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Abstract— A ball catching scenario with the mobile humanoid
Rollin’ Justin is presented. It can catch up to two simultaneously
thrown balls with its hands, reaching a catch rate of over 80%.
All DOF (degrees of freedom), i.e., the arms, the torso, and
the mobile platform, are used for the reaching motion and
the system works completely wirelessly using only onboard
sensing. The task is demanding because of the necessary
precision in space (< 2cm) and time (< 5ms) as well as its
realtime character due to the short flying time (< 1s). Fast
perception, a good catching strategy and whole body path
planning and control are important, but their tight interplay
enabled by an appropriate system architecture is essential.
The system overview presents the design considerations for
extending Justin’s versatility to this highly dynamic task. The
key is not to radically change one component of the system but
to do well-considered upgrades on all architectural levels, be it
sensors, algorithms or middleware.

I. INTRODUCTION

Ball catching has a long history ([1], [2], [3], [4], [5])
as a challenging experimental task to help to test and
further develop a number of robotic key technologies, like
fast perception and estimation, sensor fusion, realtime path
planning or realtime system architectures (including buses,
computing resources, software middleware) to name only a
few. To successfully catch a flying ball, a tight interplay
of fast perception, a good catching strategy, body control
and dexterity is needed to achieve the necessary precision in
space and time.

A. Related Work

Over the years the robotic systems used as well as the per-
ception and planning methods got more and more complex.

In the famous and pioneering work [1], [2] the 4 DOF
“WAM” arm, equipped with a gripper to grasp the ball, and
an active vision system is used. The heuristic catch point
selection chooses the closest point of the ball trajectory to
the robot base and orients the gripper perpendicular to the
trajectory. A Cartesian path is generated as a third order
polynomial and executed by inverse kinematics running in
the control loop.

The system presented in [4] has a 5 DOF arm on a
stationary humanoid upper body, but only the arm is moving.
It uses a “cooking basket” at the end effector for catching
the ball and an active vision system. The inverse kinematics
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Fig. 1. Rollin’ Justin [6] catching two simultaneously thrown balls. The
mobile humanoid consists of an omnidirectional platform with variable
footprint and an upper body with 19 active DOF, built from two DLR-
LWR-III arms [7] with 7 DOF, a torso with 3 (+1 passive) DOF and a
neck with 2 DOF, and is equipped with two 12 DOF DLR-Hand-II [8].
The system operates completely wirelessly using only onboard sensing (see
Sec. V). Weight: upper body 45 kg; mobile base 150 kg.

is solved by a neural network, which should lead to a human
like movement behavior.

In [5] the ball is perceived by a stationary stereo camera
with 1m baseline mounted near the thrower. The ball is
caught with a dexterous four-finger hand with 12 active DOF
mounted on a 7 DOF lightweight robot. The planning of the
optimal catch point and the generation of the joint paths is
computed by solving a unified nonlinear optimization prob-
lem with nonlinear constraints. It generates a kinematically
optimal catch motion, including even a simple geometry
model of the robot and its workcell for collision avoidance.

B. Contributions

In this paper we present ball catching with the mobile
humanoid robot Rollin’ Justin (Fig. 1) giving a substantially
more in-depth description and discussion of the system com-
pared to the video [9]. It can catch up to two simultaneously
thrown balls with its hands with a success rate of over 80%.
All DOF are used for the reaching motion, including the
arms, torso and mobile platform (as 1 DOF translation). Fur-
ther, the head joints are used to keep the ball in the cameras’
field of view. The system operates completely wirelessly
using only onboard sensing and an external compute cluster
for path planning coupled by WLAN.

This exceeds previous work not only by the pure complex-
ity of the used robotic hardware with its many DOF. In fact,



Fig. 2. The ball catching setup. The balls are thrown by a human from a
distance of about 4-6m towards the robot with a speed of typically 7 m/s,
resulting in a flight time of about 1s. The two ball trajectories (∆t = 20 ms)
and Justin in the final catch configuration are shown. The (simple) collision
model (virtual cylinder and walls), against which the planner tests both
TCPs of the final catch configuration to avoid self-collisions, is depicted in
pink. The ball has a diameter of 8.5 cm and a weight of 50 g resulting in
significant air drag effects (for a 5 m throw > 20 cm shorter flying distance
as compared to a purely ballistic trajectory [3]).

the main challenge is that everything is moving: the camera
system as well as the arms are mounted on a moving torso
and mobile platform. So, one has to accurately keep track of
all relative frames and timings, which is specially hard here
because of, e.g., the elasticities of the robot’s lightweight
structure or the not globally synchronized clocks of the many
sensors, actuators and computers.

This paper serves two objectives. First, it provides a
consistent overview of all components of the system. Second,
the design decisions are described to extend the capabilities
of Rollin’ Justin, which was originally built for bimanual
(dexterous) manipulation, to also perform highly dynamic
perception-planning-action-tasks like catching flying balls.

The maxim for this ”upgrade” of Justin was to change the
system as little as possible, but to do well-considered im-
provements at all levels of the system architecture, be it sen-
sors, perception, planning and control algorithms, computing
and communication resources or the software middleware.
We think the lessons learned here do not only apply to ball
catching or humanoid robots. They hold more generally as
a complex robotic system can only be made more versatile
by such a holistic system architectural approach, because
optimizing the hardware for one task (e.g., making the
structure stiffer by adding material) usually sacrifices the
performance for other tasks (e.g., low weight for mobility
and safety).

II. SETUP AND CHALLENGES

A. Setup

Fig. 2 shows the ball catching setup. The thrown balls are
tracked by a head-mounted stereo camera system. Based on
this, a (continuously improving) prediction of the balls’ tra-
jectories is computed and sent to the planning module. Then
the planner decides where, when, and in which configuration
to catch the balls.

qmin[◦] qmax[◦] |ωmax|[◦/s] |τmax|[Nm]
arm 1 -170 170 100 180

2 -120 120 100 180
3 -170 170 100 80
4 -120 120 100 80
5 -170 170 150 30
6 -45 80 100 30
7 -45 135 100 30

head 1 -45 45 330 30
2 -20 50 205 50

torso 1 -140 200 110 180
2 -90 90 110 229
3 0 150 110 229

TABLE I
DYNAMICAL LIMITS OF ROLLIN’ JUSTIN. THE MOBILE BASE HAS

vmax = 1.4 m/s AND amax = 5 m/s2 .

Fig. 3. Closeup of the hand catching a ball flying with a speed of about
5 m/s (upper left to lower right; first image immediately before the fingers
start to move; ∆t = 26.5 ms). Initially, the fingers are pre-shaped to form
a little basket with a maximized opening cross section. After the ball has
entered, the fingers are closed with maximum speed to finally cage the
ball. The catch frame, that the planner uses as a virtual tool center point
(TCP, one for each arm), lies in the middle of the opening cross section
and its z-axis points anti-parallel to the ball’s flying direction. This leads to
maximum robustness in compensating errors in space and time of the ball
trajectory prediction as well as of the arm positioning. Finger parameters:
length L = 14 cm, max. joint velocity ωmax = 550◦/s.

B. Challenges

1) Low Latency: Given the flight time of the balls of
typically < 1s and the limited dynamical performance of
Rollin’ Justin (cf. Tab. I), the robot has to start its reaching
motion as soon as possible to get a reasonably sized catch
space. Hence, the latency of the tracking, prediction and
planning modules should be as low as possible.

2) High Precision in Space and Time: To successfully
catch a ball, the hand positioning and finger-closing timing
has to reach a precision of 2cm and 5ms, respectively. This is
determined by the hand geometry, ball size and hand closing
speed (see Fig. 3 for details), so that the ball does not hit
the fingers of the open hand and does not bounce out of the
hand again before the fingers can close.

3) Moving Camera System: To reach the necessary pre-
cision in space and time, the ball tracking module has to
integrate all measurements of the ball’s positions during its
flight until immediately before it is caught (because, the
closer the ball comes to the robot, the more precise gets
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Fig. 4. System architecture. Rollin’ Justin’s sensors
and actuators are coupled by a variety of bus sys-
tems to the onboard computing resource consisting
of one Linux (Intel Core2Quad Q9000@2.00GHz)
and two QNX (realtime OS) computers (Intel
Core2Duo@2.4GHz), all connected by GigE network.
An external cluster (32 CPU cores, 4x Dual-Quad-
Core-Xeon) running QNX is coupled by WLAN. For
all software modules, the rate at which they run, as
well as their worst case processing time, is specified.
When the cameras (running at 25Hz) take images
at ts, the data arrives ∆tv,c = 40ms later at the
Linux computer, where the visual ball tracker module
is triggered. After processing (worst case processing
time ∆tv,p = 35ms), the resulting ball trajectory
prediction is sent at tv = ts + ∆tv,c + ∆tv,p to
the coordinator module. The coordinator collects and
distributes all data, controls the whole catching course
(e.g., is the system active, catching or idle?), computes
the desired head movements (see Sec. VI) and com-
municates with the planning module running on the
external cluster. Based on the trajectory prediction, the
planner computes the joint paths in ∆tp,p = 60ms
and sends them back to the coordinator, where they
arrive at tp = tv + ∆tp,p + ∆tp,c, with ∆tp,c =
17ms accounting for all delays of the back and forth
transfers. The desired paths are then executed and the
hand is closed at the planned catch time by means
of the controller modules. The diagram in the lower
left depicts the timing for two subsequent and the last
camera frame (∆tfr = 40ms between dashed ticks).

the estimation of esp. the depth). This means, the robot is
already performing its reaching motion including the torso
and mobile platform and hence also the head. Therefore, the
head motion relative to an inertial frame has to be tracked.

4) Not Completely Cancelable Vibrations: The upper
body of Rollin’ Justin is built following lightweight design
principles with a number of advantages for a service robot.
On the downside, the lightweight structure inevitably in-
troduces elasticities and hence, vibrations, esp. for highly
dynamical motions. These can not be completely canceled
even by the applied elaborate control algorithms [10]. They
are most dominant in the torso joints and, although they are
measured, make it harder to estimate the movement of the
head, and limit the precision with which the hand can be
positioned as the path planner can not (easily) anticipate
these vibrations.

5) Not Fully Observable Kinematical State: Beside the
observable vibrations, there are non observable errors be-
tween the desired and the actually performed movement,
esp. in case of the highly dynamic reaching motions during
ball catching: a) the elasticities in the torso structure lead to
”quasi-static” deflections, mainly depending on the final con-
figuration of the arms; b) high accelerations and decelerations
of the mobile platform can lead to wheel slippage, which
corrupts the odometry; c) the legs of the mobile platform are
equipped with dampers but without position sensors, and so,
although the dampers are locked for ball catching, the precise
(static) orientation of the whole humanoid is not known.

6) Limited Computing Resources and Communication
Bandwidth: To be able to operate completely wirelessly
only a WLAN-connection to the outside world is available
and hence all computations requiring high bandwidth or low

latency must be performed on the limited onboard hardware.
7) No Globally Synchronized Clocks and Communication

Latencies: In complex robotic systems like Rollin’ Justin,
typically there are numerous sensors and actuators, which
are connected by a variety of different bus architectures
to the central computing resources. Usually the clocks of
the I/O-devices, running at various rates, are not globally
synchronized and the busses have different communication
latencies. Moreover, the high computational demands can
only be satisfied by a small cluster of network coupled
onboard computers, again, each having its own clock.

All this makes it necessary but hard to establish system-
wide consistent time stamps for the physical sensor and
actuator events within the high precision needed. This is
complicated by the many communication and processing
steps involved until a camera measurement of the current ball
position finally leads to a movement of the finger motors.

III. SYSTEM ARCHITECTURE

The system architecture (see Fig. 4 for an overview) is
the key for the tight interplay of all modules and for the low
latencies and high timing precision (cf. Ch. 1,2,6,7).

Parallel and Distributed Computing: Even onboard, par-
allel and distributed computing resources are necessary:
despite their high computational demands, the visual tracking
and control modules have to run onboard because of the high
data volume (100MB/s for both stereo images) and the high
control rate (1kHz), respectively. By contrast, the planner
is run on an external cluster, as only the ball trajectory
predictions and resulting joint paths have to be transferred
back and forth at the cameras’ frame rate (25Hz).
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Fig. 5. The tracking accuracy of the torso joints can be significantly
increased by the dynamic feed forward term Mu(qu)q̈u,d.

Middleware: All modules communicate by means of the
aRD (agile Robot Development) [11] framework, which
provides an easy to use, message-based middleware with low
latency and realtime determinism (as far as the underlying
OS does, e.g., < 100µs for transferring a 1.5KB packet
between two QNX computers).

Timestamps: The system consists of many modules and
the precision requirements with regard to timing precision
are very high. Therefore, it is almost inevitable to use
timestamps for all events throughout the system. Otherwise
it would be very tedious and error-prone to keep track of all
communication delays and processing times.

Synchronized Computer Clocks: For global timestamps
on distributed computers, all clocks must be synchronized.
The standard ntpd [12] synchronization is designed for wide
area networks with often low bandwidth and high jitter. It is
not appropriate here, because of its slow convergence after
system startup in the order of 1h. This is mainly due to the
slow update rate (maximally 1

16Hz) and the used very robust,
but slow converging jitter filtering heuristics. Therefore, a
simpler timesync-demon has been developed, which takes
advantage of the high bandwidth and low jitter of the local
network (this holds even for the WLAN) and converges in a
few minutes after system startup to a precision of < 100µs.

De-jittering and Calibration of Delays: Unfortunately, for
some sensors, esp. the ones, which are connected to the
non-realtime Linux computer, the time delay between actual
measurement and arrival at the host is not deterministic, e.g.,
due to transmission delays generated by the FTDI USB to
serial converter used by the XSens IMU. To nevertheless get
precise timestamps of the sensors’ measurements, de-jittering
is required which is done by a Kalman filter with outlier
rejection estimating the sensor’s time offset and drift relative
to the host’s time. In addition, for the different sensors the
fixed, but unknown latencies of the physical event and the
arrival at the computer are calibrated (see Sec. V-B).

IV. CONTROL

A. Overview and Challenges

In this section, the properties and control of the robot are
highlighted. Rollin’ Justin’s mobile base is omnidirectional
but non-holonomic. Before starting a consistent motion, the
wheels have to orient in a way such that they align with
the initial conditions of the motion trajectory. The mobile
platform is kinematically controlled via a dynamic feedback
linearization [13]. Thereby, it becomes possible to command
the motion in the two translational directions, the rotation and

the four tunable leg lengths separately. For ball catching the
legs are locked via a special mechanism in the full extended
configuration for maximum stability.

The light weight arm has a remarkable load to weight ratio
of 1 : 1 with a mass of 14 kg. Torque sensing is used on the
one side for interaction with unstructured environments and
the human, and on the other side to damp vibrations of the
light weight structure [14]. The four fingered DLR-Hand-II
has position sensors in all 12 DOF and, in addition, link-side
torque sensors. All controllers run at 1kHz.

Catching a ball poses two main challenges for the control
system. First, to accurately reach the desired catch point
involving tracking of dynamic motions and vibration sup-
pression. For a fast moving humanoid the dynamic effects
due to the generated dynamic reaction forces, esp. at the
torso and its base are much larger than, e.g., for a single arm
mounted on a fixed base [10]. Furthermore, two torso joints
are mechanically coupled to keep the robot chest upright. The
coupling has considerable elasticity, adding vibrations to the
system that have to be damped indirectly via the coupled
joints. For good vibration suppression, the control gains
on the position error cannot be very large. For those two
reasons it becomes necessary to add feedforward tracking
terms expressing the 17 DOF dynamics of the upper body.
Second, the grasp control has to provide a fast closing motion
that is compliant at the same time to reduce grasping and
impact forces.

B. Torso and Arms
For the upper body (subscript u) a joint space impedance

controller is applied whose output is fed to a low-level
torque controller that realizes the vibration damping [15].
The control law (subscript d for desired) with the pos. def.
PD matrices Ku,d and Ku,p is

τu,d = Mu(qu)q̈u,d −Ku,dėu −Ku,peu + gu(qu), (1)

with qu = ( qTt qTr qTl )T and eu = qu − qu,d the error
in joint position, and gu(qu) the gravity vector. Given the
inertia matrices of the arms Mr,r(qr),Ml,l(ql) and the torso
Mt,t(qt), and given the attachment locations of the arms to
the torso, the inertia matrix for the upper body can be derived
as

Mu =

 Mt,t +Mrr,t +Mll,t Mt,r Mt,l

MT
t,r Mr,r 0

MT
t,l 0 Ml,l

 ,
using a constraint formulation, where the terms Mxx,t(qu)
are the contributions of the arm weight to the inertia of
the torso and the terms Mt,x(qu) represent the dynamical
coupling between torso and arms (x = {r, l}). Fig. 5
shows that the feed forward terms are effective, reducing
the tracking error by more than a factor of 2.

C. Hands
Grasping also uses joint impedance tracking control. The

outer loop is a PD plus tracking controller of the form [16]
(subscript h for hands)

τh,d = Mh(qh)q̈h,d −Kh,dėh −Kh,peh + gh(qh). (2)



The inertia matrices of all fingers are stacked in the blockdi-
agonal matrix Mh(qh). The position error is defined as eh =
qh − qh,d, with qh the joint positions and qh,d the desired
equilibrium position. The PD matrices Kh,p,Kh,d represent
the stiffness and the damping behavior, respectively. The
desired control torque τh,d is used as set point for a low-
level torque controller.

Note, that even though the impedance parameters provide
compliance, there is the time delay of 1 ms for the controller
to react to the impact. The impact forces with a bandwidth
larger than the one of the controlled system are seen directly
by the structure and by the gears of the hand. In this case
the light weight structure of the hand is another advantage
because the bases of the fingers realize a mechanical base
compliance that acts as a mechanical low pass filter.

V. VISUAL BALL TRACKING AND PREDICTION

A. Setup

The perception setup follows an anthropomorphic design.
A pair of Prosilica GC1600 GigE cameras (synchronized,
@1616 × 1220px, 1.5ms exposure time) is mounted on the
sides of the head at a rather short baseline of 20cm. The high
resolution improves precision, high framerate is unnecessary,
since ball flight is well predictable. In combination with
f = 8mm lenses (Schneider Kreuznach CNG 1.4/8) each
camera observes the scene in front of the robot at a field
of view of 47◦ horizontally and 36◦ vertically. Lenses have
been carefully chosen so that the angular extent of the scene
is sufficient for a variety of ball trajectories and the prediction
precision matches the requirement of 2cm.

The cameras are not static but move when the robot
moves (s. Fig. 6b) and even shake from the reaction forces
of moving the arms (s. Fig. 6a). As previously mentioned,
these effects are reduced by the controller but not completely
canceled and also not fully observable by the joint sensors
(Ch. 3, 4, 5). Neglecting these vibrations would drastically
reduce the precision. Consider, for example, tracking a ball
while the head undergoes the motion of Fig. 6a. Conducted
simulations (Fig. 6c) reveal that no compensation for this
motion results in inaccurate predictions. Especially the rota-
tion component perturbs the estimated velocity of the ball.

Our solution to this problem is to view the head-arm
system as a self-contained catching device (cf. Sec. VI-B).
It is somehow moved by the rest of the robot and we aim
to obtain this motion solely from a head-mounted inertial
measurement unit (XSens IMU @512Hz). Unfortunately,
due to the dead-reckoning estimation approach of the pose,
significant drift occurs even over short periods of time. To
show how this affects the trajectory prediction accuracy we
conducted another simulation (Fig. 6c). Here the motion is
tracked by a simulated IMU assuming linear rotational drift
and quadratic translational drift (overall 0.007m and 0.6◦

after 0.6s, as observed in prior experiments [17]). Although
the drift error almost accumulates to the magnitude of the
shaking motion, the prediction accuracy is hardly affected
complying with the requirement of 2cm. It is an interesting
insight that the tracking and prediction problem is more

forgiving to slow drift than to rapid disturbances. Two other
advantages of using the IMU instead of forward kinematics
are, that the attitude is observed and that the sensor setup is
independent allowing separate development and evaluation.

B. Calibration

Calibrating does not only involves the cameras, the IMU,
and their geometric relation but also the relation to the
kinematic chain. For the first, observations of a leveled
checkerboard pattern at different head poses define the
intrinsic parameters and the transformation between both
cameras as well as the rotation between IMU and cam-
eras. The translation is measured manually. For the second,
visual markers attached to the robot’s left and right hand
are observed in different kinematic configurations of arm
and head. This defines the transformation between the left
(equivalently right) camera and the last head link of the kine-
matic chain. All calibration parameters are jointly estimated
using MTKM [18], a framework for rapid specification of
constraint graph problems (i.e. calibration) which are solved
by least-squares.

Temporal delay between camera and IMU (Ch. 2, 7) is
determined manually by matching predicted ball positions
(from the tracking part) to the observed ball measurements
in the images under rapid head motion. Similarly, relative
delay to the kinematic chain (which itself is assumed to have
no latency) is performed by matching head motion patterns.

C. Tracking and Prediction

For tracking balls from camera images, we use a two-
staged bottom up approach in which we first detect balls as
circles and feed these measurements into a multiple hypothe-
sis tracker (MHT) [19] handling multiple Unscented Kalman
filters (UKF) as single target probabilistic models (cf. Fig. 7
for a view from the robot including results). Compared to
simply fitting a parabola to triangulated 3D points, the UKF
takes into account, that measurement uncertainties increase
with distance and are larger in depth direction.

The motion model ẍb = g − α|ẋb|ẋb accounts for gravity
g (measured by the IMU) and air-drag α (calibrated).

Circle detection is based on the average edge response
along the circle. This system was first introduced in [20].
The detector had a bias for small circles which more often
get high responses just by coincidence. By computing the
likelihood that a detected response is caused by coincidence,
this effect is compensated. Additionally, performance was
optimized [17] for low latency on the limited on-board com-
puting resources (Ch. 1, 6): Evaluation of circles has been
parallelized using SIMD instructions and two cores process
each image (OpenMP). Computation time and robustness of
the tracker were improved by learning a prior on expected
trajectories effectively preventing false-positive trajectories.

In numbers, circle detection of an image pair takes about
25ms. The ensuing tracking stage needs 5ms while idling
and 10ms when tracking one or more balls. Prediction is
performed by propagating the estimated ball position and
velocity. The error over time is shown in Fig. 6d.
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Fig. 6. a) Displacement of the robots head while catching a ball when the head is not actively moving. Shaking is solely induced from the reaction
forces of a moving arm. b) Overall movement of the robot while moving head and torso. c) Error of predicted ball catch position over time relative to
the robot’s pose at catch time under different head pose estimation schemes (simulated, robot movement starts at about 0.4s). Exact pose allows accurate
estimation of the predicted ball catch position over time (red). Neglecting the shaking head introduces large estimation errors (green). Surprisingly, using a
low-cost dead-reckoning pose estimation which suffers from drift (e.g., MEMS-IMU), accuracy is only slightly imprecise in the beginning of the movement
(0.5− 0.7s) but improves considerably as the ball approaches the robot (blue). In fact, the contribution of a measurement to the ball position relative to
the robot in some moment is affected only by the IMU error accumulated since that measurement. Therefore, early measurements sustain larger errors
than late ones but they are less precise anyway due to their distance. d) Prediction error over time and estimated accuracy obtained by propagating the
covariance. Ground truth was obtained using an external tracking system.

Fig. 7. View from one of the cameras mounted at the robot’s head while
a person is tossing two balls towards the robot. Results are marked in the
image: camera orientation relative to g is shown as an artificial horizon
(yellow, with dots at every 5◦), circle detections are depicted as red circles
while detected tossed balls are shown as their predicted trajectory through
filled circles. Notice how not only the actual balls are detected but also
other elements of the image which feature radial contrast.

VI. PLANNING

A. Optimization-Based Planner

Given the prediction of the balls’ trajectories, the path
planner has to decide where (catch point xc), when (catch
time tc) and in which configuration (final joint angles qc)
to optimally catch the balls, while obeying constraints like,
e.g., joint position limits, joint velocity limits or geometrical
limits to avoid self-collisions (cf. Fig. 2). One DOF of
the mobile platform is used for translation and to simplify
notation, also named a ‘joint’. Here an adapted version of the
kinematically optimal path planner from [5] is used, where
the planning problem is formulated as a nonlinear optimiza-
tion with nonlinear constraints. The objective function is

designed to make the motion ”soft”, i.e. having minimal joint
accelerations, and to avoid local minima a parallel multi start
technique is applied.

Other than the more general, sample-based path planners,
like probabilistic roadmaps (PRM) and rapidly exploring
random trees (RRT) [21], [22], which can cope with geomet-
rically more complex scenes, the optimization-based planner
directly computes smooth and optimal joint paths and does
so very fast (planning time for a 7 DOF arm ∆tp = 60ms).
The fast processing not only reduces the overall latency
(Ch. 1), but also allows to re-compute the paths several times
during the balls’ flight, which is absolutely necessary as the
trajectory predictions of the balls change significantly during
the flight (cf. Fig. 6d).

B. Kinematic Subchains

The planner uses a rigid body kinematics model of Rollin’
Justin (cf. Fig. 9), ignoring all the significant effects as
described in Ch. 4 and Ch. 5, like elasticities, vibrations or
wheel slippage. A more precise model, however, would be
way too complex for fast planning.

But this problem can be solved due to the kinematic
structure of Rollin’ Justin. On one side, the dominant sources
of errors between the desired and actual motion is the
kinematic subchain from the mobile platform to the torso’s
chest, whereas the two subchains from the hands to the head
are very stiff and well modeled by a rigid body kinematics.
On the other side, the cameras perpetually measure the balls’
positions xHb relative to the head frame FH . So, the precision,
with which the hand can be positioned relative to the ball
at the catch time depends not on the full motion error of
the platform→torso’s chest chain, accumulated between the
motion onset and the catch time tc, but only on the much
smaller error, accumulated during the much shorter time span



Fig. 8. Image sequences of Justin catching one (upper row) and two (lower row) balls (first image immediately before starting to move and ∆t = 200ms).
For the single ball case all DOF are moving, including the mobile platform, the torso and the head, whereas for the two ball case only the arms are used.

between the time t∗l of the last ball measurement before
the actual catching and tc! In the worst case, the difference
is tc − t∗l = ∆tfr + ∆tv,c + ∆tv,p + ∆tp,c + ∆tp,p (cf.
Fig. 4). But the timespan can be further reduced, when
taking advantage of the direct measurement of the head
frame relative to the world by the IMU. Then only the
processing time of the planner is relevant and for this tl
time, tc − tl = ∆tfr + ∆tp,c + ∆tp,p.

FH

FP

FL
FR

FW

FT

Fig. 9. Kinematics of Rollin’
Justin with the frames: head
FH , torso’s chest FT , left FL

and right FR hand, platform
FP and an (arbitrary) world
frame FW .

From this it is clear that precise planning is only possible
for the arms (i.e. torso’s chest→hand chains), but it is even
possible when the imprecise platform→torso’s chest chain
also moves. Therefore, for each arm an optimization-based
planner is run for precise hand positioning, whereas the
platform→torso’s chest chain is used to extend the catch
space by moving the 3 DOF of the torso and 1 DOF of
the platform according to a simple heuristic, bringing the
hand’s start position closer to the predicted ball trajectory.
In addition, the 2 DOF torso’s chest→head chain is moved
to keep the ball in the cameras’ field of view during its
flight by continuously pointing the head towards the ball
positions according to the first valid prediction from the
tracker module. For this a simple analytic inverse kinematics
is applied and a limiter filter enforces the joint position and
velocity limits.

The arm planner considers the torso’s chest as its static
base frame. But because in reality the chest is moving, the
ball’s trajectory xb, as predicted from measurements at ts
relative to the head frame, has to be transformed to the torso’s
chest frame at tc:

x
T (tc)
b = F

T (tc)
H(ts)

x
H(ts)
b , (3)

where FB
A denotes the representation of frame A in the

coordinate system defined by frame B. As already discussed,
to keep the influence of motion errors as little as possible, it
is advantageous to use the most recent position measurements
and only for times in the future the desired positions. It holds

F
T (tc)
H(ts)

=
(
FW
T (tc)

)−1

FW
T (tp)

F
T (tp)

H(tp)

(
F

H(0)
H(tp)

)−1

F
H(0)
H(ts)

,

where the fact is used that the world frame W and the
initial head frame (before any movement started) H(0) are
static. The head poses F

H(0)
H(tp)

and F
H(0)
H(ts)

are integrated
by the IMU (see Sec. V). The other relative frames are
obtained by forward kinematics from the joint positions q =
(qT , qH , qL, qR), where qT are the angles of the 3+1 DOF of
the torso and platform, qH of the 2 DOF of the head and qL,
qR of the 7 DOF of the left and right arm ,respectively. An
additional upper index specifies, if the angles are measured
(s) or desired (d):

FW
T (tc)

= FW
T (tc)

(qdT (tc)), (4)

FW
T (tp)

= FW
T (tp)

(qsT (tp)), (5)

F
T (tp)

H(tp)
= F

T (tp)

H(tp)
(qsH(tp)). (6)

C. Experimental Results

For the planner, the kinematic parameters from Tab. I and
the timing parameters from Fig. 4 are used. Fig. 8 shows two
catches, one with a single ball and one with two balls and
in Fig. 10 the resulting joint paths for the single ball case
are discussed (see also the video attachment).

VII. CONCLUSION

Catching a thrown ball with a hand is a challenging
task, esp. when done on a mobile humanoid, where ”ev-
erything is moving” and only the limited onboard sensing
and computing resources are available. Nevertheless, the
presented humanoid Rollin’ Justin finally reaches a catch
rate of over 80% for balls thrown into the feasible robot’s
catch space. This is possible due to the performed upgrades
on all architectural levels, e.g., adding an IMU, enhancing
the control of the torso, intelligently taking the different
kinematic subchains into account in planning and keeping
track of all timings in the sub-millisecond range in software.
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Fig. 10. Joint paths while catching a single ball (same as in upper row of Fig. 8), where all DOF participate in the motion. The robot starts to move
at t = 0s, catches the ball at tc = 0.702s. The last correction movement starts at tl = 0.680s, which means, that the corresponding planning started at
tv = 0.603s. Left Column: Velocity profile q̇R of the right arm. For the desired velocity (upper), the corrections due to the repeated re-planning based
on the improving ball trajectory predictions are clearly visible as small kinks. Besides the noise, the measured profile (lower) very precisely resembles the
desired one, proving, that the purely kinematic planner and its parametrization (cf. Tab. I) generates paths that do not exceed the dynamical capabilities of
the robot. Right Column: Desired and measured (dashed) paths of the torso (upper), head (middle) and mobile platform (lower) joints. The deviations in the
head motions are due to the limiter filter and not relevant (as long as the ball is still in the cameras’ field of view), as only the measured angles are used in
the transformations (cf. (6)). The motion errors of the torso and mobile platform, however, directly affect the final precision of the hand position, but only
the accumulated error between tc and tv (the last time a new head measurement was integrated) counts: ∆q =

(
qsT (tc)− qdT (tc)

)
−
(
qsT (tv)− qdT (tv)

)
,

resulting in 1.5◦ for the torso’s vertical joint (joint 1), which exhibits, as expected, the largest error, and 0.006m for the mobile platform.

Each of the improvements is important, as by only removing
one, the catch rate significantly degrades.

In future work the catch space should be further increased
by going closer to the robot’s dynamical limits, but without
damaging it. For this, instead of the kinematic, a dynamic
planner has to be developed, which is challenging for such a
high dimensional system under the hard timing constraints.
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Controlled Light Weight Robot III - are we Reaching the Technological
Limits now?” in Proc. IEEE International Conference on Robotics and
Automation, 2002, pp. 1710–1716.

[8] J. Butterfaß, M. Grebenstein, H. Liu, et al., “DLR-Hand II: Next Gen-
eration of a Dextrous Robot Hand,” in Proc. IEEE/RSJ International
Conference Robotics and Automation, 2001, pp. 109–114.
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[15] Ch. Ott, A. Albu-Schäffer, A. Kugi, et al., “On the Passivity Based
Impedance Control of Flexible Joint Robots,” IEEE Trans. Robot.,
vol. 24, no. 2, pp. 416–429, April 2008.

[16] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction
to Robotic Manipulation. CRC Press, 1994.

[17] O. Birbach, U. Frese, and B. Bäuml, “Realtime Perception for
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