
Published in Autonomous Robots,32(3):303–331, April 2012. DOI: 10.1007/s10514-011-9271-y
The final publication is available at www.springerlink.com

Guaranteeing Functional Safety: Design for Provability and
Computer-Aided Verification

Holger Täubig · Udo Frese · Christoph Hertzberg · Christoph Lüth · Stefan Mohr ·
Elena Vorobev · Dennis Walter

Received: 19 January 2011 / Accepted: 3 December 2011/ Published online: 22 December 2011

Abstract When autonomous robots begin to share the hu-
man living and working spaces, safety becomes paramount.
It is legally required that the safety of such systems is en-
sured, e. g. by certification according to relevant standards
such as IEC 61508. However, such safety considerations are
usually not addressed in academic robotics. In this paper
we report on one such successful endeavour, which is con-
cerned with designing, implementing, and certifying a colli-
sion avoidance safety function for autonomous vehicles and
static obstacles. The safety function calculates a safety zone
for the vehicle, depending on its current motion, which is
as large as required but as small as feasible, thus ensur-
ing safety against collision with static obstacles. We outline
the algorithm which was specifically designed with safety
in mind, and present our verification methodology which
is based on formal proof and verification using the theo-
rem prover Isabelle. The implementation and our methodol-
ogy have been certified for use in applications up to SIL 3
of IEC 61508 by a certification authority (TÜV Süd Rail
GmbH, Germany). Throughout, issues we recognised as be-
ing important for a successful application of formal methods
in robotics are highlighted. Moreover, we argue that formal

Research supported by the German Ministry for Research and Tech-
nology (BMBF) under grants no. 01 IM F02 A and 01IS09044B and
Deutsche Forschungsgemeinschaft (DFG) under grant FR 2620/1-1.

Holger Täubig, Christoph Lüth, Dennis Walter
Cyber-Physical Systems, German Research Center for Artificial Intel-
ligence (DFKI), Bremen, Germany.
E-mail: {holger.taeubig,christoph.lueth,dennis.walter}@dfki.de

Udo Frese, Christoph Hertzberg, Elena Vorobev
FB 3 — Computer Science, University of Bremen, Bremen, Germany.
E-mail: {ufrese,chtz,elenav}@informatik.uni-bremen.de

Stefan Mohr
Leuze electronic, Fürstenfeldbruck, Germany.
E-mail: stefan.mohr@leuze.de

analysis deepens the understanding of the algorithm, and
hence is valuable even outside the safety context.

1 Introduction

Without doubt a grand vision of robotics is the domestic
household robot, which assists everyone, but in particular
elderly people living independently in their own homes as
long as possible (Gates, 2007). Other visions with a shorter
road to realisation include the industrial robot co-worker and
robots for supporting health-care personnel. All these ap-
plications have in common that the robot is operating in a
shared workspace with humans. Here safety becomes a cen-
tral issue.

Small robots, for example vacuum cleaners, can be built
inherently safe, i. e. they cannot develop enough force to
hurt someone. For a multi-purpose domestic robot this ap-
pears unrealistic, and even more so for robots in industrial
environments. Here, safety at work will depend on the cor-
rect function of sensors, motors, and in particular the soft-

Fig. 1 The SAMS demonstrator driving a right hand bent and the
collision-free safety zone of that movement. If there was any obstacle
inside the safety zone the AGV would stop.

http://dx.doi.org/10.1007/s10514-011-9271-y
www.springerlink.com

2 Holger Täubig et al.

ware controlling the robot. When taking robots out of the lab
into the domestic or industrial realm, safety issues arise at all
levels of the development process which have to be handled.
In particular, we have to design systems and algorithms with
safety in mind.

1.1 Mind the Gap

In most countries development of potentially hazardous ma-
chines is regulated by law, directives and relevant indus-
trial standards, resulting in a very rigid software develop-
ment process which emphasizes documentation and exter-
nal review. The safety of such a system must be demon-
strated to and certified by an external accredited authority.
In contrast, robotics software development in academia em-
phasizes novel capabilities, using rapid prototyping, heuris-
tics or probabilistic methods. Thus, there is a huge gap in the
prevailing development methodologies in safety-critical sys-
tems on the one hand, and robotics on the other hand, which
will hamper commercial applications of service robotics.

The work presented here is an attempt to bridge this gap,
by applying formal verification techniques to a robotics al-
gorithm. We need to build bridges from both ends: on the
one hand, the usual techniques for developing safety-critical
systems do not carry over unchanged, as robotics is a rich
and complex domain, and on the other hand, for robotics
applications we may need to restrict functionality to an ex-
tent which we can verify, both in principle and in practice.
An example of this are obstacles: whereas commonly in in-
dustrial applications obstacles are considered to be static,
academic research is mostly concerned with moving obsta-
cles (Rabe et al, 2007). We have focused our work on static
obstacles, as moving obstacles are a current research area
and much more complex and non-deterministic. In particu-
lar, realizing people detection and tracking in a way that can
be verified and certified appears to be very challenging.

1.2 SAMS

In the project SAMS (Safety Component for Autonomous
Mobile Systems)1 we have developed and implemented an
algorithm for collision avoidance of a mobile robot, i. e. an
automated guided vehicle (AGV), in accordance with the
standard most relevant for robotics software, IEC 61508.
Fig. 1 illustrates the safety function with a small AGV as
demonstrator. The algorithm computes a safety zone de-
pending on the current translational and rotational velocity;
if an obstacle is detected inside that zone the AGV stops
before colliding with it. We have specified the algorithm’s
safety function in higher-order logic and proven with an in-
teractive theorem prover that the implementation satisfies

1 http://www.sams-project.org/

this specification (details Sec. 5.6). We have obtained a cer-
tificate allowing to use the implementation in safety-critical
systems up to safety integrity level (SIL) 3, the highest level
for safety at work and one above the level typically needed
for AGVs. The certification was based on the following: first
and foremost, the above mentioned computer aided proof of
the implementation; second, design documents deriving the
implemented formula for the AGV’s braking behaviour from
physical assumptions; and third, additional tests to cover
integer-overflow and floating point precision issues. The cer-
tification did not cover any aspects of system integration
(such as building an actual robot like the demonstrator of
Fig. 1).

1.3 Formal Software Verification

Safety is established by safety requirements, and the confor-
mance of the system (and in particular the software) with
these must be verified by means such as tests, code reviews,
or tool-supported static analysis. This task is called verifica-
tion. By formal verification, we mean the mathematically
rigorous, machine-checked proof of correctness of a pro-
gram with respect to the safety requirements. While well-
known in other areas, it is quite novel in robotics. From a
formal verification perspective, robotics algorithms are chal-
lenging, because robotics requires a mathematically sophis-
ticated domain modelling. Collision is the major hazard cre-
ated by a robot and hence safety-critical robotics algorithms
usually involve a lot of geometry and some physics mod-
eling the behaviour of the robot. Mathematically, geometry
argues about properties of subsets of R2 or R3. To capture
these concepts formally, expressive logics such as set theory
or higher-order logic are required, which allow us to for-
malise textbook mathematics involving real numbers, sets,
and functions. We therefore use a general-purpose theorem
prover built on higher-order logic as the main verification
tool for our robotics application.

The theorem prover takes over the simple proof steps,
allowing the user to concentrate on the hard parts. Further,
the architecture of the prover allows for a high confidence
in the correctness of the proofs (see Sec. 4.1). Moreover,
formally proving correctness deepens the understanding of
the algorithm, uncovering for example hidden assumptions
or cases which were missed by tests or informal reasoning,
because of the level of detail necessary for a formal proof
(see the discussion in Sec. 7).

1.4 Scientific Contribution

The main contribution reported in this paper is the de-
sign and specification of a collision avoidance algorithm

http://www.sams-project.org/

Guaranteeing Functional Safety: Design for Provability and Computer-Aided Verification 3

for an AGV with provable safety at work in mind, the for-
mal verification of most of its implementation in C (details
in Sec. 5.6), and obtaining a letter of IEC 61508 (SIL 3)
conformance. We evaluate our approach, report on lessons
learnt beyond this concrete example, and discuss its limita-
tions.

The paper is structured as follows: Section 2 introduces
the setting and sketches our algorithm. Section 3 discusses
what is required for obtaining a safety certificate. Section 4
introduces the computer-aided theorem proving environ-
ment Isabelle and how it has been used to specify our algo-
rithm and prove its implementation. Section 5 presents the
algorithm itself and points out how it is designed for prov-
able safety. Section 6 shows experiments demonstrating that
the algorithm is effective and practical, whereas Section 7
evaluates our design and formal software verification pro-
cess regarding lessons learnt and the certification effort.

2 The SAMS Algorithm

The purpose of the developed algorithm follows the standard
definition of safety at work for AGVs: it allows to prevent a
vehicle moving in a plane from colliding with static obsta-
cles. More precisely, the algorithm computes a safety zone
that is a superset of the braking area, i.e. the area covered by
the vehicle during braking to a standstill from the current ve-
locity. The result can be safeguarded by a laser rangefinder
(if an obstacle is inside, the vehicle has to stop, otherwise it
can safely continue), although this is not part of the verified
algorithm.

Figure 2 introduces the algorithm, its two steps and three
stages of development. We will refer to these throughout the
paper.

2.1 Input

The algorithm takes as input intervals [vmin,vmax] and
[ωmin,ωmax] which safely cover the true translational and
rotational velocities v and ω of the vehicle. The role of
the intervals is to cover measurement uncertainties. As con-
figuration parameter it takes a set of points [Ri]

n
i=1 which

define the robot’s shape as their convex hull, and a list
(v1,s1), . . . ,(vm,sm) of braking measurements for straight
movements which define the vehicle’s braking behaviour.
Each pair consists of a velocity v j (ω = 0) and the corre-
sponding measured distance s j the vehicle needed for brak-
ing. One measurement must be taken at maximum speed.
Furthermore, a latency4t is given which specifies the time
the vehicle continues to drive with velocity (v,ω) before it
starts to brake; it comprises the sum of the program’s cycle
time as well as any latency in the input data and the reaction
time of the brakes.

P1
P2

P3

q

Fig. 3 Sphere Swept Convex Hull representation used inside the algo-
rithm. The representation consists of an unsorted array of points [Pk]

K
k=1

and a buffer radius q. The area expands the convex hull conv
{
[Pk]

K
k=1

}
of the finite set of points by the buffer radius. That means, it contains
all points having distance of at most q to any point of the convex hull
(obviously including all points of the convex hull). Actually, the algo-
rithm works in 2D and the sphere is a circle, but we keep the “sphere
swept-” prefix because it is an established textbook convention (Eric-
son, 2005, Ch. 4.5). We further proposed a 3D extension for collision
detection of robot manipulators in Täubig et al (2011).

2.2 Output and Guarantees

The algorithm computes the safety zone as a subset ⊂ R2.
The subset is represented as a so-called Sphere Swept Con-
vex Hull (SSCH, Fig. 3) by the algorithm.

The algorithm guarantees that for any velocity v ∈
[vmin,vmax] and any rotational velocity ω ∈ [ωmin,ωmax] no
part of the vehicle will leave the safety zone at any time
while first driving with constant velocity (v,ω)T for time4t
and then braking down to standstill according to the braking
model. By including the cycle time in 4t it is ensured, that
no obstacle will be hit although the obstacle has to violate
the safety zone before an emergency stop is triggered.

This guarantee is established using a combination of
computer-aided and pen-and-paper proofs (details Sec. 5.6).
In particular, the core algorithm, i.e. implementation of
step 2 and the algorithm (49) defining step 2*, are verified
formally.

2.3 Physical Assumptions

The algorithm and its certification are based on the follow-
ing physical assumptions.

(A1) Static obstacles: It is sufficient to consider the cur-
rent position of obstacles without extrapolating their
movement.

(A2) Circular braking: The vehicle keeps the same curva-
ture (steering angle, v

ω
) while braking, so the braking

trajectory is a circle (resp. straight line for ω = 0).
(A3) Energy dissipation: The rate |Ė| of dissipation of ki-

netic energy E in the brakes is a) the same for all
(v,ω)T motion-states with the same kinetic energy E;
b) increases at most proportional to v2 (i.e. |Ė(v)|/v2

does not increase); c) does not decrease with grow-
ing v; d) is independent of location and time.

We have only listed (A1) to be explicit, but it is not tech-
nically needed by the algorithm. This is because the algo-

4 Holger Täubig et al.

v s safety zone

v s

s

vS

(v, ω)T (s, α)T safety zone

v

ω

s

α

α

s

{vS}
[vmin, vmax]×
[ωmin, ωmax]

[smin, smax]×
[αmin, αmax]

safety zone

v

ω

s

α

1b 2

1c

1a 1b

2

1* 2*

(a) The first development stage considers only straight motion: Step 1b starts from the measured velocity v and computes the braking
distance s needed by the vehicle to stop. The quotient s/v is called characteristic time and needed later. The illustration shows the
straight trajectory of the vehicle. Step 2 computes the safety zone (red polygon, right) from s as the area touched by the robot during
braking (green area, center) or a superset thereof.

v s safety zone

v s

s

vS

(v, ω)T (s, α)T safety zone

v

ω

s

α

α

s

{vS}
[vmin, vmax]×
[ωmin, ωmax]

[smin, smax]×
[αmin, αmax]

safety zone

v

ω

s

α

1b 2

1c

1a 1b

2

1* 2*

(b) The second development stage extends to curved motion: Step 1 takes velocity v and angular velocity ω as input and computes
the resulting 2D braking distance. It is expressed as a distance s along a circle and an angle α based on the assumption that the vehicle
stays on the same circle during braking (see center illustration). The algorithm first computes an equivalent straight speed vS with (at
least) the same kinetic energy as (v,ω)T (1a). Then it computes the characteristic time from a straight motion with vS as in the top
row. It assumes that this time is the same for the energetically equivalent (v,ω)T (cf. discussion of assumption (A3) later). From this
time and the initial curvature v/ω the algorithm computes s and α (1c). As vS > v this procedure takes the rotational kinetic energy of
the vehicle conservatively into account and is even valid for rotating on the spot. Step 2 computes the safety zone (red polygon, right)
in our internal representation a subset of R2 covering the area touched by the robot (green area, center). For the 2D motion this is of
course more complex and the main part of the algorithm.

v s safety zone

v s

s

vS

(v, ω)T (s, α)T safety zone

v

ω

s

α

α

s

{vS}
[vmin, vmax]×
[ωmin, ωmax]

[smin, smax]×
[αmin, αmax]

safety zone

v

ω

s

α

1b 2

1c

1a 1b

2

1* 2*

(c) The third development stage incorporates uncertainties in the measured (v,ω)T and is the final algorithm proposed in this paper.
This extension is denoted by an asterix in the step number. Step 1* takes an interval [vmin,vmax]× [ωmin,ωmax] instead of a single
(v,ω)T and maps it to an interval [smin,smax]× [αmin,αmax]. As the mapping is non-linear, the computed interval (green rectangle,
center diagram) is not exact but conservatively bounds the complex shaped exact result in (s,α)T space (inner black line, center
diagram). The center illustration shows the union of all possible braking trajectories with the four extremal cases highlighted. Step 2*
computes the safety zone from [smin,smax]× [αmin,αmax] by applying the algorithm of the middle row to the four extremal combina-
tions and extending the result by a bound for additional nonlinear effects that occur. The latter extension is visible as a gap between
the vehicle stop-positions and border of the computed safety zone (right).

Fig. 2 Overview of the proposed algorithm. The arrows show the two main steps (1-2), their input and output. The rows (a)-(c) correspond to
different development stages of the algorithm introduced to facilitate understanding the idea behind it.

Guaranteeing Functional Safety: Design for Provability and Computer-Aided Verification 5

brake/friction type deceleration energy dissipation allowed
power limited ∝ v−1 const yes
Coulomb const ∝ v yes
proportional ∝ v ∝ v2 yes
viscous ∝ v2 ∝ v3 no

Fig. 4 Types of friction respectively brakes allowed by (A3b-c). The
symbol ∝ means proportional. The deceleration and dissipated energy
depends on the velocity v. (A3b) specifies an upper bound and limits
how fast both can grow with v. In particular, it rules out viscous braking
(e.g. a parachute). (A3c) is a trivial lower bound. stating that the energy
dissipation may not decrease with increasing velocity.

rithm just computes a safety zone reflecting what the ve-
hicle does and the assumption only comes in later when
comparing the computed safety zone with data from a laser
rangefinder. Further, if we knew motion and shape of an ob-
stacle we could compute an obstacle safety zone and inter-
sect both safety zones to determine whether braking must be
triggered. However, this is beyond the scope of this paper.

Assumptions (A2) and (A3) are physical assumptions
on the vehicle’s behavior. The certification authority has ac-
cepted them as adequate for industrial environments. (A2)
and (A3a) are approximations, while (A3b-c) are upper and
lower bounds, thus strictly conservative. Practically, (A3b-
c) restrict the type of friction resp. of brakes to which our
calculation of the braking distance applies (Fig. 4). They are
used in a pen-and-paper proof (Sec. 5.2.1-5.3.2) to derive
the braking model, i.e. a formula for the braking distance
(s,α)T as a function of (v,ω)T . As a whole, this is step 1 in
Fig. 2b.

In detail, (A2) justifies the model of the braking mo-
tion as a circle described by (s,α)T ; (A3a) allows to bound
the so-called characteristic time of circular braking from the
straight braking measurements (step 1a); (A3b) allows to in-
terpolate the braking measurements with regard to v (step
1b); and (A3c) allows to extrapolate (slightly) beyond the
maximum measurement (step 1b). (A2) is also needed to
convert the characteristic time back to a circular braking dis-
tance (step 1c). The role of the characteristic time here is
being a single-number parametrization of “how long it takes
to brake” that is applicable to straight-forward motion, cir-
cular motion, and turning on the spot. In the latter case the
conventional “braking distance”, i.e. the arc-length of the
vehicles reference point, becomes zero and cannot be used
as a parametrization. However, we call it characteristic time
as it has characteristics of time but it is not the real phys-
ical time until stand still (cf. (23) and (24) in Sec. 5.3.2).
Assumption (A3a) is not strictly conservative as it abstracts
from the different wheels to a single point braking force, but
it is fairly exact and robust under physical considerations
(see Sec. 6.3). At least, it is more conservative than ignoring
the rotation velocity ω completely, which is quite common
in industry.

2.4 Assumptions Defining the System Scope

(A4) Correct verification: The verification tools, i.e. our
verification environment and the theorem prover, op-
erate as specified, and in particular never prove false
statements. The implementation data types such as
int and float can be abstracted by Z and R.

(A5) Correct system integration: The implementation is
correctly integrated into the target platform, and the
target hardware and compiler work as specified.

(A6) Real-time computation: The execution time of the al-
gorithm fits into the available cycle time of the target
platform.

(A4) was reviewed by the certification authority and the
finite precision and overflow issues tested (see the discus-
sion in Sec. 4).

The formally verified software covers the computation
of the safety zone. Overall system safety additionally re-
quires correct system integration. Assumptions (A5) and
(A6) reflect issues out of the scope of the verification en-
vironment that are delegated to the integrator of the tar-
get platform. These assumptions were explicitly listed in a
user manual, which was part of the reviewing process as
well. Basically, the system integrator has to follow indus-
trial state-of-the-art.

For (A5), the integrator is responsible that the API of
the SAMS component is used as specified, in particular that
the input and configuration is correct and that the results
are acted upon appropriately. The integrator further has to
ensure that the target and development platform satisfy the
safety integrity level (see Sec. 3.1) of the target system, in
particular that the compiler used is certified or proven in use.
Regarding our own compilation process, we prohibit opti-
mization and do not make use of the full C language, but
a (subset of) MISRA C, an industry-proven restriction of C
particularly aimed at safety-critical systems.

For (A6), although the verification cannot make any run-
time guarantees the runtime has a reproducible upper bound
because of the absence of dynamic memory allocations and
can thus be handled with integration tests on the target plat-
form.

2.5 Assumptions Regarding the Treatment of Uncertainty

The robustness of the collision detection is based upon the
idea of error bounds to make the physical assumptions and
measurement interpretation realistic. This goes for both the
input intervals as well as measurements outside the scope of
the verified software.

(A7) Correct input intervals: 100% of the readings that
quantify v and ω are within a given error bound;

6 Holger Täubig et al.

thus their true values lie within [vmin,vmax] and
[ωmin,ωmax].

(A8) Free space: After a state-of-the-art outlier handling all
readings of the laser rangefinder are within a given er-
ror bound; thus subtracting the error bound yields a
guaranteed lower bound of the free space.

The formal verification, i. e. (A7), assumes the input in-
terval to be correct; its computation based on an appropriate
error bound is part of the system integration. This error mar-
gin is commonly identified during the certification process
on the system level, e. g. as a quantile of an error distribu-
tion, and thus out of the scope of this paper. Formally, (A7)
assumes that all readings of the sensor are within the error
bound. However, intervals allow to determine a fixed failure
rate according to the norm, if that becomes necessary. Be-
sides being easy to use the intervals further compensate for
the model error induced by (A2), i.e., enlarging [vmin,vmax]

and [ωmin,ωmax] also makes the safety zone contain devia-
tions from the perfect circular motion.

(A8) is out of the scope of the verified system and just
requires to reuse existing and already certified technology
inside current safety laser rangefinders. These contain al-
gorithms for safeguarding a given safety zone, in particular
outlier handling.

To summarize, the assumptions (A1) – (A8) are field-
proven in industry, realistic, and have been reviewed and ac-
cepted by the certification authority concerning the use in
industrial environments. Some may seem to be below scien-
tific state-of-the-art but we rather view them as an improve-
ment of the industrial state-of-the-art.

2.6 Practical Advantages of the Algorithm

Apart form being strictly conservative with mathematical
rigour, our algorithm has practical advantages:

(i) The safety zone is not preconfigured as is common
in industry, but is computed in real-time. Even small
changes in velocity result in perfectly adjusted safety
zones.

(ii) The vehicle’s shape can be an arbitrary convex poly-
gon.

(iii) By explicitly computing a safety zone the algorithm
separates vehicle aspects from sensor aspects of colli-
sion avoidance.

(iv) With only a single measurement procedure of brak-
ing from straight motion the algorithm safeguards ar-
bitrary translational and even rotational movements.

The last point is easily underestimated from an academic
perspective. In industrial practice, measuring the rotational
braking behaviour complicates the setup procedure a lot and
is a serious obstacle to applicability. So it is very helpful that

safety zone
laser scan

representation3*

Fig. 5 Postprocessing step 3: Convert safety zone from internal Sphere
Swept Convex Hull (SSCH) representation into a laser scan like repre-
sentation. In this representation the safety zone can be safeguarded by
simply comparing with a laser scan.

the algorithm needs only one straight braking measurement
to conservatively bound braking from curved or purely ro-
tational motion. This bound is derived from (A2) and (A3)
in Sec. 5.3 in a pen and paper proof. The result is verified in
simulation in Sec. 6.3.

2.7 Postprocessing

In our internal SSCH representation it is difficult to com-
pare the safety zone with a laser scan. To facilitate this there
is a postprocessing step 3* (Fig. 5) that converts the safety
zone into a laser scan. In this representation, each ray the
distance stored in the safety zone is simply compared with
the distance measured by the laser rangefinder.

2.8 Related Work

Collision avoidance has been a subject of research from the
early days of mobile robotics on (Nilsson, 1984). It has usu-
ally been viewed more generally as obstacle avoidance, i. e.
finding a way around obstacles.

Regarding certified collision avoidance, the current
state-of-the-art is to have a safety laser rangefinder but no al-
gorithm at all. Instead, only fixed preconfigured safety zones
for different turns and velocities are manually defined and
monitored by the laser rangefinder. For AGVs test proce-
dures are described and required in EN 1525.

The most well known academic obstacle avoidance
method is the dynamic window approach (DWA) by Fox
et al (1997). It searches through different combinations of
(v,ω)T in the window defined by acceleration limits, i. e.
the dynamic window. It considers only those combinations
where the robot can stop along the circular trajectory be-
fore hitting the closest obstacle. Among those it chooses
the combination leading most directly to the goal. The core
operation from the perspective of collision avoidance is to
determine whether the robot can stop on a given circle be-
fore an obstacle. Fox et al. assume a circular robot, so the

Guaranteeing Functional Safety: Design for Provability and Computer-Aided Verification 7

distance to collision along the circular trajectory can be an-
alytically computed for each obstacle. This is done for all
obstacles and the minimum taken. The DWA is extensively
used in tour guide robots and has later been extended by
Philippsen and Siegwart (2003) to include a local planning
component. Compared to our algorithm, the disadvantage of
DWA is the limitation to circular robots.

Lankenau and Röfer (2001) propose a method to handle
arbitrarily shaped robots by precomputing the safety zone
for every (v,ω)T . Their algorithm is however too slow to
compute a safety zone in real-time, so their method can not
be used when parameters or the vehicle shape changes, for
instance due to load. Furthermore, since they use a grid ap-
proximation, it appears unlikely that the algorithm is actu-
ally correct in a strict mathematical sense.

Schlegel (1998) also uses precomputed tables. These ta-
bles store for every curvature in a grid around the robot in
every cell how fast the robot would be allowed to go if there
was an obstacle in that cell. This is very similar as the table
used by Lankenau and Röfer, but indexed by the obstacle
coordinate, not by the vehicle speed. It shares the same dis-
advantage, which all methods with precomputation have.

A different class of algorithms are the potential field
methods introduced by Khatib (1986), that calculate a vir-
tual repulsive force from nearby obstacles on the vehicle. To
our knowledge these methods do not give strict mathemati-
cal guarantees with realistic braking assumptions. Victorino
et al (2003) choose a similar approach by defining control
laws that let the vehicle move along Voronoi edges of the
sensor-perceived environment. This implicitly avoids colli-
sion, however again does not model braking capabilities.

The nearness diagram (NDD), developed by Minguez
and Montano (2004), is a clever set of heuristics for dif-
ferent obstacle situations. It has been used on a wheelchair
which is significantly non-circular. Other algorithms, such
as DWA and the ones by Röfer and by Schlegel, model the
braking behavior and make geometric computation based on
this model and the vehicle shape. So their construction sug-
gests a correctness proof, even if minor details, such as grid
approximations probably need to be made conservative. By
contrast, NDD does not consider deceleration bounds ex-
plicitly, so a formal proof considering a vehicle with limited
acceleration appears much harder.

Fraichard (2007) introduces three safety criteria that
should be addressed from a motion safety point of view.
These are the dynamics of the robot and people (or ob-
jects) in the environment, and the consideration of an unlim-
ited time horizon. Parthasarathi and Fraichard (2007) claim
to satisfy these criteria. They propose an inevitable colli-
sion state-checker based on the general method by Fraichard
and Asama (2004). The algorithm avoids inevitable collision
states, which are robot states where every control input will
lead to a collision. It assumes known velocities and shapes

of all obstacles. In principle this can be provided, but pro-
viding it with the integrity needed for a safety certification
appears to be far ahead. Our focus is different: On the one
hand, we use formal proofs instead of pen-and-paper; on the
other hand, we do not aim as high because we limit the in-
formation to the dynamics of the vehicle resulting in guar-
antees that are somehow more local, e. g. the vehicle does
not leave the computed safety zone, but combined with in-
dustrial state-of-the-art assumptions such as static obstacles
it yields an applicable safety device in conformance with
current safety standards.

An earlier method also assuming knowledge of the dy-
namics of the environment is the velocity obstacles method
by Fiorini and Shillert (1998). The set of robot velocities
which would collide with obstacles moving at a known ve-
locity are calculated and a feasible velocity outside this set
is chosen.

Collision avoidance and car verification is also a topic in
the automobile industry. Again, there is the industrial state
of the art on the one hand, and more visionary academic
work on the other hand. Commercially available driver as-
sistants that warn the driver or even initiate braking work
on the basis of radar and/or computer vision. An overview
of this complex technology is given by Winner et al (2009).
These systems are governed by a special norm ISO 15623
(2002) and often developed according to ISO 26262 (2011)
for functional safety in automobile systems which is a spe-
cific automotive replacement for IEC 61508 used in our
work. Other, research-oriented work considers distributed
cooperative control. These approaches model the behaviour
of car movements on a road network, and show that if the
car movements satisfy certain criteria (e. g. driving in pla-
toons (Varaiya, 1993; Dolginova and Lynch, 1997; Puri and
Varaiya, 1995) or using adaptive cruise control (Loos et al,
2011)) no collisions can occur. They assume a global model
and global knowledge such as the vehicle position, whereas
our focus is more local using available sensor data. Be-
cause they model an idealised version of the global system,
they can derive global safety properties, but of the idealised
model. In contrast, we can derive local safety properties cov-
ering real-world aspects such as measurement uncertainties.
Other approaches to collision avoidance for autonomous ve-
hicles include generating safe paths (e. g. by Du Toit et al
(2008) for the Alice autonomous car), and a verified planner-
controller subsystem by Wongpiromsarn et al (2009), which
reliably follows a generated path. Althoff et al (2010) also
consider car collision avoidance, but focus on evasive ma-
noeuvres instead of braking.

To sum up, our algorithm differs from algorithms found
in the literature by its mathematical rigour, which is moti-
vated by our approach to use formal software verification
for the official certification. On the other hand it only stops
the vehicle but does not negotiate the obstacle.

8 Holger Täubig et al.

3 Standards-Compliant Software Development

The development of potentially hazardous software has by
law to follow the relevant industrial standards. In this section
we briefly review standards applicable to robotics software,
and describe how it impinges our development process.

3.1 Applicable Standards

Automated guided vehicles (AGV) are machinery accord-
ing to the definition of the European machinery directive
(European Parliament and Council, 2006) and hence (in
the EU) its provisions apply to them. The directive’s pri-
mary goal is to state and enforce health and safety require-
ments relating to the design, construction, and placing on
the market of machinery. Part of these provisions is the
carrying out of a risk assessment “to determine the health
and safety requirements which apply to the machinery”.
Due to its wide application area the directive is necessar-
ily too general to be used directly for proving compliance
with the requirements stated therein. Compliance is instead
proven by the proper application of domain-specific stan-
dards. In the area of mobile robotics, the standardisation of
safety requirements is still somewhat underdeveloped, al-
though there are several regulations that apply to stationary
robots (e. g., ISO 10218-1 and ANSI R15.06). Hence, for
mobile robots the applicable standard is the more general
IEC 61508, ‘Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems’, which is ap-
plicable to all kinds of programmable systems for which no
more specific standard exists.

IEC 61508 states requirements for each phase of the sys-
tem life cycle. It suggests a development process which is a
variant of the V-model, and requires a variety of documents
to be produced. These include process-oriented documents
such as software quality management plan or a verification
and validation plan, and product-oriented documents.

A central concept introduced by the standard is the safety
integrity level (SIL). Four levels of safety integrity are de-
fined, ranging from low integrity (SIL 1) to high integrity
(SIL 4). The SIL represents the probability that a safety
function will operate according to its specification. The tar-
get SIL assigned to a safety-related system essentially dic-
tates which safety requirements it must satisfy, and how de-
manding these are. Collision avoidance for AGVs is typi-
cally assigned SIL 2, as (equivalently) stated in EN 1525.
Measures to establish or increase safety at work are typi-
cally SIL 3 applications, e. g., access control for hazardous
work places via light curtains. In the railway domain one
predominantly encounters SIL 4 applications such as safety
functions concerned with railway signal controlling.

3.2 Applying IEC 61508

Conformance of our implementation with the requirements
of IEC 61508 was certified by an external, accredited cer-
tification authority2. We followed the development process
suggested by the standard, emphasizing verification by the-
orem proving (i. e., formal verification). The development
starts with concept papers describing the algorithms, and a
hazard analysis (in our case a failure modes and effects anal-
ysis, FMEA). The latter lead to safety requirements, which
are broken down from global requirements referring to the
overall system to local requirements relating to individual
modules. In our case, while the global requirements were
formulated in prose, the local safety requirement specifica-
tions were formal annotations of the relevant C functions
(see Sec. 4).

Showing that the implementation conforms with the
specifications is called verification. For the life cycle phases
of module design and coding we used the following five ver-
ification methods:

– code reviews,
– formal specification of the program functions,
– reviews of the formal specifications,
– formal proof as described in Sec. 4,
– and dynamic analysis and test.

From this, code review is a standard technique, but in our
case the code reviews were not the main method of verifica-
tion, but rather lead up to the requirement of the formal spec-
ifications. The major technique for verifying the functional
requirements of a software system is dynamic analysis, i. e.
testing. This is where most of the time in a common verifi-
cation effort is spent. In our case, formal verification largely
replaced functional testing as it ensures functional correct-
ness. The only tests that had to be performed on the module
level were related to over-/underflow and numerical stabil-
ity (Sec. 4.6). No functional testing had to be performed for
the formally verified units, due to the level of detail of our
specifications and the rigour implied by formal verification.

For the implementation (coding phase), we used a subset
of MISRA C (MISRA, 2004), itself a subset of C for safety
critical applications; the standard ‘highly recommends’ the
use of such subsets for the C language in safety-critical ap-
plications. A detailed comparison of how our verification
methods cover the measures required in the standard can be
found in the appendix (Sec. A).

3.3 Letter of Conformance

All activities were audited by the certification authority.
Conceptual documents were reviewed throughout the speci-

2 TÜV Süd Rail GmbH, http://www.tuev-sued.de/rail

http://www.tuev-sued.de/rail

Guaranteeing Functional Safety: Design for Provability and Computer-Aided Verification 9

fication process. These were (safety) requirement specifica-
tions, concept papers for the braking model (step 1*), and
the safety zone computation (steps 2* and 3*), as well as
the verification and validation plan. Additionally, an on-site
audit was done by the certification authority in which the
verification of several example programs as well as concrete
functions from the SAMS software were demonstrated.

Based on the on-site audits and the reviews of the ver-
ification and validation plan in particular, the certification
authority issued a letter of conformance, asserting “[. . .]
that SAMS software, the software for computing velocity-
dependent safety zone for autonomous mobile robots, has
been developed according to the software development pro-
cess as laid out in IEC 61508-3:2008 (SIL 3). The related
analyses and tests have shown that there are no safety
related objections against the use of SAMS software for
the computation of velocity dependent safety zone.” Formal
proof was recognised as the central means of verification.

4 Formal Verification and Proof

Our formal verification focuses on functional correctness,
comprising the absence of runtime errors such as array-out-
of-bounds or division-by-zero, and correctness of the results
of computations as defined by formal specifications. Func-
tional correctness is mandated by IEC 61508 and other stan-
dards to ensure program safety properties on the code level,
and moreover we consider it important in the context of
robotics, where algorithms such as the one presented here
involve very complex computations whose correct imple-
mentation is hard to verify by a code review or tests.

To state and prove safety properties of C code, we
need three ingredients: a formalisation of key aspects of the
robotics domain (here, the geometry of objects and motion
in the plane, e. g. the convex hull of a set, or rigid body trans-
formations); a language which can specify the safety prop-
erties of C functions using this formalisation (e. g. this func-
tion computes the convex hull of a set of points); and a tool
which allows us to prove that C code satisfies the specifica-
tion as stated.

4.1 Isabelle

Our main verification tool is Isabelle (Nipkow et al, 2002),
an interactive theorem prover which has been in develop-
ment for over twenty years. Isabelle allows the user to state
properties and prove them interactively. Proofs are inter-
active and computer-aided rather than fully automatic: the
user writes proof scripts containing intermediate proof steps,
the correctness of which is checked by the theorem prover
which also offers considerable automatic support by rewrit-
ing or tableaux proofs. For example, a typical proof script

about simple properties of the natural numbers would con-
sist in two steps, first performing induction on a specific
variable, and then solving the cases by automatic rewrit-
ing. Larger developments are written as hierarchical proof
scripts, containing proofs as well as definitions.

Isabelle is an LCF-style prover (Gordon et al, 1979), i. e.
it is based on a small logical core encoding the axioms of
higher-order logic3, and only allows to derive new theorems
by sound logical inferences. This reduces the question of
correctness of any proof in Isabelle to correctness of that
core, which is small and stable enough to check manually.
The question of correctness had to be addressed during the
certification; Isabelle’s architecture together with the fact
that it is supported by an active research community, has
proper documentation and a large enough number of global
usage hours4 sufficed.

4.2 Domain Modelling

Many definitions and theorems concerning basic geometry
can directly be transformed from textbook math to Isabelle.
For example, a set is called convex if for every pair of points
within the set, every point on the line segment that joins
them is also inside. In Isabelle:

definition segment :: "Point ⇒ Point ⇒ Point set"

where "segment x y =

{z. ∃t . 0≤t ∧ t≤1 ∧ (z = t *R x + (1-t) *R y) }"

definition is_convex :: "Point set ⇒ bool"

where "is_convex K = (∀x∈K. ∀y∈K. segment x y ⊆ K)"

And the convex hull of a set X is the smallest convex set
containing X :

definition conv :: "Point set ⇒ Point set"

where "conv X =
⋂
{K . is_convex K ∧ X⊆K}"

Using these definitions many simple theorems can be proven
by just inserting definitions and automatic simplifications:

lemma conv_monotone: "X ⊆ Y =⇒ conv X ⊆ conv Y"

by(auto simp add: conv_def)

lemma conv_Union: "conv X ∪ conv Y ⊆ conv (X ∪ Y)"

by(auto simp add: conv_def)

At some points we had to prove certain inequations con-
taining sine and cosine functions. Therefore inequations of
the form cosx≥ 1− x2

2 were proven by using the mean value

3 Isabelle is actually generic and can handle e. g. the axioms of ZF
set theory as well, but we use higher-order logic here.

4 We actually estimated the number of hours that Isabelle has been
in serious use (as 2 ·106 hrs). This technique of showing that a tool has
‘increased confidence from use’ is commonly applied for non-certified
compilers.

10 Holger Täubig et al.

@requires Precondition
@ensures Postcondition

Pre- and postcondition are written in C-like syntax,
with Isabelle code embedded by ${. . . }. The result
of the function is referred to as \result , and the post-
condition may refer to the value of parameter x on
entry by \old{x}.
Memory layout constraints are part of the precondi-
tion and specify that parameters are valid pointers
(\valid) or that the memory regions they refer to are
disjoint (\unrelated, or \separated for arrays).

@modi�es Modification frame specification, specifies those ref-
erences which the function body may modify.

Fig. 6 Elements of function specifications. All elements are optional.

theorem. In fact it was even possible to make general state-
ments such as for t ≥ 0 and even n ∈ N:

cos t ≤
n

∑
k=0

(−1)kt2k

(2k)!
, sin t ≤

n

∑
k=0

(−1)kt2k+1

(2k+1)!
. (1)

Surprisingly complicated on the other hand was to use these
formulae for concrete values of n and automatically simplify
equations containing it. Basically this shows that Isabelle is
not a computer algebra system.

4.3 Specifying Functional Correctness

To express the functional properties of interest we de-
signed a formal language for the high-level specification of
the functional behaviour of C programs. The language an-
notates functions with specifications comprising precondi-
tions, postconditions, a required memory layout, and a mod-
ification frame limiting the effect of function execution on
memory changes (see Fig. 6). The specification states that
if the precondition holds and the memory layout is as de-
scribed when calling the function, then the function will ter-
minate, returning a state satisfying the postcondition and the
modification frame (i. e. it will only change locations in the
state as allowed by the modification frame). Fig. 7 shows the
specification of a function that composes rigid-body trans-
forms as an example.

Now we discuss how the safety function intuitively de-
scribed in Section 2.2 translates to our formal specification
language. On purpose, we discuss the specification before
the algorithm, because this is the idea behind “programming
by contract”: From the outside, one only needs to understand
what a function does not how the function does it.

As said, step 1 boils down to a formula and we have
specified and formally verified that the implementation actu-
ally implements this formula. The derivation of the formula
from the physical assumptions (A2-3) was done as a pen-
and-paper proof in a reviewed design document as part of
the certification but not in Isabelle. So we will concentrate
here on the most insightful steps 2 and 2* of the algorithm.

1 /∗@
2 @requ i res ^is_RT(a2b) && ^is_RT(b2c)
3 && \ v a l i d {a2b , b2c , a2c }
4 && \ unre la ted (a2b , a2c)
5 && \ unre la ted {b2c , a2c)
6 @ensures ^is_RT(a2c) &&
7 ${ ^RT{a2c} = ^RT{b2c} o ^RT{a2b} }
8 @modif ies ∗a2c
9 @∗/

10 vo id comp_transform (const Rig idTrans fo rm ∗a2b ,
11 const Rig idTrans fo rm ∗b2c ,
12 Rig idTrans fo rm ∗a2c) ;

Fig. 7 An example specification of a C function compounding rigid
body transforms. The main statement is found in the postcondition
@ensures in line 6. It states that the result a2c interpreted as a rigid
body transform, i.e. a mapping R2 7→ R2, is the composition ◦ of a2b
and b2c interpreted as rigid body transforms. RT is what we call a rep-
resentation function, which lifts a C value of type RigidTransform into
its Isabelle-domain equivalent. This statement is an Isabelle statement
on the domain level, as indicated by the ${. . . } around it. It is a par-
ticular strength of our style of specification to be able to state not only
properties of variables on the C-level but also of their abstract meaning
on the Isabelle domain level. is_RT is a data type invariant that ensures
that C values actually represent rigid body transforms. It is used in the
precondition @requires (line 2) for the input and in the postcondition
(line 5) for the output. The memory layout constraints require that a2c
is not aliased with a2b nor with b2c (line 4) and that all three are valid
pointers (line 3). The modification frame @modi�es specifies that the
function only changes the location pointed at by a2c.

Fig. 8 explains the specification of the safety zone com-
putation for a single (s,α)T (step 2). As can be seen, the
use of high-order logic allows to specify the safety func-
tion concisely, elegantly, close to physical reality and far
away from the implementation. In words it means: When
the robot brakes according to the input (s,α)T no part of the
robot leaves the safety zone. A proof of such a specification
not only shows there is no implementation error. It further
gives strong confidence that the function does the intended
job. It is much stronger than it would be possible for proving
a more technical specification, e.g. one limited to computa-
tional expressions.

Fig. 9 explains the specification of the safety zone com-
putation for s,α intervals (step 2*), i.e. with incorporation
of uncertainty. It can be observed that it is very similar to
the single (s,α)T case, just stating that the safety-property
must holds for any (s,α)T inside the given intervals. This
is very directly, what we intend the function to do, namely
computing a safety zone that is safe for all possible s,α . It
is far from the implementation (see Sec. 5) where the gen-
eralization to intervals raises issues which are not there for
single (s,α)T . Hence, a proof with this specification gives
high confidence that there is no common misconception in
specification and implementation and the function actually
does the intended job.

Guaranteeing Functional Safety: Design for Provability and Computer-Aided Verification 11

1 /∗@
2 @requ i res \ separated (s t a r t po i n t s_da t a , s t a r t p o i n t s_ l e n , r e su l t_da ta , resu l t_len_max)
3 && \ unre la ted (r e su l t_da ta , &sams_other)
4 && \ unre la ted (s t a r t po i n t s_da t a , &sams_other)
5 && 4 < l && (l + 1) ∗ s t a r t p o i n t s_ l e n <= resu l t_len_max
6

7 @modif ies sams_other , r e s u l t_da t a [: (l + 1) ∗ s t a r t p o i n t_ l e n]
8

9 @ensures \ r e s u l t == sams_safe −−>
10 ${ l e t S = ^Vec to r2DL i s t { s t a r t po i n t s_da t a , s t a r t p o i n t s_ l e n } ;
11 R = ^Vec to r2DL i s t { r e su l t_da ta , (l + 1) ∗ s t a r t p o i n t s_ l e n } ;
12 ROBOT = conv S ;
13 SAFETYZONE = conv (S ∪ R)
14 i n ∀ p ∈ ROBOT . (a r c ` s ` a l pha p) ⊂ SAFETYZONE
15 }
16 @∗/
17 SAMSStatus s a f e t y zone_sa l pha (F l oa t32 s , F l oa t32 a lpha , I n t 32 l ,
18 const Vector2D ∗ s t a r t po i n t_da ta , I n t 32 s t a r t p o i n t_ l e n ,
19 Vector2D ∗ r e su l t_da ta , I n t 32 resu l t_len_max) ;

Fig. 8 Actual specification source (with Isabelle pretty printing) of the function implementing step 2, i. e. computing the safety zone from (s,α)T .
Lines 2–4 specify the usual technical assumptions on pointers and array length. Line 5 requires enough space in the output array. Line 7 specifies
the locations which this function may modify. The postcondition starts with the condition that the return value does not indicate an error (line 9).
The main statement is in line 14, saying that for every point p of the robot (given by ROBOT) the (s,α)T -arc which p traverses is contained in
the computed safety zone (given by SAFETYZONE). ROBOT refers to the convex hull of the list of points in startpoints_data (line 10, 12).
SAFETYZONE refers to the convex hull of the computed points in result_data (line 11,13) plus the ones in startpoints_data for technical
reasons. As can be seen, Isabelle can reason about infinite sets, such as a convex hull ⊂ R2 and quantify over infinite many values which is not
possible in a computational environment.

1 /∗@
2 @requ i res s_min <= s_max && alpha_min <= alpha_max
3 && \ separated (s t a r t po i n t s_da t a , s t a r t p o i n t s_ l e n , r e su l t_da ta , resu l t_len_max)
4 && \ unre la ted (r e su l t_da ta , &sams_other) && \ unre la ted (s t a r t po i n t s_da t a , &sams_other)
5 && 4 < l && (4 ∗ l + 5) ∗ s t a r t p o i n t s_ l e n <= resu l t_len_max
6 && \ v a l i d (b u f f e r r a d i u s)
7

8 @modif ies sams_other , r e s u l t_da t a [: (4 ∗ l + 5) ∗ s t a r t p o i n t s_ l e n] ,
9 ∗ r e s u l t_ l e n , ∗ b u f f e r r a d i u s

10

11 @ensures \ r e s u l t == sams_safe −−>
12 ∗ r e s u l t_ l e n == (4 ∗ l + 5) ∗ s t a r t p o i n t s_ l e n &&
13 ${ l e t S = ^Vec to r2DL i s t { s t a r t po i n t s_da t a , s t a r t p o i n t s_ l e n } ;
14 R = ^Vec to r2DL i s t { r e su l t_da ta , ∗ r e s u l t_ l e n } ;
15 ROBOT = conv S ;
16 SAFETYZONE = extend_by_radius `{∗ r a d i u s } (conv R)
17 i n ∀ p ∈ ROBOT . ∀ s ∈ { ` s_min . . ` s_max} . ∀ a ∈ { ` alpha_min . . ` alpha_max } .
18 (a r c s a p) ⊂ SAFETYZONE
19 }
20 @∗/
21 SAMSStatus s a f e t y z o n e_s a l p h a_ i n t e r v a l (F l oa t32 s_min , F l oa t32 s_max ,
22 F loa t32 alpha_min , F l oa t32 alpha_max , I n t 32 l ,
23 const Vector2D ∗ s t a r t po i n t s_da t a , I n t 32 s t a r t p o i n t s_ l e n ,
24 Vector2D ∗ r e su l t_da ta , I n t 32 result_len_max , I n t 32 ∗ r e s u l t_ l e n , F l oa t32 ∗ r a d i u s) ;

Fig. 9 Actual specification source (with Isabelle pretty printing) of the function implementing step 2*, i.e. the extension of Fig. 8 to intervals in
(s,α)T . Similar to Fig. 8 line 17 and 18 state that the arc which any point of the robot traverses stays inside the safety zone. But unlike Fig. 8 this
is ensured for all s and α inside the input intervals. The other difference is the use of the buffer-radius in the definition of the safety zone in line
16 which simply was not needed in Fig. 8. Again, the use of high-order logic, i.e. quantification over infinite domains, allows a very concise and
elegant specification.

12 Holger Täubig et al.

4.4 The Verification Environment

To prove that a function satisfies a specification in the lan-
guage sketched above, we implemented a verification envi-
ronment based on Isabelle. Firstly, it contains a formalisa-
tion of the semantics of the subset of the C language used
in our application (most of MISRA C) and the specification
language in Isabelle. Secondly, its front-end reads and parses
annotated C code and outputs Isabelle terms representing
their abstract syntax. Finally, a set of automated proof pro-
cedures (called tactics) reduces annotated specifications. In
short, when proving that a function satisfies a given postcon-
dition and modification frame, we calculate the effect of the
function’s body on the postcondition by backwards reason-
ing in the Hoare style, and show that the transformed post-
condition is implied by the precondition. Along the trans-
formations, various conditions concerning array access and
pointer dereferencing have to be proven. The set of tactics
just mentioned does this automatically, leaving only the core
of the correctness proof concerned with domain-level prop-
erties to the user.

Further details about the specification language and how
functions can be proven correct in Isabelle w. r. t. their spec-
ification have been described in a previous paper (Lüth and
Walter, 2009). The development of the verification environ-
ment was a substantial task, but it can now be reused for the
verification of any MISRA C program, even in completely
different domains.

The verification is modular: the correctness of each func-
tion is proven separately, assuming that all other functions
satisfy their respective specifications. Not only is this crucial
to keep the size of proofs at a manageable level, it more-
over allows us to focus formal verification on those func-
tions which are crucial to functional correctness; other func-
tions may contain constructs that our tools cannot reason
about, or may not pertain to global correctness (e. g., log-
ging), and can be treated more adequately by manual review
or functional tests.

4.5 Limitations of our Tool

Our tool focuses on functional correctness, and does not
consider aspects such as execution time analysis and
bounds, resource consumption, concurrency, and the inter-
face between hardware and software. This is a clear sep-
aration of concerns, as it is becoming common consensus
that only the use of multiple, specialised tools and method-
ologies can achieve a high level of confidence in software
(Hoare, 2009). Moreover, we had to make some abstrac-
tions when modelling the C language: firstly, we do not
model the whole language but rather the subset described by
the MISRA programming guidelines (MISRA-C), and sec-
ondly, we abstract the respective machine data types to Z

and R ignoring overflows and rounding errors (as common
in formal verification). This is the price we had to pay to ob-
tain a formalisation in which interesting, abstract, functional
properties can be proved with tolerable effort.

4.6 Dynamic Analysis and Tests

Due to the use of formal verification, functional testing was
not necessary which reduced the amount of tests that had
to be performed to a significant extent. To ensure that (a)
the occurring rounding errors do not violate specified er-
ror bounds and (b) no arithmetic under-/overflows occur, we
performed testing.

In order to test for rounding errors, we analysed each
function performing floating point operations numerically,
and specified quantity dependent error bounds. From these,
we derived test cases covering typical scenarios (e. g. driv-
ing straight forward) as well as boundary cases (e. g. driving
maximum speed). For the actual tests, we gave a reference
implementation, which was as an exact copy of the tested
function carrying out each computation step with double
precision, and compared the results of functions under test
with those of the reference implementation. In order not to
neglect potential error propagation and accumulation, inte-
gration testing was performed. We tested random cases and
systematic border cases and determined the maximum error
encountered. This procedure is established industrial prac-
tice. Of course, the numerical bound is not as reliable as the
Isabelle proof of functional correctness in infinite precision
computation. However, actually proving hard bounds on the
numerical error in finite precision computation is extremely
difficult and was beyond our scope.

At the end of the day, the numerical error bound is a
choice with the specification of the system. Based on our
analysis and practical considerations we specified the nu-
merical error to be bound by 0.1% of the maximal coordi-
nate in the safety zone. This was sufficient to make our test
cases pass while yielding to an insignificant error in practice
at the same time (1mm error per 1m expansion of the safety
zone). Nevertheless, we add this numerical error bound to
the safety zone’s buffer radius. This makes the overall algo-
rithm conservative again, of course with the restriction dis-
cussed above.

Under- and overflow tests were performed at the unit
level with sub-functions being replaced by appropriate
stubs. All essential test cases were derived from those
combinations of module-inputs and stub-outputs leading
to smallest or largest (intermediate) computation results
thereby allowing detection of potential under-/overflows in
functions under test.

All tests were specified and executed with the test tool
RT-Tester (2006) which provided very helpful features in-
cluding automatic test documentation and report generation.

Guaranteeing Functional Safety: Design for Provability and Computer-Aided Verification 13

As opposed to the functional correctness verification, the nu-
merical testing is accepted industry practice, showing that
our method of functional verification can be seamlessly in-
tegrated with other verification methods covering different
aspects of the verification process.

4.7 Related Work

There are two main approaches to software verification.
Our language lies in the tradition of design by con-
tract languages (Meyer, 1991), where programs are an-
notated with specifications. Other such languages include
ACSL (Baudin et al, 2008) or VCC (Cohen et al, 2009) for
C, JML (Burdy et al, 2005) for Java, or SPARK (Barnes,
2003) for Ada. However, our language additionally allows
to include higher-order logic expressions in the syntax of
the theorem prover Isabelle in specifications. This gain in
language expressivity is the crucial ingredient for allowing
more abstract specifications in which program values are put
in relation to their corresponding domain values, e. g. speci-
fications can involve infinite sets and other non-computable
entities.

The other approach is to specify the intended be-
haviour of the system in a formalism different from the
programming language. For controller software, differen-
tial equations can be used (e. g. MATLAB-Simulink). An-
other common formalism are state machines, as in State-
Charts (Harel, 1987), UML State Diagrams, or Abstract
State Machines (Gurevich, 2000). This approach can be
extended to include temporal aspects (Bengtsson et al,
1995) or distributed systems as with CSP (Roscoe, 1998)
or Spin (Holzmann, 2003). Hybrid systems as introduced
by Henzinger (1997) combine discrete states and contin-
uous variables described by differential equations. In that
vein, Braman et al (2007) have used hybrid systems to ver-
ify the safety of goal-based robotic controllers, concretely a
control system for an aerial mission on Saturn’s moon Ti-
tan (Braman, 2009). Applications of hybrid systems to au-
tonomous vehicles and cars include the early work by Dol-
ginova and Lynch (1997) and Wongpiromsarn et al (2009),
which is pen-and-paper based, and by Loos et al (2011), who
use the KeYmaera system to formalise proofs. This system
was also used by Platzer and Clarke (2009) to verify a flight
collision avoidance system. The SCADE system uses the
Lustre language, which combines state machines and syn-
chronous data flow, and generates code from those specifi-
cations (Dion and Gartner, 2005). It is certified according to
IEC 61508 up to SIL 3, and used mainly in aerospace. Orc-
cad uses the related Esterel language to specify the coordina-
tion of real-time robotic controllers (Simon et al, 2006). All
these approaches focus on the operational behaviour of the
system. In robotics, the data are equally important, because
of the rich domain (as mentioned above). Using a theorem

prover to model the domain allows us to formalise it close
to its textbook definitions; we do not have to translate the
mathematics into another, less rich formalism, but instead
can directly relate the domain model to the program code.

Bensalem et al (2009, 2010b) propose an interesting
two-tier architecture for robotics applications, where com-
ponents implemented with the model-based Genom tool are
composed in the BIP framework, with safety properties such
as absence of deadlocks proven by specialised tools such as
D-Finder Bensalem et al (2010a). This is complementary to
our work; the algorithm described here can very well form
the core of a component in a framework like BIP.

Other examples of formally verified algorithms tend to
be mathematically elegant but rather idealised to highlight
the underlying scientific methods. For instance, Meikle and
Fleuriot (2009) proved correctness of Graham scan, a con-
vex hull algorithm which is actually one part of the final step
in our algorithm. Compared to that, our collision avoidance
algorithm is more complex and less clean, reflecting its real-
world origins and applicability.

5 The Safety Zone Algorithm

This chapter provides the safety zone algorithm in detail. Af-
ter presenting the algorithm in pseudo-code in Sec. 5.1, sep-
arate parts are introduced in detail following step-by-step the
development stages and algorithm steps in Fig. 2: Sec. 5.2
covers the straight braking model (step 1b) and Sec. 5.3 the
curved parts of the braking model (steps 1a and 1c). The
safety zone computation (step 2) is valid for straight and
curved motion and thus also introduced in Sec. 5.3. Then,
Sec. 5.4 extends both operations to intervals (steps 1* and
2*). Finally, Sec. 5.5 presents the postprocessing extension
(step 3*), which transforms the safety zone into a laser-scan
representation.

5.1 Overview

Conventionally, the vehicle moves in a plane and therefore
has the pose (x,y,α)T and extended velocity (v,ω)T . (x,y)T

is the position of the robot’s reference point in world coordi-
nates and α is the robot’s orientation. v and ω are its trans-
lational and rotational velocities. The shape of the robot is
given by a polygon, i. e. a list of n points R1, . . . ,Rn in the
robot’s egocentric coordinate system C. The robot’s area R

is the convex hull of these points

R := conv {Ri|i = 1, . . . ,n} (2)

The safety zone is computed in the robot’s egocentric co-
ordinate system at the time of braking start, which we call
C0.

The overall algorithm is given in Algo. 1. Our inter-

14 Holger Täubig et al.

Algorithm 1 Safety zone computation (steps 1*-2*)
Configuration:

array of straight braking measurements (v1,s1), . . . ,(vm,sm),
latency 4t,
array of robot contour points R1, . . . ,Rn,
number of approximation points per circular arc L

Input:
bounds for translational velocity vmin,vmax,
bounds for rotational velocity ωmin,ωmax

Output:
array of points W1, . . . ,Wk,
buffer radius q

1 // candidates from eqs. (43)-(44)
2 for all candidates (vc,ωc) of limiting configurations do
3 set vs←

√
vc2 +D2ωc2

4 // compute characteristic time without dividing by vs=0
5 if vs≤ v1 then
6 set ts← s1

v1
7 else
8 find j such that v j−1 < vs≤ v j

9 set ts←
s j−1+

s j−s j−1
v j−v j−1

(vs−v j−1)

vs
10 set sc← (ts+4t)vc

11 set αc← (ts+4t)ωc

12 find smin←min
c

sc, smax←max
c

sc

13 find αmin←min
c

αc, αmax←max
c

αc

14 for all i = 1 to n do
15 set Wi← Ri
16 set k← n
17 // four limiting movements
18 for all (s,α) ∈ {smin,smax}×{αmin,αmax} do
19 for all i = 1 to n do
20 // T (s,α) from eq. (28)

21 set V0← Ri+
(

1 tanα/2L
− tanα/2L 1

)
· 12 (T (s

L ,
α

L)·Ri−Ri)

22 for all j = 0 to L−1 do
23 set Wk+ j+1← T (j·s

L , j·α
L)·V0

24 set Wk+L+1← T (s,α)Ri
25 set k← k+L+1
26 set q← 1

6

(
αmax−αmin

2

)2
max{|smax|; |smin|}+(

1− cos αmax−αmin
2

)
max

1≤i≤n
{|Ri|}

27 return W1,...,Wk, and q

nal representation of areas are Sphere Swept Convex Hulls
(SSCH) as depicted in Fig. 3. They are internally stored as
an unsorted array of points [Pk]

K
k=1 and a buffer radius q. For-

mally, the represented area is written as the Minkowski sum
of the convex hull and a disk of radius q:

A
(
[Pk]

K
k=1;q

)
=
{

P+Q
∣∣ P∈conv

{
[Pk]

K
k=1
}
, |Q| ≤ q

}
. (3)

Such a representation facilitates safety related algorithms,
because it doesn’t have any connectivity information (ver-
tices, edges) which can suffer from numerical problems such
as (nearly) duplicate points.

v0 v1
s0

s1

v0 v1 v2
s0

s1

s2

Fig. 10 Piecewise linear interpolation of the straight braking distance
for 0≤ v≤ vm: exemplary real braking distance (lower green line) and
upper bound (upper red line) for one (left) resp. two breaking measure-
ments (right).

5.2 Straight Motion

5.2.1 Step 1b - Straight Braking Model

The straight braking model (step 1b) computes an upper
bound of the braking distance s(v) for straight movements
with velocity v. It is configured by a list (v1,s1), . . . ,(vm,sm)

of braking measurements. Each of the m≥ 1 measurements
consists of a velocity v j and the corresponding measured
braking distance s j. One measurement must be taken at max-
imum speed. That one measurement already establishes a
complete configuration of the straight braking model but
more measurements at lower speed are possible, making the
model less conservative. So, the user can decide on the num-
ber of measurements depending of the effort of measuring
straight braking distances for his vehicle. We assume the list
of measurements to be sorted in ascending order and ex-
tended by (v0,s0) = (0,0).

The straight braking model applies a piecewise linear in-
terpolation (Fig. 10) and bounds the braking distance for ve-
locity v with 0 ≤ v ≤ vm by its neighbouring measurements
(v j−1,s j−1) and (v j,s j). It returns

ŝ(v) =s j−1 +
s j− s j−1

v j− v j−1
(v− v j−1), (4)

where j is determined to satisfy v j−1 ≤ v≤ v j. For velocities
v≥ vm the braking distance is conservatively extrapolated as

ŝ(v) =
sm

v3
m

v3. (5)

The upper bound (4) can be derived from assumption (A3b).
We examine the rate of kinetic energy dissipation

Ė = mav, (6)

with m being the vehicle’s mass, a its braking acceleration
at time t, and v≥ 0 the velocity at the same time. We obtain

|Ė|
v2 = m

|a|
v

(7)

which only depends on the velocity (a = a(v)) because of
(A3d). Thus, (A3b) is equivalent with v/|a| being a mono-
tonically increasing function. This yields a physical inter-
pretation of restrictions given by (A3b) concerning the vehi-
cle (cf. Fig. 4): The assumption holds for Coulomb friction

Guaranteeing Functional Safety: Design for Provability and Computer-Aided Verification 15

(a = const) as encountered with usual brakes, proportional
friction, for instance when short-circuiting a motor (a ∝ v)
but not for viscous friction (a ∝ v2), e. g. parachutes, air-
planes or ships. So the assumption is valid for vehicles.

Further, because s(t) is the remaining braking distance
from t to standstill, we have
ds
dv

=
ds
dt

dt
dv

=
−v
a
. (8)

By (7) and a < 0 (8) is monotonically increasing and there-
fore s(v) is a convex function. This proves the upper bound
(4) to be correct.

The upper bound (5) is a consequence of (A3c). It al-
lows to extrapolate beyond the maximum measurement vm.
We need it because (4) is not valid for v > vm but the com-
putations in Sec. 5.3 exceed vm from time to time slightly.
We omit the proof of (5) for brevity; it is very similar to the
proof of (4).

5.3 Curved Motion

The curved braking model does not use any additional con-
figuration parameters. It just requires the straight braking
model to be configured, which is much simpler than obtain-
ing curved braking measurements. Nevertheless, it can con-
servatively approximate braking trajectories of both types,
straight lines and circular arcs.

5.3.1 Step 1a - Equivalent Straight Velocity

The equivalent straight velocity vS of a curved motion input
(v,ω)T is the one having the same kinetic energy

E =
1
2

mv2 +
1
2

Jω
2 (9)

as (v,ω)T with m being mass and J being inertia. Because
computing vS would require the vehicle parameters m and J,
we compute an upper bound

v̂S =
√

v2 +D2ω2 with D = max
i
|Ri| (10)

instead. The proof of (10) starts by representing m and J in
terms of density ρ

m =
∫

ρ(x)dx J =
∫

ρ(x)x2 dx. (11)

We obtain

D2m≥ J (12)

because D≥ |x| limits the robot dimension (ρ(x) = 0 for all
|x|> D). Thus the computed straight velocity v̂S has kinetic
energy

ES =
1
2

m
(
v2 +D2

ω
2)≥ E (13)

and yields at least the characteristic time and braking dis-
tance of vS.

5.3.2 Step 1c - Computing Braking Configuration (s,α)T

The final step of the curved braking model is computing the
braking configuration (s,α)T from the equivalent straight
velocity vS (result of 1a) and its corresponding braking dis-
tance s(vS) (result of 1b).

From (A2) we know that the vehicle has a fixed steer-
ing angle during the whole braking, so the curvature, i. e.
the ratio between rotational and translational velocities, is
constant over time

ω(t)
v(t)

=
ω

v
. (14)

As a consequence, both velocities must have the same char-
acteristic function λ (t) telling by which fraction they decay
over time

λ (t) =
v(t)

v
=

ω(t)
ω

. (15)

Now we consider the change over time of the vehicle’s ki-
netic energy during brakings from (v,ω)T resp. vS

E(t) =
1
2

mv(t)2 +
1
2

Jω(t)2 = λ (t)2E (16)

ES(t) =
1
2

mvS(t)2 = λS(t)2ES (17)

with λS being the characteristic function of the equivalent
straight braking. As the kinetic energies of (v,ω)T and vS are
equal at braking start, their change over time is according to
(A3a) also equal, thus

ES(t) = E(t) (18)

and consequently

λS(t) = λ (t). (19)

With vS and sS = s(vS) being the startup velocity and braking
distance of the straight braking, integration over t shows

sS

vS
=

s
v
=

α

ω
=
∫ T

0
λ (t)dt. (20)

From the convexity of the function s(v) (cf. Sec. 5.3.1) we
conclude that for all upper bounds v̂S ≥ vS the following in-
equality holds

ŝ(v̂S)

v̂S
≥ s(vS)

vS
(21)

and we get

v
ŝ(v̂S)

v̂S
≥ s ω

ŝ(v̂S)

v̂S
≥ α (22)

which justifies the pure braking distance without latencies(
ŝ
α̂

)
=

ŝ(v̂S)

v̂S

(
v
ω

)
. (23)

16 Holger Täubig et al.

The full braking model computation extends the result of
(23) by the time delay4t (latency) of driving with constant
velocity (v,ω)T before the braking really starts

BM4t(v,ω) =

(
ŝ
α̂

)
=

(
ŝ(v̂S)

v̂S
+4t

)(
v
ω

)
. (24)

An important property is that the curvature of the resulting
approximation (ŝ, α̂)T is equal to the curvature given by the
configuration (v,ω)T

α̂

ŝ
=

ω

v
. (25)

This is satisfied by (23) as well as (24).

5.3.3 Step 2 - Safety Zone Computation

The outcome of the braking model are arc length s and cor-
responding angle α (Fig. 11a). This (s,α)T representation
jointly models circular trajectories (s 6= 0, α 6= 0) as well as
straight trajectories (s 6= 0, α = 0) and even turning on the
spot (s = 0, α 6= 0). Using s and α all necessary kinds of
trajectories and transitions between them are modeled with-
out singularities. For any point λ ∈ [0,1] on the trajectory
the robot pose is given by orientation αλ = λα and refer-
ence point position (xλ ,yλ)

T which we obtain from the arc
length up to that point sλ = λ s by(

xλ

yλ

)
= sλ sinc

αλ

2

(
cos αλ

2
sin αλ

2

)
(26)

with sincφ being the sinus cardinalis

sincφ =

{
sinφ

φ
φ 6= 0

1 φ = 0
. (27)

Coordinates of (26) are in the egocentric coordinate system
at braking start C0, which also is the base coordinate system
of the whole safety zone computation, thus of all point vec-
tors in the following that are not explicitly bound differently.
The egocentric coordinate system at λ , denoted Cλ , is given
by the robot pose. Hence,

T (sλ ,αλ) =

(
cosαλ −sinαλ sλ sinc αλ

2 cos αλ

2
sinαλ cosαλ sλ sinc αλ

2 sin αλ

2

)
(28)

yields a transformation of robot points from Cλ into C0. We
assume that the input point is extended by the component 1
to be in homogeneous coordinates always before applying
the transformation T . For readability we omit that in our
formulae.

Using (28) the requested braking area H (Fig. 11b) is
defined as the union of the vehicle shape as it moves along
the braking trajectory

H(s,α) :=
⋃

λ∈[0,1]
{T (λ s,λα) ·R | R ∈R} . (29)

α

s

(a) (b)

Fig. 11 (a) Braking configuration (s,α)T is the input of the safety zone
computation (step 2). (b) Braking area (green area), trajectories of the
four robot contour vertices (dashed arcs), and safety zone (red polygon)
for the braking configuration from (a). Note that the actual implemen-
tation uses more points for a tighter approximation.

The rigid body transformation T is linear and commutes
with taking the convex hull of R= conv

{
[Ri]

n
i=1
}

. Thus,

H(s,α) =
⋃

λ∈[0,1]
conv{T (λ s,λα) ·Ri | i = 1, . . . ,n} . (30)

The safety zone computation (step 2) determines a superset

H(s,α)⊇ convH(s,α), (31)

of the convex hull of that braking area. Actually, a superset
of the braking area would be sufficient, but the convex hull
is intrinsic to our internal area representation.

The computation of H(s,α) exploits a general property
of convex hulls

convS1∪ convS2 ⊆ conv(S1∪S2) , (32)

the union of convex hulls is contained in the convex hull of
the union. From (30) that yields

H(s,α)⊆ conv
⋃

λ∈[0,1]
{T (λ s,λα) ·Ri | i = 1, . . . ,n} (33)

= conv
n⋃

i=1

{T (λ s,λα) ·Ri | λ ∈ [0,1]} (34)

and establishes the basic principle of our safety zone algo-
rithm: First compute the circular arcs for each Ri (or a su-
perset) and afterwards take the convex hull of all of them (cf.
Fig. 11b).

The trajectory of each robot contour point Ri is approxi-
mated separately. By (28) all of these trajectories are circular
arcs. Each of them is covered by a area containing the entire
arc. Four possible ways of doing that are shown in Fig. 12.
The circular arc {T (sλ ,αλ)Ri|λ ∈ [0,1]} starts at P1

i = Ri
and stops at P2

i = T (s,α)Ri. All of the areas given in Fig. 12
are supersets of that trajectory.

In our implementation we use a generalised version of
Fig. 12d that separates the circular arc into L equal parts and
covers each of them by three points as shown in Fig. 12c.
The full arc is of course covered by the convex hull of all

Guaranteeing Functional Safety: Design for Provability and Computer-Aided Verification 17

P 1

α

P 2

P 1

α

P 2

A
([1

2 (P
1 +P2)

]
; |P

1−P2|
2

)
A
([

P1,P2
]

; |P1−P2| 1−cos(α
2)

2sin(α
2)

)
(a) (b)

P 1

α/2

α

P 2

V

·

P 1

α

P 2

V 0
V 1

V 2

A
([

P1,P2,V
]

;0
)

conv(A1∪A2∪A3)
(c) (d)

Fig. 12 Approximation of the convex hull of a circular arc using one
(a), two (b), or three (c) generating points and an appropriate radius.
V = P1 +Q(α) 1

2 (P
2−P1) is the intersection point of the tangents in

P1 and P2. In (d) the arc is split into three equal parts and then (c) is
applied to each.

these points. But the intermediate start and end points of the
subarcs are actually not needed as they lie in the convex hull
of the start and end point together with the tangent intersec-
tions V j

i of the subarcs (Fig. 12d). That yields an approxi-
mation using L+2 points per circular arc:

{T (sλ ,αλ)Ri|λ ∈ [0,1]} ⊆ A
([

P1
i ,P

2
i , [V

j
i]

L−1
j=0

]
;0
)

(35)

with

V j
i = T (j·s

L , j·α
L) ·U3

i and (36)

U1
i = Ri (37)

U2
i = T (s

L ,
α

L) ·Ri (38)

U3
i =U1

i +Q(α

L)
1
2 (U

2
i −U1

i) (39)

Q(α) =

(
1 tan α

2
− tan α

2 1

)
(40)

where U1
i , U2

i , U3
i are the approximation points of the first

subarc. U1
i and U2

i are start and endpoint of this subarc and
U3

i the intersection point of the tangents in U1
i and U2

i which
can be computed by Q. Finally, V j

i are the transformations
of the tangent intersection point U3

i into all other subarcs.
Notice that (35)-(40) as well as the areas in Fig. 12 also work
properly in the case of a straight trajectory. For brevity we
omit the proof of (35) here, it is based on the idea that both
tangents in Fig. 12c as well as the chord are bounds of the
circular arc.

Finally, the safety zone for (s,α)T arises when the cir-
cular arc approximations for all vertices Ri of the robot are
united and their convex hull is taken

H(s,α) = A
([

P1
i ,P

2
i , [V

j
i]

L−1
j=0

]n

i=0
;0
)
. (41)

5.4 Extension to Input Intervals

In practice, measurement errors (in v and ω) are unavoid-
able, thus a safety zone H computed for just a single con-
figuration (v,ω)T as shown in Sec. 5.3 will never be cor-
rect. For this reason, we extended the curved braking model
(steps 1a-c) and the safety zone computation (step 2) to in-
terval operations (step 1* and 2*) allowing a user to add
potential measurement and modelling errors and call the al-
gorithm with inputs that safely cover the true configuration.

5.4.1 Step 1* - Curved Braking Model of Input Intervals

Step 1* is the extension of steps 1a-c to intervals. It takes an
interval [vmin,vmax]× [ωmin,ωmax] instead of a single (v,ω)T

and maps it to an interval [smin,smax]× [αmin,αmax]. As the
mapping is non-linear the computed interval is not exact but
conservatively bounds the complex shaped exact result in
(s,α) space (cf. Fig. 2, lower row, middle diagram).

The bound is obtained from candidates (vc,ωc)T of lim-
iting configurations

(vc,ωc)T ∈V ×Ω (42)

with

V =

{
{vmin,0,vmax} 0 ∈ [vmin,vmax]

{vmin,vmax} 0 /∈ [vmin,vmax]
(43)

Ω =

{
{ωmin,0,ωmax} 0 ∈ [ωmin,ωmax]

{ωmin,ωmax} 0 /∈ [ωmin,ωmax]
(44)

by applying step 1a-c to every one of them

(sc,αc)T = BM4t(vc,ωc) (45)

and finding the minimum and maximum values

smin = min
c

sc smax = max
c

sc (46)

αmin = min
c

α
c

αmax = max
c

α
c. (47)

The proof of step 1* essentially shows that for ev-
ery (v,ω)T from [vmin,vmax] × [ωmin,ωmax] its braking
model result (s,α)T = BM4t(v,ω) lies within [smin,smax]×
[αmin,αmax]. (43) and (44) are based on the fact that (10) and
(24) are monotonic for fixed signs of v and ω (in each quad-
rant of (v,ω)-space). We omit the detailed proof as it is just
an exercise in analysis.

18 Holger Täubig et al.

Q2

Q3

(a) (b)

Fig. 13 (a) The four limiting movements (dashed lines), braking area
(green area), and safety zone (outer red line) for the braking configu-
rations interval [smin,smax]× [αmin,αmax]. (b) Plot of XA

λ ,R,sµ
(αγ) with

Q2 and Q3 at α0 resp. α1: the function is not linear, the distance to the
line segment Q2Q3 is bounded by qA in (63).

5.4.2 Step 2* - Safety Zone of Input Intervals

Step 2* extends step 2 to an input interval I = [smin,smax]×
[αmin,αmax]. Its result H (smin,smax,αmin,αmax) is a superset
of the convex hull of the braking area for all braking config-
urations (s,α)T ∈ I

H (smin,smax,αmin,αmax)⊇
⋃

(s,α)T∈I

convH(s,α) (48)

The computation works as follows: First, the safety zones
for the four limiting movements, i.e. the extreme cases H1 =

H(smin,αmin), H2 = H(smax,αmin), H3 = H(smax,αmax), and
H4 = H(smin,αmax), are computed (Fig. 13a). And then, the
convex hull of their union (later on called A) is expanded by
an appropriate radius q bounding the non-linear effects of
T (s,α). This results in the overall computation

H (smin,smax,αmin,αmax) =

A
([[[

P1
i,s,α ,P

2
i,s,α , [V

j
i,s,α]

L−1
j=0

]n

i=0

]
smin,
smax

]
αmin,
αmax

;q
)
, (49)

with

q = qA +qB (50)

qA = 1
6

(
αmax−αmin

2

)2
max{|smax|; |smin|} (51)

qB =
(
1− cos αmax−αmin

2

)
max

1≤i≤n
{|Ri|}. (52)

The proof of (49)-(52) is more technical, because it is
based on algebraic calculations rather than mathematical ar-
guments as in the proofs so far. It analyzes the location of an
arbitrary contour point R ∈R for an arbitrary braking con-
figuration (sµ ,αγ)∈ [smin,smax]× [αmin,αmax] at an arbitrary
time λ ∈ [0,1] using (28)

Xλ ,R(sµ ,αγ) = T (λ sµ ,λαγ)R (53)

= λ sµ sinc λαγ

2

(
cos λαγ

2

sin λαγ

2

)
+

(
cosλαγ −sinλαγ

sinλαγ cosλαγ

)
R

(54)

Fig. 14 The location X1,Ri (sµ ,αγ) along the borders µ = 0, γ = 0, µ =
1, and γ = 1 of [smin,smax]× [αmin,αmax] with Ri being the lower right
vertex of the robot contour (close red curve). The location X∗1,Ri

(s1,αγ)

is shown for γ ∈ [0,1] (red line segment).

with

sµ = (1−µ)smin +µsmax µ ∈ [0,1] (55)

αγ = (1−γ)αmin + γαmax γ ∈ [0,1] (56)

We call the convex hull of the union of the safety zones of
the four extreme cases A= conv(H1∪H2∪H3∪H4). A con-
tains Xλ ,R(sµ ,αγ) for µ ∈ {0,1} and γ ∈ {0,1}. Thus,

∀µ∈[0,1] : Xλ ,R(sµ ,α0) ∈ A∧Xλ ,R(sµ ,α1) ∈ A (57)

because Xλ ,R(sµ ,αγ) is a linear function in s. Now let

X∗
λ ,R(sµ ,αγ) = (1−γ)Xλ ,R(sµ ,α0)+ γXλ ,R(sµ ,α1) (58)

be the linear connection between Xλ ,R(sµ ,α0) and
Xλ ,R(sµ ,α1). Because X∗ is linear it is contained in the con-
vex A (cf. Fig. 14).

∀µ∈[0,1] ∀γ∈[0,1] : X∗
λ ,R(sµ ,αγ) ∈ A (59)

The overall proof of Xλ ,R(sµ ,αγ) ∈
H (smin,smax,αmin,αmax) now reduces to

∀µ∈[0,1] ∀γ∈[0,1] :∥∥∥Xλ ,R(sµ ,αγ)−X∗
λ ,R(sµ ,αγ)

∥∥∥≤ q, (60)

i.e. to bounding the distance between X and X∗ by q. The
proof of (60) handles the two summands of (54) separately

XA
λ ,R,sµ

(αγ) = λ sµ sinc λαγ

2

(
cos λαγ

2

sin λαγ

2

)
(61)

XB
λ ,R,sµ

(αγ) =

(
cosλαγ −sinλαγ

sinλαγ cosλαγ

)
R (62)

Guaranteeing Functional Safety: Design for Provability and Computer-Aided Verification 19

and shows ∀λ ∈ [0,1],∀R ∈R,∀µ ∈ [0,1]

∀γ ∈ [0,1] :∥∥∥XA
λ ,R,sµ

(αγ)−
(
(1−γ)XA

λ ,R,sµ
(α0)+ γXA

λ ,R,sµ
(α1)

)∥∥∥≤ qA

(63)∥∥∥XB
λ ,R,sµ

(αγ)−
(
(1−γ)XB

λ ,R,sµ
(α0)+ γXB

λ ,R,sµ
(α1)

)∥∥∥≤ qB

(64)

XA
λ ,R,sµ

(αγ) and the bound (63) are visualized in Fig. 13b. Its
proof applies a theorem, which itself is not trivial to prove:
Let Y : [0;1]→ R2 be two times differentiable and Y(0) =
Y(1) = (0,0)T , then

∀γ ∈ [0;1] : ‖Y(γ)‖ ≤ 1
8

max
0≤τ≤1

∥∥Y′′ (τ)
∥∥ . (65)

This is the multidimensional extension of a well-known one-
dimensional theorem. By applying that theorem and some
lengthy calculations (63) reduces to(

β−sinβ

β 2 − 1−cosβ

β

)2
+
(
− sinβ

β
+ 1−cosβ

β 2 − β−sinβ

β 3

)2
≤ 4

9
, (66)

which we proved by substituting the domain-level power-
series based bounds (1) for sine and cosine.

Finally, XB
λ ,R,sµ

in (62) is the change of the robot’s ori-

entation. So (64) is correct because qB in (52) is a second
order bound of a circular arc’s distance to its corresponding
chord.

The complicated proof sketched in this subsection was
formally verified in Isabelle, which increases the confidence
in (49) compared to a pen-and-paper proof.

5.5 Postprocessing Extension

Up to step 2*, we computed the safety zone in its inter-
nal representation. It is given by an unsorted list of points
[Wk]

K
k=1 resulting from (49) and a buffer radius q

H (smin,smax,αmin,αmax) = A
(
[Wk]

K
k=1;q

)
. (67)

To check the safety zone for obstacles, it is first trans-
formed from C0 into scanner coordinates CS. This is done
by applying TS←0 to each point Wk separately. Then, we ap-
ply the standard convex hull algorithm Graham-scan to the
list of transformed points. The result is a counterclockwise
sorted array of points [Pi]

nG
i=1 representing the corners of a

convex polygon:

[Pi]
nG
i=1 = GRAHAM_SCAN

(
[TS←0Wk]

K
k=1
)
. (68)

The safety zone (in CS) is the expansion of that polygon by
the buffer radius q, which we call buffered polygon. It is still
given by A

(
[Pi]

nG
i=1;q

)
. Its boundary consists of edges e+i,i+1

S

Pi

q

ej

Aj

PA
i

ej+1

Aj+1 PB
i

Fig. 15 Converting the buffered polygon into a laser scan represen-
tation. Coordinates [Pi]

nG
i=1 are shifted such that the center of the laser

ranger finder S is the origin.

and arcs b+i , which are the extensions of the edges ei,i+1 and
the vertices Pi of the polygon.

Finally, we separate the buffered polygon A
(
[Pi]

nG
i=1;q

)
into sectors using the fixed angular resolution of the laser
rangefinder. In each sector we determine the maximum ra-
dial extend of the buffered polygon (Fig. 15). The result is
an array of distances

[d j]
nL
j=1 = SAMPLING

(
[Pi]

nG
i=1;q

)
. (69)

This is the laser scan representation of the computed safety
zone limited to the field of vision of the laser rangefinder. We
call this array the minimal laser scan. For each laser beam
it contains the minimal distance that has to be free of obsta-
cles, thus the minimal measurement into this direction that
is safe. If any of the distances in the measured laser scan is
less than its corresponding entry in the minimal laser scan
the vehicle has to stop immediately.

The SAMPLING algorithm that transforms the buffered
polygon into the minimal laser scan uses a sweep line prin-
ciple. The sweep line is a ray starting at the origin of CS
that rotates from the right to the left border of the laser
rangefinder’s field of view. Along the way the sweep line
passes all sectors of the laser scan. At the same time it tra-
verses edges and arcs of the buffered polygon and stores
their maximum radial expansion within the current sector.
That sector maximum is determined as the maximum of the
distances of the buffered polygon at the left and right sec-
tor boundary and the maximum distance of all arcs of the
buffered polygon that are completely contained in the sec-
tor. The distances at a sector boundary is the distance of its
intersection point with either an edge or an arc. The distance
of every point on the arc to the origin is bounded by |Pi|+q.
Intersections with edges are computed explicitly except for
numerical special cases, which are handled conservatively.

Correctness of the SAMPLING algorithm can be shown
as follows: The triangle inequality shows that no point on the
circular arc b+i can have a distance greater than |Pi− S|+ q
with S being the origin within this computation (cf. Fig. 15).
For every line segment the maximum distance is obtained at
one of its endpoints, e. g. A j or PA

i . Thus, for each sector we
only have to consider the distances at the sector boundaries,

20 Holger Täubig et al.

endpoints of edges contained in the sector and all arc points
inside the sector. As every endpoint of an edge also is a point
of the connected arc its distance already is contained in the
bound of the arc. Thus we can omit handling endpoints of
edges and only have to consider intersections of edges at the
sector boundaries. If the sector boundary intersects an arc,
we handle the full arcs as described.

5.6 Summary

In this section, we have described our algorithm and its proof
in the high-level language of textbook mathematics. Most
of them have been implemented formally in Isabelle. To be
explicit: Formal proofs of step 1 show the correct imple-
mentation of the braking model formulae, whereas a pen-
and-paper proof shows the correctness of the formulae itself
(parts of it also formalized in domain model). Step 2 was
proven formally according to the specification in Fig. 8. For
all the extensions proposed most of the separate functions
were proven formally (74% percent), in particular (50) and
everything below. There are two important functions that
have been verified by testing instead of a formal proof: the
implementation of step 3*, and as a consequence the overall
main function containing all steps 1* - 3*. A function as dis-
played in Fig. 9 is not formulated explicitly in the code, we
put it up to show the specification of step 2* without actually
verifying this concrete specification. Not formally verifying
the extension functions was an agreement with the certifica-
tion authority for the purpose of saving time as the project
drew to an end, all functions have been proven correctly on
paper. The C sources containing implementation and speci-
fication and the verification tool are provided for download
at http://www.dfki.de/cps/sams/.

6 Experiments

6.1 Demonstrator

In the SAMS project the certified algorithm, more precisely
its certified C implementation, was intended as a generic
component for safeguarding arbitrary AGVs. We have built
a small demonstrator vehicle to experiment with our imple-
mentation in practice, which is shown in Fig. 1 and also in
the supplemental video: The demonstrator drives through a
cluttered environment, being stopped by our collision avoid-
ance implementation whenever necessary. Simultaneously
the video5 shows the safety zones computed in real-time.
Note that the demonstrator is an example for the system in-
tegration, but was not subject of the certification.

5 The slightly jerky movements of the demonstrator are due to con-
trol issues, not emergency stops triggered by the safety component.

6.2 Simulator

While the demonstrator shows that the system works in prac-
tice, we rely on a physically realistic simulation for a more
detailed analysis, as here ground-truth is available. Since it
is just a tool for evaluation, we describe the simulator here
only briefly for reference:

Like the algorithm, the simulator assumes that the ve-
hicle retains its circular trajectory so this aspect is assumed
and not verified. The braking behaviour however, is simu-
lated physically correctly by considering torques and mo-
ment of inertia around the center of rotation (xc,yc), as de-
fined by the current curvature ω

v .

xc = 0, yc =
v
ω

(70)

The moment of inertia around (xc,yc) is obtained from the
robot shape R and the robot mass m as

J = m

∫
(x,y)T∈R

(
(x− xc)

2 +(y− yc)
2
)
dxdy∫

(x,y)T∈R 1dxdy
, (71)

assuming constant mass density ρ(x). Each brake i, lo-
cated at (bix,biy) provides a Coulomb-friction force of fi
against the direction of motion sgn α̇ . Having a lever of
ri =

√
(bix− xc)2 +(biy− yc)2 the brake applies a torque of

−sgn α̇ firi. So the overall vehicle dynamics is

α̈ =−sgn α̇J−1
∑

i
fi

√
(bix− xc)2 +(biy− yc)2, (72)

s = α
v
ω

(73)

With this simulation we can experimentally verify that
the algorithm is conservative as proven in the software ver-
ification and by which factor the area is over-estimated. We
also analyse how much the different sources of overestima-
tion contribute to this factor. These sources are

– the linear interpolation (4) in the model for straight brak-
ing,

– the worst case bound (24) for rotational braking as a
function of straight braking,

– the approximation (35) of an arc by a polygon, including
the convex fill-in on the inner side of the arc,

– the use of an interval [vmin,vmax]× [ωmin,ωmax] instead
of a single (v,ω)T in (49) to reflect measurement uncer-
tainty.

6.3 Braking Model

Fig. 17 shows how much the straight braking distance (4)
is overestimated depending on how many measurements are
used to configure the braking model. With a single measure-
ment the factor is significant (39%), with two measurents

http://www.dfki.de/cps/sams/

Guaranteeing Functional Safety: Design for Provability and Computer-Aided Verification 21

1 /∗@
2 @requ i res d i r e c t i o n s_ l e n − 1 <= resu l t_len_max && 0 <= r b u f f e r &&
3 ${ l e t V = ^Vec to r2DL i s t { d i r e c t i o n s_da t a , d i r e c t i o n s_ l e n }
4 i n (0 ∈ conv ^Vector2DSet {polygon_data , po lygon_len }) ∧
5 (sorted-by (λv1 v2. angle v1 v2 ∈ {φ . 0 < φ ∧φ < π}) V) ∧ (∀v ∈ set V. |v|= 1) }
6 && \ unre la ted (polygon_data , po lygon_len , r e su l t_da ta , resu l t_len_max)
7 && \ unre la ted (d i r e c t i o n s_da t a , d i r e c t i o n s_ l e n , r e su l t_da ta , resu l t_len_max)
8 @modif ies r e s u l t_da t a [: d i r e c t i o n s_ l e n −1]
9 @ensures \ r e s u l t == sams_safe −−>

10 ${ l e t E = ^RZLis t { r e su l t_da ta , d i r e c t i o n s_ l e n − 1} ;
11 P = ^Vec to r2DL i s t { polygon_data , po lygon_len } ;
12 R = ^Vec to r2DL i s t { d i r e c t i o n s_da t a , d i r e c t i o n s_ l e n } ;
13 SAFETY ZONE = extend-by-radius ` r a d i u s (convex-area P)
14 i n SAFETY ZONE ∩ (angle-sector ^Vector2DR{&d i r e c t i o n s_da t a [0] }
15 ^Vector2DR{&d i r e c t i o n s_da t a [d i r e c t i o n s_ l e n −1]})
16 ⊆ scan-field R E }
17 @∗/
18 SAMSStatus samp l i ng (const Vector2D ∗ polygon_data , I n t 32 polygon_len ,
19 F loa t32 r ad i u s ,
20 const Vector2D ∗ d i r e c t i o n s_da t a , I n t 32 d i r e c t i o n s_ l e n ,
21 I n t 32 ∗ r e su l t_da ta , I n t 32 resu l t_len_max) ;

Fig. 16 Actual specification source (with Isabelle pretty printing) of the function computing the laser scan representation. Fig. 16 shows the formal
specification of the function that transforms a buffered polygon into a minimal laser scan. directions-data contains the directions-length sector
boundaries whereas the result is of size nL = directions-length−1 (line 8). As a precondition the sector boundaries must be given as unit length
vectors in counterclockwise order (line 5). Further, the origin of the used coordinate system (CS) has to be contained in the area of the polygon
(line 4). If the function returns without error, it assures that the area corresponding to the minimal laser scan (line 16) is a superset of the area of
the buffered polygon (line 13) limited to the field of vision of the laser rangefinder (lines 14–15).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5
 0

 20

 40

 60

 80

 100

 120

 140

 160

s
 i
n
 m

fa
c
to

r
o
f
o
v
e
re

s
ti
m

a
ti
o
n
 i
n
 %

v in m/s

simulated s
braking model s

factor

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5
 0

 20

 40

 60

 80

 100

 120

 140

 160

s
 i
n
 m

fa
c
to

r
o
f
o
v
e
re

s
ti
m

a
ti
o
n
 i
n
 %

v in m/s

simulated s
braking model s

factor

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5
 0

 20

 40

 60

 80

 100

 120

 140

 160

s
 i
n
 m

fa
c
to

r
o
f
o
v
e
re

s
ti
m

a
ti
o
n
 i
n
 %

v in m/s

simulated s
braking model s

factor

Fig. 17 Overestimation of the braking distance in straight motion. The plots show the true (simulated) braking distance s as a function of v and
the linear interpolated result of our model (4) when configured with one (left), two (middle), and nine (right) straight braking measurements. The
overestimation factor ASAMS

ASim
shows how much larger the area of the computed safety zone is compared to the true braking area.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

s
 i
n
 m

w in rad/s

simulated
braking model

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

A
 i
n
 m

^2

w in rad/s

simulated
braking model

 100

 105

 110

 115

 120

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

fa
c
to

r
o
f
o
v
e
re

s
ti
m

a
ti
o
n
 i
n
 %

w in rad/s

braking distance s
area A

Fig. 18 Overestimation of curved braking using perfect straight forward estimation. All (v,ω)T have vS = 2.5 being one of the two braking
measurements used for configuration. The plots shows how braking distance (24), area, and the overestimation factor of both depends on ω .

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6

 0

 20

 40

 60

 80

 100

 120

 140

 160

fa
c
to

r
o
f
o
v
e
re

s
ti
m

a
ti
o
n
 i
n
 %

v in m/s

w in rad/s

fa
c
to

r
o
f
o
v
e
re

s
ti
m

a
ti
o
n
 i
n
 %

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6

 0

 20

 40

 60

 80

 100

 120

 140

 160

fa
c
to

r
o
f
o
v
e
re

s
ti
m

a
ti
o
n
 i
n
 %

v in m/s

w in rad/s

fa
c
to

r
o
f
o
v
e
re

s
ti
m

a
ti
o
n
 i
n
 %

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6

 0

 20

 40

 60

 80

 100

 120

 140

 160

fa
c
to

r
o
f
o
v
e
re

s
ti
m

a
ti
o
n
 i
n
 %

v in m/s

w in rad/s

fa
c
to

r
o
f
o
v
e
re

s
ti
m

a
ti
o
n
 i
n
 %

Fig. 19 Overestimation factor of the safety zone area as a function of (v,ω)T . The plot shows ASAMS
ASim

for braking models configured with one, two,
and nine straight braking measurements.

22 Holger Täubig et al.

small (12%), and with nine negligible (1%). The percentages
refer to the area of the safety zone. The factor for the braking
distance s itself goes to infinity for v→ 0, however this is no
practical problem since both true and estimated distance are
small then. Based on these results we recommend using two
measurements, however in industrial practice a single may
suffice.

Fig. 18 indicates how much overestimation is caused
by (24) bounding curved braking based on straight braking
measurements in the configuration. The velocity v is cho-
sen dependent on ω such that vS(v,ω) = 2.5m/s is constant.
This is one of the velocities measured for configuration, so
the straight braking model causes no over-estimation. One
can see, that even for an aggressive curve (v= 1.85m/s,ω =

1.5rad/s, 1.23m radius, 2.8m/s2 lateral acceleration) the
overestimation is very moderate with 11% for distance and
13% for the safety zone area. The distance factor grows
quadratic with ω because of the ω2 in the kinetic energy
(10). The area factor grows linear, not as a consequence of
the overestimated distance, but because of the convex fill-
in on the inside of a curve (light red area in Fig. 20-22)
which is dominant. This fill-in is roughly O(s) long and
O(sα) = O(sω) wide and hence O(s2ω) and linear in ω .
For ω = 0 the area factor is slightly (0.5%) above 100%
which might be the expected value as no overestimation is
introduced by the braking model in that case. This is caused
by the numerical supplement mentioned in Sect. 4 which is
added to the buffer radius q in (50) to cover rounding errors.

6.4 Safety Zone Computation

Fig. 20-22 show the computed safety zone for different types
of motion and different numbers of measurements used to
configure the braking model. It also shows the true (simu-
lated) braking area and the area corresponding to the brak-
ing model’s (s,α)T but without the approximations in the
safety zone computation. It can again be seen that the ef-
fect of the braking model is small to moderate. The effect
of the arc approximation (35) is on the outside of the curve
and too small to be visible. However, the convex fill-in on
the inside (light red) is significant and could be a problem,
e. g. when taking a sharp turn around a corner. This part is
caused by the convex-hull representation itself not by any
specific approximation. It could be avoided, if necessary, by
dividing the trajectory into parts, computing a safety zone in
laser scan representation for each part and then uniting the
parts in laser scan representation. On the other hand, even
if not completely necessary the convex fill-in automatically
assures conformance with the measurement principle of our
sensor, which has a straight line of sight.

Fig. 19 summarises the effects discussed so far quantita-
tively, showing the overestimation factor as a function of v,

0 1 2 3m 0 1 2 3m

0 1 2 3m 0 1 2 3m

Fig. 20 Overapproximation due to braking model and safety zone
computation using one braking measurement. The light green area is
touched by the robot in simulation. The dark blue area is the same for
the trajectory (s,α)T given by our braking model. The overall area,
i. e. the above plus the red area, is the safety zone computed by our
algorithm.

0 1 2 3m 0 1 2 3m

0 1 2 3m 0 1 2 3m

Fig. 21 Overapproximation due to braking model and safety zone
computation using two braking measurement.

0 1 2 3m 0 1 2 3m

0 1 2 3m 0 1 2 3m

Fig. 22 Overapproximation due to braking model and safety zone
computation using nine braking measurement.

ω , and the number of braking measurements. For one mea-
surement, the error in straight forward estimation is domi-
nant visible in the bulge at v = 2m/s with a maximum of
62% at v = 1.75m/s,ω = 1.3rad/s. For more measurements
the convex fill-in dominates, so the maximum of 34% resp.
27% is at maximum v,ω . The effect of more configuration

Guaranteeing Functional Safety: Design for Provability and Computer-Aided Verification 23

0 1 2 3m

Fig. 23 Overapproximation due to v,ω interval using 2 braking mea-
surements. green (central area):safety zone for single braking configu-
ration. red (overall area): full safety zone for a v,ω interval assuming
2% of error for each of the two wheel encoders.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

b
u
ff
e
r

ra
d
iu

s
 i
n
 m

v in m/s

w in rad/s

b
u
ff
e
r

ra
d
iu

s
 i
n
 m

Fig. 24 Buffer radius for different (v,ω)T intervals assuming 2% of
error for each of the two wheel encoders.

measurements is small there. Nevertheless, more configura-
tion measurements still pay off in practice, because extreme
turns are only a small part of an AGV’s operation.

For reference, Fig. 17 is taken from the front (ω = 0)
side of the 3D plot in Fig. 19. The blue line in Fig. 19 indi-
cates the (v,ω)T configurations plotted in Fig. 18.

6.5 Uncertainty of Measurement

Measurements are never exact. This holds in particular for
wheel encoders due to wheel slip and must be considered
in a safe system. Our algorithm incorporates uncertainties
by an interval [vmin,vmax]× [ωmin,ωmax]. Fig. 23 shows how
much the safety zone grows, when ±2% uncertainty is as-
sumed on the two wheel encoders. The main effect is, that
even a small uncertainty in the wheel velocities yields con-
siderable uncertainty in the curvature making the safety zone
grow at its stopping-end. Fig. 24 shows the buffer radius (50)
bounding the non-linearity of the transition between differ-
ent limiting movements in (54). With a maximum of 16mm
it is rather negligible, but not by orders of magnitude.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 5 10 15 20 25

c
o
m

p
u
ta

ti
o
n
 t
im

e
 i
n
 m

s

number of robot contour points

full
intern

Fig. 25 Computation time on INTEL T2500@2GHz with and with-
out conversion to a laser scan representation with a vehicle shape of n
points and (v,ω intervals of ±2%). The bars show min and max over a
range of v,ω .

of C functions (total) 39
of C functions (formally verified) 29
Total source code size 240kB
Lines of code 5339
— program code proper 2804
— comments and specifications 2535

Table 1 Code metrics of our implementation.

6.6 Computation Time

Fig. 25 shows the computation time of a vehicle shape with
n points, with and without converting to a laser scan rep-
resentation. The algorithm is very fast (< 0.3ms on an In-
tel T2500@2GHz) for realistic robot shapes (n < 10). It is
also very deterministic as visible in the min-max bars. The-
oretically, all operations are O(n) except for the O(n logn)
sorting involved in Graham scan and a part of the conversion
which is proportional to the number of rays in the laser scan.
The first is hardly visible for such low n. The second causes
an almost constant offset between both plots as the number
of rays is comparably large but fixed.

7 Evaluation

Tab. 1 gives an idea about the size of the implementation
described in this paper.

A common objection against formal verification is that
it costs too much effort. Our actual overall effort — exclud-
ing the time needed to develop the verification framework,
but including preparation and reviewing of all documents
— was roughly 30 person months (p.m.). In a small survey
we asked experienced project managers from industry for
an assessment of the effort related to the software develop-
ment according to their development model, to the verifica-
tion and validation, and to the additional effort implied by an
external certification. Their estimation is based on a 3-page
description of the software system and personal discussions.
We received two answers ranging from 12 p.m. to 87 p.m.
This suggests that the effort of formal verification is at least

24 Holger Täubig et al.

partly offset by time-savings due to reduced test efforts, and
remains within the same ballpark as the conventional way,
but offers far more confidence of correctness. Of course, no
valid statistical conclusions can be drawn from such a small
sample, but at least it puts our own effort into relation with
industrial viewpoints.

7.1 Formal Verification in the Robotics Domain

Challenges. In practice, applying formal verification in the
robotics domain faces the conflict between real-world ap-
plications involving unstructured environments and inaccu-
rate sensors, and their idealised modeling in specifications
and the formalised domain. Addressing this problem is not
unique but especially important for projects applying for-
mal verification in real world applications. Safety requires
that the assumptions made in the model conform to reality.

Designing for Provability. Two concepts that proved help-
ful were the explicit use of intervals to accommodate for im-
precision, and algorithms and representations from compu-
tational geometry. To account for imprecise measurements,
our algorithm calculates safety zones for sets of veloci-
ties [vmin,vmax]× [ωmin,ωmax] instead of single ones. An-
other benefit came from representing objects by convex hulls
(cf. (3)), which not only led to efficient computations, but
also allowed for mathematically pleasing proofs for major
parts of the algorithm. This seems to hold true for many
representations and algorithms from computational geom-
etry. By contrast, deriving approximation bounds – such as
the buffer radius in (50) – often involves extensive algebraic
manipulations (66), a task for which theorem provers like
Isabelle are not ideally suited.

Domain. Robotics is well suited for formal verification.
Formalising high-level concepts is admittedly very time-
consuming. Nevertheless, much can be taken directly from
textbooks so that the formalisation in Isabelle went rather
smoothly. Moreover, the effort is worthwhile, as it allows
simpler specifications and verification. The domain mod-
elling is reusable for other projects, independent of a reuse
of the implementation.

7.2 Specification Process

Verification as a Joint Effort. One aspect of formal verifica-
tion is that because correctness relies on formal proof, it is
not that crucial anymore to strictly separate the roles of tester
and implementer. In contrast, the close cooperation between
the verifier and the implementer boosted productivity in our

case: verification became a joint effort. Writing specifica-
tions which validate the safety requirements, and can be for-
mally verified, is not easy; it requires an understanding of
the implementation, the domain model, and how the verifi-
cation works. It is easy to specify something which is correct
but cannot be practically verified; on the other hand, it is also
a temptation to write low-level specifications which just re-
state what the code is doing in elementary terms without the
abstraction required to state deep safety properties.

A somewhat unusual example of a close collaboration
between implementer and verifier is a change of the im-
plementation induced by verifiability considerations. The
function sampling converts the buffered polygon into a se-
quence of vectors corresponding to a laser scan (Sec. 5.5).
Initially, the specification interpreted the resulting sequence
as the rays of an idealised laser rangefinder (see Fig. 5). We
switched both specification and implementation to a sector-
based interpretation (see Fig. 15), in which each result de-
scribes the whole area of a sector. This is more elegant be-
cause it allows us to specify the result simply as a superset
of the actual braking area.

Code-Centric Specification and Verification. We experi-
enced an interesting interplay between specification, imple-
mentation and application: at first, the specification required
that if the speed of the vehicle exceeded the maximum speed
for which a braking distance was measured (cf. Sec. 5), an
emergency stop should be initiated. However, this turned out
to be too restrictive: in typical applications, the measured
maximum velocity vm may be exceeded occasionally by a
small margin, and initiating an emergency stop in these situ-
ations would severely reduce availability. Hence, the braking
distance for speeds above vm was safely overapproximated
as in (5), and the specification amended accordingly.

The Importance of Being Formal. Formal specification ne-
cessitates to state requirements precisely. A beneficial side
effect is that it focuses discussions and manifests design de-
cisions. Besides the well-known issue of the ambiguities
in natural language specifications, it turned out to be eas-
ier for specifiers and implementers to use the vocabulary of
the domain formalisation to state these requirements and to
reach agreement on their respective meaning. For quick san-
ity checks of specifications written down or modified during
meetings, we provide tool support for the type-checking of
specifications. This pertains both to code-related specifica-
tion expressions (e. g., types of program variables) as well
as Isabelle expressions used in code specifications. A typical
specification meeting of 1.5 hours would end with a function
specification reviewed and typechecked.

Traceability. IEC 61508 as well as other safety standards
ask for traceability between adjacent phases of the develop-
ment process, i. e. we have to be able to trace the realisation

Guaranteeing Functional Safety: Design for Provability and Computer-Aided Verification 25

of the system safety requirements down to the code. Safety
requirements are formulated at a much higher abstract anal-
ysis level than the code, so usually traceability is ensured
by intermediate layers in between; a definite strength of our
methodology is the very strong link between the analysis
level and the concrete source code. After all, we are not
merely verifying algorithms on an idealised level, but work
on concrete source code, as shown in Fig. 8 and 16. Since
both aspects of the verification workflow are tool-supported
and consistently done inside the Isabelle framework, typical
leaps of faith in a safety case are avoided.

7.3 Limits of Formal Verification

The approach pursued in our project to verify software by
theorem proving depends on being able to completely, math-
ematically specify the software’s functionality. One might
ask whether this approach is promising in general or whether
there are problems, in particular in robotics, that do not have
fully mathematically specified solutions. In the following we
will discuss problems in the order of increasing severity.

Approximations. Many algorithms in robotics use approxi-
mations to speed up computation or model real world pro-
cesses. There are two possibilities: Sometimes, as in our
case there is a safe side of approximations, e. g. larger safety
zones are allowed. Then the approximation formally be-
comes a bound. Safety is proven but availability in terms of
the question whether the bound is tight enough is not proven,
because it is practically important but not safety-critical.

If there is no safe side, a bound on the approximation
error must be proven, such as the buffer radius in (50). This
is often quite some effort but also increases the confidence
in the approximation. Overall it is our impression that for
most approximations it is worth to try proving a hard bound
on the error.

Optimisations. Many robotics algorithms follow the
paradigm of optimising a cost function. First, optimal does
not mean good. Second, many optimisation algorithms only
find local minima. Assuming it to be global is most often
a leap of faith. Overall, proving meaningful conditions on
the result of an optimisation algorithm is a hard scientific
challenge, even though it provides a deeper insight.

A solution is to reverse the optimisation problem and
implement a check of the quality of the optimisation out-
put, which switches to a safe mode if the output is not good
enough. This is attractive, because the optimisation itself
need not be verified at all, only the subroutine that checks
the result, which usually is much easier.

Monte Carlo Algorithms. Randomised algorithms have
proven powerful tools for many robotics problems. At first
sight, randomisation fits well to the approach in IEC 61508
to specify an upper bound for the probability of failure.
However, we are not aware of concrete bounds as needed
for a certification, only asymptotic statements assuring that
with infinite effort the probability of failure goes to 0.

The Lower Limit. First, if the domain is sufficiently sim-
ple it is preferable to apply automatic rather than interactive
verification methods. Examples of such domains have been
outlined in Sec. 4. These domains cover a large fraction of
industrial safety applications. Employing formal verification
demands an exact and complete description of the model,
experience in mathematics and availability of the verifica-
tion tools. This entails practically relevant efforts that must
be weighed up against the advantage of having a formally
proved algorithm.

Heuristics. Finally, many successful algorithms in robotics
are partially heuristic. Sometimes the heuristic just guides a
search process without affecting correctness, e.g. heuristics
for A* search; in this case, formal verification is still possi-
ble. However, often the motivation for a heuristical approach
is to avoid a tedious theoretical analysis of the problem to be
solved. In that case, proving correctness may even be theo-
retically possible but would require exactly the theoretical
analysis avoided before.

Also many detection algorithms in computer vision be-
long to this category, e. g. face detection, because it is simply
impossible to fully formalise how a face looks in an image
under various conditions. In these cases no provable result
about the overall functionality can be obtained and an em-
pirical approach is more adequate. Nevertheless, subalgo-
rithms, e. g. computation of a filter, could still be specified
and verified.

8 Closing Remarks

In this paper, we have presented a safety function for au-
tonomous robots which has been certified for use in appli-
cations up to SIL 3. The safety function computes a safety
zone for the moving robot, which can be safeguarded by a
laser rangefinder. The safety zone is a safe, conservative and
yet small enough to be practically usable approximation of
the area covered by the robot while braking down to a stand-
still from the current velocity. The development conformed
to the relevant industrial safety standard, IEC 61508, which
was certified to us by an external certification authority. To
this end, most of the implementation has been formally veri-
fied with respect to the safety requirements. The main means
of verification was a tool based on the theorem prover Is-
abelle.

26 Holger Täubig et al.

The SAMS safety module is an example of a complex,
realistic, industrial-strength safety application for robotics.
Our experiences have shown:

(i) Safety concerns all phases of the development process;
it cannot be added on as a feature after the fact. In other
words, we should not expect to take an arbitrary exist-
ing algorithm and ‘make it safe’.

(ii) Formal verification with higher-order logic and
computer-aided theorem proving is well suited to cer-
tify the safety of an implementation of a complex
robotics algorithm.

(iii) The effort of mathematically analysing an algorithm
to the extent needed for that provides a deeper under-
standing of the algorithm and is a value also outside
the certification context.

The focus of safety certification is not correctness in a
“philosophical” sense, but to prevent errors that have led to
accidents in the past. In so far, it is well accepted to cover
some safety properties by formal verification and use other
methods (tests, code reviews, etc.) for the rest. Also, even if
the whole problem is too complex, formally verifying cer-
tain aspects can be fruitful. The safety module guarantees
freedom of collision with static obstacles. This is standard
industry practice; the underlying assumption is that in work
environment, no human that can move willfully steps into
the path of an oncoming AGV, so we mainly need to safe-
guard against collision with incapacitated or unaware hu-
mans. Note that even so the safety function will provide a
degree of safety, as it will still reduce the impact speed if col-
liding with a moving obstacle. Extending our algorithm to
dynamic obstacles is possible, but there needs to be a maxi-
mum obstacle speed (otherwise availability will suffer), and
that needs to be given by an industrial or domestic safety
standard.

In closing, we can positively state that safety consid-
erations can be taken into account in robotics in a manner
conforming with legal requirements and existing standards,
but safety is more than a quick code review on a Friday af-
ternoon. It needs a thorough analysis of the safety require-
ments and the algorithms, a meticulous verification process,
and external reviewing. With this in mind, robots can safely
share the human living and working spaces.

A Covered Verification Measures

Annexes A and B of IEC 61508-3 give guidance on the selection of
procedures and measures to fulfill the requirements of the different life
cycle phases defined in the standard. The latter are presented in tabu-
lar form and pertain to the software safety requirements specification,
software design and development, integration, modification as well as
verification and validation.

Being a basic safety standard applicable in various domains, there
is little concrete advice about the content of functional requirements.

Table A.4 Software design and development:
Detailed design
1c Formal methods such as, e. g., CCS, CSP, HOL,

LOTOS, OBJ, temporal logic, VDM, and Z
2 Computer-aided design tools
5 Design and coding guidelines (detailed in B.1)
6 Structured programming

Table A.9 Software verification
1 Formal proof
3 Static analysis (detailed in B.8)

Table B.1 Design and coding guidelines
1 Use of coding guidelines
2 No dynamic objects
3a No dynamic variables
4 Restricted use of interrupts
5 Restricted use of pointers
6 Restricted use of recursions
7 No unconditional jumps in programs written in

higher-level languages
Table B.8 Static analysis

1 Marginal value analysis
3 Control flow analysis
4 Data flow analysis
5 Error estimation
8 Symbolic execution

Table 2 Measures as required by IEC 61508-3, Annex A and B, and
covered by the use of formal software verification.

Instead, the focus is on the structure of the relevant documents. The
requirements about programming practice and code analysis are more
informative; those covered by the application of our methodology are
shown in Tab. 2.

References

Althoff M, Althoff D, Wollherr D, Buss M (2010) Safety verification
of autonomous vehicles for coordinated evasive maneuvers. In: In-
telligent Vehicles Symposium (IV), 2010 IEEE, pp 1078–1083

ANSI R15.06 (1999) Industrial robots and robot systems – safety re-
quirements

Barnes J (2003) High Integrity Software: The SPARK Approach to
Safety and Security. Addison-Wesley

Baudin P, Cuoq P, Filliâtre JC, Marché C, Monate B, Moy Y, Pre-
vosto V (2008) ACSL: ANSI C specification language. http://
frama-c.com/download/acsl_1.4.pdf, version 1.4, retrieved Jan
2011

Bengtsson J, Larsen KG, Larsson F, Pettersson P, Yi W (1995) UPPAAL
— a Tool Suite for Automatic Verification of Real–Time Systems.
In: Proc. of Workshop on Verification and Control of Hybrid Sys-
tems III, Springer, no. 1066 in Lecture Notes in Computer Science,
pp 232–243

Bensalem S, Gallien M, Ingrand F, Kahloul I, Nguyen TH (2009) De-
signing autonomous robots: Toward a more dependable software ar-
chitecture. IEEE Robotics & Automation Magazine 16(1):67–77

Bensalem S, Bozga M, Nguyen TH, Sifakis J (2010a) Compositional
verification for component-based systems and application. Soft-
ware, IET 4(3):181 –193, DOI: 10.1049/iet-sen.2009.0011

Bensalem S, da Silva L, Gallien M, Ingrand F, Yan R (2010b) Ver-
ifiable and correct-by-construction controller for robots in human
environments. In: DRHE 2010 Dependable Robots in Human En-

http://frama-c.com/download/acsl_1.4.pdf
http://frama-c.com/download/acsl_1.4.pdf
http://dx.doi.org/10.1049/iet-sen.2009.0011

Guaranteeing Functional Safety: Design for Provability and Computer-Aided Verification 27

vironments, Seventh IARP Workshop on Technical Challenges for
Dependable Robots in Human Environments, Toulouse, France

Braman JMB (2009) Safety verification of goal-based control pro-
grams for autonomous robotic systems. Talk at ICRA09 workshop
on formal methods in robotics

Braman JMB, Murray RM, Wagner DA (2007) Safety verification of a
fault tolerant reconfigurable autonomous goal-based robotic control
system. In: Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, San Diego, pp 853–858

Burdy L, Cheon Y, Cok D, Ernst MD, Kiniry J, Leavens GT, Leino
KRM, Poll E (2005) An overview of JML tools and applications.
International Journal on Software Tools for Technology Transfer
7(3):212– 232

Cohen E, Dahlweid M, Hillebrand M, Leinenbach D, Moskal M, San-
ten T, Schulte W, Tobies S (2009) VCC: A practical system for ver-
ifying concurrent C. In: TPHOLs 2009, Springer, Lecture Notes in
Computer Science, vol 5674

Dion B, Gartner J (2005) Efficient development of embedded automo-
tive software with IEC 61508 objectives using SCADE drive. In:
VDI 12th International Conference: Electronic Systems for Vehi-
cles, VDI, pp 1427–1436

Dolginova E, Lynch N (1997) Safety verification for automated pla-
toon maneuvers: A case study. In: Hybrid and Real-Time Systems,
Springer, Lecture Notes in Computer Science, vol 1201, pp 154–170

Du Toit NE, Wongpiromsarn T, Burdick JW, Murray RM (2008) Sit-
uational reasoning for road driving in an urban environment. In:
Intelligent vehicle control systems : proceedings of the 2nd Inter-
national Workshop on Intelligent Vehicle Control Systems (IVCS),
INSTICC Press, pp 30–39

EN 1525 (1997) Safety of industrial trucks – driverless trucks and their
systems

Ericson C (2005) Real-Time Collision Detection. Morgan Kaufmann
European Parliament and Council (2006) Directive 2006/42/EC. Offi-

cial Journal of the European Union L 157
Fiorini P, Shillert Z (1998) Motion planning in dynamic environments

using velocity obstacles. International Journal of Robotics Research
17:760–772

Fox D, Burgard W, Thrun S (1997) The dynamic window approach
to collision avoidance. IEEE Robotics and Automation Magazine
4(1):23–33

Fraichard T (2007) A short paper about motion safety. In: Proceedings
of the IEEE International Conference on Robotics and Automation

Fraichard T, Asama H (2004) Inevitable collision states — a step to-
wards safer robots? Advanced Robotics 18(10):1001–1024

Gates B (2007) A robot in every home. Scientific American 296:58–65,
DOI: 10.1038/scientificamerican0107-58

Gordon M, Milner R, Wadsworth C (1979) Edinburgh LCF: a Mech-
anised Logic of Computation, Lecture Notes in Computer Science,
vol 78. Springer

Gurevich Y (2000) Sequential abstract state machines capture se-
quential algorithms. ACM Transactions on Computational Logic
1(1):77– 111

Harel D (1987) StateCharts: a visual formalism for complex systems.
Science of Computer Programming 8:231– 274

Henzinger TA, Ho PH, Wong-Toi H (1997) HyTech: A model checker
for hybrid systems. Software Tools for Technology Transfer 1:110–
122

Hoare CAR (2009) Viewpoint: Retrospective: An axiomatic basis for
computer programming. Commun ACM 52(10):30–32

Holzmann GJ (2003) The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley

IEC 61508 (2000) Functional safety of electrical/electronic/-
programmable electronic safety-related systems

ISO 10218-1 (2006) Robots for industrial environments – safety re-
quirements – part 1: Robot

ISO 15623 (2002) Road vehicles : Forward vehicle collision warning
system - performance requirements and test procedures

ISO 26262 (2011) Road vehicles - functional safety. (final draft)
Khatib O (1986) Real-Time Obstacle Avoidance for Manipulators and

Mobile Robots. The International Journal of Robotics Research
5(1):90–98

Lankenau A, Röfer T (2001) A safe and versatile mobility assistant.
IEEE Robotics and Automation Magazine 8(1):29–37

Loos S, Platzer A, Nistor L (2011) Adaptive cruise control: Hy-
brid, distributed, and now formally verified. In: Formal Methods,
Springer, Lecture Notes in Computer Science, vol 6664, pp 42–56

Lüth C, Walter D (2009) Certifiable specification and verification of
C programs. In: Formal Methods, Springer, Lecture Notes in Com-
puter Science, vol 5850, pp 419–434

Meikle L, Fleuriot J (2009) Mechanical theorem proving in computa-
tional geometry. In: Automated Deduction in Geometry, Springer,
Lecture Notes in Computer Science, vol 3763

Meyer B (1991) Design by contract. In: Mandrioli D, Meyer B (eds)
Advances in Object-Oriented Software Engineering, Prentice Hall,
pp 1– 50

Minguez J, Montano L (2004) Nearness diagram (ND) navigation: Col-
lision avoidance in troublesome scenarios. IEEE Transactions on
Robotics and Automation 20(1):45–59

MISRA (2004) MISRA-C:2004 – Guidelines for the use of the C
language in critical systems. Motor Industry Research Association
(MIRA) Limited, Nuneaton, UK

Nilsson NJ (1984) Shakey the robot. Tech. Rep. 323, SRI International,
Menlo Park, California

Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, Lecture Notes in Computer Sci-
ence, vol 2283. Springer

Parthasarathi R, Fraichard T (2007) An inevitable collision state-
checker for a car-like vehicle. In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation

Philippsen R, Siegwart R (2003) Smooth and efficient obstacle avoid-
ance for a tour guide robot. In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation

Platzer A, Clarke EM (2009) Formal verification of curved flight col-
lision avoidance maneuvers: A case study. In: Formal Methods,
Springer, Lecture Notes in Computer Science, vol 5850, pp 547–
562

Puri A, Varaiya P (1995) Driving safely in smart cars. In: Proceedings
of the American Control Conference, vol 5, pp 3597–3599

Rabe C, Franke U, Gehrig S (2007) Fast detection of moving objects in
complex scenarios. In: Proceedings of the IEEE Intelligent Vehicles
Symposium, pp 398–403

Roscoe AW (1998) The theory and practice of concurrency. Prentice
Hall

RT-Tester (2006) User Manual. Verified Systems International
GmbH, http://www.verified.de/en/products/rt-tester, re-
trieved Jan 2011

Schlegel C (1998) Fast local obstacle avoidance under kinematic and
dynamic constraints for a mobile robot. In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems

Simon D, Pissard-Gibollet R, Arias S (2006) Orccad, a framework
for safe robot control design and implementation. In: 1st National
Workshop on Control Architectures of Robots : software approaches
and issues CAR’06, Montpellier, France

Täubig H, Bäuml B, Frese U (2011) Real-time swept volume and dis-
tance computation for self collision detection. In: Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), San Francisco, CA, United States

Varaiya P (1993) Smart cars on smart roads: problems of control. IEEE
Transactions on Automatic Control 38(2):195–207

http://dx.doi.org/10.1038/scientificamerican0107-58
http://www.verified.de/en/products/rt-tester

28 Holger Täubig et al.

Victorino AC, Rives P, Borelly JJ (2003) Safe navigation for indoor
mobile robots. part I: A sensor-based navigation framework. Inter-
national Journal of Robotics Research 22(12):1005–1118

Winner H, Haskuli S, Wolf G (eds) (2009) Handbuch Fahrerassistenz-
systeme. Vieweg+Teubner, (German)

Wongpiromsarn T, Mitra S, Murray R, Lamperski A (2009) Period-
ically controlled hybrid systems. In: Hybrid Systems: Computa-
tion and Control, Springer, Lecture Notes in Computer Science, vol
5469, pp 396–410

	1 Introduction
	1.1 Mind the Gap
	1.2 SAMS
	1.3 Formal Software Verification
	1.4 Scientific Contribution

	2 The SAMS Algorithm
	2.1 Input
	2.2 Output and Guarantees
	2.3 Physical Assumptions
	2.4 Assumptions Defining the System Scope
	2.5 Assumptions Regarding the Treatment of Uncertainty
	2.6 Practical Advantages of the Algorithm
	2.7 Postprocessing
	2.8 Related Work

	3 Standards-Compliant Software Development
	3.1 Applicable Standards
	3.2 Applying IEC61508
	3.3 Letter of Conformance

	4 Formal Verification and Proof
	4.1 Isabelle
	4.2 Domain Modelling
	4.3 Specifying Functional Correctness
	4.4 The Verification Environment
	4.5 Limitations of our Tool
	4.6 Dynamic Analysis and Tests
	4.7 Related Work

	5 The Safety Zone Algorithm
	5.1 Overview
	5.2 Straight Motion
	5.3 Curved Motion
	5.4 Extension to Input Intervals
	5.5 Postprocessing Extension
	5.6 Summary

	6 Experiments
	6.1 Demonstrator
	6.2 Simulator
	6.3 Braking Model
	6.4 Safety Zone Computation
	6.5 Uncertainty of Measurement
	6.6 Computation Time

	7 Evaluation
	7.1 Formal Verification in the Robotics Domain
	7.2 Specification Process
	7.3 Limits of Formal Verification

	8 Closing Remarks
	A Covered Verification Measures

