Direct Embodied Data for Localisation and Mapping

Jakob Schwendner

DFKI Bremen & Universität Bremen
Robotics Innovation Center
Director: Prof. Dr. Frank Kirchner
www.dfki.de/robotics
robotics@dfki.de
Outline

Problem/Approach

Method
- Overview
- System/Contact Point Model
- Odometry Model
- Environment Model
- Measurement Model
- Particle Filter

Localisation Results

SLAM current state

Conclusion/Outlook
Localisation and Mapping in 3D Environments

- Localisation
- Mapping
- Combined Localisation and Mapping
- Visual SLAM works
Motivation for using embodied data

- Could be used in blind scenarios
- Augment visual means of Localisation and Mapping
- Reduce requirements for vision
- Acknowledge the fact that robots have bodies, too
- Things are not always what they look like
Embodied Data in Context

Embodied Data is defined as sensory information originated within or on the border of the system in question.

Two categories of Embodied Data: *Direct* and *Indirect*.
Method

Method Overview

- System/Contact Point Model
- Odometry Model
- Environment Model
- Measurement Model
- Particle Filter
Method

Asguard System/Contact Point Model

- Asguard has five degrees of freedom
- Four Wheels, free body joint
- \(c \in C = (\gamma_1, \ldots, \gamma_4, \beta) \)
- Contact with environment mainly through feet
- Modeling of Contact Points based on \(c \) and orientation \(q \)
- Frames \(W \), \(B \) and \(Y \)
Method

Asguard Odometry Model used for Approach

- Extended 2D skid steering to 3D
- Difference in orientation from IMU
- Travelled distance from wheel turns
- Compensation for center of rotation
Method

Odometry Error Model

- Mixture model
- Gaussian is with covariance $A(d, \text{tilt}, \Delta \theta, 1)^T$
- constant part for modeling slip
- Projection to Y frame
Method

3D Environment Model

- Requirements: Cartesian, fast, handles Test-Track
- Modes: A-priori & Live
- Options
 - Pointcloud: simple, accurate, slow
 - DEM: simple, high information-loss, very fast
 - MLSM: more complex, medium information-loss, fast
Method

Multi Level Surface Maps

- Regular grid cells partitioning xy-plane
- Multiple patches per cell
- Two cell types
 - horizontal patch with μ, σ
 - vertical patch μ, σ, h

$$m(p, l) = \begin{cases} (z, \sigma) & \text{surface with } z \in [p_z - l/2, p_z + l/2] \\ \emptyset & \text{no surface in interval} \end{cases}$$

Direct Embodied Data for Localisation and Mapping
April 6, 2011
Method

Single wheel contact estimation

IMU (q), encoder readings (c)
Particle pose (T)

For each wheel

- Contact points in W from T and c
- Remove unlikely contacts
- Pick contact with lowest z diff to map
- Wheel is valid if all feet have map value

Not needed if contact information available
Method

Robot body measurement

\[
\hat{p}(z_k|m, c, T) = \prod_{(d, \sigma) \in z_k} \phi\left(\frac{d + \xi}{\sigma}\right)
\]

- maximise for \(\xi \) to get \(z \) offset
- probability is not normalised yet
Method

Particle Encoding and Measurement Normalisation

- Particle distribution over pose space \((x, y, \theta)\)
- Carries extra information \((z, \sigma_z)\)
- measurement \(z_k\) and state \(x_k\)
- \(\bar{p}\) discounted probability of found contacts
- \(p(z_k|x_k^{[m]}) = \hat{p}(z_k|x_k^{[m]})\bar{p}^{4-|z_k|}\)
- normalisation factors contacts per pose sample
Method

Description of Particle Filter used

- Sampling Importance Resampling (SIR) filter
- Initial particles created with given distribution
- Project particles using odometry
- Update particle weight based on $p(z_k|x_k)$
- Update particle z and σ
- Mark floating particles
- Resample if Effective Particle measure fall below threshold
Localisation Results

Sand Field Experiments

- 50 m x 30 m sand field
- height variation up to 1 m
- a-priori map
- grid spacing 0.05 m
Localisation Results

Track lap (125 m)

Position Plot

- start/end position
- gps
- odometry
- filter centroid
Localisation Results

Track cross (88 m)

Position Plot

- North (m)
- East (m)

- gps
- odometry
- filter centroid
Localisation Results

Side Loop (143 m)

Position Plot

- North (m)
- East (m)

- gps
- odometry
- filter centroid
Localisation Results

Side Loop (143 m) vs time

![Graphs showing localisation results for side loop.](image)
Localisation Results

Total Distance Travelled

<table>
<thead>
<tr>
<th>Run</th>
<th>Distance Travelled [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Centroid</td>
</tr>
<tr>
<td>Lap1</td>
<td>125.83</td>
</tr>
<tr>
<td>Lap2</td>
<td>128.28</td>
</tr>
<tr>
<td>Lap3</td>
<td>124.81</td>
</tr>
<tr>
<td>Side Loop</td>
<td>136.84</td>
</tr>
<tr>
<td>Cross</td>
<td>89.67</td>
</tr>
</tbody>
</table>
Localisation Results

Position Error

<table>
<thead>
<tr>
<th>Run</th>
<th>Mean Position Error [m]</th>
<th>Max Error [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Centroid</td>
<td>Odometry</td>
</tr>
<tr>
<td>Lap1</td>
<td>0.35</td>
<td>8.74</td>
</tr>
<tr>
<td>Lap2</td>
<td>0.37</td>
<td>9.34</td>
</tr>
<tr>
<td>Lap3</td>
<td>0.36</td>
<td>10.33</td>
</tr>
<tr>
<td>Side Loop</td>
<td>0.49</td>
<td>4.29</td>
</tr>
<tr>
<td>Cross</td>
<td>0.40</td>
<td>3.23</td>
</tr>
</tbody>
</table>
Localisation Results

Error vs Particle Count

![Graph showing error vs particle count for filter and odometry methods.]
SLAM current state

Mapping

- Use Laserscanner for Mapping
- Uncertainty transformation into map
- One map per particle
- Work in progress . . .
Conclusion/Outlook

Concluding the work and further steps

- Approach improves localisation over odometry alone
- Localisation filter has bounded error
- Should benefit from improved odometry
- Look into indirect embodied data
- Combine vision and embodied data to improve SLAM
Thank you for your attention!