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1 Introduction

Quantum mechanics and the Schrödinger equation are notorious for being difficult to un-
derstand and working against human intuition. Since quantum mechanics is a description
of physics at the smallest scale possible, finding suitable visualizations is often difficult.
Nonetheless, with the advent of quantum computers and the ongoing miniaturization of
integrated circuits, the physics behind it is becoming more relevant than ever.

In an effort to lower the barrier of entry into learning quantum physics, in this thesis, I
present a video game, which at its core simulates the equation governing the time evolution
of quantum systems: the Schrödinger equation. There are a lot of projects using software
and games to teach quantum mechanics. Ranging from virtual experiments to fully-fledged
video games, these projects offer a more playful approach to quantum mechanics. As part
of this thesis, “Schrödingers Labyrinth” was developed to provide players with a better
understanding of the Schrödinger equation.

With the goal to shed more light on the time evolution of quantum mechanical systems,
“Schrödingers Labyrinth” harnesses the power of modern GPUs to present time evolution
of the wave function in real-time. Guided through multiple levels, the player can watch and
control how the wave function behaves in a variety of situations by adjusting the potential
field as if controlling a tilting labyrinth.

Figure 1.1: Ingame screenshot of Level 2

“Schrödingers Labyrinth” features multiple levels, with each level highlighting different
aspects of quantum mechanics. At its core, the game is based on a numerical simulation of
time evolution of a single particle in a 2-dimensional world. The split-step Fourier method
is used to solve the Schrödinger equation. By implementing the algorithm to run in parallel
on the GPU, a complex 2-dimensional world can be efficiently simulated in real-time.

While this cannot and is not intended to replace learning about quantum mechanics via
other media, it can improve human intuition of how a wave function behaves in different
environments. This thesis is divided into 4 major parts. First, in Chapter 2, we will take
a look at the theoretical background of the Schrödinger equation and various phenomena
of quantum mechanics. Chapter 3 deals with how the Schrödinger equation can be solved
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1 Introduction

numerically to provide a fast and reliable simulation that can be used in the game. Then,
in Chapter 4, the actual game “Schrödingers Labyrinth” is presented, highlighting the core
game mechanics, as well as commenting on some implementational details. Finally, Chapter
5 evaluates how the game was received and which areas have room for improvement.
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2 Quantum mechanics

Before jumping into how the game works and how it was envisioned, some basic under-
standing of the underlying theory is necessary. Very small particles like electrons behave
very differently than what we are used to from classical physics. Instead, the behavior of
particles at a very small scale is described by quantum mechanics. At the heart of quantum
mechanics, the state of any particle is expressed via its wave function Ψ.

When dealing with multiple particles, their wave function might depend on each other in
some form. More formally a single wave function would describe both particles. However,
dealing with multiple particles makes simulation significantly more expensive, as each
particle adds a set of spatial parameters that need to be dealt with. Therefore we will only
deal with a single particle.

At multiple points of this chapter, you will find boxes like this one. These boxes
aim to give a short, high-level overview of several aspects of quantum mechanics
without diving deep into the math behind it.

In this chapter, I will give an overview of the quantum mechanical principles that are pre-
sented in the game as well as the necessary background needed to simulate the Schrödinger
equation. This will by no means be a complete overview over quantum physics, rather
focusing on basic intuition and theory needed to simulate time evolution. For a more in-
depth look at quantum mechanics consider the lectures on quantum mechanics by Feynman
[FLS11] or lectures provided by MIT OpenCourseWare [AEZ13].

Notation. There are a variety of common notations in quantum mechanics. In this thesis,
we will (mostly) follow the notation of the MIT Quantum Physics course 8.04 [AEZ13].

2.1 The wave function

A particle in quantum mechanics does not have a definite position and speed. Instead,
these properties are described via its wave function, which dictates which values for speed
are possible and likely. This is one of the primary concepts of quantum mechanics and also
the focus of this thesis, as the Schrödinger equation describes the evolution of the wave
function over time.

Instead of having definite values for properties such as position or speed, a par-
ticle’s state in quantum mechanics is described completely by its wave function.
The position of the particle depends on the amplitude of the wave function. Since
the wave function is a complex function, it has a phase. This phase can be an
indicator of the kinetic energy of the particle. A particle with a lot of differences
in phase, like seen previously in Figure 1.1, generally has more energy.

The wave function of a single particle is a complex-valued function of time t and position
x⃗ in n-dimensional space. In the context of this thesis, this usually means 2-dimensional
space.
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2.1 The wave function

Ψ(x⃗, t) ∈ Rn × R → C (2.1)

It also needs to be normalizable:∫
∥Ψ(x⃗, t)∥2 dnx⃗ = 1 (2.2)

The function ∥Ψ(x⃗, t)∥2 is a probability density function describing the likelihood to find
the particle at position x⃗ and time t.

Contrary to classical particles, particles in quantum mechanics (generally) do not have
a specific position and velocity. Instead, they exist in a superposition of possible posi-
tions (and velocities). When measuring an observable (such as position or velocity) the
probability of the measured value depends on the wave function Ψ.

Note that there are other formalisms to describe quantum mechanics, such as the density
matrix, a more general description of a quantum state. These are often used when dealing
with more complex systems or incomplete information [Neu27].

Since we are focusing on the simulation of the Schrödinger equation for simple, single-
particle systems, we will only consider the wave function formalism.

2.1.1 Operators and eigenfunctions

An operator is a function acting on the wave function, transforming it in some way or
another. The most simple operator is the identity operator Î, which does not affect the
wave function at all.

ÎΨ = Ψ

Operators are used in quantum mechanics to describe the various properties of the wave
function. Usually, we are particularly interested in the eigenfunctions and corresponding
eigenvalues of an operator. The function Ψ is an eigenfunction of the operator Â if and
only if Â acting on Ψ is equal to multiplication with a constant. This constant then is also
called an eigenvalue.

ÂΨ = c ·Ψ

Each observable (eg. momentum, energy, or position) has its associated operator. If
the particle is in an eigenstate of the given operator, meaning the particle’s wave function
is an eigenfunction of the given operator, the particle has a definite value for the given
observable.

Since the state of a particle is completely described by its wave function, infor-
mation about the particle’s position and the particle’s speed influence each other.
For example, if the particle is in a state with definite speed, we have no informa-
tion about the position of the particle. (See Figure 2.1)
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2.1 The wave function

Position

A
m

pl
itu

de

Figure 2.1: Plane wave in 1D. Real component in blue, imaginary in orange, probability
density in black

For example, the eigenfunctions of the momentum operator p̂ are plane waves. Figure
2.1 shows a 1-dimensional plane wave.

p̂ = −iℏ∇ (2.3)

Here ℏ = h
2π is the reduced Planck’s constant. ∇ is a short-hand for gradient operator

∇ = ( ∂
∂x ,

∂
∂y ).

Ψ(x⃗) = eik⃗x⃗ (2.4)

It is easy to see that plane waves, as constructed by Equation (2.4), are eigenfunctions
of the momentum operator p̂.

p̂Ψ(x⃗) = −iℏ∇eik⃗x⃗ (2.5)

= ℏk⃗ · eik⃗x⃗ (2.6)

Here k⃗ is also called the wavenumber and is a measure of the particle’s momentum.
Since ∥eik⃗x⃗∥2 = const, knowing the exact momentum of a particle means knowing nothing
about its position. Also note that this wave function is not realistic, because it is not
normalizable (see Equation 2.2).

This also relates to the Heisenberg uncertainty principle, which states that ∆p ·∆x ≥ ℏ
2 .

When uncertainty in momentum ∆p approaches zero, uncertainty in position ∆x goes to
infinity and vice versa.
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2.1 The wave function

Thanks to the Fourier theorem it immediately becomes apparent that any wave func-
tion Ψ can be expressed as a linear combination of eigenfunctions of momentum. The
Fourier theorem states that any function Ψ can be expressed by the following integral:

Ψ(x⃗) =
1√
2π

n

∫
Rn

(FΨ)(k⃗)eik⃗x⃗dk⃗ (2.7)

As you can see the wave function Ψ is expressed entirely as an infinite linear combination
of eigenfunctions of momentum, which are weighted by (FΨ)(k⃗), with (F) being the Fourier
transform.

As is the case here, the operators that are relevant to quantum physics usually form
an eigenbasis, meaning using a linear combination of eigenfunctions of the given operator
allows us to express any wave function possible. Apart from being used in the Schrödinger
equation, operators and their eigenfunctions also play an important role regarding super-
position.

2.1.2 Superposition

Superposition is what is usually meant when talking about a particle being in multiple
states (usually referring, but not limited to multiple positions) at once. While this sounds
like a superposition would be a very special and rare state, this is not the case. Looking
at the wave function of a particle it becomes clear that a particle is actually always in a
superposition of multiple states. Even if a particle has a definite measured position, its
speed would be in a superposition and largely unknown.

Quantum mechanics is known for particles that seem to be in multiple places at
once. This phenomenon can be explained as a superposition of multiple wave
functions, each describing the particle at a particular position.

A superposition is a linear combination of potentially infinitely many wave functions.
Usually, we are interested in superpositions of multiple eigenfunctions of a particular op-
erator. Since each observable has a corresponding set of eigenfunctions, expressing a wave
function as a superposition of eigenfunctions of this operator can give us insights into the
possible value of the observable.

Note that the complex constants Ci have to be chosen in a way that complies with the
normalization condition of equation (2.2), as the squares of these constants |Ci|2 give the
probability density of the corresponding eigenfunction.

As a consequence, the probabilities of a measurement of an observable depend on these
constants Ci. (We will take a closer at measurement look in Section 2.3)

Ψ(x⃗, t) =

∫
i

∑
CiΨi(x⃗, t) (2.8)

The sum in equation (2.8) is superimposed with an integral symbol to represent the fact
that some linear combinations may be uncountably infinite. This is the case, for example,
when talking about the position of a particle. Obviously, when dealing with a numerical
simulation later on, these will always be finite.

The wave function of a particle with a definite position is a Dirac-Delta function. Since
the particle is at a specific position its probability to be at said position is 1. Therefore
its wave function must integrate to 1 at the given position and 0 everywhere else. The
Dirac-Delta function might be roughly characterized like this:
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2.1 The wave function

δ(x) =

{
∞, x = 0

0, x ̸= 0
(2.9)

With the aforementioned condition to integrate to 1:∫ ∞

−∞
δ(x) dx = 1 (2.10)

Extending this to multiple dimensions, any wave function Ψ can be expressed as a
superposition of states of definite position, which are weighted by Cx⃗0

as follows:

Ψ(x⃗) =

∫
x⃗0

Cx⃗0
δ(x⃗− x⃗o) (2.11)

As mentioned previously in Section 2.1.1, the eigenfunctions for momentum are plane
waves. Since means we can decompose any wave function into eigenfunctions of the momen-
tum operator using the Fourier transform, any wave function can be seen as a superposition
of eigenfunctions of momentum. This will later be used in the split-step Fourier method
in Section 3.4.

2.1.3 A wave packet

It is impossible to have no uncertainty in position and momentum at the same time, due to
the Heisenberg uncertainty principle. However, a good compromise between uncertainty in
position and momentum is a wave packet. See Figure 2.2 for an example of a 1-dimensional
wave packet.

A wave packet is a middle ground between uncertainty in position and momentum.
Because a wave packet has uncertainty in momentum its uncertainty in position
will increase over time. While the average position will move with constant speed,
the size of the gaussian will increase.

A wave packet can be constructed by multiplying a plane wave with a Gaussian. We
receive a wave function with only little uncertainty in both momentum and position. Equa-
tion (2.12) constructs a 1-dimensional wave packet.

Ψ(x) = exp (ikx) · 1

σ
√
2π

· exp
(
− (x− µ)2

2σ2

)
(2.12)

This construction can be easily extended to cover more than one dimension. As you
can see position uncertainty is described by a gaussian, meaning that we know its average
position µ and its uncertainty in form of the standard deviation σ.

Similarly, the wavenumber k is a measure for its mean momentum, with the uncertainty
in momentum also being distributed like a gaussian. Figure 2.2 provides a 1-dimensional
example of a wave packet. The real component is in blue, the imaginary component is in
orange and the probability density function is in black.
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2.2 The Schrödinger equation
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Figure 2.2: A 1-dimensional wave packet

2.2 The Schrödinger equation

The Schrödinger equation describes how the wave function (Ψ) of a quantum-mechanical
system evolves in time. It will later be used as the core game mechanic in Chapter 4.

For a single particle the differential equation is as follows [FH65, Sch26]:

iℏ
∂

∂t
Ψ(x⃗, t) = ĤΨ(x⃗, t) (2.13)

Where t is time, x is the position, and Ĥ is the energy operator of the system.
The energy operator Ĥ for a single particle in a scalar potential consists of two com-

ponents. The potential energy operator V̂ describes the potential field, while the kinetic
energy operator T̂ describes the momentum of the particle.

Ĥ = T̂ + V̂ (2.14)

=
p̂2

2m
+ V̂ (2.15)

The momentum operator p̂ in position space is defined as:

p̂ = −iℏ∇ (2.16)

Where ℏ = h
2π and h is Planck’s constant. In Equation (2.16) we use the Nabla operator

∇ which is a short-hand for the gradient operator as introduced in Section 2.1.1: ∇ =
( ∂
∂x ,

∂
∂y ). Therefore the energy operator in position space is:
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2.2 The Schrödinger equation

Ĥ = − ℏ2

2m
∇2 + V (x⃗, t) (2.17)

In Equation (2.17) the Nabla operator ∇ is squared. This squared Nabla operator is
also called the Laplace operator and has the following definition for 2 dimensions:

∇2 =
∂2

∂x2
+

∂2

∂y2

The complete Schrödinger Equation for a single particle in a scalar potential becomes:

∂

∂t
Ψ(x⃗, t) = − i

ℏ

(
− ℏ2

2m
∇2Ψ(x⃗, t) + V (x⃗, t)Ψ(x⃗, t)

)
(2.18)

Example. The most trivial system is the time evolution of a plane wave in a constant
potential. In this case Ψ = eik⃗x⃗ is an eigenfunction of the energy operator (as well as the
momentum operator).

This means that ĤΨ = EΨ, where E = p2

2m = ℏ2 |⃗k|2
2m . Solving the Schrödinger equation

we get:

∂

∂t
Ψ(x⃗, t) = − i

ℏ
E ·Ψ(x⃗, t) (2.19)

= − iℏ|⃗k|2

2m
·Ψ(x⃗, t) (2.20)

⇒ Ψ(x⃗, t) = exp(− iℏ|⃗k|2

2m
· t) ·Ψ(x⃗) (2.21)

Therefore Ψ evolves over time only by rotating some phase ω: Ψ = e−iωteik⃗x⃗

States like the one in the example are often referred to as stationary states. Any wave
function that is an eigenfunction of the systems energy operator Ĥ is in such a stationary
state. When these states evolve over time they only rotate their phase, which means that
their probability distribution |Ψ|2 does not change over time. States like this obviously
rely on a constant potential.

Since the Schrödinger equation is a linear differential equation, a decomposition of Ψ into
eigenstates of the energy operator Ê can be used as a general solution of the Schrödinger
equation.

Ψ(x⃗, t) =
∑
n

Cne
−iEntΨEn(x) (2.22)

However, finding the eigenfunctions for an arbitrary potential is not feasible. Therefore
other (numerical) methods are needed to solve the Schrödinger equation in general. See
Chapter 3 for more details.

2.2.1 Interference

A very important consequence of the Schrödinger equation is that the wave function can
interfere. This causes a lot of classically unintuitive behavior. A very well-known example
of this is the double-slit experiment, which demonstrates how particles can exhibit both
the behavior of a wave and the behavior of a classical particle (when measured).

Interference is a consequence of how wave functions get combined in superpositions.
When adding two wave functions together their probability density function might exhibit
interference effects. That means in general the sum of probability densities of two wave
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2.2 The Schrödinger equation

functions |Ψ1|2 + |Ψ2|2 might not be the same as the probability density |Ψ1 +Ψ2|2 of the
sum of these two wave functions. Obviously, there might be situations without interference
where the probability density function remains the same.

|Ψ1|2 + |Ψ2|2
?
̸= |Ψ1 +Ψ2|2 (2.23)

In Figure 2.4, the particle is in a superposition of two wave packets moving towards
each other (see Figure 2.3). Instead of simply adding the probability densities of the
two wave packets (remember, the probability density of a wave packet is a gaussian), a
superposition combines the complex wave functions. As a consequence interference effects
can be observed in the probability density function of the resulting superposition. The
probability density function is in black, the components of the complex wave functions
are in blue (real) and orange (imaginary). At some positions the wave function interferes
constructively, increasing the probability of the particle to be found at said position, while
at other positions the wave function interferes destructively, decreasing the probability.
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Figure 2.3: Wavefunctions before interference
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Figure 2.4: Example of interference effects
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2.2 The Schrödinger equation

2.2.2 Quantum tunneling

When encountering a potential barrier (a part of the potential with energy higher than the
energy of the particle) a classical particle will never tunnel through. Since the particle does
not have enough energy to climb the potential, it will instead roll back down. The wave
function of a particle in quantum physics however will not immediately have zero amplitude
inside the classically disallowed region. Instead, the amplitude will decay exponentially,
meaning the particle will have > 0% probability to be found inside the barrier. You can
see this exponential decay inside the classically disallowed area in Figure 2.5.

Figure 2.5: Quantum Tunneling. Graphic by Felix Kling1

This means if the barrier is small enough, part of the wave function might continue
after the barrier with lower amplitude. In this case, there is a small probability to find
the particle behind the barrier; the particle tunneled through. The amount of the wave
function that will tunnel through depends on the energy difference between the particle
and the barrier, as well as the thickness of the barrier. Obviously, a particle with higher
energy than the potential barrier will be able to pass through anyway.

2.2.3 Resonance in the finite potential well

A classical particle will always continue through when encountering a potential well as
seen in Figure 2.6. The potential energy difference will get converted into kinetic energy
when entering the well and be converted back when exiting. Afterward, the particle will
continue at the same speed as before. Of course, we are always talking about a nice world
without friction.

Resonance in a finite potential well is an example of very unintuitive behavior
of quantum mechanics. In the classical world, a particle will never reflect when
encountering a drop in potential energy. The wave function however can reflect,
possibly even multiple times. Note that the wave function will never get trapped
inside since no friction is modeled.

1Graphic by Felix Kling: https://en.wikipedia.org/wiki/File:TunnelEffektKling1.png

14

https://en.wikipedia.org/wiki/File:TunnelEffektKling1.png


2.3 Measurement

Position

Po
te

nt
ia

l

Figure 2.6: Illustration of a potential well

The wave packet of a particle in quantum mechanics however might also reflect off the
potential well, depending on the internal energy of the particle. If the wave packet has
enough energy it might also transmit through the potential well, just like a classical particle
would. More accurately, the higher the kinetic energy of the wave packet is, the higher the
amount of the wave packet that transmits through the well will be.

Interestingly at special wavelengths, which depend on the length of the well, the amount
of the wave packet that transmits through the potential well increases significantly. This
allows a wave packet to transmit almost completely even though a wave packet that is just
slightly slower or slightly faster might reflect [MPS10].

In particular, the length of the potential well needs to be a multiple of kπ, with k being
the wavenumber of the wave packet. (See Section 2.1.3)

2.3 Measurement

Measurement is the second way of how the wave function can evolve over time. Usually,
we take for granted that any particle behaves just the way we measured it. But because
a measurement will always introduce classical components to the quantum mechanical
system, it will behave very differently. Whenever any observable of a particle such as
position or velocity is measured the wave function collapses into a possible state.

A measurement is a significant break in the deterministic time evolution of the
Schrödinger equation. Whenever a measurement occurs the wave function col-
lapses into a state that represents the measured outcome.

15



2.3 Measurement

Any arbitrary wave function will collapse into an eigenfunction after measurement. So
after measuring the particle at position x0 the wave function will be Ψ = δ(x− x0).

The probability of each possible eigenvalue depends on the wave function itself. As previ-
ously discussed in Section 2.1.2, the wave function can be expressed as a linear combination
of eigenfunctions of the given operator. If the wave function is of form Ψ =

∑
iCiΨi, the

value |Ci|2 gives the probability density of measuring the corresponding eigenvalue.
Therefore, when talking about positions Ψ(x⃗) =

∫
x⃗0

Cx⃗0
δ(x⃗ − x⃗o) represents the wave

function. The probability of measuring the particle to be at position x⃗0 then is |Cx⃗0
|2.

Since the act of measuring the particle always requires an interaction of the particle with
its classical environment, the change of the wave function is not covered by the Schrödinger
equation anymore. Usually, this is described using the concept of quantum decoherence
[Zeh70, Sch05]. After a measurement was done, the wave function will continue to evolve
according to the Schrödinger equation.
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3 Simulation

The Schrödinger equation can be solved analytically for some potentials. However, when
simulating arbitrary potentials a numerical solution method is needed. In this chapter, we
will look into which methods are available and how the simulation was implemented.

There are a variety of methods to numerically solve the Schrödinger Equations for ar-
bitrary systems. In order to use such a simulation in a real-time environment such as a
game, the calculation of a single simulation step has to be done very efficiently. For the
purposes of this thesis, I have targeted a maximum execution time of 33ms, which amounts
to roughly 30 simulation steps per second.

Another factor is the stability of the chosen method. While the simulation does not need
to be incredibly accurate, it needs to be accurate and stable enough to produce plausible
results. In order to do so, the norm

∫
|Ψ(x)|2dx = 1 of the wave function needs to be

invariant under the chosen time evolution algorithm.
While the presented game uses a GPU-based implementation of the Split-step Fourier

algorithm (see Section 3.4), some CPU-based alternatives were explored. Some of them
were only usable in a 1-dimensional prototype, while others were efficient enough to work
in 2-dimensions.

3.1 Discretization of time and space

In order to numerically simulate the time evolution of a wave function, time and space
need to be discretized. Time is advanced by set intervals of ∆t. Space is divided into a
uniform grid. The distance between two neighboring grid cells is ∆x. Since changing ∆t
and ∆x directly impacts the accuracy of the simulation, they need to be minimized while
also achieving sufficient performance.

Note that special handling of the ends of the grid is needed. The easiest approach is
to assume a circular world in which indices wrap around. So in a grid with dimensions of
X × Y the wave function wraps around at its borders: Ψ(0, 0) = Ψ(X,Y ).

Other boundary conditions are also thinkable but might be harder to implement, while
not providing noticeable benefits for gameplay. Since the split-step Fourier method, due to
its reliance on the Fourier transform, implicitly assumes a circular world we opted for the
easiest approach: Modeling a circular world and limiting the world artificially by creating
potential barriers at its ends.

It would be possible to impose more complex boundary conditions, but this will most
likely not provide any notable benefits to the gameplay experience. Such an approach might
be more appropriate for simulations that require very high simulation accuracy [AES+03].

Notation. In the following chapters Ψt(x) will refer to the discretized wave function
Ψt(x) ∈ Nn → C at time t with spatial index x. Similarly Vt(x) will refer to the discretized
potential. The time parameter of the wave function will usually be written in subscript.
Especially when the spatial parameter is omitted.

Ψ(x⃗, t)=̂Ψt(x⃗)
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3.2 Naive Forward Euler method

3.2 Naive Forward Euler method

The most simple way to do numerical time evolution calculates the current derivative and
applies it to the current state.

Ψt+∆t = Ψt +∆t ·Ψ′
t (3.1)

This approach leads to a relatively simple solution with the following derivative for Ψ:

Ψ′
t(x⃗) = − i

ℏ

(
− ℏ2

2m
∇2Ψt(x⃗) + Vt(x⃗)Ψt(x⃗)

)
(3.2)

In order to calculate Ψ′
t, the Laplacian is needed. The Laplacian at any grid cell can be

estimated by looking at the neighboring grid cells. For two dimensions the Laplacian is
estimated as follows:

∇2Ψ(x, y) ≈ −2Ψ(x, y) + Ψ(x−∆x, y) + Ψ(x+∆x, y)

∆x2

+
−2Ψ(x, y) + Ψ(x, y −∆y) + Ψ(x, y +∆y)

∆y2
(3.3)

After calculating ∇2Ψ(x, y) only some multiplication and addition is necessary to esti-
mate Ψt+∆t. (See Schrödinger Equation (3.2))

While this method is very easy to compute, it does not preserve the norm of the wave
function as required by Equation (2.2). This introduces significant inaccuracies over time
making this method unsuitable for any long-term simulation of time evolution.

3.3 Crank-Nicholson scheme

The Crank-Nicholson scheme combines the Forward Euler approach with the Backward
Euler [FSS+09, CN47]. The Backward Euler uses the derivative at time t+∆t to calculate
Ψt+∆t.

Ψt+∆t = Ψt +∆t ·Ψ′
t+∆t (3.4)

By combining both approaches, we get a time-evolution scheme that is known to conserve
the probability distribution condition of Equation (2.2) [Vis91]. This means after a time-
evolution step using this method, the overall probability mass will stay the same, delivering
a valid wave function.

Ψt+∆t = Ψt +
1

2
∆t ·Ψ′

t +
1

2
∆t ·Ψ′

t+∆t (3.5)

= Ψt −
i

ℏ
Ĥ∆t

1

2
(Ψt +Ψt+∆t) (3.6)

Since the derivative Ψ′
t+∆t depends on the solution, it is necessary to solve a system of

linear equations in order to calculate Ψt+∆t.
Assuming for now that ℏ = 1 and m = 1 results in the following equation:

Ψt+∆t = Ψt +
1

2
i∆t ·

(1
2
∇2Ψt − VΨt

)
+

1

2
i∆t ·

(1
2
∇2Ψt+∆t − VΨt+∆t

)
(3.7)

− 4i

∆t
Ψt+∆t = − 4i

∆t
Ψt +∇2Ψt − 2VΨt +∇2Ψt+∆t − 2VΨt+∆t (3.8)
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3.4 Split-step Fourier method

The needed Laplacian is estimated the same way as described in Section 3.2. The
following Equation (3.9) only uses a single dimension. It is trivial to extend to multiple
dimensions.

− 4i

∆t
Ψt+∆t(x) = − 4i

∆t
Ψt(x)− 2V (x) ·Ψt(x)− 2V (x) ·Ψt+∆t(x)

+
−2Ψt(x) + Ψt(x−∆x) + Ψt(x+∆x)

∆x2

+
−2Ψt+∆t(x) + Ψt+∆t(x−∆x) + Ψt+∆t(x+∆x)

∆x2
(3.9)

After rearranging, the following equation can be solved using a system of linear equations.

4i

∆t
Ψt(x) + 2V (x) ·Ψt(x) +

2Ψt(x)−Ψt(x−∆x)−Ψt(x+∆x)

∆x2

=
4i

∆t
Ψt+∆t(x)− 2V (x) ·Ψt+∆t(x) +

−2Ψt+∆t(x) + Ψt+∆t(x−∆x) + Ψt+∆t(x+∆x)

∆x2
(3.10)

For 1-dimensional systems, this results in a tridiagonal matrix which can be solved in
O(n) time [Dat10]. 

b c 0 0 0
a b c 0 0
0 a b c 0
0 0 a b c
0 0 0 a b

 (3.11)

A tridiagonal matrix is a matrix where only the three central diagonals have values other
than 0, as seen in Equation (3.11).

3.3.1 Implementing Crank-Nicholson on the CPU

As previously discussed, using the Crank-Nicholson scheme to simulate quantum time
evolution is a very nice approach with good accuracy. When implementing this scheme for
1-dimensional systems it also is very efficient, as solving tridiagonal matrices can be done
in O(n)-time [Dat10].

However, when moving to 2-dimensional (or even higher) systems this is generally not
the case anymore. It is still possible to use sparse matrix solvers, such as Eigen1, that
utilize things like Cholesky decompositions, but this approach is still significantly slower
in comparison.

Both, a 1-dimensional prototype, as well as a 2-dimensional prototype were implemented
using C# as well as necessary C++ bindings. While this simulation scheme seems to provide
sufficient accuracy, the performance problems for 2-dimensional systems meant that only
very small systems could be simulated with appropriate speed. As a consequence, this
would severely limit the spatial resolution of the game.

3.4 Split-step Fourier method

The split-step Fourier method splits time evolution into two phases. The Fourier transform
is used to apply the kinetic energy operator in momentum space and the potential operator
in position space [DOST96].

1Eigen homepage: https://eigen.tuxfamily.org/index.php?title=Main_Page
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3.4 Split-step Fourier method

Assuming a constant energy operator Ĥ, time evolution according to the Schrödinger
equation has the following solution:

Ψt+∆t(x⃗) = e−
i
ℏ∆tĤΨt(x⃗) (3.12)

Since the momentum operator in position space contains a partial derivative, this does
not work. For this reason, the energy operator Ĥ is split into T̂ and V̂ which are applied
after each other. The potential energy operator V̂ can now easily be applied since it only
requires multiplication with V (x⃗).

Ψt+∆t(x⃗) = e−
i
ℏ∆tĤΨt(x⃗) (3.13)

≈ e−
i
ℏ∆tT̂ e−

i
ℏ∆tV̂ Ψt(x⃗) (3.14)

The introduced error can be slightly reduced by applying half a timestep of the potential
operator before and half a timestep after applying the kinetic energy operator. This is also
known as Strang Splitting [Str68].

Ψt+∆t(x⃗) ≈ e−
1
2

i
ℏ∆tV̂ e−

i
ℏ∆tT̂ e−

1
2

i
ℏ∆tV̂ Ψt(x⃗) (3.15)

While calculating the effects of the potential operator in position space is a simple
multiplication, the effects of the kinetic energy operator cannot be calculated in the same
manner. Instead, the Fourier transform F is used to apply the kinetic energy operator T̂
in momentum space. Instead of needing to calculate the Laplacian, the kinetic energy part
of time evolution becomes a simple multiplication too.

Ψt+∆t(x) ≈ e−
1
2

i
ℏ∆tV̂ F−1

(
e−

i
ℏ∆tT̂F(e−

1
2

i
ℏ∆tV̂ Ψt)

)
(3.16)

The complete algorithm has 5 steps. First, the potential energy part of the Schrödinger
equation gets applied. After transforming the result into momentum space, the kinetic
energy part is applied in momentum space. Then the wave function is transformed back
into position space and the second half of the potential energy part gets applied.

ϕ1(x⃗) = e−
1
2

i
ℏ∆tVt(x⃗)Ψt(x⃗) (3.17)

ϕ2(k⃗) = Fϕ1 (3.18)

ϕ3(k⃗) = e−iℏ∆t
∥k⃗∥2
2m ϕ2(k⃗) (3.19)

ϕ4(x⃗) = F−1ϕ3 (3.20)

Ψt+∆t(x⃗) ≈ e−
1
2

i
ℏ∆tVt(x⃗)ϕ4(x⃗) (3.21)

Besides the Fourier transforms, only multiplication of the wave function with a complex
factor is needed. When using an efficient implementation of the Fourier transform, this
means the algorithm is very fast, especially compared to the Crank-Nicholson scheme that
was discussed in the previous section. Thankfully there are many implementations of the
Fast Fourier Transform available. Furthermore, this also means that the algorithm can be
efficiently implemented on the GPU.

20



3.4 Split-step Fourier method

3.4.1 Implementing Split-step Fourier on the CPU

Implementing the Split-step Fourier algorithm on the CPU requires a fast implementation
of the Fourier transform. Luckily the Intel Math Kernel Library [WZS+14] provides a
fast, hardware-accelerated implementation which was used to implement the CPU-based
prototype.

Since no solving of linear equations is required, the Split-step Fourier method is signifi-
cantly faster to compute than the Crank-Nicholson method. In particular, it is performant
enough to allow simulations of larger 2-dimensional systems.

Since the prototype was implemented in C# it could easily be ported to the Unity game
engine. Next up I extended this implementation to use GPU compute shaders to further
increase simulation performance.

3.4.2 Implementing Split-step Fourier using GPU Compute

In order to further accelerate the simulation, the Split-step Fourier method was imple-
mented on the GPU. This allows for significantly larger simulation grids, while still en-
suring a smooth gameplay experience. All shaders used are written in the Unity compute
shader language which itself is based on HLSL.2

The resulting implementation vastly outperforms the CPU-based alternatives, allowing
for much better spatial resolution.

Fourier transform
The most computationally heavy parts of the algorithm are the necessary Fourier trans-
forms. A very commonly used, GPU-based implementation of the Fast Fourier Transform
(FFT) is provided by NVIDIA and called cuFFT.3

However, in order to stay platform-independent a solution implemented using Unity
Compute Shaders was selected instead. For this purpose a slightly modified open-source
implementation4 of the Cooley-Tukey FFT Algorithm was used [LBG08].

A slight disadvantage of the selected implementation is, that it limits the grid size to
powers of two. However, since we are using the Unity terrain feature to visualize the
potential (see Section 4.6.3), we need to adhere to this limit anyway.

Schrödinger evolution
Applying the actual operators requires only multiplication with each grid cell which can
be easily parallelized on the GPU.

Since Unity compute shaders do not natively support operations on complex numbers
these had to be implemented manually. This includes implementation of the exponential
function needed for the Schrödinger equation. In particular exponential functions of the
form eix are needed, as seen in Section 3.4.

eix = cos(x) + i sin(x) (3.22)

Implementations of the cosine and sine functions on the GPU often are only accurate for
values ranging from −π to π. For this reason, values passed to these functions are adjusted
using modulo 2π in order to keep close to this value range.

The actual calculation for half of the potential energy part of the split-step Fourier
method becomes the following. Remember that this step gets executed two times (see
Section 3.4).

2High-level shader language (HLSL):
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl

3NVIDIA cuFFT: https://developer.nvidia.com/cufft
4FFT implementation: https://github.com/nobnak/FftUnity
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3.5 Other methods

ϕ1(x, y) = e−
i
2ℏ∆t·V (x,y)Ψt(x, y) (3.23)

The kinetic energy part of the Schrödinger equation requires the wavenumber, which is
equivalent to the index of the Fourier transform. Some scaling and shifting are required,
to account for negative indices and spatial scaling of the grid.

When the kinetic energy step is calculated, first the rescaling factors sx and sy for k
are computed. These factors remain constant as long as the scaling parameters of the
simulation stay the same. The variables w and h refer to the width and height of the
simulation respectively. The mostly constant factor f is also precomputed on the CPU.

f = −∆tℏ
2m

(3.24)

sx =
2π

∆x · w
(3.25)

sy =
2π

∆y · h
(3.26)

On the GPU only the following calculations remain:

ϕ3(x, y) = exp
(
if(s2x · k2x + s2y · k2y)

)
ϕ2(x, y) (3.27)

With k being the corrected index of the Fourier transform ranging from
(
−w/2
−h/2

)
to(

w/2− 1
h/2− 1

)
.

Parameters of the simulation
In principle, it is possible to run the simulation without using accurate real-world con-
stants. Setting mass and ℏ to 1 simplifies the math slightly, but requires special tuning
to adjust the simulation scale to be sensible. In order to simplify this, parameters were
chosen to represent real values. The selected particle mass is the electron. Timestep and
grid-scale were chosen accordingly. With one grid cell being 10−10m and one simulation
step simulating 1.2 · 10−16s (at 60 frames per second). The potential field is also scaled
accordingly, ranging from 0 to 2eV .

3.5 Other methods

While the split-step Fourier and the Crank-Nicholson scheme are very popular options to
solve the Schrödinger equation numerically, there are other methods to do find numerical
solutions to the Schrödinger Equation. The paper “Numerical approaches to time evolution
of complex quantum systems” gives an overview about some approaches [FSS+09].

One of the most promising alternative approaches is the Chebyshev scheme. While it is
quite complex, it seems to provide good accuracy and efficient calculation. However we
did not pursue this approach, as the split-step Fourier method allowed easy calculation on
the GPU, allowing for sufficient performance and accuracy [Bae00, NS99].
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4 The game: “Schrödingers Labyrinth”

Designing a game that integrates quantum mechanics brings with it its own difficulties.
It is necessary to weigh against each other the accuracy and closeness to physics and the
approachability of the game. In this chapter, we will take a look at how the presented
game is designed and implemented. For this purpose, we will roughly follow the formal
and dramatic elements of a game as outlined in the Game Design Workshop by Tracy
Fullerton [Ful19].

The implemented game “Schrödingers Labyrinth” follows a unique design approach by
closely integrating the Schrödinger equation as its core game mechanic. While this means
the game is very close to the actual physics behind the simulation, it also limits the freedom
in level design to a certain degree. Nonetheless, quantum mechanics still allows for enough
variety in behavior to provide a good challenge to the player.

A gameplay demo of the game is available at https://youtu.be/U7A9l2PEmK8.

4.1 Related works

With quantum mechanics becoming important in many areas, there are a lot of software
solutions that try to teach concepts of quantum mechanics. From simulators for quantum
computing to virtual experiments to games that incorporate elements of quantum physics
into their game design, a lot of approaches have been tried.

The variety of software available ranges from simulations of quantum computing, over
virtual experiments designed as complementary teaching material, to more playful games
that are based on quantum mechanical concepts.

Quvis
Some of the more learning-oriented software solutions include Quvis1 of the University of
St Andrews, which presents a variety of experiments including background information and
is targeted to be included in lectures about the topic.

Since the simulations are specifically adjusted to present these experiments, they can
cover a wide variety of topics. Even more complex topics like quantum cryptography are
available. As you can see in Figure 4.1, the provided simulations are very restrictive in
which parameters the user can control. This allows Quvis to provide a wide variety of
experiments, which are accompanied by additional explanations and catered to students
of quantum mechanics.

1Quvis: https://www.st-andrews.ac.uk/physics/quvis/
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4.1 Related works

Figure 4.1: Quvis: 2-dimensional potential experiment

Quantum Game
Moving more into the direction of actual games Quantum Game2 recreates a virtual lab-
oratory, demonstrating various effects of quantum mechanics. The game is currently only
available as an alpha version of the level editor. This virtual lab can be used to recre-
ate various experiments of quantum mechanics. Furthermore, going into the direction of
quantum computing, Quantum Game also provides elements dealing with qubits.

As you can see in Figure 4.2, similar to Quvis, Quantum Game also does not deal directly
with the wave function but focuses more on probabilities and numerical properties of the
particle.

Figure 4.2: Quantum Game: Michelson-Morley Interferometer

2Quantum Game: https://quantumgame.io/
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4.1 Related works

Particle in a Box & Psi and Delta
Particle in a Box, as well as Psi and Delta are two small games provided by a Team of the
Design and Social Justice Studio of Georgia Tech3. These platformer games aim to teach
some concepts of quantum mechanics by demonstrating them via their game design. Both
games teach about energy eigenfunctions and probabilities, as well as some other related
concepts of quantum mechanics.

Particle in a Box (Figure 4.3) focuses on the intuitive differences between the classical
and the quantum mechanical world. Psi & Delta (Figure 4.4) features 15 different levels
and also allows a second player to join.

Figure 4.3: Particle in a Box: Demonstrating energy levels

Figure 4.4: Psi & Delta: Demonstrating probabilities

3Learn Quantum Mechanics: https://learnqm.gatech.edu/
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4.1 Related works

Quantum Moves 2
Quantum Moves 2 4 is a game provided by the Science at Home project. Not only does
it keep very close to the physics, actually directly working with a 1-dimensional wave
function, it also is used to generate data to contribute to ongoing research (similar to other
games of the Science at Home project).

The target of the game is to move the wave function in a very specific way by controlling
the potential. The player then is awarded a score, depending on how well the wave function
represents the target shape. Additionally, the help of an optimizer can be employed, to
further improve the recorded solution.

Quantum Moves 2 is similar to the game presented in this thesis, in that it also deals
with time evolution of the wave function, albeit only using 1-dimensional wave functions.

Figure 4.5: Quantum Moves 2

TestTubeGames
While not directly related to Quantum Physics, TestTubeGames5 provides a handful of
physics-related games teaching about several different areas of physics. I specifically
mention these games, because they are structured in a similar manner as “Schrödingers
Labyrinth”, usually intermixing level-based gameplay with additional information pre-
sented via text boxes.

In Figure 4.6 you can see a screenshot of the game Velocity Raptor, which teaches about
relativity. Featured as the main game mechanics are length contraction and doppler-shift.

4Quantum Moves 2: https://www.scienceathome.org/games/quantum-moves-2/
5TestTubeGames: https://testtubegames.com/
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4.2 Premise, Story and Character

Figure 4.6: Velocity Raptor by TestTubeGames

4.2 Premise, Story and Character

The premise of the presented game, “Schrödingers Labyrinth”, is built around an un-
named cat character, who was miniaturized to a quantum level and is trapped inside a
tilting labyrinth. This is, of course, a reference to the well-known thought experiment of
Schrödinger’s cat.

Figure 4.7: Excerpt of the introductory level dialog
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4.3 Challenge and Play

The player is tasked with helping the cat escape from imprisonment inside the labyrinth.
However, being miniaturized it cannot act itself, instead it interacts with the player only
through dialog. Because the cat was miniaturized to the level of quantum mechanics, it
does not have a definite position. Instead, like every other particle of quantum mechanics
(see Chapter 2), its state is defined by its wave function.

Each level, as the levels get harder and harder, the cat comes closer to the final exit.
Finally, after the player has completed the last level, the cat can escape.

The accompanying dialog introduces the player to each level and comments on how well
they are doing. For some of the more difficult levels additional hints are provided, that get
shown if the player had to restart the level multiple times.

4.3 Challenge and Play

Player controls are limited to tilting the labyrinth, which directly influences the potential.
Since the wave function will react to changes in the potential, this allows the player to steer
the particle through the level, similar to how one would steer the marble in a classical tilting
labyrinth. Similar to the classical tilting labyrinth each level is surrounded by walls. The
player is provided with a direct visual representation of the 2-dimensional wave function
that evolves according to the Schrödinger equation, as outlined in Chapters 2 and 3.

Of course, a wave function behaves very differently from a classical marble. Advancing
through the levels requires intuition about how the wave function (representing the cat)
reacts to certain changes in the potential. In particular, the wave function might spread
out over time, reflect off walls and even interfere with itself. The ability to finish the level
and score points depends on how localized the particle is. Therefore an indirect time limit
is imposed on the player, since spreading the wave function might lead to a situation, where
it is not possible anymore to beat the current level. As such, uncertainty in position is
the key resource that has to be managed by the player. We will come back to how scoring
works in detail in Section 4.7.

In contrast to a classical labyrinth, it is theoretically possible to gain enough energy
to climb over the levels walls. Since the world is modeled circular (see Section 3.1), this
allows the wave function to wrap around, circumventing most of the level architecture.
However, as the particle has a lot of uncertainty in momentum at that point, it will not
be possible to concentrate enough probability density in one place to beat the level. This
automatically enforces the player to keep within the boundaries of the labyrinth.

In order to beat a level, some intuitive understanding of time evolution in quantum
mechanics is necessary. While the first few levels are quite easy, later on the difficulty
increases. Later levels have increasingly difficult obstacles, requiring a better understanding
of how a wave packet reacts to certain situations.

The levels themselves are quite linear in the sense that they usually have a very clear
path to the finish. The challenge lies in finding the right approach to navigate the various
obstacles. Largely this means anticipating how the wave function reacts to different speeds
and how it reflects off the levels walls. Usually, this means that there are not a lot of
completely different solutions to beat a given level. However, for some levels trying different
approaches might be necessary to increase the player’s score.

4.4 Aesthetics

The wave function is visualized by encoding its phase in color hue and its square magni-
tude in brightness. This creates a very readable representation of the wave function with
sufficient contrast to make out areas where the wave function has the highest amplitude.
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4.4 Aesthetics

Remark. Unlike Figure 4.8, most screenshots in this thesis use a slightly modified version
of the game, which has a white background instead of the dark default background. This
was done to increase image quality when printed on paper.

Figure 4.8: Visual representation of a wave packet

In Figure 4.8, you can see the visual representation of a 2-dimensional wave packet as
it is presented in-game. This wave packet is a 2-dimensional version of the wave packet
introduced in Section 2.1.3, with momentum along the x-axis. As you can see, the bright-
ness encodes the position of the particle. Color is used to communicate the complex phase
of the wave function. In this case this can be used to identify, that the wave function has
momentum along the x-axis.

Since the wave function is defined over the complete space, most of this visualization
will usually be very dark. This motivates the overall look and feel of the game, which
is predominately black, with only the wave function providing color. In order to keep in
theme, additional level geometry is held very simplistic, doing without complex textures
that distract from the wave function.

The wave function representation with its rainbow-like aesthetic defines the core aspect
of the game’s visuals. This rainbow aesthetic is also used as an accent color in several
important elements of the user interface. Similarly, other level elements are mostly shades
of gray, only sparingly using color. The skybox background imitates a night sky, with stars
subtly shifting in color, reinforcing the overall theme of phase.

4.4.1 Implementation of the visualization of the wave function

The wave function is internally represented using a two-channel texture (since it contains
complex numbers). For rendering the wave function this representation gets converted
into HSV color space, using phase for hue and squared magnitude for the color’s value.
Saturation remains fixed at 1 but could be altered for example to not show the phase of
the wave function.

Since the wave function might contain very small values, especially when the particle’s
position has high uncertainty, the magnitude is scaled such that the brightest spot of the
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4.4 Aesthetics

texture always has value 1. For this purpose, a shader-based upon a prefix sum shader6

calculates the maximum magnitude of the wave function.

4.4.2 Visualizing the potential using the third dimension

Since we are only simulating a 2-dimensional particle, we can use the third dimension to
visualize the potential. This creates the visuals of a labyrinth as intended. Walls, slopes,
or ditches in the potential can create a complex level architecture, allowing easily readable
levels. This approach also further supports the aesthetic design of the game.

Representation of the potential in darkness
Since the visual representation of the wave function is very dark for most of the space,
this often leads to situations where height differences of the potential were very hard to
identify. Three solutions were explored to make the potential more readable for the player:

• Overlaying a grid texture similar to a wireframe

• Using edge detection shaders to create outlines around walls

• Using lighting and physically based rendering to create a natural shine around
changes in height.

Figure 4.9: Level 2 with enabled grid lines

Overlaying a grid texture, as seen in Figure 4.9, is certainly a very simple and effective
solution. It allows the player to easily determine how the potential is shaped. However,
there are also some artifacts around areas with very steep differences in potential height, as
the texture was stretched by the unity terrain engine. Also, this solution hurts the rather
clean aesthetic of the rest of the game.

While using edge detection to create an outline around walls seemed very promising,
given the wide variety of potentials no reliable solution was found and all approaches were
highly dependent on the camera angle. Also, this approach does not deal with soft slopes,
limiting its usefulness.

The biggest problem when using lights and their reflections to communicate height dif-
ferences is that very sharp corners often do not reflect the light even though they would in
reality. In the end, this was mitigated by using multiple light sources for some levels and

6PrefixSum shader: https://github.com/walbourn/directx-sdk-samples
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4.5 Level structure

applying slight Gaussian smoothing to the heightmap, rounding its corners, and therefore
allowing more light to hit. The Gaussian Blur has to be applied on the GPU in order to
maintain performance. Once again we opted for an open-source solution already available
for Unity7.

4.5 Level structure

The seven levels increase in difficulty, with each level introducing new concepts and pro-
viding more challenging obstacles. While the beginning is very tame and does not require
a good understanding of how the wave function evolves over time, the later levels introduce
some more complicated effects of quantum physics.

4.5.1 Intro and levels 1 & 2

In these levels, the player has some time to familiarize themselves with the controls and
the way a wave function reacts to changes of the potential. While no specific concept is
featured prominently, a lot of very basic understanding can be gained by playing these
rather simple levels.

Figure 4.10: Intro Level: Learning the controls

Of these three levels, feedback showed that level 1 is the most difficult. It is also the
only level to require some thought to solve. As you can see in Figure 4.11 the player starts
in a hole. In order to escape it is necessary to build up some momentum by moving the
particle back and forth within this hole. This level is also a good example of the complex
potentials that can be realized.

Level 2, which is shown in Figure 4.12, is very easy conceptually. The difficulty of this
level lies in the mechanical skill that is required to steer the wave function through the
slalom-like labyrinth.

Together, these three levels are designed to let players familiarize themselves with the
controls and the wave function. The specific phenomena of quantum mechanics that were
introduced in Chapter 2 are demonstrated in the levels following afterward.

7Gaussian Blur shader: https://github.com/keijiro/GaussianBlur
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Figure 4.11: Level 1: Building up momentum to escape

Figure 4.12: Level 2: A zigzag level
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4.5 Level structure

4.5.2 Level 3: Uncertainty in position

In Levels 3 and 4 the main feature is the split goal area. In order to beat these levels, the
player must split the wave function into two parts.

This emphasizes that the uncertainty in position, intrinsic to quantum mechanics, can
lead to situations where the particle seems to be in two places at once. As previously
discussed in Chapter 2 this is not actually the case. Rather the particle has roughly equal
probability to be found either in the upper half of the labyrinth or the lower half of the
labyrinth.

Apart from introducing this concept the only challenging aspect of the level are the two
asymmetric obstacles that need to be circumvented.

Figure 4.13: Level 3: Being in two places at once
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4.5.3 Level 4: Measurement

Building upon the mechanics of Level 3, Level 4 introduces the concept of measurement
and its impact on the wave function. Similar to the preceding level, the particle has to be
split to fulfill two target areas. However, after reaching these areas the level doesn’t end.
Instead, a security system is triggered and the level continues.

The security system will do a measurement of the two halves of the labyrinth. Then the
particle is found to either be in the upper half or lower half of the level. Afterward, the
player has to adjust to the new situation and continue to steer the wave function to the
goal area. Similar to the last level, a small ledge prevents the player from easily continuing
on. Instead, depending on the outcome of the measurement, the player has to react and
steer the wave packet around the obstacle.

Figure 4.14: Level 4: Handling measurement
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4.5.4 Level 5: Quantum tunneling

This level introduces the idea of tunneling to the player. There is a rather long path
through the level, filled with many obstacles. While it might be possible to use that path,
it is extremely difficult to reach the target with enough probability mass. Instead, an
alternative solution is to build up speed and tunnel through a thin wall. It is thin enough
to allow a decent amount of the wave function to continue past the wall, provided the wave
packet has built up some energy. The most effective way to achieve this is to reflect off
this wall, in order to go back and build up enough kinetic energy to tunnel through.

Figure 4.15: Level 5: Tunneling through a barrier
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4.5.5 Level 6: Transmission and resonance of the finite well

In this level, the effects described in Section 2.2.3 have to be utilized in order to beat the
level. This is also the only level in which the wave packet starts with some momentum.

In order to pass the first ditch, the wave should be slowed down to match the resonant
frequency. It is also possible to speed up to pass this obstacle, however in order to pass
the second obstacle the wave packet has to be slowed down. Otherwise, it will scatter
while passing through the second ditch, making it almost impossible to gather enough
probability density to beat the level.

If the wave packet gets slowed down enough it can reflect off the second triangle-like
ditch and be easily steered to the target area. Since the wave function might be more
spread out in this level than in the previous ones, it can be difficult to judge when to
rotate the labyrinth.

Figure 4.16: Level 6: Resonance and scattering in the finite well
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4.5.6 Level 7: Interference patterns of the double slit experiment

Inspired by the very famous double-slit experiment, this level features two walls with small
gaps. After passing through the slits of the first wall, the generated interference pattern
has to be steered correctly to meet the gaps in the second wall. Otherwise, the parts that
interfere constructively will reflect off the second wall and the level cannot be completed.

Figure 4.17: Level 7: Interference pattern after passing through the double-slit

As is the case with most other levels, reaching the minimum score is not designed to
be terribly difficult. Reaching the full rating of 3 stars requires some more thought. For
example, the player might choose to accelerate slower in the beginning to generate a simpler
interference pattern, which can be steered more easily through the second wall.

Figure 4.18: Level 7: Outro

Since this is the final level, there is a longer dialog after completion. The cat calculates
the complete probability of being inside the target areas for all levels, once again reminding
the player of the uncertainty which is inherent to quantum physics. Of course, the cal-
culated chance will always be quite low, representing this reliance on chance, the camera
slowly zooms out while a die rolls into frame, balancing on its edge.
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4.6 Game engine

As previously mentioned, the game is realized using Unity8. The Unity game engine is
very popular and there are many open-source projects and assets available. Furthermore,
it supports the use of compute shaders which are used for the simulation.

While the engine theoretically supports many different platforms, including support for
building HTML5 web applications, the reliance on compute shaders for the simulation
limits the platforms that “Schrödingers Labyrinth” can be compiled to. While the game
was developed and tested on Windows, Unity allows compilation on Linux or MacOS as
well. In any case, the game requires a GPU that is capable of running the compute shaders.
However, most GPUs are capable of running compute shaders9.

The game itself is rather conservative regarding simulation size in order to allow as
many systems as possible to have a smooth gameplay experience. As such the game can
be played even on some integrated graphics chips. While the targeted minimum framerate
is 30 frames per second, framerates can easily reach more than 100 FPS when playing
the game on a computer using a dedicated GPU. This headroom in performance could be
utilized to extend the game with more complex levels.

4.6.1 Potential function creation

The potential field V (x⃗) of the simulation is represented internally as a single channel
texture. As mentioned in Section 4.4.2, it is used for the underlying simulation as well as
to create the heightmap that gets used by the Unity terrain engine. Since the potential
function is a simple texture, we can directly create a level’s potential field using an ordinary
image editor.

However, in order to simplify level creation, the potential field texture can be composited
dynamically during runtime. This allows us to create commonly used level elements like
walls and move them in the editor. For the more simple elements like walls or triangles,
a shader was implemented that can generate these shapes in any size at runtime, vastly
improving the level editing experience. Some other components, like the star shape in level
5, are simple textures that get layered on top of the potential.

Another advantage of this approach is, that parts of the level geometry can dynamically
change during gameplay. This is used in level 4, where parts of the level are blocked with
a wall that disappears once the security system is triggered. (See Section 4.5.3)

Since recomposing the potential field is a rather costly operation, the potential field
should not be changed very often during gameplay to ensure good performance.

8Unity game engine: https://unity.com/
9Compute shader requirements: https://docs.unity3d.com/Manual/class-ComputeShader.html
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4.6 Game engine

Figure 4.19: Star-shaped potential in editor

4.6.2 Tilting of the labyrinth

The user controls the game by tilting the labyrinth. This affects the simulation by actually
tilting the potential field. This was implemented by applying a linear offset to the potential
field, depending on the current rotation of the labyrinth. At their extreme points, the
potential field might be adjusted by the player by up to 1eV , each axis contributing up to
0.5eV .

This means the when sampling the potential field, the value of the potential field at a
given position (x, y) is calculated as follows:

V (x, y) = scale ·
(
P (x, y) + 0.25 · rx ·

2x−X

X
+ 0.25 · ry ·

2y − Y

Y

)
(4.1)

With P being the single-channel potential texture, ranging from 0 to 1. The scale of
the potential is scale = 2eV and the rotation of the potential is described with rx and ry
ranging from −1 to 1. The values X and Y describe the size of the simulation.

4.6.3 Implementation of the potential function visual representation

The potential is visualized using the unity terrain feature. The unity terrain creates a
highly optimized mesh from a heightmap. In this case, the heightmap is a representation
of the potential function. Using a heightmap as a source for the potential and its visual rep-
resentation is very flexible and allows even complex potential functions to be implemented
in the game.

Problems with the unity terrain implementation
There are some drawbacks and workarounds needed when dealing with the Unity terrain
implementation.

The terrain’s heightmap needs to adhere to some rules. First of all its resolution has
to be 2n+1 × 2n+1 which is not a big problem, since the Fourier transform also requires
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its texture size to be a power of two. Also, the maximum value of the heightmap cannot
exceed 0.5.

Both problems are dealt with by generating the heightmap from the potential texture
rescaling and interpolating the last pixel as necessary. (Since the potential is of size 2n

and the heightmap 2n+1)
Another limitation of the unity terrain implementation is that it cannot be rotated,

since it was designed to be used for a static world. But to tilt the labyrinth, rotation of
the terrain is needed. In order to work around this limitation, the action of rotating the
labyrinth is inverted. This means that the labyrinth itself is not actually rotated, instead
the world, including the camera and skybox, is rotated around the labyrinth.

4.7 Objective scoring

The objective of the player is to reach the goal zone. Since the player does not control a
singular classical character but rather a wave function, the objective works a bit differently.
Scoring in each level is based upon the probability mass that the player managed to steer
into the goal zone(s). Depending on the level the minimum scores are adjusted accordingly.

Figure 4.20: Scoring of the wave function

While the intro level allows the player to move almost the complete wave function inside
the target area, later levels are more difficult. In most levels, it is almost inevitable to lose
some of the probability mass to scattering in the environment.

Score =

∫
zone

|Ψ(x)|2dx

For example, level 5 requires the player to tunnel through a wall, which will lead to most
of the wave function reflecting. As a consequence the target score is much lower, requiring
only 20% of the wave function’s probability mass to reach the target area.

After reaching the target area(s) the game does not end immediately. Instead, the game
continues for 3 seconds, to give the player a chance to bring even more of the wave function
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into the goal area. This grants a better score, with each level granting up to three stars
at different minimum scores. The bonus score system provides players with an immediate
idea of how good their score is. Additionally, the total score is kept to allow tracking
high-scores even when reaching 3 stars in a level.

Since the score represents the probability mass that the player was able to move into
the goal area, it also represents the probability of the cat reaching the exit. After finishing
the last level this is picked up again by combining the scores of all levels to calculate an
overall probability for the cat to escape. Of course, the combined probability will always
be quite low since the probabilities get multiplied, but it serves as a good reminder that
the position of a particle is not definite.

4.7.1 Implementation of the goal zones

The level’s goal zones have to measure the probability mass inside them. For this purpose,
a shader based on the already mentioned Prefix Sum shader10 is used to do this efficiently
on the GPU.

Pzone =

xmax∑
x=xmin

ymax∑
y=ymin

|Ψ(x, y)|2 (4.2)

Since this calculation is a bit expensive, only one goal zone is allowed to update each
frame, spreading the load over multiple frames when more than one goal zone is active at
once. The calculation of goal zones is the most expensive operation apart from the actual
simulation itself since the prefix sum algorithm requires multiple passes [LF80].

4.8 Sound design

The game’s ambiance is supported by a calm background soundtrack. In an effort to give
a better understanding of the current state of the wave function an ambient sound, whose
pitch depends on the average energy of the wave function, provides auditory feedback of
what is happening on the screen. The average energy of the wave function is calculated
using a weighted sum of the amplitude of the momentum.

The level where this feature can be observed the easiest is level 6. The wave packet will
increase in energy when entering the ditch that is featured at the beginning of this level.
The increase of energy is directly reflected by increasing the pitch of the ambient sound.

The speaking cat’s dialogs are spoken in by Daniel Tauritis, who kindly agreed to be
part of the game. Having spoken dialogs, allows the given explanations to be much less
dry and adds to the atmosphere of the game.

Most of the game does without any intrusive sound effects. The only exception being
level 4, with its security system. During this level, some sound effects are used to better
communicate that a measurement is happening.

10PrefixSum shader: https://github.com/walbourn/directx-sdk-samples
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5 Experimental evaluation

In order to evaluate how the design goals of the game work in practice, a two-part ques-
tionnaire was used. Due to the Covid-19 pandemic, these play-tests needed to be carried
out online only.

5.1 User survey design

The questionnaire is split into two parts. Before the game is played the participants are
asked to estimate their knowledge about quantum mechanics and the Schrödinger equation.
Since the game is targeted at people interested in quantum mechanics, we do not ask for
specifics here, rather relying solely on the self estimate.

After playing, the participants are asked to evaluate the game regarding various aspects.
In order to estimate how well the game teaches the various effects of quantum mechanics
that are demonstrated in-game, a second set of questions presents various problems, asking
the participants to predict the effects of quantum mechanics.

When asking the questions, we try to only require knowledge that was presented in the
game. Since we do not introduce players to a lot of technical terminology, these questions
have to be relatively simple.

5.2 Results

In the following, we present the results of the user survey. In total 18 participants played
the game and answered the questionnaire. While this amount of participants does not
allow us to do a very in-depth analysis of complex correlations between their answers, it
can provide us with a good idea of how the game was received, and more importantly how
it might be improved.

5.2.1 Before playing

At the beginning of the questionnaire, which takes place before the game is played, par-
ticipants were asked about their background regarding quantum physics.
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Figure 5.1: Source of knowledge

In general, as Figure 5.1 shows, a large portion of participants answered to know some
amount of quantum mechanics from school or university, with YouTube and Popular sci-
ences being very popular sources of knowledge too. Notably, only one participant claimed
to have learned something about quantum mechanics from video games or other software.
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Figure 5.2: “I am interested in quantum mechanics”

As you can see in Figure 5.2, most participants of the survey were quite interested in
quantum mechanics. Since quantum mechanics is a notoriously unintuitive area of physics,
Figure 5.3 shows that most people estimate their knowledge in quantum mechanics to
be rather low, even including some students that learned about quantum mechanics in
university.
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(a) “I know quantum mechanics”

1 2 3 4 5
0

2

4

6

strongly disagree – strongly agree

sa
m

pl
es

(b) “I know the Schrödinger equation”

Figure 5.3: Knowledge in quantum mechanics

Even fewer participants claimed to know the Schrödinger equation. Of course, that is to
be expected since a lot of people source their knowledge of quantum physics from popular
science and YouTube (see Figure 5.1), which usually put less focus on the Schrödinger
equation.

5.2.2 After playing

After playing, participants were asked another two sets of questions. The first set of
questions dealt with the overall impression of the game.

One thing that was very clear from the results after playing, is that the game is rather
difficult, at times leading to frustration, which impacted how enjoyable the game is to play.
This can also be observed clearly in how many participants were able to finish the game.
(See Figure 5.4)

Yes

44%

No

56%

Figure 5.4: Amount of players completing every level

As you can see in Figure 5.5 the enjoyment participants got playing the game varies
quite a bit. Going off the free-form feedback that players provided, the most frustrating
parts of the game stem from the high difficulty paired with the slow speed, which makes
replaying levels less interesting.
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Figure 5.5: Fun playing the game

Some participants also found the available explanations given at the start of each level
insufficient. Besides extending these explanations to be more in-depth, giving the player
more hints during the game seems most promising. Note that for some levels hints are
provided already, after restarting the level. However, considering the high difficulty of the
game, it seems to be beneficial to implement such hints in every level and possibly extend
them to show while playing a level too.
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Figure 5.6: knowledge increase after playing

Another indication that the given explanations were sometimes lacking depth can be
seen in Figure 5.6. Participants mostly stated that they felt rather little improvement
in their understanding of quantum mechanics. To a certain degree, this might also be a
consequence of the high difficulty, which meant that some levels were left unsolved.

In the next chapter, we will take a closer look at how well participants were able to
predict certain phenomena of quantum physics after playing.
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5.2.3 Intuition of quantum mechanics

In this chapter, we will take a look at how well participants were able to answer the second
set of questions that were asked after playing. These questions were more concrete and
asked about some of the quantum mechanical effects that could be observed in the game.

The questions covered the following topics:

• Uncertainty in position

• Uncertainty in speed

• Time evolution of a wave packet

• Correlation between the speed of a wave packet and its frequency

• Resonance in the finite well

• Interference patterns of the double-slit experiment

Uncertainty of position and speed
Figure 5.7 shows how many participants thought that particles in quantum mechanics
generally have definite position or speed. As mentioned in Section 2.1.1 this is generally not
the case, since the particle will usually be in a superposition. Furthermore, the eigenstates
of position and momentum will never occur in reality, as they are not normalizable.

Yes
11%

No

89%

Yes

28%

No

72%

Figure 5.7: Does a particle have definite position (left) / speed (right)?

Most participants answered these questions correctly, however, there is a notable dis-
crepancy between these two questions, with more participants answering that a particle
has definite speed. This might be explained by the in-game representation of the wave
function. While it is easy to see that the particle is spread out during the game, it is much
harder to see that this is due to differences in speed. In particular, the average speed of
a wave packet will be constant even though that does not mean the particle’s speed has a
definite value before measurement.

Time evolution of a wave packet
This theme carries over into some of the other questions too. When asked about how a
wave packet will evolve in a constant potential (see Figure 5.8) most participants correctly
observed that it will spread out over time. However, predictions involving the speed of
the wave packet were a lot less accurate. The average velocity of a wave packet will not
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change in a constant potential, nonetheless, a significant portion of participants answered
that the wave packet will increase in speed.
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Figure 5.8: Evolution of a wave packet

When playing “Schrödingers Labyrinth”, the wave packet will very often increase in speed,
since the potential will usually not be constant, but instead be sloped by the player’s input.
These effects could potentially be mitigated by improving accompanying explanations, as
well as including easier levels, where players can better get used to how the wave function
evolves in simple environments.

Frequency of a wave packet

55.6%

27.8%
16.7%

Faster moving particle has higher frequency
Faster moving particle has lower frequency
The frequency has no correlation to speed

Figure 5.9: Correlation between frequency and speed of a wave packet

When asked about the frequency of the wave function (see Figure 5.9), slightly more
than half of the participants correctly identified that a faster moving wave packets phase
changes at a higher frequency. Since this correlation is not commented on in the game it
is not surprising that a significant amount of players were not able to correctly answer this
question. Similar to before it might be possible that including additional easier levels, can
improve this result.
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Resonsance of the finite potential well
There are two questions aimed at the effects of quantum mechanics specifically demon-
strated in levels 6 and 7. In the first question, we asked participants to predict what can
happen to a wave packet when moving towards a potential ditch. The expected effects were
discussed in Section 2.2.3.
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Figure 5.10: Transmission through a potential well

The results that are shown in Figure 5.10 clearly indicate that most participants were
not able to identify the possibility of full transmission from playing the game. Since it is
not required to fully transmit through the first ditch in order to beat level 6 and a wave
packet strictly speaking will never fully transmit, because of uncertainty in momentum,
this result is actually not completely surprising. Nonetheless, the game can provide a
good demonstration of this phenomenon when paired with a deeper explanation of the
underlying theory.

More interestingly only about half of the participants stated that the wave packet might
partially reflect. When the player encounters the first potential ditch in level 6, it is
possible to completely transmit by accelerating. However, as discussed in Section 4.5.5,
the following level geometry is supposed to require a much slower wave packet. A slow
wave packet will easily reflect off the first potential ditch when it is not the perfect speed
to transmit due to resonance.

This might indicate a flaw in the level design of level 6, allowing players to beat it even
when accelerating the wave packet. Considering that most participants were unable to
beat every level, another possibility is that this level was skipped very often. Potentially
improving accompanying dialog and hints of this level would yield better results.

It is also noteworthy that some participants answered that part of the wave packet might
get trapped inside the potential ditch. While this is not possible when the potential field is
constant, it might be possible in the game, as players tilt the labyrinth, which might allow
them to capture some of the wave function inside the potential ditch.
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Interference pattern of the double-slit experiment

Figure 5.11: Probability density interference pattern of the double slit. Possible options
going from top-left to bottom-right.

In the last question, participants were asked to predict the interference pattern of the
double-slit experiment, similar to level 7 (see Section 4.5.6). Most player correctly identified
the correct interference pattern (top-right in Figure 5.11), with some picking the bottom-
right option instead.

0.0%
77.8%

5.6%

16.7%

top-left option
top-right option
bottom-left option
bottom-right option

Figure 5.12: Interference pattern of the double slit experiment

Level 7 seems to be quite successful in demonstrating the expected interference pattern.
In this case, we need to keep in mind that the double-slit is a very popular experiment, so
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in contrast to the effects presented in level 6, a lot more people might already know this
interference pattern.

5.2.4 Estimating prior knowledge

Since the participants have very different prior knowledge about quantum mechanics (as
discussed in Section 5.2.1), it can be a bit difficult to correctly interpret the results of
Section 5.2.3. We purposely opted not to ask these knowledge questions before playing, to
not overwhelm participants who are not particularly familiar with quantum physics.
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Figure 5.13: Correlation between prior knowledge of the Schrödinger equation and in-
creased knowledge after playing

Instead, we rely solely on participant’s estimates of their knowledge regarding quantum
mechanics in general and the Schrödinger equation specifically. When analyzing these
estimates there is no clear correlation between estimated prior knowledge of quantum me-
chanics in general and the estimated increase in knowledge after playing. However, plotting
knowledge about the Schrödinger equation against the estimated increase in knowledge af-
ter playing, people who knew the Schrödinger equation beforehand seem to generally think,
that their understanding of quantum mechanics increased after playing.

This might indicate a rather high barrier of entry, making the game more suitable for
players with a good theoretical understanding of quantum mechanics.

5.3 Possible improvements

Considering the results of the survey, and especially the free-form feedback, we will discuss
some possible improvements.

The most apparent problem is the high difficulty of the game with only 44% of par-
ticipants completing every level. In order to combat this issue and to make it easier to
understand what is going on without having good background knowledge on quantum me-
chanics, accompanying dialogs need to be extended. Also providing more hints during
gameplay would be beneficial.

Possibly most important, the player needs more time to get used to controlling the wave
function. This means additional (simple) levels to introduce the player to the game might
allow more players to finish the game, and thus learn more about the actual background.

In order to extend the game, the most important improvement is an increase in the
level’s length and complexity. Since the performance and accuracy of the simulation are
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quite good, there is still some headroom to build more complex levels, which incorporate
more elements of the existing levels in new combinations.

A point that was mentioned multiple times, is the slow speed of the simulation. There
are some problems with increasing simulation speed in general. Since the wave function
has a phase, increasing simulation speed will also increase the frequency with which the
phase of the wave function changes.

However, implementing a fast-forward function, that switches the in-game view to a
representation without phase, is a suitable improvement. This would allow the player to
fast-forward parts of the level, which don’t require complicated user input.

This function and some other minor improvements that were requested by participants
were implemented and can be found in an updated build of the game.

5.3.1 Outlook

Building upon the foundation of the game, a very interesting extension would be the
inclusion of a level editor. This could be used to recreate experiments and would give
players the freedom to experiment with completely different level architectures. Since the
game architecture already supports compositing the potential field from multiple sources
(see Section 4.6.1), this extension could be easily integrated into the game as is.

In this context, a more simulation-like approach, which provides players with more actual
numbers of the simulation (such as mass, or size), might be interesting. This could be
particularly interesting for players that are already knowledgeable in quantum mechanics,
such as students.
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6 Conclusion

Quantum Mechanics is becoming increasingly more important, especially considering the
advent of quantum computing. Still, it remains one of the most unintuitive areas of physics
since things behave very differently from what we are used to.

There are lots of approaches to learning about quantum mechanics. While most people
learn about quantum mechanics in school or university, sources like online videos and
popular sciences are also quite popular. In contrast, learning with software and games
only happens rarely. (See Section 5.2.1)

In this thesis, I presented “Schrödingers Labyrinth”, a game about the Schrödinger equa-
tion, which tightly integrates time evolution of quantum mechanical systems as its core
gameplay principle. Since the Schrödinger equation itself is a very theoretical part of quan-
tum physics, even people who are interested in quantum mechanics might not have heard
about it. Most games that teach quantum mechanics opt for a more indirect approach
of showing quantum mechanical effects. “Schrödingers Labyrinth” instead puts the player
directly in control over a wave function of a single particle.

The underlying simulation is implemented on the GPU using the split-step Fourier
method, which allows complex potential fields to be simulated efficiently in order to demon-
strate various effects of quantum mechanics. (See Section 3.4.2)

When playing the game, players are guided through several levels, which get increasingly
more difficult. While progressing through the game, players learn visually how the wave
function evolves over time and how it reacts to various obstacles. Over the course of the
game, fundamental parts of quantum mechanics such as quantum tunneling, uncertainty,
interference, and measurement are demonstrated. (See Chapter 4)

After playing, most players were able to successfully predict the more obvious effects
demonstrated. However, some questions of the questionnaire that was completed after
playing were significantly more difficult to answer. This is true especially for questions
that were related to the speed or phase of the wave packet. In order to rectify this,
more levels with more in-depth explanations and hints might provide a better learning
experience.

When evaluating the game a clear problem seems to be the high difficulty, which could
lead to frustration. In order to combat this, more hints and additional introduction levels
might be necessary. Nonetheless, the “Schrödingers Labyrinth” provides a fluent real-
time simulation of how a single particle in an arbitrary potential field behaves. This was
especially well received by players already familiar with the Schrödinger equation, who
appreciated the approachable visualization of time evolution in quantum mechanics. By
extending the game with more levels and better explanations to make it more accessible
to players with less background knowledge, “Schrödingers Labyrinth” could enhance the
experience when learning about quantum physics, especially when paired with other media.
A worthwhile extension of the game might also be the inclusion of a level editor to allow
players to create their own levels in which they can observe how the wave function reacts.
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