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Abstract— We describe a method for estimating position and
velocity of multiple flying balls for the purpose of robotic
ball catching. For this a multi-target recursive Bayes filter, the
Gaussian Mixture Probability Hypothesis Density filter (GM-
PHD), fed by a circle detector is used. This recently developed
filter avoids the need to enumerate all possible data association
decisions, making them computationally efficient. Over time, a
mixture of Gaussians is propagated as tracks, predicted into
the future and then sent to the robot. By learning a prior
from training data we are focusing on detections that are likely
to lead to a catchable trajectory which increases robustness.
We evaluate the tracker’s performance by comparing it with
ground truth data, assessing tracking performance as well as
the prediction precision of single tracks. Reasonable prediction
performance is acquired right from the start, leading to a good
overall catching rate.

I. INTRODUCTION

Target tracking from image sequences has the goal to

estimate the states of an unknown number of targets by

integrating detections. Often, this includes dealing with false-

alarms, missed and noisy detections, and target birth and

death. In a classical way, this problem is solved using

Multiple Hypothesis Tracking (MHT) [1], [2], [3], which

hypothesizes associations between measurements and targets

and propagates a set of these, where the one with the highest

posterior probability is considered to be the most probable

association. Optimally, all hypotheses should be propagated

but due to combinatorial intractability when the number

of targets and measurements is increased, only the most

probables are kept [4].

An emerging technique for multi-target tracking is the

Random Finite Set approach presented in [5], [6]. Here, the

fundamental idea is to model states and measurements as

random variables that take random sets as values. This allows

a direct Bayesian formulation of the multi-target tracking
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problem, instead to the explicit modeling of data associations

between targets and measurements as in MHT. For most

practical applications, the computational intractability of the

multi-target integrals prohibit using the formulation directly.

For this, a first moment approximation known as the Proba-

bility Hypothesis Density (PHD) Filter was proposed which

propagates a posterior intensity recursively. This intensity

is similar to a distribution in state space, i.e. with peaks

denoting targets, except that its integral is not 1 but the

expected number of targets. Implementations of the PHD

recursion exist modeling the intensity as particles, known as

the Sequential Monte Carlo (SMC) PHD filter [5], or as a

Gaussian Mixture (GM), known as the GM-PHD filter [7],

[5]. These filters still enumerate between measurements and

targets but do not consider different combinations of associat-

ing these such as MHT does. This makes them computational

attractive.

In this paper, we make use of the GM-PHD filter to

address the problem of estimating and predicting multiple

balls pitched towards a humanoid robot (see image sequence

from the robot’s cameras on top) with the goal to catch each

ball with one arm. This delicate task is a challenging tracking

problem: Due to the short flight time, the trajectory of pitched

balls must be detected as a track as early as possible so the

ensuing planning stage has enough time to find a valid arm

posture. Also, tracking accuracy is crucial, especially at the

end of the trajectory. A special problem are systematic false-

alarms for instance created by people’s heads. The tracker

initially creates a track from such a measurement, but soon

discards it because it does not follow the parabolic flight of

a ball.

The paper presents three main contributions. First, we

present the foundations to successfully track multiple balls

pitched to the observer using the PHD filter with non-linear

Gaussian models. In particular, we feed circle measurements

to the filter with the need to handle birth and death of targets,



false-alarms and skipped tracks. We try intuitive explanations

despite a complex mathematical topic.

Second, we learn a prior from training data on position and

velocity of pitched balls. This reduces the number of tracks

initially created from systematic false alarms. This is realized

in a special way, which prevents linearization problems that

occur with nonlinear models and established techniques for

track creation in the PHD filter.

Our third contribution is the evaluation of catching exper-

iments on a real humanoid robot (namely DLR’s humanoid

Rollin’ Justin [8]). We evaluate the prediction accuracy met-

rically using an external reference tracking system and asses

the multiple-target tracking performance while comparing it

with MHT. In fact, this paper extends our previous work [9],

[10], [11] on a perception system for catching two balls

with a mobile humanoid. Here, we introduce, adapt and

successfully use a conceptually different tracking paradigm

as an alternative to the previous tracking backend (MHT).

The tracking system has shown its practicality during

demonstrations of the robot in different locations. Although

PHD filtering is usually utilized in the tracking community,

this work is the first, to our knowledge, to employ PHD

filtering in a computer vision application for robotics.

II. RELATED WORK

Many approaches have been published on detection-based

multiple-target tracking. Usually, these can be classified into

two strategies: the ones that associate detections incremen-

tally in a frame-by-frame or windowed way, while others

perform global data association over all frames.

Sequential Monte Carlo methods, also known as particle

filters, have been introduced for visual tracking [12] and

extended by [13] for reliable multiple target tracking. Further

extensions make use of an interleaved AdaBoost/particle

filter [14] and a MCMC-based particle filter [15] for robust

handling of data association. However, a huge number of

particles is needed when the state space uncertainty decreases

by a large factor during tracking. Parametric approaches,

e.g. based on Kalman filters (KF), are usually better suited

for real-time high-accuracy applications. Such an approach

is kernel-based Bayesian filtering [16]. Here, a mixture of

Gaussians is used to represent the posterior and likelihood

using approximation and interpolation, reducing the number

of samples required for robust tracking.

Classical methods, such as JPDAF [2], [3] and MHT [1],

[2], [4], mostly used in conjunction with Kalman filters,

optimize multiple trajectories at the same time in a frame-

by-frame or windowed fashion. Unfortunately, computational

complexity increases exponentially with number of targets

and measurements. Nevertheless, MHT paired with an UKF

was successfully used to track multiple balls thrown by

people to each other [17].

Global approaches include modeling the data associa-

tion problem in a flow network and looking for minimal

cost [18], as a multi-path searching problem solved by

Linear Programming [19], as the optimal concatenation of

tracklets containing true positives [20] or using Quadratic
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Fig. 1. Data flow of the system. Sensors are shown in yellow, sensor
processing in green, and tracking in blue. The components enclosed by the
red rectangle are subject of this paper.

Boolean Programming to couple object detection and space-

time trajectory estimation [21]. Global and local data asso-

ciation techniques have been effectively coupled, where a

particle filter generates reliable tracklets which are globally

optimized using the Hungarian algorithm [22]. Despite the

good performance of such approaches regarding ambiguities

caused by occlusions and detection errors, their use in an

online scenario is computationally prohibitive.

Actually, most of tracking systems for robotic catching

do not consider the multiple-target case. Existing ones [23],

[24], [25], [26], [27] only actuate one arm, tracking a single

ball. This simplifies the problem to the single target case,

which is achieved by using an Extended Kalman Filter

(EKF) [25], [27] or a simple parabolic fit [23], [26]. The

authors’ previous work [9] employed a MHT filter for

handling the multiple-target case, which will be compared

to the proposed approach in Sec. VI.

Previous usage of the PHD filter in computer vision is

scarce. The only approaches so far employ PHD filtering

for tracking feature points [28], human groups [29] or faces,

people and vehicles [30]. All three use SMC-PHD to track

in image space. This is contrary to our work, since we make

use of the GM-PHD filter to track in 3-D. Recently, a way of

initializing tracks from detections for tracking in 3-D using

GM-PHD was proposed [31]. Our approach goes one step

further by also defining a spatial prior, which encodes how

the ball is typically thrown and merges this into new tracks.

This greatly increases robustness.

III. OVERVIEW

Our sensor-setup consists of a pair of forward-looking

cameras and an Inertial Measurement Unit (IMU) mounted

at the head of a humanoid robot on wheels (DLR’s Rollin’

Justin [8]). This paper focuses on integration of circle

measurements from both cameras, the head pose is provided

by an IMU-based dead-reckoning, considered black-box in



this paper. The data flow of these three sensors is shown in

Fig. 1.

For detecting the ball as circles we use the circle-detection

scheme introduced in [17]. Here, the average fraction of

image energy that is a radial gradient is computed. To achieve

real-time operation this is done in a multi-scale fashion

passing the best N circles to the tracking algorithm.

The IMU is used to provide pose information required

in the camera’s measurement model. This information could

be acquired from the robot’s kinematic chain, but since the

robot’s torso has elasticity and hysteresis, the wheels have

dampers and slip as well as loose contact to the ground, the

IMU is used. Structure from motion is an alternative, but

relies on sufficient and near background. We discarded it for

the moment with the outlook of using both in future.

The PHD filter, in the focus of this paper, then estimates

the state, i.e. position and velocity of all flying balls from

this input. For this, it uses multiple Unscented Kalman Filters

(UKF) as the underlying single ball models. The motion

and measurement model are taken from [17] with gravity,

air-drag, and a radial distorted pin-hole camera. The PHD

is executed on the left and on the right image. Thereby

it implicitly both performs stereo matching and tracking

over time. Finally, the position estimates from the UKF are

predicted into the future and sent to the planning algorithm

for finding the best arm posture to catch the ball.

IV. PHD FILTERING

Using random finite set (RFS) theory, a multi-target Bayes

filter can be derived as a generalization of the well-known

single target Bayes filter, which uses the classical notion of a

state vector. Both cases need approximations for a tractable

solution. The (E/U) KF propagates (approximatly) the single-

target posterior as a Gaussian over time, i.e. up to second

order statistics.

Similarly, the Probability Hypothesis Density (PHD) filter

was proposed as an approximation to the multi-target Bayes

filter by propagating the first-order moment statistic of the

multi-target posterior. The posterior PHD, a so-called inten-

sity, is characterized by the property that integration of it

over any region in state space results in the expected number

of targets in this region. This number is fractional, being

the sum of integer target numbers weighted by probability.

By contrast, in the classical Bayesian single-target case the

integral of the probability density gives the probability that

the target is in this region. This difference has important

implications: A PHD can not represent that almost for sure

there is a target in a region. In a probability distribution, as

used by the MHT, this is expressed by an integral of almost

one (say 0.999), but in a PHD the same value also represents

two targets with a probability of 0.4995. This representation

issue will have important consequences in Section IV-C.

Nevertheless, instead to the MHT which enumerates all

possible measurement to track assignments, this algorithm

unifies all measurements with all tracks in a composite-

hypothesis fashion. This leads to a computationally efficient

algorithm handling missing and false alarm detections, birth

and death of tracks as well as noisy measurements.

A. PHD recursion

Although used for derivation, the closed-form formulas

of the PHD filter do not make use of RFS theory. Here,

we provide a brief review of the PHD recursion [5], [6]. An

alternative derivation is given by [32] using a quantized state-

space model of infinitesimal bins. Subscripts k+1|k refer to

quantities before, subscripts k+1|k+1 after fusing detections

at time k. A target state is called x, usually as a free variable

because the PHD operates on intensities over x.
Prediction. Let Dk|k be the posterior PHD intensity from

time k. The predicted PHD intensity is then given by

Dk+1|k(x) = bk+1|k +

∫

pS(x
′)fk+1|k(x|x

′)Dk|k(x
′)dx′

, (1)

where bk+1|k is the intensity of spontaneous births of

targets, fk+1|k(x|x
′) is the single target Markov transition

density (motion model) and pS(x
′) is the probability of

target survival. Similar to a Bayes filter, old posterior density

and transition model are multiplied and the old state is

marginalized out by integrating. The birth intensity is usually

vague or even uniform. It has the same role as a Bayesian

prior plus the integral indicating the average number of new

targets per frame.
Update. The corresponding updated PHD is given by

Dk+1|k+1(x)=[1−pD(x)]Dk+1|k(x) +

mk+1
∑

i=1

szi(x)

s∗
zi

+
∫

szi(x
′)dx′

sz(x) = Lz(x)pD(x)Dk+1|k(x), s
∗
z = λc(z), (2)

with z1..mk+1 being detections, pD(x) for the probability

that a target with state x will be detected, λ the Poisson-

distributed number of false alarms, spatially distributed as

c(z), and Lz(x) the single-target measurement likelihood.

Intuitively, the support sz(x) indicates how much detection

z supports state x. It is proportional to how much target there

is at x (Dk+1|k(x)), how likely it is detected (pD(x)), and

how well the actual detection z fits to the state x (Lz(x)).
Similarly, s∗z indicates how much z supports the clutter

(λc(z)). Overall, a single detection can support exactly 1
target, with 1 meaning cardinality, i.e. integral over x. Hence,

the support sz is normalized to 1 by dividing by the overall

sz , i.e. the integral over x plus clutter.

This normalization in the end makes consistent detections

create integral-1-peaks in the PHD: If a detection fits well to

an existing peak in Dk+1|k, the support sz(x) of these states

dominates the normalization, so almost 1 is contributed to

these states in Dk+1|k+1. If a detection supports no state x
significantly, the normalization is dominated by the support

s∗z for clutter. So in (2) little is contributed to any state in

Dk+1|k+1 and the integrated number of targets.

Please note, that the single-target Bayes equation is

achieved when pD =1, |Z|=1 and λ=0. Also the compu-

tational components resemble a Bayes filter: Multiplication

of distributions, marginalization, and integration.



B. Gaussian Mixture implementation

From the general PHD recursion (1) and (2) an analytic

implementation, the GM-PHD filter, has been derived [7] that

represents the PHD as a weighted mixture of Gaussians.

The sum of Gaussians is expanded with the result that

every Gaussian is predicted individually in (1) and updated,

i.e. multiplied, with the likelihood of every detection in (2).

These two operations correspond to a single-target Bayes

filter and are implemented by (E/U) KFs for (non-) linear

measurements. The denominator is independent of x, i.e. a

weighting factor and easily computed by summing weights.

So in the big picture, a PHD runs a set of KFs, each on a

combination of detections fused into one target (a track) just

as the MHT. But, while the MHT argues on top of that about

combinations of tracks forming a hypothesis, the PHD has a

much simpler weighting scheme based on the support.
Prediction. Suppose we have a prior GM-PHD

Dk|k(x|Z
k) =

nk|k
∑

i=1

w
i
k|k · N (x;xi

k|k, P
i
k|k). (3)

Then the predicted GM-PHD is the same mixture, but with
each Gaussian predicted according to the motion model,
weighted by survival probability pS and new (vague) Gaus-
sians added according to the birth intensity. The result is

Dk+1|k(x) =

ak
∑

i=1

β
i
k · N (x; bik+1|k, B

i
k+1|k)

+

nk|k
∑

i=1

pS · wi
k|k · N (x;xi

k+1|k, P
i
k+1|k) (4)

where ak, βi
k, bi

k+i|k, and Bi
k+1|k define a Gaussian mixture

birth intensity, usually just a single very large Gaussian. The

predicted targets, N (x;xi
k+1|k, P

i
k+1|k), are computed using

the prediction step of the single-target Kalman filter. In our

case, this is an UKF using sigma point propagation.
Update. Rewrite the predicted GM-PHD as a flat mixture

Dk+1|k(x) =

nk+1|k
∑

i=1

w
i
k+1|k · N (x;xi

k+1|k, P
i
k+1|k). (5)

For a Gaussian Lzj (x)=N (zj−h(x); 0, R) in measurement
space and one Gaussian N (x;xi

k+1|k, P
i
k+1|k) from the

mixture the support sz(x) is a product of Gaussians which
is again a weighted Gaussian [5, (D.1)]

N (zj − h(x); 0, R) · N (x;xi
k+1|k, P

i
k+1|k) (6)

=

≈ q
i,jN (x;xi,j

k+1|k+1
, P

i,j

k+1|k+1
).

Practically, this is simply a KF update with the resulting

weight computed from Mahalanobis distance. For non-linear

measurement models h as ours, (6) is approximate and ob-

tained by an UKF or EKF. This weight reflects how well the

detection fits the state and makes improbable combinations

become lowly weighted in the mixture.
The support normalization is computed from the sum of

weights, since the integral of a Gaussian is simply 1. Hence,

the updated GM-PHD is

Dk+1|k+1(x) =

nk+1|k
∑

i=1

(1−PD)wi
k+1|kN (x;xi

k+1|k, P
i
k+1|k) (7)

+

mk+1
∑

j=1

nk+1|k
∑

i=1

si,j

s∗,j +
∑nk+1|k

k=i sk,j
N (x;xi,j

k+1|k+1
, P

i,j

k+1|k+1
),

The first sum contains Gaussians not fused with any
detection, the second double sum is the result of fusing
all Gaussians with all detections by a KF update (6). It
is weighted by the normalized support si,j which is the
integrated contribution of Gaussian i to szi(x) in (8). It is
computed as

s
i,j = wk+1|k pD(xi

k+1|k) q
i,j
, s

∗,j = λc(zj) (8)

from the result of the KF update (6).
Mixture Management. In each iteration, many new Gaus-

sians are formed out of each existing ones. This is better
than the MHT which considers hypotheses formed of several
targets on top of the Gaussians. Still, we need to limit
this combinatorial explosion by gating. If the Mahalanobis
distance, which governs the weight qi,j , is above a threshold
the Gaussian i, j is discarded. Also, we merge Gaussians
until their number falls below a fixed value [7]. Pairs with
small weighted mutual Mahalanobis distance χ2 are merged
first using the formula below which preserves mean and
covariance of the mixture:

χ
2 = w

1
k|kw

2
k|k(x

1
k|k−x

2
k|k)

T
(

P
1
k|k

−1
+P

2
k|k

−1
)

(x1
k|k−x

2
k|k)

w̃k|k =
2

∑

i=1

w
i
k|k, x̃k|k = w̃

−1

k|k

2
∑

i=1

w
i
k|kx

i
, (9)

P̃k|k = w̃
−1

k|k

2
∑

i=1

w
i
k|k

(

P
i
k|k + (xi

k|k − x̃k|k)(x
i
k|k − x̃k|k)

T
)

C. Missed detection problem

A well-known weakness of the PHD filter compared to

MHT is its response to missed detections [33], [34]. If a

target is not detected, only the first addend in (2) contributes,

effectively scaling the corresponding peak by 1 − PD. If a

MHT is convinced there is a target, several missed detections

are needed to change its mind. For the PHD a single missed

detection suffices, assuming PD > 1

2
.

This behavior can be understood from the intuition in the

beginning of Sec. IV. The MHT can represent that almost for

sure there is one target by a probability of 0.9999. For the

PHD the same intensity also includes two or no targets. If

no detection is observed the latter is the natural conclusion.

A modified version of the PHD, the Cardinalized

PHD [33], [34] filter tries to resolve this problem by prop-

agating the entire probability distribution of the number of

targets in addition to the first moment of the multi-target

posterior. The filter still operates on the single target space,

but is much more complex. We currently ignore this problem

as with the next detection the track appears again including

all information from past detections.
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Fig. 2. Images from a ball throwing sequence showing the PHD (only position) projected into image space (left) and its projection into the floor of
the (right) while using a learned prior. The projected space on the floor is 4 m in width and 6 m depth direction. It can be seen that when no ball is
pitched only low weight components from false-alarm managements appear (a), indicating no target. When two balls are actually thrown, higher weighted
Gaussians emerge (b) and become peaked as these are supported by ensuing measurements (c). Integrating close measurements leads to strong weighted
and highly peaked Gaussians in the mixture (d). Please note how the covariance ellipse of (low weighted) initial Gaussians are directed towards one point
(the cameras). This is due to the invariant application of the prior with regard to the horizontal direction of the incoming ball (see text).

V. PRIOR-BASED TARGET INITIALIZATION

Using the classic way of starting new targets, one would

integrate a Gaussian with mean at the standard throwing

distance and a large position and velocity covariance for

Eq. 4. This shows two problems, a qualitative and a technical

one.

A. Learning a Gaussian Prior

The first problem is every false-alarm causes computa-

tional load and systematic false-alarms, such as people’s

heads sometimes create unwanted tracks. We therefore pro-

pose starting tracks using a Gaussian prior learned from

training-data. It defines with uncertainty from where a ball is

typically pitched (position), in what trajectory it will roughly

proceed (velocity), and that it is thrown towards the robot

(correlation between both). If this prior is integrated as birth

intensity, the PHD automatically discards many false alarms.
We perform non-linear least squares estimation on the

circles of a set of trajectories to compute the initial state xi
0

belonging to the first circle of each trajectory i = 1 . . . ns.
Using the whole trajectory as context improves precision
of the ball’s initial position and velocity. To such a set of
samples a, 6-D Gaussian is fitted using the common sample-
mean and sample-covariance formulas

b
1 =

1

ns

ns
∑

i=1

x
i
0, B

1 =
1

ns − 1

ns
∑

i=1

(xi
0 − b

1)(xi
0 − b

1)T . (10)

This Gaussian N (b1, B1) is used as birth intensity during

the PHD prediction step. As we will see in the experiments

this reduces the number of Gaussians needed in the Gaussian

mixture.

B. Special Update for the First Detection

The second problem is linearization: Because of the non-

linear model, linearization has to be performed, in our case,

through the UKF. This linearization is problematic, espe-

cially the mapping from the depth of a ball to a circle radius.

The usual UKF update used in (7) linearizes the measurement

model on the 1σ-range of the Gaussian from the mixture and

fuses the resulting linear measurement with the well-known

KF formula. Now, in case of the prior Gaussian the 1σ-range

is very large, much larger than the 1σ-range of the detection

itself, so the measurement model is poorly approximated in

that relevant region. The consequence is a systematic error

in the initial state estimate.

We propose to flag the Gaussians that originate from the

birth part of (4) and use a specialized update routine to fuse

them with a detection according to (6). The result is a peaked

Gaussian and can be further processed normally.

Now, in the special situation of the first detection, the

detection itself is much more precise than the prior. Hence,

linearization should be performed on the 1σ-range of the

detection not the prior. We implement this by converting the

detection into a 3D position using the inverse measurement

model h−1. The covariance of this position is obtained by

propagating the specified covariance of the detection’s center

and radius through h−1 using σ-point propagation as in the



UKF. The result is a Gaussian in position which can be fused

with the prior Gaussian (position and velocity) by a linear

Kalman filter update. This procedure replaces the usual UKF-

update for computing (6) in this special case.

Two remarks: First, the Mahalanobis distance of this

update is also subject to gating, discarding highly improbable

false-alarms from the beginning. Second, during learning

balls may originate from a specific horizontal direction. We

do not want the system to learn that. So, before we fuse the

prior as described above, it is rotated such that the prior’s

mean points into the horizontal direction of the detection.

This ensures that the system is invariant with regard to the

horizontal direction of the incoming ball.

C. Comparison to Initialization by Detection

In [31], a different method for initialization from the first

detection is presented. The authors propose not to add birth

intensity in (4) but instead add Gaussians created from the

detections alone in (7). These would have a constant support

defined by birth density and take part in the normalization,

i.e. the denominator, as all support values do.

This procedure realizes an uniform prior, as the Gaussians

are derived from the first detection alone, not from fusing it

with a prior as our more general approach does. It can still be

seen as an instance of our idea to have a special operation

for fusing with the prior. When implementing an uniform

prior, an uniform instead of a Gaussian intensity is added

to Dk+1|k in (4). This is no conceptual problem, just makes

the mixture heterogeneous with some Gaussian and some

uniform components. However, then a special operation must

be implemented to multiply the uniform component with a

Gaussian measurement likelihood in (7). The result is simply

the Gaussian from the detection weighted with the uniform

prior intensity. This happens in [31].

VI. EXPERIMENTS AND RESULTS

In a robotic catching system, the subsequent processes (i.e.

planning and control) rely on properly working tracking for

a satisfying catch rate (which is ≈ 80%). In this section,

we demonstrate the performance of the prior-enhanced PHD

filter by tracking balls pitched towards the robot.

We used two Gaussian priors for evaluation. First, we

defined an uninformed prior with a sigma for velocity of

6m/s2 for each component, assuming a flying ball regardless

of direction. Second, we learn prior from training data (see

Sec. V). For this, 77 trajectories in which the robot reached

for the ball were collected. To cover a broad range of

throws, trajectories pitched by different people in different

labs were used. Please note that not necessarily a new prior

has to be learned when a different type of ball is used.

Since the pitching behavior stays the same, only the air drag

coefficient in the motion model and the ball diameter in the

measurement model have to be adjusted.

Eleven sequences are tested in our experiments (15s dura-

tion, 8 pitched balls, mostly 2 at the same time, ≈ 1s flight

duration of each ball). The circle detector [17] was instructed

to return the N = 25 most circular looking objects, in which

TABLE I

PARAMETERS OF PHD AND UKF, SEE SEC. IV–V

PHD UKF

w0 1.46 · 10−10 σx,y 1.5px

λc(·) 1.08 · 10−6 σr 0.15%r

PS(x) 1 (0) σQ 0.1 m/s2

PD(x) 0.95 (0)

the ball was prevalently included. Circles that lie within

circles were excluded (as commonly observed at balls). The

multiple-target model (e.g. birth intensity etc.) is given in

Tab. I (chosen by hand). Here, two probabilities depend on

the state of the track. If its predicted measurement is outside

of the image it is always a missing observation (PD = 0).
When the ground is hit, the track ends (PS = 0).

Figure 3(b) shows the rate of detected pitched balls over

the number of mixture components for both priors. A pitched

ball is counted as successfully detected when its predicted

accuracy is below 25cm, which is also the used criterion

that the predicted trajectory will be sent to the next stage

(i.e. the planner). It can be seen that using the learned prior

outperforms using the uninformed one. Less components are

needed for tracking the same number of targets and the

learned prior is able to track more targets overall. This results

suggest that a prior, trained to the expected data, considerably

focuses on the relevant measurements for generating new

components which are then continued much more effectively.

Unfortunately, full detection rate is not achieved in Fig. 3(b),

as a couple of balls were thrown too low or off the robot due

to rapid throwing . The prior defines that the tracker should

look for catchable balls. So these balls were discarded as

is the intention of giving such a prior. Therefore, virtually

perfect performance is achieved for the learned prior.

Single-Target Prediction Accuracy. From an actuation

point of view, a catch will be smoother if the trajectory is

known early. In Fig. 3(c) the tracker’s single-target tracking

performance is shown. Here, the predicted 3-D points of

detected tracks (when they would hit the robot) of one

sequence and the corresponding points extracted from an

external 3-D tracking system (ground-truth) are compared

over the time starting from the point where the ball left the

hand. Using 50 mixtures for each, the detected tracks using

the learned prior appear earlier (the best at 2 fr., i.e. 80ms)

while being imprecise. Over time, both trackers approach

each other, while reaching a final accuracy of ≈ 2.5cm.

Multiple-Target Performance. It is worthwhile to com-

pare the PHD performance to MHT [4], [9]. Both algorithm

use the same underlying UKF (including parameters), the

same multiple-target parameters (see Tab. I) and track start-

ing using a Gaussian prior. We adjusted the MHT parameters

for robust tracking by hand (likelihood ratio: 1e−11, n-scan

back pruning: 10, k-best hypotheses: 10). The PHD filter

used the learned prior while 25 mixtures were propagated.

This number was experimentally found to be robust.

Figure 4(a) shows the cardinality statistics of both al-

gorithms, i.e. the number of estimated targets. While the
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Fig. 3. (a) DLR’s humanoid Rollin’ Justin on which the tracking system is integrated. (b) Missed detections rate of uninformed and learned prior over
the number of components. (c) Prediction accuracy over time of uninformed and learned prior after the ball left the hand.

track starting behavior of both methods is almost the same,

the PHD filter terminates a track much earlier than MHT

in seven out of eight times. This is due to the discussed

characteristics of the PHD filter when opposed missing

detections, prematurely declaring an ending track. This is not

a problem, since subsequent detections recover the correct

target state (as around second 12). Unfortunately, missing

detections at image’s border are more common. This ends

tracks before they would continue until reaching the ground

outside the image. Again, this does not pose a problem as

all possible information of the ball’s flight has already been

integrated and submitted to the planning algorithm.

In Fig. 4(b) the computation time over one sequence

is given. Because of propagating a constant number of

components, the PHD filter is always equally efficient. This

is in contrast to the MHT which needs more time for data

association while tracking. To be precise, GM-PHD only

needs 4.3ms while MHT needs 8.2ms in the worst case,

which is the relevant case for real-time applications. Thus

GM-PHD only needs 53% of the time MHT requires. This

is a substantial difference since in our case only 10ms are

available for tracking. In fact, knowing the trajectory of

the ball early is essential for successful catching. Thus the

computational advantage outweighs the rarely occurring (and

not harmful) disadvantages for our application.

VII. CONCLUSION AND FUTURE WORK

Multiple-target tracking is a challenging task which is

required in many computer vision applications. In this pa-

per, we introduced Probability Hypothesis Density (PHD)

filtering, a recently emerged frame-by-frame multiple-target

tracking approach for a 3-D real-time computer vision ap-

plication. Instead of replicating PHD equations used with

the commonly utilized multiple-target model, we proposed

an alternative way composing the density, namely the notion

of measurements supporting tracks, see Eq. 2. This contri-

bution of a general way to look at PHD filtering makes the

description more accessible.

In conjunction with the proposed target initialization ap-

proach through an offline-learned prior, a humanoid robot

is able to catch two simultaneously pitched balls robustly

and accurately. Although PHD filtering lacks robustness in

certain detection situations, its simplicity (only Eq. 4 and 7

have to be implemented) and its computational behavior may

convince researchers to employ this approach in the future.

To quantify the compactness, the used MHT implementation

has 3262 lines of code while our GM-PHD implementation

only has 619 lines of code (all C++) excluding a minimum

(and trivial) part of the MHT’s interface. One might argue

that separate single trackers might be a solution, but it should

be considered if its worth to build an ad-hoc solution if the

proposed GM-PHD provides a compact and sound solution.

For the future, approaches for improving filter behavior

are desirable, where the CPHD filter has made a step in the

right direction. On the other hand, it would be interesting to

integrate a real-time robust global data association approach

for the described multiple-target tracking scenario.
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