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Motivation

Accurate localisation is a fundamental task in
order to achieve high level of autonomy

Localisation systems usually depend on GPS,
but anytime-anywhere GPS positioning is not
always reliable

Some kind of a priori map is often available to
help in the localisation process
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In this presentation

We present a method to perform global
localisation using segment based maps
together with particle filters

Salient characteristics of the framework:

It is able to use low quality segment-based
digital maps

Likelihood function is generated as a grid,
based on the map

Local history-based model is used for the
observations for improving likelihood
generation
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Outline of this presentation

Background: Segment-based maps and
Bayesian Localisation

Approach: Constrained Localisation
Experiments

Conclusions and future work
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Background: Segment-based Maps

Some kind of digital maps are often available:
Digital maps for urban positioning

Or they can be inferred/obtained using GIS
tools:

Off-road maps
Mining layouts

However, the maps might not perfect:
Low quality
Incomplete
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Background: Segment-based Maps (cont.)

¢ In this work we use Route Network Definition File
RNDF maps (but the framework can be used for
any other maps)

¢ Segment-based map that provides a-priori
Information about urban environments

e Includes GPS coordinates for location of road
segments, waypoints, stop signs and checkpoints,
as well as lane widths
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Background: Segment-based Maps (cont.)
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Background: Bayesian Localisation

For the robot’s pose:

Xk = [Ikaykaek]T

We aim at recursively estimate the PDF
p(xk‘zl:k)

using a set N particles (samples and weights):

{Xiﬂ wi}ﬁil
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Approach: Constrained Localisation

¢ Overview of the approach
¢ Bayesian Localisation using Particle Filters
¢ Constrained localisation filter that considers:

(a) Likelihood generation based on a local grid
representation of the segment-based maps
(RNDF)( Basic Likelihood )

(b) Local history-based model for the
observations (Extended Likelihood)
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Approach: Constrained Localisation (cont.)

¢ Likelihood generation (Basic Likelihood)

¢ Local grid representation of the RNFD map to
compute the likelihood function

e It can efficiently generate the likelihood
function for the particles in real time and
minimum memory requirements

e It can detect possible roads (segments in the
RNDF map) without additional high-level
evaluation of the potential candidates (multi-
hypothesis handled automatically)
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Approach: Constrained Localisation (cont.)
9 Basic Likelihood

For a set of N particles  {X. W} we calculate the likelihood p(z | X, )based
on a given road map as: N

p(map | x)=ma1><{f (x.8,,C))}

Where {Sj}fI Is a set of segments that define the known road map. There are
properties adsociated to the segments (width, lanes, traffic direction). The
function f(.) evaluates the “distance” between a POSE and an individual
segment.

1, iIf XelL (RNDF,QK)

map

A trivial definition of likelihood is: p(mapl X)Z{O' if Xel (RNDF @) )
’ map ! k

where the region €, is a convex hull that contains all the current particles and
the non-convex region RNDF is defined by a set of thick bands containing the
individual segments (i.e. the roads).
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Approach: Constrained Localisation (cont.)
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pproach: Constrained Localisation (cont.)
full Likelihood, If the ROI was the full area)
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Approach: Constrained Localisation (cont.)

Example video showing local likelihood generation

Local Likelihood

50

100

150

200

250

300

350

£ 023 SEDE 461K 400 1 1 1 1 1 1 1
-1500 -1000 -500 0 500 50 100 150 200 250 300 350 400

14 Mark Whitty || Robust Global Urban Localisation based on Road Maps “MECHATR{S%NICS


likelihood.avi

pproach: Constrained Localisation (cont.)
Extended Likelihood

IVERSITY OF NEW SOUTH WALES

e Local history-based (Extended) observation model

e "Out-of-map” navigation cases: the map can be
Incomplete due to non existing roads, detours, etc,
or the vehicle can be actually located outside the
boundaries of the map

e Considers the recent history of the particles with a
certain time horizon

o Redefines a more convenient likelihood function
based on local history
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Approach: Constrained Localisation (cont.)
- Extended Likelihood

. . : —
| | | |
e Given a particle at time k Xk o |:Xk Yk ¢k:|

we apply dead-reckoning “in reverse” to synthesize its
hypothetical trajectory:

E'(tY), t'elk—rz,K]
such that é:i (k) — XII<

¢ The Extended Likelihood of the particle is now defined:
(21X =" '"(t'))-dt’
P (Z]| k_k_Tka‘é(). ’
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Approach: Constrained Localisation (cont.)
UNSW - Extended Likelihood

¢ An equivalent integral is defined over the intrinsic

parameter (i.e. arc of segment ) in place of the time (to
make it independent of the speed).

: | :
* | S |
P (Zk | Xk) :jo p(zk | & [S])-dS
e Addiscrete version is applied as approximation

P (2,1%) =2 p(21[5,))
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Extended Likelihood: Hypothetical Paths

40 T T T T T T
20— _— f
e 7/
.'..'.001..--10-...-010 | 0 i |
40 |- _
Given a Path, defined T |
In certain Coordinate
frame. a0l i
It can be associated to 100~ I
each particle (X, Yi.4)
in a different Coordinate or I
Frame _140 [ [ [ [ [ [
-80 -60 -40 -20 0 20 40 60

18 Mark Whitty || Robust Global Urban Localisation based on Road Maps UMECHATR‘@NICS



Approach: Constrained Localisation (cont.)

U\A{ - Extended Likelihood
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Example: In the right hand case one of the existing roads is not known,
however the Extended Likelihood is still high for the “good” particles.
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Approach: Constrained Localisation (cont.)

e Local history-based observation model with
hysteresis

“Out-of-map” problem mitigated but not
completely solved

e Transition between being on the known map
and going completely out of it tackled by
considering hysteresis
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Approach: Constrained Localisation (cont.)
UNS

RSITY OF NEW SOUTH WALES

¢ Local history-based observation model with hysteresis

o If max( p*(zk | X;)) > K,

then update particles X,/ p'(z[X})>K,
else perform prediction only all particles

¢ O0O<K <K, <100%
e Typical values K,,= 70%, K, = 60%
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Approach: Constrained Localisation (cont.)

¢ Example images showing the performance of the
local history-based observation model
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Approach: Constrained Localisation (cont.)

¢ Example images showing the performance of the
local history-based observation model
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Approach: Constrained Localisation (cont.)

¢ Example images showing the performance of the
local history-based observation model
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Experimental results

More experimental results were performed, using a utility
vehicle (the vehicle used in the Victoria Park Datasets).

Vehicle motion roughly estimated using velocity encoder +
low quality INS 1D gyro.

Example video

Length of trajectory: 17km (including 2km tunnel)
GPS shown in blue only for evaluation purposes.
Video speed 6x actual speed.

Final trajectory shown in yellow
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big.avi

Experimental results
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Estimated path (in yellow) for one of the experiments. The known map (cyan)
and a satellite image of the region are included in the picture.
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Experimental results
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A section of the previous figure where the solution is consistent even where the map is
incomplete. Venhicle travelled on an unknown road (approximately x=1850m, y=1100m).
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Conclusions

e Global localisation approach that fuses particle
filters with low quality digital maps and can deal
with out-of-road navigation situations

e Method applicable in a variety of scenarios, where
some kind of map is available (not only urban, but
also mines, underwater, etc)

¢ Neatly handles very poor quality input data
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Future work

e Include lane direction
e Start from a fully unknown position

e Use other sensors (eg. Lasers) to detect intersections to
Improve observability on straight roads

e Add GPS or compass measurements or other sensors
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Feedback/questions

Thanks!
See www.robotics.unsw.edu.au or
http://www.youtube.com/user/UNSWMechatronics
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http://www.robotics.unsw.edu.au/
http://www.youtube.com/user/UNSWMechatronics

More Test Results
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A close inspection shows interesting details. The estimates are provided at
frequencies higher than the GPS (5Hz). The GPS presents jumps and the road
segment appears as a continuous piece-wise line (in blue), both sources of
information are unreliable if used individually.
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