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Abstract— This paper addresses the problem of impedance
control for flexible joint robots based on a singular pertur-
bation approach. Some aspects of the impedance controller,
which turned out to be of high practical relevance during
applications are then addressed, such as the implementation
of nullspace stiffness for redundant manipulators, the avoid-
ing of mass matrix decoupling and the related design of the
desired damping matrix. Finally, the proposed methods are
validated through measurements on the DLR robot.

I. I NTRODUCTION

The topic of impedance control is a traditional one in
robotics. It provides a very suitable framework for con-
trolling robots in contact with an unknown environment
[5]. However, the focus on this field is renewed because
of applications such as force feedback, or service and
medical robotics, where safety of interaction is crucial.
Those applications require also highly light-weight arms,
which have minimal impact inertia and can be mounted
on mobile systems. Because of the inherent flexibility
of the light-weight structures, it becomes necessary to
bring together the control field of flexible joint robots
with that of compliant control. In [1], various Cartesian
compliant control strategies (admittance, impedance and
stiffness control) were compared and implemented on
the DLR light-weight robots. Because of the rather slow
Cartesian sampling rate (6ms), classical impedance control
had the poorest performance. This changed significantly
by increasing the sampling rate to 1ms, enabling the
implementation of high quality impedance control. The
recent results with the Cartesian impedance controller are
the topics of this paper.

The singular perturbation theory is used to extend
existing impedance control methods from the rigid body
robot case to the flexible joint structure. This simple, but
efficient method in case of robots with moderate elasticity
uses a fast joint level torque control loop, which is receiv-
ing its desired torque from a classical Cartesian impedance
controller. The DLR 7DOF light-weight arms (Fig. 1) with
integrated joint torque sensors are very well suited for
this kind of control algorithms [4]. The paper discusses
several methods of providing a nullspace stiffness for the
redundant manipulator in addition to a Cartesian stiffness.
The difference between the methods is illustrated with

Fig. 1. DLR light-weight robot, generation II, using impedance control
in a table wiping application.

measurements. Another practically important aspect was
the design of the desired damping matrix in the case that
the Cartesian mass matrix is not explicitly decoupled by
the controller. Two different approaches to this problem
are presented and were verified in experiments.

II. CONTROL OF THEFLEXIBLE JOINT MODEL

In this paper a model of a robot withn flexible joints
is considered as proposed by Spong [11]:

M(q)q̈ +C(q, q̇)q̇ + g(q) = K(θ − q) + τ ext , (1)

Bθ̈ +K(θ − q) = τm . (2)

Hereinq ∈ <n andθ ∈ <n are the vectors of link posi-
tions and the motor positions, respectively.M(q) denotes
the manipulator’s mass matrix,g(q) the gravity torques
and C(q, q̇)q̇ is the vector of Coriolis and centrifugal
torques.K andB are diagonal matrices which contain
the joint stiffness and the motor inertias.τ = K(θ − q)
is the vector of joint torques andτm the motor torque
vector which is regarded as the control input. Finallyτ ext
is a vector of external torques, which are exhibited by the
manipulator’s environment.
One common approach to the control of a flexible joint
manipulator is the singular perturbation approach, in



which the flexible joint model is virtually split up into
a fast subsystem for the joint torquesτ and a slow
subsystem for the link positionsq. Based on these two
subsystems it is possible to design an inner loop controller
for the joint torqueτ , and an outer loop controller for the
link positionq separately, without the need to refer to the
complete flexible model.
The application of the singular perturbation theory to
flexible joint robots has been widely described in the
literature and is not in the scope of this paper (see, e.g., [7],
[8] for more details). Herein only the resulting controller
structure, which will be used in the following sections
as a basis for the implementation of different impedance
control laws, shall be given briefly.
In [9] it has been shown that, given a desired torque vector
τ d, a state feedback controller of the form

τm = τ d −KT (τ − τ d)−KS τ̇ , (3)

with positiv definite contoller matricesKT and KS ,
can stabilize the torque dynamics around the equilibrium
point τ = τ d, and leads (under a singular perturbation
consideration) to the following link dynamics:

M̄(q)q̈ +C(q, q̇)q̇ + g(q) = τ d + τ ext (4)

with M̄(q) = (M(q) + (I +KT )−1B).
The desired torque vectorτ d in (4) can now be used for
the realization of a Cartesian impedance controller as will
be described in the next section.

III. C ARTESIAN IMPEDANCE CONTROL

Based on the singular perturbation analysis, which was
outlined in the last section, a rigid joint robot model of the
form (4) may be considered for the design of the Cartesian
impedance controller. A detailed study of appropriate
Cartesian impedance control laws for nonredundant and
redundant rigid robots is given, e.g., in [6].
In the following it is assumed that the manipulator’s end-
effector position and orientation can be described by a set
of local coordinatesx ∈ <m, and the forward kinematics
x = f(q) is known. The relevant mappings between
joint and Cartesian velocities and accelerations can be
computed via the JacobianJ(q) = ∂f(q)

∂q as

ẋ = J(q)q̇ , (5)

ẍ = J(q)q̈ + J̇(q)q̇ . (6)

Notice that in this paper only the nonsingular case is
treated, thus it is assumed that the manipulator’s Jacobian
J(q) has full row rank in the considered region of the
workspace. A description of an appropriate singularity
treatment can be found in [6].
The deviation of the actual Cartesian position from the
desired equilibrium pointxd(t) is denoted byex = x −
xd(t). Then the goal for the impedance controller is to

alter the system dynamics (4) such that, in presence of
external forces and torques at the end-effectorF ext ∈ <m,
the closed loop behaviour is given by

Λdëx +Ddėx +Kdex = F ext , (7)

with a desired massΛd, a desired dampingDd and a
desired stiffness matrixKd.
In absence of further forces on the arm, the relationship
between the external torquesτ ext and the forces and
torques at the end-effectorF ext is given by:

τ ext = J(q)TF ext . (8)

From (6) and (4) one can see that the relationship between
the Cartesian accelerations̈x and the joint torquesτ is
given by:

ẍ− J̇(q)q̇ + J(q)M̄(q)−1(C(q, q̇)q̇ + g(q)) =
J(q)M̄(q)−1(τ d + τ ext) . (9)

If the desired torque vectorτ d is chosen as

τ d = J(q)TF τ +C(q, q̇)q̇ + g(q) , (10)

with F τ ∈ <m as a new control input vector, then the
resulting Cartesian behaviour of the robot can be written
as:

Λ(q)(ẍ− J̇(q)q̇) = F τ + F ext (11)

with

Λ(q) = (J(q)M̄(q)−1J(q)T )−1 (12)

as an equivalent Cartesian mass matrix.
With (11) and (7) it follows that the feedback law

F τ = Λ(q)ẍd −Λ(q)Λ−1
d (Ddėx +Kdex) +

(Λ(q)Λ−1
d − I)F ext −Λ(q)J̇(q)q̇ (13)

leads to the desired closed loop behaviour (7).
In [6] it has been shown that, in principle, the same
feedback law as described above may also be used in the
case of a kinematically redundant manipulator (m 6= n).
But it is well known that, in the redundant case, also those
motions of the joints have to be considered which are
embedded in the nullspace of the JacobianJ(q) and which
do not affect the end-effector position and orientation.
Notice that these motions have been eliminated in (9) by
the premultiplication withJ(q). For a formal analysis
of this situation it is necessary to introduce additional
nullspace-coordinatesn which, together with the Carte-
sian coordinatesx, admit a complete description of the
robot’s dynamics. An interesting set of such nullspace-
coordinates with some advantageous properties was intro-
duced by Park in [10].
In order to keep the computational complexity low, in
the next section an appropriate extention of the Cartesian
impedance controller (10) and (13) is treated, which can be
used for the control of the manipulator’s nullspace motion
without a formal introduction of additional coordinates.



IV. N ULLSPACE STIFFNESS

In this section it is assumed that the desired nullspace
behaviour can be characterized in joint space by a de-
sired positive definite stiffness matrixKN and a positive
definite damping matrixDN as well as a desired equi-
librium point qN . From these a desired torqueτ d,N =
−KN (q− qN )−DN q̇ is computed according to a joint
level PD-controller. In order to prevent interference with
the Cartesian impedance behaviour, this desired torque
has to be projected into the manipulator’s nullspace by a
properly chosen matrixN(q). The desired torque is then
composed as

τ d = τ d,cart +N(q)τ d,N (14)

with τ d,cart as the impedance controller torque from
(10). In the following, three different nullspace projection
matrices of different complexities are compared.

A. Static Nullspace Projection

Let V (q) denote a full rank left annihilator ofJT (q),
i.e., V (q)JT (q) = 0. Then a projection matrix of the
form

N1(q) = V (q)TV (q) (15)

may be used to project the desired torque into the
nullspace of the manipulator’s Jacobian viaτ 0 =
N1(q)τ d,N .
Notice that in practice the matrixV (q) may be computed
by a singular value decomposition of the Jacobian. Notice
also that, in principle,V (q) could also be used for
the construction of nullspace coordinatesn, which were
mentioned in the last section, viȧn = V (q)q̇.

B. Dynamically Consistent Projection

It is well known that a static nullspace mapping is not
sufficient in order to get a nullspace torque which does not
affect the Cartesian behaviour. This can be easily seen by
regarding the dynamical equations. A sufficient condition
for a nullspace mapping to be consistent with the equations
of motion is given by

J(q)M̄(q)−1N(q) = 0 , (16)

as can be seen from (9). Obviously, this condition can be
fulfilled for example with a mapping of the form

N2(q) = M̄(q)V (q)TV (q) (17)

in which the statical nullspace projection matrix is premul-
tiplied, and thus scaled, by the manipulator’s mass matrix.
Another dynamically consistent nullspace mapping, which
fits very well in the framework of operational space
control, was proposed by Khatib [6]:

N3(q) = (I − JT (q)Λ(q)J(q)M̄−1(q)) . (18)

This mapping has the conceptual advantage of being a
projection matrix (N3N3 = N3), thus avoiding the
above mentioned scaling fromN2. In order to implement
this mapping, the Cartesian mass matrix is needed as well
as the inverse of the joint mass matrix. But it is important
to notice that these values have to be computed also for
the implementation of the general impedance control law
in (13).

V. AVOIDING THE DECOUPLING OF THEINERTIAL

BEHAVIOUR

The decoupling of the inertial behaviour and the com-
mand of an arbitrary desired mass matrix in (7) using the
controller (13) turns out to be very difficult to realize in
practice. Looking at (13), it is clear that the decoupling
can not be applied around the robot singularities, since
the singularity ofJ(q) implies through (12) that some of
the elements ofΛ(q) will tend to infinity. This would in
turn lead to infinite desired joint torques using (13), (10).
But even in regions of the workspace whereJ(q) is well-
conditioned, the experimental success was limited in terms
of the range of reachable values and of the decoupling
accuracy. Possible reasons therefore are in our opinion:

• The influence of joint friction, which cannot be
completely eliminated by the joint torque controller
and a feed-forward friction compensation.

• The limited accuracy of the dynamical model.
• The additional need to measure the Cartesian force

at the end-effectorF ext, which is in our setup only
available with lower sampling rate of 6 ms.

As an alternative to (13), by focusing only on the imple-
mentation of Cartesian stiffness and damping, the follow-
ing simpler control law was preferred:

F τ = Λ(q)ẍd −Ddėx −Kdex

−C̄(q, q̇)ėx −Λ(q)J̇(q)q̇ (19)

τ d = J(q)TF τ +C(q, q̇)q̇ + g(q) , (20)

whereC̄(q, q̇) can be an arbitrary matrix, for which the
skew symmetry ofΛ̇(q)−2C̄(q, q̇) holds, e.i.C̄(q, q̇) =
1/2Λ̇(q). This leads to the following closed loop dynam-
ics:

Λ(q)ëx +Ddėx +Kdex + C̄(q, q̇)ėx = F ext . (21)

Equation (21) represents a passive mapping from the
external forceF ext to the velocity errorėx, ensuring the
stability of the system in free motion and in feedback
interconnection with a passive environment.

VI. DAMPING DESIGN

While imposing the closed loop dynamics (21) to the
robot, the question raises up, how to design the desired
damping matrixDd depending on the desired stiffnessKd

and the actual Cartesian mass matrix of the armΛ(q).



What the user may wish to specify for an application,
is a well defined damping behaviour in every Cartesian
direction (e.g., a critically damped one). It is then obvious
that the damping matrixDd cannot be constant, but has
to be chosen as a function ofΛ(q). In the following,
the variation ofΛ(q) will be considered slow, so that its
derivative can be neglected, reducing (21) in the absence
of external forces to

Λ(q)ëx +Ddėx +Kdex = 0 . (22)

All matrices which will be derived fromΛ(q) are assumed
to be quasi-static as well.

A. Factorization Design

If the eigenvalues of the impedance dynamics should
be all real, it can be easily seen that this can be
achieved by a damping matrix of the formDd(q) =
A(q)Kd1 +Kd1A(q), whereA(q) andKd1 are defined
asA(q)A(q) = Λ(q) andKd1Kd1 = Kd respectively.
(22) can then be factorized as

A(q)
(
A(q)ëx +Kd1ėx

)
+ (23)

+Kd1

(
A(q)ėx +Kd1ex

)
= 0 . (24)

With the substitutionA(q)ėx + Kd1ex = w, this leads
to the system

A(q)ėx +Kd1ex = w (25)

A(q)ẇ +Kd1w = 0 , (26)

which hasn pairs of equal, real eigenvalues. An heuristic
design approach may then be to choose a general damping
design of the form

Dd(q) = A(q)DξKd1 +Kd1DξA(q) , (27)

whereDξ = diag{ξi} is a diagonal matrix and0 ≤ ξi ≤ 1
(0 for undamped behaviour and 1 for real eigenvalues).
For a wide stiffness range this approach leads indeed to
numerical eigenvalues with a damping very close to the
desired one.

B. Double Diagonalization Design

An more elegant approach to the design of the damping
matrix can be developed based on the generalized eigen-
value problem known from matrix algebra [3]:
Given a symmetric positive definiten×n matrix Λ and a
symmetricn×n matrixKd, an×n nonsingular matrixQ
can be found, such thatΛ = QQT andKd = QKd0Q

T

for some diagonal matrixKd0.
By choosing the damping matrix as:

Dd(q) = 2Q(q)DξK
1/2
d0 Q

T (q) , (28)

an error dynamics of the form

Q(q)QT (q)ëx + 2Q(q)DξdK
1/2
d0 Q

T (q)ėx+ (29)

Q(q)Kd0Q
T (q)ex = 0 .

can be obtained. This leads in the new coordinatesw =
QT (q)ex to a system ofn decoupled equations with the
requested damping behaviour:

ẅ + 2DξK
1/2
d0 ẇ +Kd0w = 0 . (30)

As mentioned before,Q(q) is here assumed to be quasi-
static. Notice that the decoupling can be achieved only in
some particular directions, which are given byQ(q) and
hence depend onΛ(q) andKd. This is not surprising,
since the controller (19) does not provide a decoupling of
the mass matrix. Consequently, if the system is excited,
oscillations will occur decoupled and with the desired
damping behaviour only in those special directions. This
is the main limitation of the method.

VII. E XPERIMENTAL RESULTS

A. Nullspace Behaviour

In this experiment the effects of the different nullspace
projections from section IV on the Cartesian behaviour
are treated. A desired Cartesian impedance behaviour was
chosen, which is characterized by the stiffness values in
table I and damping values ofξi = 0.7. In this experiment

TABLE I

COMMANDED VALUES FOR THE DIAGONAL CARTESIAN STIFFNESS

MATRIX IN THE FIRST EXPERIMENT.

x y z roll 1 pitch yaw
1000 1000 1000 300 300 300
N
m

N
m

N
m

Nm
rad

Nm
rad

Nm
rad

no external forces were present, and therefore, for an ideal
nullspace projection, there should be no Cartesian end-
effector deviation from the equilibrium pointxd indepen-
dently of the manipulator’s nullspace motion.
The desired equilibrium point for the nullspace motion
was simply chosen asqN = 0. The nullspace stiffness
and damping matrices were chosen as diagonal matrices
KN = kNI andDN = dNI. The initial configuration of
the arm can be seen in Fig. 2
In order to generate an oscillating nullspace motion, a

negative value was chosen for the damping factor together
with a positive value for the stiffnesskN

dN = −0.5k1/2
N , (31)

kN = 50 Nm/rad . (32)

The resulting end-effector motion during the oscillating
nullspace motion can then be used for an evaluation of
the nullspace projections. In this comparison, only the
translational motion of the end-effector shall be used.
Then the considered Cartesian error||ex||t denotes the

1The values for the rotational stiffness were deliberately chosen high, so
that the particular representation of orientations has no significant effects
on the results, as pointed out in [2], [12].



Fig. 2. Initial configuration of the arm for nullspace and damping design
experiments.

Euclidean norm of the translational components ofx−xd
only. In Fig. 3 these Cartesian errors are shown for
the different nullspace projection matrices. Herein the
projection matrices were switched online betweenN1,
N3, andN2 during the nullspace oscillation. One can see
that the Cartesian errors are considerably larger in case of
the static nullspace projection viaN1, while the errors
with the dynamically consistent projection matricesN2

andN3 are of similar magnitude.
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Fig. 3. Cartesian Error||ex||t for the different nullspace projections.

In order to visualize also the nullspace motion, which was
present during the generation of Fig. 3, the projection of
the joint position deviationq − qN into the nullspace is
given in Fig. 4. While the amplitudes of the oscillations
in the nullspace forN1 are the lowest (Fig. 4), they
result in high Cartesian errors (Fig. 3). One can also
see that the period of the oscillation is slightly different
for the different nullspace projections. This results from
the different weightings of the nullspace stiffness and the
damping value by the projection matrices.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

time [s]

P
ro

je
ct

ed
 p

os
iti

on
 d

ev
ia

tio
n 

[ra
d]

with N
1

with N
3

with N
2

Fig. 4. Projected Joint Error||V (q)(q − qN )||2 for the different
nullspace projections.
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Fig. 5. Position step responses with the factorization damping design
for ξx = ξy = ξz = 0.7.

B. Damping Design

The effectiveness of the two proposed damping de-
sign methods from Sect. VI is evaluated based on step
responses which are executed successively in the three
translational directions. During the experiment, the desired
stiffness values from table II were used.

TABLE II

COMMANDED VALUES FOR THE DIAGONAL CARTESIAN STIFFNESS

MATRIX AND THE NULL -SPACE STIFFNESS.

x y z roll pitch yaw null-space
4000 4000 4000 300 300 300 0.0
N
m

N
m

N
m

Nm
rad

Nm
rad

Nm
rad

Nm
rad

The damping values are set toξroll = ξpitch = ξyaw =
0.7 for the rotations and toξn = 0.0 for the null-space. In
Fig. 5, all the step responses are critically damped using
the factorization damping design. Since the Cartesian mass
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Fig. 6. Position step responses with a starting pointx0, with the
factorization damping design forξx = 0.3, ξy = 1.0, ξz = 0.3.
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Fig. 7. Position step responses with a starting pointx0, with the double
diagonalization damping design forξx = 0.3, ξy = 1.0, ξz = 0.3.

matrix is not decoupled, it can be seen that a step in one
coordinate is exciting also the other directions, but the
disturbance is rapidly rejected. The steady-state errors are
caused by the lack of perfect compensation of Coulomb
friction. Figure 6 and 7 show measurements with the
factorization design and the double diagonalization design,
respectively, both with the damping set toξx = 0.3, ξy =
1.0, ξz = 0.3. The performance of both methods is similar
and corresponds well to the desired one.

VIII. S UMMARY

In this paper various practically relevant aspects of
impedance control for redundant robots have been treated.
The actual implementation of the impedance controllers on
a flexible joint robot was based on a singular perturbation
approach. Three different kinds of nullspace projections
for the realization of a nullspace stiffness were described.
This aspect has already been treated in detail in the
literature and the focus herein lies on the experimental

comparison. Another aspect, which we consider as quite
important from a practical point of view, is the design
of a suitable damping matrix. This design problem arises
when a decoupling of the manipulator’s mass behaviour
is not possible or not desired. A rather heuristic method
as well as a method based on double diagonalization of
symmetric positive definite matrices have been presented
and experimentally compared.
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