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Abstract— This paper studies different criteria for selecting
configurations for the task of calibrating a robotic system. Given
an automatic and self-contained procedure which allows the
robot to calibrate itself without the need of external tools, we
are interested in how to select the set of configurations that
maximize calibration accuracy while minimizing calibration
time. We experiment with the active calibration of a multi-
sensorial humanoid’s upper body and report that determinant-
based criteria should be preferred when a greedy selection is
used. In addition to criteria comparison, we further propose a
new criterion for configuration selection. Its novelty stems from
a direct treatment of the robot’s end-effector tool variance. This
is contrary to previous approaches which target the variance
indirectly via calibration parameters. Our proposed objective
function is derived as a compact formulation from the mean
error of the robot’s end-effector tool from which its variance
can be computed using traditional criteria known from the
theory of optimal experimental design (e.g. A-optimality).

I. INTRODUCTION

Accurately determining the values for the various param-
eters of the model that describes a complex system is a
precondition for successful operation of numerous robotic
and related tasks, such as in control, artificial intelligence
and computer vision. This procedure is known as calibration
and involves numerous repetitive tasks, e.g. designing exper-
iments to obtain the measurements and measuring the in-out
relations of the system. Moreover, the calibration procedures
often require human interaction and external tools.

Keeping humans as well as external tools out of the task of
robot calibration is a major concern when operating a robotic
systems as it allows reduction of the maintenance time and
its associated monetary costs.

Recent advances to alleviate the downtime of the robot
due to calibration have focused on designing the problem
as a joint calibration by using only measurements gathered
from on-board sensors. An example of this trend is Birbach
et al. [1], who proposed to calibrate a humanoid upper-body
equipped with heterogeneous sensors, such as stereo cameras
and an IMU, in an automatic and self-contained fashion by
observing a marker on the robot’s wrist while performing
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Fig. 1. Which configuration should we use for calibration? The figure
depicts three plausible robot configurations for an automatic and self-
contained calibration task. The quest for minimum time but maximum
accuracy in a calibration task raises the question about the effect of robot
configurations on this inherent estimation problem. The above images are
from DLR’s mobile humanoid Justin that was used for the experiments.

heuristic configurations (i.e. manually predetermined fixed
values of joint angles).

Although this proposal presents a step forward in au-
tomating the tedious task of calibrating robotic systems, the
common problem of which measurements to select to carry
out the calibration task is still overlooked, see also Fig. 1.

The set of measurements chosen within the procedure is
crucial for the outcome of the calibration, especially when
the calibration task is cast as a least-squares problem [2]–[4].
Not only does a “good” set of measurements prevents an ill-
conditioned calibration problem, but taking also the impact
of measurements into account allows to reduce their number
while maintaining the same calibration accuracy, therefore
reducing the overall calibration time.

In this paper we tackle the problem of how to select the set
of measurements for calibrating a robot under the constraints
of minimum calibration time (i.e. minimum number of
measurements) and maximum calibration accuracy.

We make use of an automatic and self-contained calibra-
tion procedure [1] that allows us to specify the measurements
by the robot configuration. Therefore, the criterion to opti-
mize the calibration relates to the robot configurations. This
stems from having all sensors on-board, hence the robot’s
configuration governs which measurements are taken.

Previous approaches [5]–[7] select the configurations us-
ing indexes or criteria that target the variance of the estimated
parameters and expect to improve indirectly the error in
the robot’s end-effector tool, a.k.a Tool Center Point (TCP).
In contrast, in this paper we propose a selection criterion
that chooses the set of configurations by directly optimizing
the error at the TCP. This also allows us to monitor the
probable error at the TCP and to decide when the number
of configurations is sufficient for our calibration task.



TABLE I
SUMMARY OF SELECTION CRITERIA.

Notice that given a Jacobian matrix X and a covariance matrix
Σ = (XᵀX)−1, the singular values (i.e. σ1, . . . , σm) of X and the

eigenvalues (i.e. λ1, . . . , λm) of Σ are related by λi = σ−2
i .
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In addition to the proposed selection criterion, we also
study the effect of using the selection criteria in conjunction
with a greedy optimization to select the set of configurations.
Our experiments show that, (i) using a greedy optimization
leads most of the time to sub-optimal results in the selection
of configurations, and (ii) that determinant based selection
criteria should be preferred regarding global optimality.

The reminder of the paper is structured as follows. Sec-
tion II discusses related work, emphasizing previous indexes
or criteria to select the measurements for a calibration
task. Section III presents the proposed selection criterion.
Section IV outlines the active calibration procedure used for
the experiments and Sec. V shows experimental results of
the procedure in simulation and real environments. Finally,
Sec. VI discusses the results and concludes the paper.

II. RELATED WORK

It is well known that in a calibration task the measurements
taken will influence the accuracy of the estimated kinematic
or inertial parameters of a robot, see [2] or [4]. Aiming at
determining the optimal set of measurements from which the
calibration parameters should be estimated, several criteria
(a.k.a metrics or indexes) have been proposed, mainly to
quantify the reduction in the variance of the estimated
parameters.

Historically, the computation of indexes has been based on
singular values of the Jacobian matrix (X) after casting the
calibration task as a least-squares problem. The general idea
is to predict through the singular values (i.e. σ1, σ2, . . . , σm)
of X, which configurations will permit better observability,
hence reducing the variance of the estimated parameters.

In the above context, a first proposal called OC was
introduced by Gautier and Khalil [5]. They proposed that
the criterion for selecting the measurements was based on the
condition number of X. The rationale behind that is to have a
well-conditioned problem, where each measurement gives an
uniform amount of information in this case. The formulation
of OC as well as the other criteria are summarized in Tab. I.

A second approach OD is due to Borm and Menq [2], and
their proposal was based on the minimum ellipsoid’s error of
the estimated parameters. Nahvi et al. [6] introduced a third
index OE by using the minimum singular value.

Sun and Hollerbach [8] presented a detailed study about
the above indexes and discussed their relation with the

criteria proposed in the theory of optimum experimental
design (TOED) [9]. In the TOED the idea is to measure the
uncertainty encompassed in a covariance matrix Σ resulting
from a particular design ξ. Particularly, for our calibration
task each of the used sets of measurements defines the design
and the covariance matrix is obtained by Σ = (XᵀX)−1

assuming identical measurement variances. In contrast to
the observability indexes, the objective of the criteria stem-
ming from the TOED is to minimize the eigenvalues (i.e.
λ1, λ2, . . . , λm with λi = σ−2i ) of (XᵀX)−1 which results in
minimizing the variance of the estimated parameters. Among
the most used criteria are A-optimality [10] (based on the
trace), D-optimality [10], [11] (based on the determinant)
and E-optimality [12] (based on the maximum eigenvalue).

In [8], the authors also proposed the counterpart of A-
optimality as an observability index, called OA. Table I
shows row-wise the relation between the observability in-
dexes and the TOED criteria as reported in [8]. One draw-
back of OA, as well OE , is that their values are a mixture
(sum-wise) of the eigenvalues which units depend on the
parameters. Therefore, they often have a difficult physical
interpretation.

Several previous approaches have used the above ob-
servability indexes with Jacobian matrices to determine the
optimal set of measurements in order to estimate the param-
eters in a calibration task accurately. These include dividing
randomly sampled configurations from the workspace in sets
and selecting the set with best observability index [2], or a
greedy search with an exchange scheme over a sampled set
of configurations until a maximum number of configurations
or desired accuracy is reached [6], [7], [13], [14]. The latter
approach can also be cast as a variant of the algorithm for
the design of optimal experiments known as DETMAX [15].
Measurement selection using an evolutionary scheme was
introduced in [16], [17].

In general, the above algorithms that actively select the
set of measurements for a calibration task are called active
robot calibration algorithms [7].

To the best knowledge of the authors, all prior approaches
for selecting the set of optimal measurements for robot
calibration optimize only the variance of the calibration
parameters and not directly the TCP variance, although it
is the main concern in a real task: A mobile manipulator
commanded to open a door using the knob needs to be
calibrated to precisely reach the door knob but not to have
low variance model’s parameters.

With the above in mind, we propose a selection criterion
for choosing the set of measurements that reduce the variance
of the TCP and develop a compact formulation for the mean
error of the TCP in the next section.

III. PROPOSED SELECTION CRITERION

Let us suppose that the TCP position is computed by
a forward kinematic function f(q, α), that depends on the
configuration of the robot q and a set of parameters α.
Also let us assume that the configuration q is given (i.e.
it is a measured variable) and that the set of parameters



TABLE II
SUMMARY OF TASK ORIENTED SELECTION CRITERIA.

Notice that l is the number of Jacobian matrices J
and Σ = cov(α̂) is a covariance matrix.
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α is estimated in the calibration task via least squares.
Consequently, a natural criterion to assess the mean TCP
error, given a set of parameters from a calibration task, is
the expected value of the Euclidean (`2) error of f(q, α)
with different parameters over the workspace of q:

Eq[‖f(q, α̂)− f(q, α)‖22] (1)

where f(q, α) refers to the true TCP position after mea-
suring a configuration q and f(q, α̂) is the TCP position
obtained with the estimated set of parameters α̂ using the
same configuration.

For simplicity let’s denote f(q, α̂) by r and its counterpart
by r̄. Then by properties of the trace and by the definition
of the covariance it follows that:

Eq[‖r − r̄‖22] = Eq[tr((r − r̄)(r − r̄)ᵀ)] (2)

= tr(Eq[(r − r̄)(r − r̄)ᵀ]) ≈ 1

l

l∑
i=1

tr(cov(f(q(i), α̂))) (3)

Eq means the average over configurations q, which is
approximated by a sum over a fixed number (e.g. l) of q(i)

configurations samples.
One drawback with the above formulation of the criterion

is that it requires to compute each covariance matrix for
each TCP selected for evaluation. By carrying out a full
simulation of the model such type of simulation could be
computationally expensive, e.g. if we desire to test with
hundreds or thousands configurations q(i).

One way to overcome the above is to “decouple” the
covariance matrix. With the above in mind we use the error
propagation law

1
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where,

J(i) =
∂f(q(i), α̂)

∂α̂
(5)

is the Jacobian of the model response with respect to the
parameters. It should be noticed that given that J(i) is a
known constant, (4) is linear in cov(α̂). Hence, it can be
formulated as a compact weighted sum of coefficients. Using
the definition of vector product, indexes constrained for each

particular matrix, and the trace’s product property, it follows
from (4):

1

l

l∑
i=1

tr(J(i)cov(α̂)J(i)ᵀ) =
1

l

∑
i,j,k,l

J
(i)
jk cov(α̂)klJ

(i)
jl =

(6)

1

l

∑
k,l

cov(α̂)kl

(∑
i,j

J
(i)
jk J

(i)
jl

)
=

1

l

∑
k,l

cov(α̂)kl

(
l∑
i=1

J(i)ᵀJ(i)

)
kl

(7)

=
1

l
tr

(
cov(α̂)

l∑
i=1

J(i)ᵀJ(i)

)
(8)

therefore,

1

l

l∑
i=1

tr
(

cov
(
f(q(i), α̂)

))
≈ 1

l
tr

(
cov(α̂)

l∑
i=1

J(i)ᵀJ(i)
)
(9)

In (9) a compact formulation of a first degree approxi-
mation of the proposed criterion is presented. Also in (9)
the term

∑
i J(i)ᵀJ(i) can be precomputed. Hence, despite

its approximate nature, a key advantage of using (9) over
(4) is achieving a reduction in complexity, i.e. for 100 test
candidate configurations q(i), (4) has to be computed 100
times for each set α̂ but (9) needs to be computed only once.

Another interpretation of the proposed criterion (9) can
be given using the TOED [9]. There, the mean trace (i.e. A-
optimality) gives the mean uncertainty encompassed in the
covariance matrix, that, for our case, represents the mean
squared TCP error in meters. One may replace the trace op-
erator in (4) for, in this case, another uncertainty measuring
operator, such as the determinant (i.e. D-optimality) or the
maximum eigenvalue (i.e. E-optimality) as stated in Tab. II.
We explore this possibility in Sec. V.

IV. EXPERIMENTAL CALIBRATION PROCEDURE

In order to test the proposed selection criterion and study
its relation with previous proposals, we use a calibration
procedure which actively chooses the configurations used in
the calibration task. First, we produce a set of candidates
configurations and check it for collisions. We then apply a
greedy optimization using a selection criterion and select the
configurations for calibration. Finally, the selected configu-
rations are used to calibrate the robot.

A. Sampling and Checking Configurations

The first step is to produce feasible robot configurations
for the calibration task. These configurations must be con-
strained by the mechanical limits of the robot and be safe,
i.e. collision free. Also they should cover most of the robot’s
workspace to account for all possible configurations.

The generation of robot’s configurations is easily achiev-
able using the inverse kinematics of the robot, but computing
the inverse kinematics of a complex system (e.g. the hu-
manoid robot we used in the experiments) is a difficult prob-
lem. Hence, to keep the calibration problem computationally
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Fig. 2. The pose cloud obtained by the first stage of the active calibration
algorithm used for experimentation. Blue markers belong to left arm and
red markers to right arm. a) The pose cloud before checking for collisions.
b) The remaining pose cloud after checking for collisions.

tractable, we opted for sampling the joint angle parameter
space and generate a cloud of possibles configurations. From
this cloud, using a nearest neighborhood algorithm, we obtain
the joint angles that produce the configurations over the
maximum cube circumscribed in the workspace.

We checked every configuration by applying the algo-
rithm by Täubig et al. [18] to detect self collisions. The
algorithm computes so-called swept volumes of the robot’s
bodies and checks them for pairwise collisions. Designed
to detect collisions while moving rapidly, it operates on
swept volumes defined by joint angle intervals. For checking
our static configurations, we make use of these intervals
to accommodate for unknown joint angle deviations. This
allows us to generate safe trajectories, even though the robot
has mild joint angle offsets (of up to 0.5◦).

As an example of this stage Fig. 2 shows the resulting
cloud before and after checking for collision of the humanoid
robot used for experiments in Sec. V.

Given that the task oriented selection criteria need feasible
robot configurations for computation, the sampled configu-
rations are divided in two groups: one of candidate configu-
rations (Ac) and one of testing configurations (At). The first
group contains configurations that could be selected by the
greedy optimization, hence becoming configurations of the
final calibration task. The second set of configurations are
used by the task oriented criteria to form Jacobians.

B. Greedy Optimization

Limitations of the number of configurations used for cali-
bration affect almost any real calibration task, which mainly
arises due to time or monetary reasons. If we are given a
limit of N configurations out of a set of M candidates, an
exhaustive search has M !

N !(M−N)! possibilities of choosing the
N configurations. For N = 8 and M = 114 this would count
for 5.5034× 1011 needed trials.

Given the computational complexity of the exhaustive
search we need to rely on sub-optimal approaches, such as
greedy optimization, to select the configurations. In greedy
optimization we select the configuration that gives the best
output of the selection criterion each step until the maxi-
mum number of configurations has been reached. With this

approach N ∗M trials are need. For N = 8 and M = 114
this count for 912 needed trials. A practical aspect to remark
is that in order to avoid rank deficient problems with infinite
Σ, a plausible prior is used at the first step of the greedy
optimization.

More formally, our greedy optimization is as follows:

Algorithm 1 Configuration selection by greedy optimization
Require:

• A candidate set of configurations Ac : {ac1, . . . , acm} .
Ensure:

• The optimized set of configurations S : {s1, . . . , sn} .
1: Initialize S : {} .
2: for i = 1 to N do
3: si := argmax

a∈Ac
SelCriterion ({a} ∪ S)

4: end for

C. Calibration

Finally, after selecting the configurations, we perform the
actual calibration. This part is based on the earlier mentioned
calibration approach [1], where the idea is to perform a joint
calibration of all the sensors by using all the data and solving
the estimation problem via least squares.

The calibration has three steps. Firstly, the relation be-
tween the measured variables and the calibration parameters
is stated in a set of equations. Secondly, a plausible initial
estimate is given to all the parameters from a previous
calibration result. Finally, the calibration parameters are esti-
mated using least squares solving techniques, e.g. Levenberg-
Marquardt. Further details on the implementation can be
obtained in [1] and [19].

V. EXPERIMENTAL RESULTS

A. Prerequisites

For our experiments we consider the calibration of the
upper torso of a multi-sensor humanoid robot [20]. Specif-
ically, we jointly calibrate the robot’s stereo cameras and
the kinematic chain. In detail, we estimate both cameras’
intrinsic parameters (focal length fL/R, principal point CL/R
and radial distortion (κL/R) ), poses of the left camera (TLH ),
the left camera relative to the right camera (stereo, TLR ) and
the correction parameters (angle offset θoff,i, elasticity K−1i )
for the joints i in the kinematic chain.

The optimization of the TCP-error in world frame is not
affected by the camera calibration, therefore we use f(q, α)
as the TCP in camera frame. This way the TCP-error includes
the camera-pose error and the configuration selection also
takes care of a proper camera calibration.

The formulation of the measurement functions used for
the calibration follows earlier work of the authors (see [20]
and [1]).

B. Calibration Result

We executed the calibration algorithm described in sec-
tion IV using the proposed Task A-opt as the selection
criterion. Specifically, we set up the active calibration pro-
cedure with a set of 30 candidate configurations (Ac), a



TABLE III
CALIBRATION RESULTS (EXCERPT)

Intrinsic left Intrinsic right
fL (px) CL (px) κL fR (px) CR (px) κR

µ 1876.5 768.3, 624.2 0.09 1877.6 818.3, 620.9 0.09
σ 1.72 1.83, 1.62 1.8·10−3 1.93 2.05, 1.95 2.8·10−3

Transformation TLR Transformation TLH
Translation (m) Translation (m)

x y z x y z
µ -0.203 -0.001 -0.002 0.071 0.104 0.129
σ 0.0001 0.0002 0.0006 0.0006 0.0006 0.0006

Residual rms
Left camera (px) Right camera (px)

x y x y
0.75 0.93 0.61 1.22

set of 3115 testing configurations (At) and we selected 8
configurations for calibration (S). We uniformly sampled
from the joint angle parameter space every 30 degree to
obtain the configurations.

Table III presents an excerpt of the calibration results. The
estimates (µ) and their σ-bounds are shown and indicate that
the sensors are estimated near to their physical position and
within a plausible bound. The rest of the parameters not
mentioned in the table (e.g. joint angles offset) have also
plausible estimates.

Figure 3 depicts the distribution of the cameras residuals
and shows a fair sampled Gaussian distribution. The above
in conjunction with the low camera residuals suggest that the
used models fit well.

Finally, an animation of the selected configurations for
calibration can be seen in the accompanying multimedia
material.

C. Results on the Effect of Using the Selection Criteria with
a Greedy Optimization

It is known that in general a greedy optimization cannot
guarantee global optimal results. To the best of the authors’
knowledge, there are no mathematical proofs that guarantee
global optimal results using a greedy selection for the criteria
described in Sec. II.

In order to assess the effect of using the selection criteria
with a greedy optimization, we tabulated a cross-evaluation
of each set of robot configuration selected with all the
selection criteria. For the set of configurations obtained with
a particular criterion (e.g. E-opt), we evaluated this set of
configurations with the rest of criteria (e.g. Task A-opt, Task
D-opt, Task E-opt and so on).

We executed the calibration algorithm described in Section
IV for six selection criteria named: A-opt, D-opt, E-opt,
Task A-opt, Task D-opt and Task E-opt. The first three are
explained in Sec. II and its formulation is in Tab. I. The
last three are explained in Sec. III and its formulation is in
Tab. II. Regarding the active calibration procedure, we used
a set of 114 candidate configurations (Ac), a set of 3115
testing configurations (At) and selected 8 configurations for
calibration (S).

Table IV shows all the cross-evaluation results. Names in
columns represent the selection criteria used with a greedy
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Fig. 3. Measurement residuals of left and right camera measurements.

optimization to obtain the set of configurations. Names in
rows represent the selection criteria used for evaluation. The
numbers in the table can only be compared row-wise and
they represent the final value of the criterion after evaluating
a set of robot configurations.

Also in Tab. IV each cell has the error relative to the
minimum value row-wise in parenthesis. This permits to
assess the degree of sub-optimality due to the use greedy
optimization for each selection criteria.

The last column of the Tab. IV shows the cross-evaluation
for the set of configurations chosen heuristically. It is worth
to point out that its errors, relative to the minimum row-
wise, are by far the biggest. Despite using 14 instead of 8
configurations, these results suggest that it is better to opti-
mize the selection of configurations using a mathematically
developed criterion rather than optimize it heuristically or
randomly, given the complex structure of the problem.

To complete the information in Tab. IV, Fig. 4 depicts
the evolution of the cross-evaluation values over the set of
configurations |S|. It can be noticed that the improvement
of the criteria is roughly exponential. This indicates that
with |S| = 8 we are still covering “new dimensions” in
the parameter space and not yet just “averaging out” the
error with the least squares, which would have been a value
proportional to the inverse of the size of the data used in the
least squares and a less rapid decay.

VI. DISCUSSION

In the following we discuss the experimental results re-
garding the effect of using different selection criteria and
also discuss the proposed task oriented criterion.

A. Greedy Optimization and Active Robot Calibration

Prior work in active robot calibration (c.f. Sec. II) are
mostly based on greedy like optimization algorithms, such
as DETMAX, that converge quickly but cannot guarantee
global optimal results.

We studied the influence of the greedy optimization in the
selection criteria by cross evaluating the set of configurations
selected with one criterion (e.g. E-opt) to the others (e.g. A-
opt, D-opt,...). The results are tabulated in Tab. IV which
show several examples were greedy selection leads to sub-
optimal results. For instance, the E-opt value of the set



TABLE IV
RESULTS OF CROSS EVALUATING THE SELECTION CRITERIA WITH |Ac| = 114, |At| = 3115 AND |S| = 8. THE MINIMUM VALUE ROW-WISE IS

HIGHLIGHTED IN GRAY AND THE ERROR RELATIVE TO THE MINIMUM VALUE ROW-WISE IS IN PARENTHESIS IN EACH CELL.

Configurations
Criteria Task A-opt Task D-opt Task E-opt A-opt D-opt E-opt Heuristic @ |S| = 14

Task A-opt ×10−8 5.65 (1.33x) 4.24 8.09 (1.90x) 8.94 (2.10x) 4.47 (1.05x) 10.68 (2.51x) 67.16 (15.83x)
Task D-opt ×10−20 2.39 (1.32x) 1.81 3.28 (1.81x) 3.52 (1.94x) 1.88 (1.03x) 4.09 (2.25x) 25.07 (13.85x)
Task E-opt ×10−6 1.83 (1.32x) 1.38 2.51 (1.81x) 2.94 (2.13x) 1.48 (1.07x) 3.57 (2.58x) 5.16 (3.73x)

A-opt ×10−7 3.55 (2.55x) 1.62 (1.16x) 17.43 (12.53x) 2.71 (1.94x) 1.39 4.75 (3.41x) 359.48 (258.6x)
D-opt ×10−8 2.64 (2.09x) 1.97 (1.56x) 6.04 (4.79x) 2.89 (2.29x) 1.26 3.99 (3.16x) 56.12 (44.53x)
E-opt ×10−7 25.59 (3.07x) 8.31 215.14 (25.88x) 10.88 (1.30x) 9.33 (1.12x) 35.69 (4.29x) 4970.2 (598.0x)
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Fig. 4. Evolution of the cross-evaluation presented in Tab. IV over the set of configurations |S|. The X axis indicates the size of |S| and the Y axis
indicates the log value of each criteria. a) Set of configurations evaluated with Task A-opt. b) Set of configurations evaluated with Task E-opt. c) Set of
configurations evaluated with D-opt.

chosen greedily with E-opt criterion (row 6, column 6) is
35.69× 10−7 but the E-opt value of the set chosen greedily
with Task D-opt criterion (row 6, column 2) is 8.31× 10−7,
hence the E-opt set selection is sub-optimal against Task D-
opt because the greedy optimization algorithm was trying to
minimize the selection criterion E-opt.

To highlight the differences between greedy and exhaus-
tive based active calibration, we performed a small scale
example with a set of 18 candidate configurations (Ac)
and selected 4 configurations for calibration. The results are
tabulated in Tab. V and show that greedy optimization yields
sub-optimal results while exhaustive optimization produces
global optimal results. Again, the greedy optimization mis-
lead the results of both criteria by selecting sub-optimal sets.
It is worth pointing out that both criteria selected the same
configurations in the exhaustive search.

From the cross-evaluation, we also observe that deter-
minant based criteria (D-opt and Task D-opt) consistently
outperform other criteria when the greedy optimization is
used. These results agree with the TOED [9] where the D-opt
is regarded as the criterion which measures more accurately
the uncertainty in the covariance matrix. They also agree
with previous works in active calibration such as [8], which
reports from a theoretical perspective that determinant based
criteria are the best choice for precise calibration. Also, in a
loosely related field of research, such as SLAM [11], [21],
the same behavior have been previously reported.

The above results suggest that for an active calibration
algorithm using greedy selection, the best choice in order
to have a near global optimal result is to use a determinant
based criterion.

TABLE V
RESULTS OF CROSS EVALUATING THE SELECTION CRITERIA WITH

|Ac| = 18 AND |S| = 4.

Configurations
Greedy Exhaustive

Criteria A-opt E-opt A-opt E-opt
A-opt ×10−5 2.68 (1.44x) 4.29 (2.30x) 1.86 (1x) 1.86 (1x)
E-opt ×10−4 2.42 (2.14x) 3.27 (2.89x) 1.13 (1x) 1.13 (1x)

To conclude this part, it is worth to point out that the
optimization algorithm used for selecting the robot con-
figurations for a calibration task is as important as the
criteria or metrics used to determine the adequacy of a
robot configuration, and further research efforts should going
toward global optimum procedures with low computational
complexity.

B. Task Oriented Selection Criteria

A key question in active calibration of robots is how many
measurements to use. This number is often limited by time
or monetary reasons but beyond these, it would be ideal
to select the number of measurements by the adequacy of
the measurements themselves, i.e. how good is the set of
measurements with regards to the calibrated parameters?

The studied selection criteria come in handy to determine
the number of configurations but some of them have difficult
physical interpretation that could lead to a heuristic use.
For example, A-opt uses the covariance matrix Σ of the
estimated parameters. Therefore, their values are a mixture
(sum-wise) of the diagonal of Σ, which units depend on the
parameters. In particular for our experimental calibration,
A-opt’s values have no intuitive physical representation as



they are obtained from summing different units, such as
angular units (rads−1), translational units (m) and image
units (pixel).

In contrast, task oriented criteria that use a covariance
matrix related with the TCP have a more intuitive physical
meaning. For example, the proposed task A-opt also com-
putes its values as a mixture (sum-wise) of the diagonal. If
the TCP is parametrized, as in our experiments, in a Cartesian
form, the task A-opt results will be in translational units
(m) allowing to know the accuracy of the TCP each time
the selection criterion is used. Knowing the probable TCP
accuracy allows to determine the number of configurations
rationally.

Consequently, using the proposed task A-opt with a plausi-
ble selection technique will allow us to monitor the adequacy
of the set of configurations and choose the number of
configurations used in the calibration according to the task.

VII. CONCLUSION

We proposed a task oriented selection criterion that per-
mits the assessment of the mean TCP error variance directly,
which is contrary to previous approaches that target it
indirectly via the calibration parameters. By that, it provides
a task oriented indicator of the adequacy of the set of
configuration used for calibration. This indicator may be used
to limit the number of configurations, hence reducing the
calibration time.

In addition to the criterion proposal, we studied the effect
of using a selection criteria with a greedy like optimization
algorithm as the selection procedure in an active calibration
algorithm. Greedy optimization algorithms were used in
many previous works because of their low computational
complexity compared to an exhaustive search, but they do
not provide a guarantee about global optimal results.

From our experiments, we found that (i) a greedy selection
of configurations leads most of the time to sub-optimal set
selection, thus misleading the effect of using a particular cri-
terion, (ii) that determinant based criteria should be preferred
regarding optimality when a greedy selection is used, and
(iii) that automatic selection of configurations impressively
outperforms previous configurations that have been chosen
manually.

A. Future Work

A direct extension of this work is to integrate in a online
fashion the calibration procedure in the selection of the
configurations. Another direction of future research is the
use of different optimization methods, such as dynamic
programming, in the selection of configurations.
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