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Abstract—We present a general real-time continuous collision
detection algorithm for arbitrary systems of moving bodies
connected to each other in a kinematic tree of joints. Here
“joint” as a general term refers to the measured relative motion
between two bodies, which may be physically connected or not.
We provide a basic set of joints covering revolute and prismatic
joints, vehicle motion, and 3d positioning which is sufficient
for many applications in particular those involved with mobile
manipulators, e.g. industrial and humanoid robots, intelligent
transportation systems, or equipment at construction sites. Each
joint implementation either operates on a motion bound (an
interval covering the braking distance) or an uncertainty bound
(measurement error) and computes a volume that spatially
bounds the effect of that motion or uncertainty. Aggregating all
joints in a kinematic tree then yields a conservative continuous
collision detection for the complex and uncertain motion of the
whole system.

We further present an augmented reality visualization that
overlays the collision volumes into the live image of a camera,
which can be used to validate the collision model before bringing
a system into service.

I. INTRODUCTION

Mobile manipulators, i.e., manipulators mounted on a
mobile platform (Fig. 1, 2), provide a wide range of appli-
cations covering industrial and humanoid robots, intelligent
transportation systems, and even equipment at construction
sites (e.g., cranes, lifting platforms). Certainly, all of these
applications have a demand for a collision prevention system,
either for monetary or for safety reasons. Further, they
involve motion and show considerable measurement errors
as a lot of real world applications do, so there is the need for
a geometric tool that provides real-time collision detection
for mobile manipulators under consideration of (braking)
motion and significant uncertainty. In this paper, we extend
our approach from [2] for joint manipulators into a seamless
integrated vehicle-manipulator continuous collision detection
system.

Collision detection as the prerequisite of collision avoid-
ance has been subject of research for decades now. In the
past, there were separated 2d and 3d approaches: 2d colli-
sion avoidance involved vehicles (intelligent transportation
systems, autonomous guided vehicles (AGVs), autonomous
wheelchairs) moving in a plane; 3d collision avoidance
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Fig. 1. Swept volumes of a humanoid robot (DLR’s Justin, [1]) induced
by linear (top left) and rotational (top right) motion of its mobile platform.
bottom: Visualization of the collision volumes in a camera image, e.g., for
a verification of the collision model.

originally involved robot manipulators, i.e. kinematics built
from revolute and prismatic joints, but without wheeled
motion. For mobile manipulators one has to overcome this
separation. Our approach is to provide a general set of joint
types that can be assembled in a kinematic tree, which
describes the (braking) motion and uncertainty of both robot
and environment. The motion effect of the kinematic tree
is computed conservatively for a set of bounding volumes
representing all moving and static bodies connected to the
kinematic tree. The result are swept volumes (Fig. 1), i.e. the
volumes potentially covered by each body due to its overall
motion and uncertainty. Finally, the swept volumes of all
body-pairs are checked for collisions by computing distances.

The main contribution of this paper is to provide com-
putations for a general set of joint types covering revolute
and prismatic joints, vehicle motion, and 3d positioning. In
particular, we derive a vehicle joint from previous work [3]
in 2d collision detection. We additionally provide multiple
versions of each joint type, which allows for a trade-off
between accuracy and computational effort. This joint set
is sufficient for many applications in particular mobile ma-



Fig. 2. General industrial application scenario motivating our approach.

nipulators and can be easily extended for application specific
joints. The overall result is a general continuous self collision
detection for multi-body systems without parallel kinemat-
ics. Conservative, continuous collision detection comes with
propagating a body’s volume along its kinematic chain by
taking the effect of one joint after the other into account;
computational efficiency comes with the use of so called
sphere swept convex hulls (SSCH, Sec. III, (1)) and the
distance update scheme from [2]. If this scheme is used, the
computation time of the algorithm is bounded, hence, the
algorithm is real-time capable. Experiments, in simulation
and on the real system, are performed with DLR’s humanoid
Justin [1] (Fig. 1).

An additional contribution of this paper is the augmented
reality visualization (Fig. 1). It allows to validate the collision
model, which is important for safety and also demanded by
standards such as IEC 61508.

The paper is organized as follows: After related work in
Sec. II, we present the algorithm in Sec. III, followed by
visualization (Sec. IV) and experiments (Sec. V).

II. RELATED WORK

Besides in robotics, also in computer graphics the problem
of collision detection has been thoroughly studied (see books
[4], [5] for an extensive and intelligible overview). Computer
graphics usually considers bodies arbitrarily moving in space,
whereas robotics focuses on the kinematic tree that moves
these bodies. So, computer graphics starts from an arbitrary
pose (resp. motion) for each body, whereas robotics considers
how it is constituted by a kinematic chain of motion prim-
itives. This kinematic chain represents the robot’s technical
construction from potentially different types of joints. This
is also our particular focus in contrary to libraries such as
PQP [6], SWIFT [7], V-Clip [8], SOLID [5], or CCD [9].

A further demand for collision detection and visualization
of mobile manipulators arose in the area of automation in
construction [10][11] usually for vehicles with a 3-DOF
manipulator. Kim [10] explicitly mentions that but does not
handle the vehicle. Hwang’s approach [11] only applies to
simple bar-shaped bodies like booms of tower cranes. How-
ever, construction sites often involve vehicles and complex-
shaped objects where we think our more general approach
is useful.

Established 2d algorithms like the dynamic window ap-
proach [12] or the nearness diagram [13] provide continuous
collision detection for vehicles, but are not easily transferable
to 3d. A typical motion model in 2d is circular motion.
Some approaches compute the area potentially touched by
the vehicle and stop if an obstacle is inside. Often the area
is represented as a grid which does not scale well to 3d.
Therefore, in [3] we proposed a 2d SSCH representation,
which we will extend here to 3d as the vehicle joint. Other
approaches such as collision cones [14], [15] and velocity
obstacles [16], [17] work in 3d but only for linear motion.

Collision detection in 3d originally considered discrete
configurations [5], [6], [7], [8] as opposed to time intervals
for computational reasons. Recent approaches considered
continuous collision detection [9] but simplified the overall
motions of each body instead of handling the kinematic
structure as our approach does.

Further, [18] use s-topes, a generalization of SSCHs. This
representation is more general but makes distance compu-
tation more complex than for SSCHs. In [19] the authors
propose to cover the trajectory induced by a revolute joint
by the convex hull of multiple points, as we do. However,
we are strictly conservative by adding a conservative “error
bound” as a buffer radius and generalize this idea to different
kinds of joints here.

III. ALGORITHM

We consider a system of bodies moving in 3d space that
are connected via a number of abstract joints. For each
Body Bi there is a body fixed frame Ci attached to Bi. An
abstract joint is a time-varying transformation between two
frames, resp. bodies, thus it provides their relative motion
over time. It is abstract in the sense that it can represent a
real physical joint like a revolute or prismatic joint, thus
a physical connection between two bodies, or any other
relative motion such as the path of a vehicle with respect
to a world frame for example. A joint can even represent the
measurement of a relative pose in terms of 3d rotation and
translation if that is available within the system. In all cases
a joint defines the relative motion of two bodies. The whole
system’s motion is established by a tree of joints, which
we call the kinematic tree and which defines the system’s
forward kinematics. In that, each joint is of a certain type
and depends on values from the configuration vector q, e.g.
a joint angle.

We use sphere swept convex hulls (SSCH) for volume rep-
resentation, which we introduced in [2]. A SSCH represents
a volume by a finite set of points [pk]

n
k=1 and a radius r

V
(
r; [pk]

n
k=1

)
= conv{[pk]nk=1}+

{
b ∈ R3

∣∣ |b| ≤ r}, (1)

where conv is the convex hull of a given set of points. So
each volume is the Minkowski-sum of a convex polyhedron
given by a set of points, and a ball of radius r.

Denoting static volumes in frame Cj by Vj ⊂ R3, the
volume V ii of a body Bi in Ci is given as an SSCH bounding
volume

V
(
ri; [p

i
k]
ni
k=1

)
⊃ V ii . (2)



The V ii together are the collision model, [2] describes how
it is obtained conservatively from a detailed CAD model.
The proposed algorithm will, except for visualization, only
operate on points [pk]

n
k=1 and radii r but never has to

compute the volume V
(
ri; [p

i
k]
ni
k=1

)
or the convex hull

involved explicitly.

A. Joint Specification
Beforehand some notation: A transformation Tj←i is a

matrix mapping of Ci-coordinates to Cj-coordinates (either
static or at a single point in time). Q = {q(λ)|λ ∈ [0, 1]}
represents the motion in the configuration space. Now, con-
sider joint Ji, which is the joint body Bi and frame Ci
move with. Let’s denote its parent joint in the kinematic tree
with Jj and formulate the effect of joint Ji as its motion
Tj←i = {Tj←i(q)|q ∈ Q} represented in the parent frame
Cj . Consequently, the swept volume Vj of a volume Vi that
moves with Ji is

Vj = Tj←i · Vi = {Tj←i(q) · p|q ∈ Q, p ∈ Vi} . (3)

The concrete motion of Ji

Tj←i = Tj←i∗ · Ti∗←i with Ti∗←i = {X(a, q)|q ∈ Q}
(4)

further depends on joint type X , a type specific parameter
vector a, and a fixed transformation Tj←i∗ representing the
location and orientation of Ji in the parent frame Cj . All
of these parameters are given in the kinematic tree. Ti∗←i is
the pure, location-independent motion of Ji, e.g., a rotation
around the origin for a revolute joint. Frame Ci moves while
the intermediate frame Ci∗ does not. In the null configuration
q = 0 both coincide. The joint’s motion model X defines the
transformation between frames Ci and Ci∗ depending on q.
It is a specific function X for each joint type, e.g. revolute,
prismatic joints or others, which takes as input parameters
a, e.g. an axis, and a configuration q, e.g. joint angles, and
returns a transformation matrix from Ci into Ci∗.

To add an implementation for joint type X to our frame-
work means to provide a conservative approximation of the
effect of X for a set of configurations Q but only on a single
point p moving with the joint

V
(
r; [p1, . . . , pL]

)
⊃ Ti∗←i · p. (5)

This is done by defining a function OPX that returns points
p1, . . . , pL and a radius r of an SSCH that fulfills (5) for the
function X modelling the joint type.

OPX(a,Q, p) :=
(
r; [p1, . . . , pL]

)
(6)

Given a correct OPX the framework automatically applies
OPX to all points of the input volume V

(
r; [pk]

n
k=1

)
which

yields a conservative approximation of its swept volume
constituted by Ji:

V
(
r +max

k
rk; [[Tj←i∗ · plk]Ll=1]

n
k=1

)
⊃ Tj←i · V

(
r; [pk]

n
k=1

)
, (7)

with
(
rk; [p

l
k]
L
l=1

)
= OPX(a,Q, pk). This is a specific prop-

erty of the SSCH representation exploited by our framework.
A proof of (7) can be found in [2].

B. Swept Volume and Distance Computation Algorithm

We use the overall algorithm we proposed in [2]:
1) Compute all joint intervals Q = [q0; q1], such that

when the robot starts braking in the next cycle, it will
stop within this interval. The intervals are based on
joint angles, joint angle velocities, latency, and worst-
case deceleration, as well as joint angle uncertainties.

2) Compute swept volumes Vik of all bodies Bi in
all joints Jk from the body down to the world
frame by successively including the sweeping effect
of one joint Jk after the other. The swept volumes are
represented in coordinates of the corresponding joint-
frame Ck of joint Jk.1

3) For each body pair (Bi, Bj)

Compute the distance of Vik and Vjk in the
first common joint-frame Ck on the sequences of
joints from Bi and Bj down to the world frame.

4) Stop the robot if any of the distances from 3 is
zero.2

In addition to this algorithm we also apply the distance
update scheme we introduced in [2], thus the real-time
algorithm that refines step 3. Due to the different nature of
the joint types to be modelled later on, Q in step 1 may be
represented by a nominal value plus an uncertainty bound
instead of an interval for some kinds of joints. Step 2 applies
the effect of one joint after another. It conservatively bounds
the swept volume of a chain of joints k1, . . . , km−1

Vikm ⊂
1∏

j=m−1
Tkj+1←kj (Qkj ) · V ik1 (8)

by considering all combinations of joint configurations Q =
Qk1×. . .×Qkm−1

. In (8) k1 is the body-fix frame of Vi and
rightmost in the product and km is the frame for which the
swept volume of Vi is desired and leftmost.

C. The Set of Joint Types

In what follows, we provide implementations for some
basic joint types. For some types we show several alternative
implementations, allowing to trade-off between accuracy
and computation time, the latter mainly determined by the
number of points returned by a solution. Any of the provided
solutions are conservative. For a point p and Q = [q0, q1] we
denote the result of the joint model at time λ ∈ [0, 1] by

pλ = X(a, q(λ)) · p with q(λ) = (1− λ)q0 + λq1. (9)

1) Revolute Joint: A 1-DOF joint that provides single axis
rotation. The centre of the rotation Xrev(a, α) is the origin
and the parameter a is the rotation axis. The configuration
q = α of a revolute joint is a joint angle. The operation input
Q = [α0, α1] is a joint angle interval that bounds motion (e.g.
braking distance) and uncertainty of α. We assume |α1 −
α0| < π. The point p moves on a circular arc within angle

1Vi
k is represented in Ck but does not include the sweeping effect of Jk

(cf. notation in Sec. III-A).
2Alternatively, less or equal a configured safety distance.
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Fig. 3. (a) and (b) Revolute joint computation: bounds of a circular
arc by an SSCH with 1 and 2 points. (c) Vehicle joint computation. (d)
parametrization of vehicle braking distance as (s, α)T .

α0 and α1 around axis a. Operations may cover the arc by
an SSCH of 1 or 2 generating points (more are theoretically
possible):

Circ1 (a, [α0, α1], p) :=
(
sin |φ| ‖p‖; [ 12 (p0 + p1)]

)
(10)

Circ2 (a, [α0, α1], p) :=
(
f‖p‖; [ p0+fp1/2, p1+fp1/2]

)
(11)

with φ = α1−α0

2 and f = 1−cosφ
2 .

Fig. 3(a)-(b) show a 2d visualization of Circ1 and Circ2.
Circ1 is faster while Circ2 is more accurate.

2) Prismatic Joint: A 1-DOF joint that provides single
axis sliding. Xpris(a, d) is a translation; parameter a is the
translation axis. The configuration is a slider position q = d
denoting the translation distance along a. The operation input
Q = [d0, d1] is an interval that bounds motion (e.g. braking
distance) and uncertainty of the slider position d. The point
p moves along a line segment of length d1 − d0 which can
be covered by an SSCH of 1 or 2 generating points. The first
just takes the middle and adds a radius, the second takes both
endpoints and is exact.

Trans1 (a, [d0, d1], p) :=
(
1
2 |d1 − d0|; [ 12 (p0 + p1)]

)
(12)

Trans2 (a, [d0, d1], p) :=
(
0; [ p0, p1]

)
. (13)

3) Orientation Joint: A 3-DOF joint that allows for an
arbitrary 3d rotation with rotation centre at the origin. Its
purpose is to incorporate relative orientation measurements,
thus it usually does not represent a physical connection of
bodies. Compared to a revolute joint, a 3d rotation joint takes
the rotation axis from the configuration vector instead of hav-
ing a fixed parameter. However, apart from the source of the
axis the models are equivalent Xrot3(_, [a, α]T )=Xrev(a, α).
We use an axis-angle representation q = [a, α]T as the
configuration.

Instead of some multi-dimensional interval, the orientation
joint takes a single valued orientation error bound, which is

the maximum possible angle β between measured and true
orientation. Thus, the operation input [a, α, β] represents

Q =
{[

a′

α′

] ∣∣ ∣∣angle(Xrot3(_, [ aα ]) ·X−1rot3
(
_,
[
a′

α′

]))∣∣ ≤ β} .
(14)

The resulting spatial effect of Q for a point p is the
intersection of a conical sector of angle β with the surface
of a sphere of radius ‖p‖, thus a circular sphere sector. The
following operations using SSCHs of 1 or 4 generating points
are 3d extensions of the circular arc approximations in (10)
and (11)

Rot3D1 (_, [a, α, β], p) :=
(√

2− 2 cos(β) ‖p‖; [p∗]
)
(15)

Rot3D4 (_, [a, α, β], p) :=
(
f1‖p‖; [f2p∗+f3p⊥1 ,

f2p
∗+f3p

⊥2 , f2p
∗+f3p

⊥3 , f2p
∗+f3p

⊥4 ]
)

(16)

with p∗ = Xrot3(_, [a, α]T )·p, p⊥∗ = ±e⊥1 ± e⊥2
and f1 = 1−cos β

2 , f2 = 1− f1, f3 =
√
2 sinβ.

with [x, y, z]T = p∗, e⊥1 =

√
x2+y2+z2√
y2+z2

[0,−z, y]T and e⊥2 =
√
x2+y2+z2√
y2+z2

[y2+ z2,−xy,−xz]T being an orthogonal set3

of vectors having length ‖p∗‖. The uncertainty β might as
well be a parameter instead of being part of the configuration
vector.

4) Location Joint: A 3-DOF joint for arbitrary 3d trans-
lation. Similar to the orientation joint it can incorporate
relative position measurements with a single valued error
bound 4, i.e. a sphere Q = {q′ | ‖q′− q‖ < 4} of possible
true locations around the configuration q = [x, y, z]T . Our
operations uses 1 point

Trans3D1 (_, [x, y, z,4], p) :=
(
4; [ p+[x, y, z]T ]

)
(17)

A combination of a location and an orientation joint allows
for handling static as well as arbitrary tracked moving objects
in the environment.

5) Vehicle Joint: The vehicle joint represents the braking
trajectory of a vehicle; it does not model the vehicles location
and orientation (nor the location and orientation uncertainty),
which can be done using a location and a orientation joint.
The vehicle joint operates in the x-y plane and leaves z
coordinates untouched. The braking motion starts at the
origin. For now, we also assume that it starts tangent to the
x-axis; omni-directional vehicles will be considered later on.
The vehicle joint’s input are not v and ω but the signed
braking distance s and corresponding change of orientation
α (Fig. 3(d)), which originate from the vehicle’s velocity
(v, ω). This is comparable to providing revolute joints with
joint angle bounds [q0, q1] as opposed to (q, q̇).

A general vehicle joint operation not utilizing any motion
constraints arises when signed braking distance and change
of orientation are bounded separately and all potential robot

3This e⊥ choice is numerically best for |x|≤|y|≤|z|, otherwise roles
should be swapped.



poses within these bounds are considered to be reachable

Q× = Qs ×Qα (18)

with Qs =
{

[0,s] s≥0
[s,0] s<0

and Qα =
{

[0,α] α≥0
[α,0] α<0

.

Such a conservative operation can be implemented by a
prismatic and a revolute joint

Vehicle× (_, [s, α]) :=

Circ2
(
[0, 0, 1]T , [0, α]

)
◦ Trans2

(
[1, 0, 0]T , [0, s]

)
.

(19)

First, the prismatic joint covers the straight braking com-
ponent Qs. Then, its output is rotated by a revolute joint
covering the orientation change component Qα. Notice, that
the revolute joint’s rotation centre is in the vehicles reference
point at braking motion start.

6) Vehicle Joint with Circular Motion Constraint: For
vehicles constrained to circular motion, we utilize that con-
straint to shrink the braking volumes constituted by a vehicle
joint. This becomes possible if the circular motion constraint
is preserved by the vehicle within the whole braking, e.g.,
in case of a vehicle that keeps its steering angle fixed within
braking. This yields a circular braking trajectory, which is the
intuitive braking trajectory for moving cars. This behaviour
is equivalent to slowing down v and ω proportionally or can
further be seen as keeping the instantaneous centre of rotation
(ICR) fixed. The motion model for such vehicles is a circular
or straight motion starting at the origin tangent to the x-axis

Xveh(_, [s, α]) =

cosα − sinα 0 s sinc α2 cos α2
sinα cosα 0 s sinc α2 sin α

2
0 0 1 0


(20)

with sincφ =
{

sinφ
φ φ 6=0

1 φ=0
.

The configuration q = (s, α) represents the braking trajectory
of the vehicle’s reference point, which is assumed to be the
origin. s is the arc length and α the corresponding angle.
This representation jointly models circular trajectories (s 6=
0, α 6= 0) as well as straight trajectories (s 6= 0, α = 0)
and even turning on the spot (s = 0, α 6= 0). It avoids
singularities other parametrizations, e.g., those using the ICR,
have.

As operation input [s0, s1, α0, α1] we use intervals for s
and α which bound the uncertainty of braking distance and
angle. The motion is covered by considering λ[s, α]T with
λ ∈ [0, 1] representing the whole circular arc of the reference
point:

Q =
{
λ
[
s′

α′

] ∣∣ λ ∈ [0, 1], s′ ∈ [s0, s1], α
′ ∈ [α0, α1]

}
.
(21)

The following operation simulates the four bounding motions
and covers non-linear effects in the radius (Fig. 3(c)). It uses
4 ∗ L + 5 generating points with L being a parameter that

WorldEnvironment
Camera

(see Sec. IV)

VehiclePose
(MotionStart)

Rot3D+Trans3D

depth sensors
(LRF)

VehicleFixFrame
Vehicle

Platform

...

Torso

LeftArm

...
Head

...

RightArm

...

Fig. 4. Frames of Justin’s kinematic tree. Blue frames model the vehicle
motion. Locating the vehicle (Rot3D+Trans3D) is modelled separately
from its braking behaviour (Vehicle). Gray elements show potential addi-
tional objects such as depth sensors for tracking or collision detection and
the camera for the augmented reality visualization of Sec. IV.

adjusts the number of approximation points per arc:

Vehiclecirc (L, [s0, s1, α0, α1], p) :=(
r;
[
p, [[p∗si,αj , [V

l
si,αj ]

L−1
l=0 ]1i=0]

1
j=0

])
(22)

with p∗si,αj = Xveh(_, [si, αj ]) · p
r = 1

6

(
α1−α0

2

)2
max{|s1|; |s0|}+

(
1−cos α1−α0

2

)
‖p‖

and V lsi,αj = Xveh(_, [ l·siL ,
l·αj
L ]) · Usi,αj

Usi,αj = p+Q(αL )
1
2 (Xveh(_, [ siL ,

αj
L ]) · p− p)

Q(α) =

(
1 tan α

2
− tan α

2 1

)
For a proof of correctness, further details, or a simplified
implementation without uncertainty see [3].

7) Omnidirectional Vehicle Joint: Today, a lot of mo-
bile robots provide omni-directional motion, in particular
many service robots such as DLR’s Justin. The previously
introduced vehicle joint operations can easily be extended
to cover braking motions into an arbitrary direction φ.
In Vehicle× simply the axes of the translative component
Trans2

(
[cosφ, sinφ, 0]T , [0, s]

)
has to be replaced to point

into relative direction φ. For Vehiclecirc the model Xveh gets
replaced by

Xveh+(_, [φ, s, α]) =cosα − sinα 0 s sinc α2 cos(φ+ α
2 )

sinα cosα 0 s sinc α2 sin(φ+ α
2 )

0 0 1 0

 (23)

Operations that consider φ with uncertainty are also possible.

D. Model for the Humanoid Robot Justin

Fig. 4 shows a kinematic tree for DLR’s humanoid Justin
including the environment and additional sensors that can
be used for sensor based collision detection in the future.
Using the world frame of the environment as the base
frame allows to incorporate the environment into the self
collision detection system proposed in this paper, but also



Fig. 5. Workflow of camera pose determination for visualization of the collision volumes.

demands for providing robot pose measurements, which we
did by dead reckoning from odometry. The blue elements
in Fig. 4 cover the modelling of the vehicle motion. It
shows a clear separation between locating the vehicle and its
braking behaviour due to its current velocity. First, location
and orientation joints provide the current vehicle pose, a
frame that also is the start of the braking. Then, a vehicle
joint models the braking from current velocity, and yields
the vehicle fixed frame, a frame that is fixed to the robot
and provides the base frame for the robots own kinematic
structure.

Onboard obstacle sensors would provide there data in
the VehiclePose frame. Consequently, our algorithm would
operate in that frame and thus not include vehicle pose
uncertainty in collision checks with the sensor data (future
work), which is the intended behaviour for a local sensor.
Nevertheless, the vehicle velocity would affect the swept
volume size via the vehicle joint and thus braking distances
would be included in the sensor based collision detection.
Opposed to that, collision checks between a body and an
(preconfigured) environment model would still be affected
by braking distances and pose uncertainty.

IV. AUGMENTED REALITY VISUALIZATION

Besides configuration (see model construction in [2])
visualization is an important task in a collision avoidance
system. Visualization of the collision model on top of images
of the real robot should be used to validate the configuration
data, i.e. the kinematic tree and bounding volumes. Visual-
ization of the swept volumes may also support human as
an assistive tool while operating equipment, e.g. a crane or
lifting platform. We present a simple algorithm that allows
to overlay volumes (SSCHs) or CAD models connected to
nodes of the kinematic tree onto a series of images taken
from a static camera in arbitrary pose. We use a simple
but effective labelling process for determining the camera
pose, thereafter SSCH are transferred into triangle-meshes as
shown in [2] and finally visualized using the kinematic tree
given the current configuration vector. The labelling has to
be done once, the visualization is then possible for different
configurations and camera images or even video data.

The workflow of camera pose determination is shown in
Fig. 5. It starts by taking a picture of the robot in a fixed

but unknown camera pose while the robot is in the known
configuration q. The user now chooses arbitrary feature
points and labels all of them twice: once in the camera
image and once in a CAD model visualisation of the robot
in configuration q. For the visualization we use Coin [20] in
a QT4 GUI. The outcome of the labelling are 3d points from
the CAD model returned in the base frame of the kinematic
tree and according 2d observations of these feature points
in the camera image. We then model-fit the camera pose
where the projection of the 3d points matches best to the 2d
points. For this model-fitting we use the MTK library [21].
The resulting pose links the camera to the kinematic tree
allowing to transform every SSCH (or CAD model) into the
camera frame for visualization.

For retrieving camera poses of good accuracy we suggest
using a three stage process: (I) Adjust camera pose of the
CAD model visualization roughly by hand (rotate and zoom
using the mouse); (II) Label points and fit the camera pose
(pre-labelling in bad camera pose); (III) Now use the fitted
camera pose from (II) and label points again (labelling in
good camera pose). Given the new labelling a refined fitting
of the camera pose is performed.

Further, the labelled feature points should cover all dimen-
sions of 3d space. Theoretically, a minimum of 3 labelled
feature points is sufficient. Besides that, the resulting accu-
racy may depend on the image resolution and the accuracy
of the kinematic tree resp. state q.

The features can also be labelled in different states q and
corresponding camera images. If the camera is moving with
a frame from the kinematic tree, this one must be used as
base frame for the labelling.

V. EXPERIMENTS AND RESULTS

Fig. 6 shows an evaluation of the camera pose error due
to the labelling process. Instead of camera images we used
images retrieved from our CAD model to simulate camera
images. In this way, we obtained ground truth for the pose
and removed all errors due to camera calibration, kinematic
tree, or imprecise CAD models, thus showing the pure error
of the labelling process. The results support our three step
procedure (Sec. IV): It pays off to labels twice, so the final
labelling is done in a perspective close to the camera view.
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Fig. 6. Label accuracy: Error and standard deviation of camera position
(left) and camera orientation (right). Labelled feature points are: (A) 2 eyes,
2 hands in robot pose of Fig. 5. (B) 2 eyes, 2 hands, 4 wheels in robot pose
of Fig. 5. (C) 2 mid points of torso joints (gray ellipse), 2 mid point of
last arm joint (silver line) in robot pose of Fig. 7. The features in (A) are
almost at the same depth leading to a poorly estimated camera pose. (C1-3)
show how important it is to label the CAD model in a similar perspective as
the camera. For comparison (C1) uses the true camera pose, i.e. ideally the
same perspective with very good results. After step (II) (C2), i.e. labeling
in a roughly aligned perspective the error is much worse. After step (III)
(C3), i.e. again labeling using the perspective from step (II), the result is
nearly as good as the ideal perspective in (C1). Feature points C were used
for creating Fig. 7.

Fig. 7. Superimposition of Justin’s CAD (upper right) and collision model
(middle and bottom) over a real camera image (upper left). The camera
pose has been determined by labelling the upper left image using the labels
described in experiment C.

Fig. 7 shows results of the visualization for real camera
images of DLR’s Justin. We used them to verify Justin’s
collision detection configuration. Images for multiple robot
poses provide confidence in the correctness of the kinematic
tree and the bounding volumes of the bodies.

Fig. 8 evaluates the computation times of the actual
collision checking for DLR’s Justin with and without its
mobile platform.

Fig. 9 provides some examples of swept volumes due to
combined motion of revolute and vehicle joints. A more
extensive experiment is shown in the supplementary video,

where 3d results are overlayed on a real video (Sec. IV)
based on measured joint angles and odometry. In the video,
scenes A show a single robot motion: first, overlayed with
its resulting swept volumes; then, overlayed with the 3d
CAD model. Scenes B show swept volumes (10 Circ1,
10 Circ2 joints, Vehicle× joint type for the platform) for
different motions of the platform (straight or spinning) with
and without arm motion. It can be seen how the motions of
the arm and the platform combine to the swept volume of the
arm. This combination is the central point in an integrated
vehicle-manipulator collision avoidance system. All swept
volumes include a safety factor of 2, i.e. the deceleration is
set to be only half the value the robot could actually perform
– a reasonable assumption for real usage.

For the spinning motion it seems surprising that, while
the platform is moving forward the swept volumes of the
wheels point into different directions and even backwards for
the rear wheels. This is indeed correct: The spinning motion
is obtained by constantly changing the steering angle of all
four wheels such that the ICR moves parallel to the robot
center (in world coordinates) leading to a forward motion
of the robot’s center at any moment. The circular motion
constraint in the vehicle joint model (Sec. III-C6) however
assumes, that the wheel’s steering angle and consequently the
ICR are fixed during braking. In that case the robot would
actually leave the spinning forward motion and continue in
a tight curve as indicated by the swept volumes.

Scenes C physically validate the braking assumption and
swept volume computation. At some point in time the robot
starts braking and the swept volumes are fixed then, so
one can see that the physical robot indeed stays inside the
computed volumes. These scenes use no safety factor.

Finally, scenes D show the model validation process we
proposed which indeed revealed a phenomenon we had not
considered so far. D1 shows that when labelling the torso
there are notable (≈ 3cm) errors between the 3d model and
reality (marked with arrows in the video). D2 shows that
when labelling the platform, the platform itself fits well,
but the robot has a similar error. It turned out that this is
caused by the wheel suspensions that creates a small roll/tilt
in the platform. To verify this, we have estimated the roll/tilt
angle and as shown in scene D3 the result fits very precisely.
Consequently, we incorporated the roll/tilt error into our
collision model by adding an appropriate orientation joint
that keeps orientation fixed but adds uncertainty as large as
the observed upper bound of the roll/tilt angle. This leads to
a larger swept volume but covers the suspension effect (E4).
Note, that for checking the collision of two bodies the swept
volumes in the least-common-ancestor frame are used [2].
Hence the additional uncertainty does not affect collision
checks between parts of Justin’s body but only between a
body and an (preconfigured) environment model (see Fig. 4).

Due to the rendering process the overall computation
time for the visualization is not constant but reaches frame
rate (25Hz) for a complex model like Justin (INTEL
i7@2.67GHz+NVIDIA NVS 3100M).



Model Circ1 Circ2 Vehicle FLOPS SV time SV time Dist
∑

time
Fast Justin model 14 6 0 49.622 0.05ms 0.11ms 0.16ms
Fast Justin model 14 6 1 173.697 0.17ms 0.17ms 0.34ms
Accurate Justin model 10 10 0 130.496 0.12ms 0.27ms 0.39ms
Accurate Justin model 10 10 1 1.276.451 1.5ms 1.2ms 2.7ms

Fig. 8. Computational Effort: We tested collision models of DLR’s Justin with and without the mobile platform. Configurations also differ in the number
of joints that were modeled with the more accurate Circ2. Cols 2-4 show the number of operations of each type, followed by the number of floating point
operations and computation time for the swept volume computation. Last two col. show distance and overall computation time for one collision detection
cycle. The distance computation starts each cycle from scratch until full convergence. It can be improved by reusing results from the previous cycle. From
our experience the real-time technique from [2] used with an appropriate time budget allows roughly 3-times smaller distance computation times. Times
were determined on a INTEL i7@2.67GHz.

Fig. 9. Vehicle motion combined with motion of the right arm. (top) Two
views of the arm motion. (bottom) Two views of the combined motion of
arm and the mobile platform. Confer also supplementary video.

VI. CONCLUSION

We presented a general real-time continuous collision
detection algorithm for arbitrary systems of moving bodies
connected to each other in a kinematic tree of joints, in
particular mobile manipulators and their environment. The
approach is not restricted to a specific type of joints but
generic with concrete formulas presented for revolute, pris-
matic, vehicle, location, and orientation joints. With the latter
two as examples, joints even do not have to represent a
physical connection but can represent a measured relative
pose. We further introduced a augmented reality visualization
of the collision volumes, an important tool for validating the
collision systems safety. Future work will be the computation
of the Jacobian of the distance results, an information needed
for collision free path planning.
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