2D/3D correspondences are available

Use 2D/2D correspondences instead

+ Cheap and fast acquisition
+ No 3D information needed
Measureing optical flow

- Derive the point projection from world to camera by t
- 3D information for OF is not available: Eliminate z.
- Inner product gives 1D innovation

\[
0 = h(x) = (\hat{m}_n + e_m)^T(v_{cw} \times (\hat{m}_n + e_m)) + (\hat{m}_n + e_m)^T(\omega_{cw} \times (v_{cw} \times (\hat{m}_n + e_m)))
\]

\[
\omega_{cw} = -R_{cs}\omega_s
\]

\[
v_{cw} = \omega_{cw} \times (R_{cs}T_{sc}^s) - R_{cs}Rot(q_{sw})s_w
\]
Optical flow acquisition

1. Get point matches
 - KLT, SURF, SIFT, Marker points...

2. Derive point speed from consecutive points using:
 - Euler approximation: $\dot{m} = \frac{m_2 - m_1}{\Delta t}$
 - Approximate using KF
 - Time update: Constant Velocity/Acceleration
 - Measure: Point position
Results (so far)

- Improvements are visible (only when less 3D information is available)
Known problems (Calibration)

• A Hand-Eye calibration \((R_{cs}, t_{cs})\) is crucial for accuracy

• State of the art:
 1. Relative rotation
 • Align down vector of vision (chessboard detection) with down vector from IMU
 2. Relative translation
 • Optimize \(t_{cs}\) over normalized residuals of a filter

• Calibration is highly dependent on parameters and Hardware setup
Future work

• Evaluation on Vicon data
Questions?
Thank you!