

#### Direct Embodied Data for Localisation and Mapping Jakob Schwendner

DFKI Bremen & Universität Bremen Robotics Innovation Center Director: Prof. Dr. Frank Kirchner www.dfki.de/robotics robotics@dfki.de



### Outline



#### Problem/Approach

#### Method

Overview

System/Contact Point Model

**Odometry Model** 

**Environment Model** 

Measurement Model

Particle Filter

Localisation Results

SLAM current state

Conclusion/Outlook



# Problem/Approach



### Localisation and Mapping in 3D Environments

- Localisation
- Mapping
- Combined Localisation and Mapping
- Visual SLAM works





# Problem/Approach



#### Motivation for using embodied data

- Could be used in blind scenarios
- Augment visual means of Localisation and Mapping
- ► Reduce requirements for vision
- Acknowledge the fact that robots have bodies, too
- Things are not always what they look like



# Problem/Approach



#### Embodied Data in Context

Embodied Data is defined as sensory information originated within or on the border of the system in question.

Two categories of Embodied Data: *Direct* and *Indirect*.





#### Method Overview

- System/Contact Point Model
- Odometry Model
- Environment Model

- Measurement Model
- ► Particle Filter







### Asguard System/Contact Point Model

- Asguard has five degrees of freedom
- Four Wheels, free body joint
- $c \in C = (\gamma_1, \ldots, \gamma_4, \beta)$
- Contact with environment mainly through feet
- Modeling of Contact Points based on c and orientation q
- ▶ Frames W, B and Y





### Asguard Odometry Model used for Approach

- Extended 2D skid steering to 3D
- Difference in orientation from IMU
- Travelled distance from wheel turns
- compensation for center of rotation





### **Odometry Error Model**

- Mixture model
- Gaussian is with covariance
   A(d, tilt, Δθ, 1)<sup>T</sup>
- constant part for modeling slip
- ▶ Projection to *Y* frame







#### 3D Environment Model

 Requirements: Cartesian, fast, handles Test-Track

► Modes: A-priori & Live

Options

Pointcloud simple, accurate, slow
DEM simple, high
information-loss, very
fast
MLSM more complex,
medium

information-loss, fast







### Multi Level Surface Maps

- Regular grid cells partitioning xy-plane
- Multiple patches per cell
- ► Two cell types horizonal patch with  $\mu, \sigma$ vertical patch  $\mu, \sigma, h$
- ► m(p, l) =  $\begin{cases} (z, \sigma) & \text{surface with } z \in [p_z l/2, p_z + l/2] \\ \emptyset & \text{no surface in interval} \end{cases}$





#### Single wheel contact estimation

IMU (q), encoder readings (c)Particle pose (T)

#### For each wheel

- Contact points in W from T and c
- Remove unlikely contacts
- Pick contact with lowest z diff to map
- Wheel is valid if all feet have map value

Not needed if contact information available





### Robot body measurement

- $\hat{p}(z_k|m,c,T) = \prod_{(d,\sigma)\in z_k} \phi(\frac{d+\xi}{\sigma})$
- maximise for ξ to get z offset
- probability is not normalised yet





### Particle Encoding and Measurement Normalisation

- ▶ Particle distribution over pose space  $(x, y, \theta)$
- Carries extra information  $(z, \sigma_z)$
- ightharpoonup measurement  $z_k$  and state  $x_k$
- $ightharpoonup \bar{p}$  discounted probability of found contacts
- $p(z_k|x_k^{[m]}) = \hat{p}(z_k|x_k^{[m]})\bar{p}^{4-|z_k|}$
- normalisation factors contacts per pose sample



#### Description of Particle Filter used

- Sampling Importance Resampling (SIR) filter
- Initial particles created with given distribution
- Project particles using odometry
- ▶ Update particle weight based on  $p(z_k|x_k)$
- Update particle z and \( \sigma \)
- Mark floating particles
- Resample if Effective Particle measure fall below threshold



#### Sand Field Experiments

- ▶ 50 m x 30 m sand field
- ▶ height variation up to 1 m
- a-priori map
- ▶ grid spacing 0.05 m







### Track lap (125 m)







### Track cross (88 m)







### Side Loop (143 m)







### Side Loop (143 m) vs time







#### Total Distance Travelled

|           | Distance Travelled [m] |          |        |  |  |
|-----------|------------------------|----------|--------|--|--|
| Run       | Centroid               | Odometry | GPS    |  |  |
| Lap1      | 125.83                 | 141.97   | 125.19 |  |  |
| Lap2      | 128.28                 | 140.96   | 127.51 |  |  |
| Lap3      | 124.81                 | 135.85   | 123.85 |  |  |
| Side Loop | 136.84                 | 161.63   | 143.89 |  |  |
| Cross     | 89.67                  | 100.31   | 88.46  |  |  |





#### Position Error

|           | Mean Position Error [m] |          | Max Error [m] |          |
|-----------|-------------------------|----------|---------------|----------|
| Run       | Centroid                | Odometry | Centroid      | Odometry |
| Lap1      | 0.35                    | 8.74     | 0.83          | 12.60    |
| Lap2      | 0.37                    | 9.34     | 1.06          | 12.92    |
| Lap3      | 0.36                    | 10.33    | 1.02          | 16.79    |
| Side Loop | 0.49                    | 4.29     | 1.46          | 11.09    |
| Cross     | 0.40                    | 3.23     | 0.97          | 5.78     |





#### Error vs Particle Count



### SLAM current state



#### Mapping

- Use Laserscanner for Mapping
- Uncertainty transformation into map
- ▶ One map per particle
- ▶ Work in progress . . .



# Conclusion/Outlook



#### Concluding the work and further steps

- ► Approach improves localisation over odometry alone
- Localisation filter has bounded error
- Should benefit from improved odometry
- Look into indirect embodied data
- Combine vision and embodied data to improve SLAM



# Conclusion/Outlook



Thank you for your attention!

