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Abstract. This paper aims at a discussion of the structure of the SLAM problem.
The analysis is not strictly formal but based both on informal studies and mathemat-
ical derivation. The first part highlights the structure of uncertainty of an estimated
map with the key result being “Certainty of Relations despite Uncertainty of Po-
sitions”. A formal proof for approximate sparsity of so-called information matrices
occurring in SLAM is sketched. It supports the above mentioned characterization
and provides a foundation for algorithms based on sparse information matrices.

Further, issues of nonlinearity and the duality between information and covari-
ance matrices are discussed and related to common methods for solving SLAM.

Finally, three requirements concerning map quality, storage space and computa-
tion time an ideal SLAM solution should have are proposed. The current state of the
art is discussed with respect to these requirements including a formal specification
of the term “map quality”.

Keywords: mobile robot, navigation, simultaneous localization and mapping, SLAM,
estimation, uncertainty, information matrix

1. Introduction

Navigation is the “science of getting ships, aircraft, or spacecraft from
place to place” (Merriam-Webster’s Collegiate Dictionary). It is also
the science of getting mobile robots from place to place, a problem
that is central to mobile robotics and has been subject to extensive
research. According to Leonard and Durrant-Whyte (1992) this involves
answering the three questions “Where am I ”, “Where am I going?” and
“How do I get there?”.

SLAM1, i.e., the Simultaneous Localization and Mapping problem,
aims at a fully autonomous answer to the question “Where am I?”
by providing an autonomously built map. While moving through an
environment the robot is required to derive a map from its perceptions
and simultaneously determine its own position in this map. From the
late eighties this problem has been explored and in recent years has
received enormous attention.

This paper aims at discussing SLAM by pointing out what makes
it special as an estimation problem. The first sections §2 to §5 as
∗ This article is based on research conducted during the author’s Ph.D. studies

at the German Aerospace Center (DLR) in Oberpfaffenhofen.
1 Also called Concurrent Mapping and Localization (CML).
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Figure 1. (a) Exact map of the building used as an example. (b) Map derived from
raw odometry data. All maps are based on simulations in which the measurements
are perturbed by comparatively large artificial noise and bias.

well as §12 characterize the structure of the inherent uncertainty of
an estimated map with key findings being paraphrased as “Certainty
of Relations despite Uncertainty of Positions”. Formally, the central
topic is the so called information matrix of all landmarks. Its structure
corresponds to the discussed uncertainty structure. Section 11 sketches2

a formal proof that the information matrix is approximately sparse,
i.e., most entries are very small. This result substantiates the previous
discussion and has been exploited by several algorithms.

Furthermore, the linearization error incurred in SLAM will be an-
alyzed by discussing its sources and structure. The duality between
information and covariance based representations will be explained and
related to the “textbook” methods for solving SLAM, i.e., maximum
likelihood, least squares, and Extended Kalman Filter (§6-§10).

In section 13 the SLAM problem is addressed from a different per-
spective intentionally taking an inexpert view, disregarding its known
difficulty. This leads to proposal of a set of three requirements which an
ideal SLAM algorithm should satisfy. These requirements concern map
quality, storage space, and computation time. The discussion includes
a mathematical formalization of the term “map quality”. Section 14
briefly reviews the current state of the art in SLAM with respect to
the proposed requirements, finding that since first publication of the
requirements in (Frese and Hirzinger, 2001) SLAM algorithms have
improved impressively, basically meeting all of them at present. Figure
1 shows the simulated example used as an illustration.

2 Details published in (Frese, 2005b).
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Figure 2. Coordinates describing the robot state pr = (px, py, pφ)T and measure-
ments: (a) Continuous odometry measurement: velocity in robot coordinates
vr = (vx, vy, vφ)T (b) Discrete odometry measurement: relative movement
dr = (dx, dy, dφ)T from pr(t0) to pr(t1) (c) Landmark measurement: relative
position m = (mx,my)T of landmark at l = (lx, ly)T

2. Measurement Equations

When moving through a planar or nearly planar environment, the state
of the mobile robot, its pose, is described by three variables, two for the
robot position and one for the robot orientation (Fig. 2a). Similarly, a
landmark is described by two variables for its position (Fig. 2c). For the
purpose of this discussion a map is a state vector of landmark positions
and robot poses. Usually the vector represents only the most recent
robot pose but depending on context all poses or even no pose may
be represented. Since SLAM is an estimation theoretic problem, the
uncertainty of the measurements and map estimates is important. The
uncertainty is usually described by a covariance matrix or alternatively
by a so-called information matrix. Both are symmetric positive definite
matrices, in which each row and column corresponds to one variable of
the state vector.

In general, the uncertainty for an estimate is derived from an a-priori
model for the measurement and measurement uncertainty. The mea-
surement is defined by a measurement function that maps the system
state, i.e., map and robot pose to the measurement.

In order to make the discussion independent from specific sensors it
is assumed that the landmark sensor provides a landmark position and
odometry provides the robot’s velocity in robot coordinates with their
corresponding covariance matrices. An alternative approach is to match
sensor readings taken at two robot poses, e.g. laser scans, sonar or vision
data to derive an estimate for their relative pose. Then, since the robot
poses are reference frames for the sensor readings, they are treated as
landmarks (Lu and Milios, 1997). The resulting equations are similar
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and the general discussion is still valid. Odometry measurements are
continuous, occurring at every point in time3. This requires them to be
integrated for some time, and then a discrete measurement of the path
travelled to be derived as input for the SLAM algorithm.

Continuous Odometry Equations

The robot state is represented by 3 variables as pr = (px, py, pφ)T .
Odometry provides an estimate of the robot’s velocity v̂r = (v̂x, v̂y, v̂φ)T

in robot coordinates (Fig. 2a) with white Gaussian noise (covariance
Cv). By rotating vr by an angle of pφ, vr is transformed into world
coordinates and the kinematic equation of the system is derived as

c := cos pφ, s := sin pφ (1)

ṗr =



ṗx
ṗy
ṗφ


 =



c −s 0
s c 0
0 0 1





vx
vy
vφ


 . (2)

A differential equation for the error covariance Cp of the odometry can
be derived (Kelly, 2000; Frese, 2004) as

Ċp = B(pφ)Cv B(pφ)T +A(pφ, vx, vy)Cp +CpA(pφ, vx, vy)
T , (3)

with A(pφ, vx, vy) :=




0 0 −cvy − svx
0 0 −svy + cvx
0 0 0


 , B(pφ) :=



c −s 0
s c 0
0 0 1


(4)

Equations (2) and (3) are computed4 in the control loop of the
mobile robot exploiting the high sensor rate of motor encoders.

Discrete Odometry Equations

Between two landmark observations a SLAM algorithm simply updates
the robot’s position estimate according to odometry. When the next
landmark observation becomes available a more complex update is nec-
essary. Thus, the odometry data between two landmark observations at
time t0 and t1 is accumulated. It is then passed to the SLAM algorithm
in the form of a discrete step d̂r = (d̂x, d̂y , d̂φ)T with corresponding
covariance Cd (Fig. 2b). The robot controller continuously integrates

(2) providing p̂r(t) and (3) providing Cp(t). So d̂r must be computed

3 From the perspective of control theory. Technically the sensor, i.e., wheel
encoder is usually sampled at the rate of the control loop.

4 Numerically integrating (3) for a time step ∆t by Euler integration may lead to
non-positive definite results later in (8). It is advisable to integrate a small discrete
step ∆t v using (5) and (7) instead.
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from the values p̂r(t0), Ĉp(t0) and p̂r(t1), Cp(t1) of the odometry by
solving the odometry measurement equation



px(t1)
py(t1)
pφ(t1)


 =



px(t0)
py(t0)
pφ(t0)


+



c −s 0
s c 0
0 0 1





dx
dy
dφ


 (5)

for d and applying to the estimates. The Jacobians with respect to
pr(t0) and dr are

J1 :=
∂pr(t1)

∂pr(t0)
=




1 0 −sdx − cdy
0 1 cdx − sdy
0 0 1


 , J2 :=

∂pr(t1)

∂dr
=



c −s 0
s c 0
0 0 1


 .(6)

The corresponding equation for the covariance Cd of d̂r follows from
the white noise assumption for v̂r. Both p̂r(t0) and d̂r are independent
and the covariance for p̂r(t1) can be expressed as

Cp(t1) = J1Cp(t0)JT1 + J2CdJ
T
2 . (7)

Using J−1
2 = JT2 (5) is solved for d̂r and (7) for Cd yielding the step

d̂ = JT2 (p̂r(t1)− p̂r(t0)) , Cd = JT2

(
Cp(t1)− J1Cp(t0)JT1

)
J2 (8)

passed to the SLAM algorithm. Equation (5) expresses odometry as a
dynamic equation which maps the old state pr(t0) and the measurement
dr to the new state pr(t1). The corresponding measurement equation
which maps old and new state to measurement is



dx
dy
dφ


 =



c s 0
−s c 0
0 0 1





px(t1)− px(t0)
py(t1)− py(t0)
pφ(t1)− pφ(t0)


 (9)

J3 :=
∂dr

∂pr(t0)
=



−c −s dy
s −c −dx
0 0 −1


 , J4 :=

∂dr
∂pr(t1)

=



c s 0
−s c 0
0 0 1


 .(10)

Landmark observation

A huge amount of different landmarks and landmark sensors have been
proposed in the literature (Cox and Wilfong, 1990). Here discussion
will be restricted to point landmarks in the plane (lx, ly)

T and sensors
which locate the landmark relative to the robot (mx,my)

T (Fig. 2c)
with covariance Cm. At the moment it is assumed, that the landmarks
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can be identified (see §15). The measurement equation and Jacobians
are

(
mx

my

)
=

(
c s
−s c

)(
lx − px
ly − py

)
(11)

J5 :=
∂m

∂pr
=

(−c −s my

s −c −mx

)
, J6 :=

∂m

∂l
=

(
c s
−s c

)
. (12)

In (10) and (12) the measured quantity mx,my and dx, dy, i.e. the
position relative to the robot appears. However this is not the actual
value measured but rather the corresponding relative position in the
state chosen as linearization point (cf. §7).

3. Error Accumulation

If we consider the the robot moving through a known environment i.e.
by using an a-priori map, or in a region already mapped by SLAM then
the uncertainty of the robot’s poses (position) remains bounded. This
is because each observation of two landmarks essentially reduces the
uncertainty down to the landmark’s uncertainty plus the uncertainty
of the observation.

However, if the robot moves through an unknown region the un-
certainty of its pose in absolute coordinates will get arbitrarily large
because the odometry error accumulates over time (Fig. 1b). The un-
certainty can be greatly reduced by fusing odometry with several mea-
surements of a new landmark as the landmark is passed by (Fig. 3a).
For most sensors this produces much better results than just using
odometry (Thrun et al., 1998). Nevertheless, estimating the robot’s
position after traveling a long distance is still subject to accumulated
error: due to the limited sensor range the position is derived from a
chain of several relations between successive landmarks. Sometimes a
compass can help to reduce the problem, although this is unreliable in
many buildings.

The fact that errors may accumulate to arbitrarily high values dis-
tinguishes SLAM from many other estimation problems and gives rise
to the problems discussed in §4 and §9.

4. Representation of Relativity

The author believes that the dominant aspect of SLAM is modeling

Certainty of Relations despite Uncertainty of Positions.
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This may be called ability to represent relativity. In the example sce-
nario, for instance, position and orientation of the room will be quite
uncertain, while its shape will be highly certain (Fig. 3a).

If the robot moves through an unknown region and observes a se-
quence of landmarks, the uncertainty of relative positions of the land-
marks only depends on the measurement errors of the landmarks by
the robot and on the odometry error between those measurements. So
the most precisely known relations are those concerning the relative
location of adjacent landmarks.

The uncertainty of the absolute robot pose before observing the first
landmark however increases the uncertainty of the absolute position of
all landmarks, acting as an unknown rigid-body transformation on the
whole set of observed landmarks. As the absolute robot pose is subject
to error accumulation, the common situation is that relations are fairly
certain, whereas absolute positions can be arbitrarily uncertain. In large
maps this effect can appear at different scales: the relative positions of
some landmarks in a room are much more precisely known than the
position of the room in the building, which seen as a relative position
with respect to other rooms is in turn much more precisely known than
the absolute position of the building.

Thus, a SLAM system should be able to represent the certainty of
relations between landmarks despite large uncertainty in the absolute
position of the landmarks. In particular, assigning a single uncertainty
value to each landmark only is insufficient (Uhlmann et al., 1997).

In the theory of SLAM it is an extremely important insight (New-
man, 1999) that the uncertainty of any relation converges to zero when
repeatedly moving through the same environment. This theorem clari-
fies the uncertainty structure in the limit, being of theoretical interest,
but in general this approach is probably neither practical nor necessary.
Most applications can be based exclusively on relative information:
When navigating, for instance, path planning will result in a sequence
of way-points. The location of each way-point will be known relative to
the surrounding landmarks. So the robot, knowing its own pose relative
to those landmarks, will be able to navigate from one way-point to the
next. A path defined this way will even remain valid when the map
changes significantly while the robot is moving.

So it is important to focus on the behavior when moving through the
building for the first time. The structure of uncertainty is still complex
and a single measurement may have a significant effect on the estimate.
This effect is most prominent and probably the most important test
case in general when closing large loops.
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Figure 3. Closing the loop: (a) before (b) after integration. An animation of
several random outcomes of this mapping process can be downloaded from the
author’s web site (Frese, 2005a).

5. Implications of Closing the Loop

Assume the robot moves along a closed loop and returns to the begin-
ning of the loop but has not yet re-identified any landmark, so this is
not known to the robot. Typically, the loop is not closed in the map
due to the error accumulated along the loop (Fig. 3a).

At the beginning of the loop a landmark is re-identified and the cor-
responding measurement is integrated into the map causing the loop to
become closed. To achieve this, the SLAM system has to “deform” the
whole loop to incorporate the information of a connection between both
ends of the loop without introducing a break somewhere else (Fig. 3b).

This goal is sometimes referred to as the map being “topologically
consistent” or “globally consistent” (Lu and Milios, 1997; Duckett et al.,
2002), meaning that two parts of the map are represented to be adjacent
if and only if this was observed by the robot. Within a landmark based
approach adjacency is not explicitly modeled. Topological consistency
has to be interpreted in the sense that two landmarks are represented as
being near to each other (the distance being low with low uncertainty),
if and only if this was observed by some measurement.

It has to be emphasized that correct treatment of uncertainty con-
tained in the measurements will implicitly yield the necessary defor-
mation. More specifically, the precisely known relative location of each
landmark with respect to adjacent landmarks prevents any break in
the loop: if there was a break the relative positions of the landmarks
on both sides of the break would be highly incorrect, thus being incon-
sistent with the measurements made in this vicinity. So the map esti-
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mate which is consistent with all measurements automatically deforms
smoothly when closing large loops.

An important insight is that any representation of the uncertainty
of a map estimate must be able to “represent relativity” in order to
achieve this kind of behavior.

In a landmark based approach two corridors can overlap (Fig. 3a) if
the map is sufficiently uncertain. This is because negative information,
i.e. a landmark is not seen although it should be seen is not included
in such a framework in contrast to dense approaches modeling the map
as an evidence grid (Murphy, 1999; Hähnel et al., 2003; Grisetti et al.,
2005). The situation can be resolved by looking at the uncertainty infor-
mation. If the robot is in one corridor the landmarks of that corridor are
represented to be nearby with low uncertainty. The landmarks of the
other corridor are represented also as nearby but with high uncertainty.

6. Maximum Likelihood Estimation

At the moment let us assume that the measurements are disturbed by
independent Gaussian measurement errors with a-priori known covari-
ance, that data association, i.e. the identity of an observed landmark is
known and that computation time is no issue. In this case there is a the-
oretically thorough optimal solution, namely the maximum likelihood
(ML) solution (Press et al., 1992, §15.1). It dates back to Gauss (1821)
who invented the Gaussian distribution, least square estimation, and
the Gaussian algorithm for solving the resulting equation. He used these
results, in some sense for SLAM, to survey the kingdom of Hanover from
1818 until 1826.

The ML estimate is based on the a-priori known probability dis-
tribution for the measurement given the map, i.e. on the conditional
probability distribution of the measurement for a fixed map. After the
measurement has been made, this distribution is interpreted as a likeli-
hood distribution for the maps given the measurement. The map with
the largest likelihood is the ML estimate. Of all maps it has the largest
probability of causing the observed measurements and thus is optimal
in this sense. It is also the map with the largest probability if the true
map is assumed to be drawn from a uniform a-priori distribution. By
definition of Gaussian errors the likelihood for a map given a single
measurement yi is

pi(x) ∝ e− 1
2
qi(x), qi(x) := (yi − fi(x))TC−1

i (yi − fi(x)). (13)

Assume that the data under consideration consist of n landmarks, p
robot poses, and m measurements, the landmark positions and different
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robot poses form the parameter vector x having size 2n + 3p in the
equation. The vector yi is the i-th measurement, Ci its covariance, and
fi(x) is the corresponding measurement equation, i.e., the value the
measurement should have if the landmark and robot poses were x.

The likelihood of x given all measurements is the product of the in-
dividual likelihoods, due to the assumption of stochastic independence:

p(x) ∝
m∏

i=1

e−
1
2
qi(x) = e−

1
2
χ2(x), with χ2(x) :=

m∑

i=1

qi(x) (14)

x̂ML = arg max
x

p(x) = arg min
x
χ2(x). (15)

In order to find the numerical minimum, a least squares nonlinear
model fitting algorithm such as for instance Levenberg-Marquardt can
be employed (Press et al., 1992, §15.5), by iteratively linearizing the
measurement equations. The linearized equations yield a quadratic
approximation to χ2, the minimum of which can be found by solving
a large linear equations system. This approach requires all old robot
poses to be represented in the equations system, which consequently
has O(n + p) equations and variables. Solving such a system needs
O((n + p)3) computation time. So this approach is not a practical
solution for SLAM in real time. Its invaluable benefit, however, lies
in the fact that it can provide a gold-standard for discussion and for
comparison with efficient approaches. Figure 3 has been computed this
way.

7. Linear Least Squares

If the measurement functions fi are linearized at some point x0
i with

Jacobian Jfi , the χ2 function becomes quadratic:

f lin
i (x) = fi(x

0
i ) + Jfi(x

0
i )(x− x0

i ) (16)

χ2
lin =

∑m
i=1

(
yi − f lin

i (x)
)T

C−1
i

(
yi − f lin

i (x)
)

(17)

=

xT
(

m∑

i=1

Jfi(x
0
i )
TC−1

i Jfi(x
0
i )

)

︸ ︷︷ ︸
A

x+

xT
(

2
m∑

i=1

Jfi(x
0
i )
TC−1

i

(
yi − fi(x0

i ) + Jfi(x
0
i )x

0
i

))

︸ ︷︷ ︸
b

+ const .

(18)

Such a quadratic function can always be represented as xTAx+ xT b+
const, with a symmetric positive definite (SPD) matrix A and a vector
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b. The linearized least squares (LLS) estimate x̂LLS being the same as
the linearized maximum likelihood estimate, can be computed by

x̂LLS = arg min
x
χ2

lin(x) = A−1b/2. (19)

The matrix A is called information matrix. Its inverse A−1 is the
error covariance of the estimate x̂LLS (Press et al., 1992, §15.6). High
entries in A correspond to precisely known relations. This matrix is
sparse and has an important structure that is discussed in §11.

The quality of a linearized least squares estimate depends on the
points of linearization chosen: if all measurements are always linearized
at the latest estimate and the whole process is iterated until conver-
gence, the limit is the ML estimate. Actually this is the way nonlinear
least squares algorithms such as Levenberg - Marquardt work. However
this approach involves re-evaluating all Jacobians and thus storing all
measurements.

Another approach is to linearize each measurement once and forever
at the estimate in the moment of measurement. There is a subtle differ-
ence whether the estimate before or after integrating the measurement
is used. Due to error accumulation the prior estimate for a relative
landmark position (dx, dy)

T can be arbitrarily bad and much worse
than the actual value measured. Using the posterior estimate is best
but requires two iterations so an alternative is to use the prior for
recently observed landmarks and the measured value otherwise.

When the linearization point is not changed after integrating a
measurent, the measurements can be accumulated in a matrix A and
vector b. Each measurement involves only few variables, so Jfi is sparse
and accumulation can be performed in O(1). Nevertheless, to provide
an estimate Ax̂ = b/2 has to be solved, which takes O((n + p)3) or
O((n+p)2) exploiting sparsity. The estimate is subject to linearization
error depending on the error in the estimates used for linearization (§9).

It is important to note that the information matrix A represents all
landmark positions and all robot poses. Thus, the size of the represen-
tation still grows even when moving through an already mapped area.
This problem can be avoided by marginalizing out, i.e. removing, old
robot poses by computing the so-called Schur complement. The result-
ing information matrix P ′ of all landmarks and the actual robot pose is
no longer sparse any more. It is no longer sparse in the strict sense that
most entries are exactly = 0. However as Thrun et al. (2002) observed,
it is still approximately sparse, i.e. most entries are very small, so ≈ 0.
In §11 a proof for approximate sparsity of P ′ will be sketched. By this
theorem P ′ can be replaced by a sparse approximation, so the matrix
has only O(n) entries and equation solving can be performed in O(n2).
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8. Extended Kalman Filter

The Extended Kalman Filter (EKF) (Gelb, 1974) is the tool most often
applied to SLAM (Smith et al., 1988; Hebert et al., 1995; Castellanos
et al., 1999) using the same measurement equations as for ML estima-
tion. The EKF integrates all measurements into a covariance matrix
CEKF of the landmark positions and the actual robot pose without any
measurements to be stored afterwards. The estimate x̂EKF provided
is the same as for linearized least squares, so EKF suffers the same
linearization problems as will be discussed in §9.

Since the EKF maintains a covariance matrix instead of an informa-
tion matrix, marginalization of old robot poses is no problem but can
simply be done by removing corresponding rows and columns. In fact,
most implementations simply replace the old robot pose with the new
one whenever integrating an odometry measurement.

The key problem is to update the covariance matrix CEKF after
a landmark observation. From (18) it can be seen that a single term
JTC−1

i J is added to the information matrixA. Since Ci is a 2×2 matrix,
JTC−1

i J has rank 2 and the corresponding change in C = A−1 and x̂ =
A−1b/2 can be efficiently computed via the Woodbury formula (Press
et al., 1992, §2.7) resulting in the well known EKF update equation.

Compared to O((n+p)3) for linearized least squares, EKF is moder-
ately efficient taking O(n2) computation time. But still this is so much
that EKF can only be used for small environments (n / 100).

9. Linearization Error

There are two sources for a linearization error: the error of the robot’s
orientation estimate p̂φ (orientation error) and the error of the mea-
sured quantities dx, dy and mx,my. This important fact can be seen
when transforming the Jacobians J1 . . . J6 of the measurements into
robot coordinates:

R2 :=

(
c −s
s c

)
, R3 :=



c −s 0
s c 0
0 0 1


 (20)

J1 = R3




1 0 −dy
0 1 dx
0 0 1


RT3 , J2 = R3




1 0 0
0 1 0
0 0 1


 , (21)

J3 =



−1 0 dy
0 −1 −dx
0 0 −1


RT3 , J4 =




1 0 0
0 1 0
0 0 1


RT3 , (22)
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Figure 4. Linearization error: (a) closing the loop with EKF / LLS (b) linearization
error of linearized rotation

∣∣( cos φ
sinφ

)
−
(

1
φ

)∣∣ as a function of angular error φ

J5 =

(
1 0
0 1

)
RT2 , J6 =

(−1 0 my

0 −1 −mx

)
RT3 . (23)

The variables dx, dy,mx,my involved in the transformed Jacobians are
directly measurable. So their errors do not accumulate and are often
rather small. Still Julier and Uhlmann (2001) showed that the EKF can
diverge because it linearizes different measurements with inconsistent
mx,my estimates. Linearization is even more difficult for the rotation
matrices R2, R3 depending on pφ. When moving through an unmapped
area the orientation error accumulates. In practical settings errors of
45◦ may easily be exceeded rendering all linearizations of sine and
cosine useless. The effect of processing the example scenario with EKF
instead of using ML estimation is disastrous (Fig. 4a). The beginning
and end of the loop do not match and, even worse, the room although
precisely known gets significantly larger than before. The reason for
this is that EKF would have to move and rotate the room implicitly to
make the map consistent. Instead, a rotation linearizing the angle at 0
is performed:

Rot(φ) :=

(
cosφ − sinφ
sinφ cosφ

)
φ≈0−→

(
1 −φ
φ 1

)
=
√

1 + φ2 · Rot(arctan φ)

The consequence is that the room is larger than before and rotated by
too small an angle (Fig. 4b).
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Figure 5. Relation between the LLS information matrix A =
(
P RT

R S

)
which repre-

sents all robot poses and the covariance matrix CEKF used by EKF only representing
the actual robot pose. A−1 is the covariance matrix corresponding to A. CEKF is
derived from A−1 as a submatrix marginalizing out old robot poses . Accordingly
C−1

EKF is the information matrix corresponding to CEKF. It can be directly derived
from A via Schur complement. So on the whole, taking a submatrix of a covariance
matrix is equivalent to applying Schur complement to an information matrix.

10. Covariance vs. Information Matrices

Covariance and information matrices are complementary representa-
tions of uncertainty, since one is the inverse of the other. This duality
extends to the operation of taking a submatrix, which is equivalent to
applying Schur complement in the inverse (Press et al., 1992, §2.7)

(Fig. 5). Of particular interest is the decomposition A =
(
P RT
R S

)

with rows and columns of the first block corresponding to landmarks
(maybe including the current robot pose) and rows and columns of
the second block corresponding to (old) robot poses. In this case P ′ =
(P − RTS−1R)−1 is the covariance matrix of all landmarks (and the
current robot pose) as used by the EKF.

The Schur complement P −RTS−1R equals the corresponding sub-
matrix P minus a correction term RTS−1R. This term can be thought
of as somehow “transferring” the effect of S into the realm of P via a
mapping provided by the off-diagonal block RT .

Taking a submatrix of the information matrix or applying Schur
complement to the covariance matrix corresponds to conditioning, i.e.
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random variables (landmark positions, robot poses) in the removed
rows and columns being exactly known. Conversely taking a submatrix
of the covariance matrix or applying Schur complement to the infor-
mation matrix corresponds to marginalization. This means random
variables in the removed rows and columns being unknown, i.e., all
information about them is discarded.

The main difference between information and covariance matrix
lies in the representation of indirect relations. Assume the robot is
at pose P1 observing landmark L1 and moves to P2 observing L2. The
measurements directly define relations P1-L1, P1-P2, P2-L2, indirectly
constituting a relation L1-L2. The covariance matrix explicitly stores
this relation in the off-diagonal entries corresponding to L1-L2, whereas
the information matrix does not.

Thus the information matrix A =
(
P RT
R S

)
used by LLS is sparse,

having non-zero entries only for random variables involved in a common
measurement. Although A is sparse the Schur complement P−RTS−1R
is dense, because S−1 is dense. However it turns out that it is approx-
imately sparse (Fig. 5) with an off-diagonal entry (P − RTS−1R)l1l2
corresponding to two landmarks l1, l2 decaying exponentially with the
distance traveled between observation of l1 and l2.

11. Sparsity of SLAM Information Matrices

In this section the central result for the SLAM uncertainty structure is
derived, by stating that the information matrix appearing in SLAM is
approximately sparse:

In the SLAM information matrix off-diagonal entries correspond-
ing to two landmarks decay exponentially with the distance traveled
between observation of the first and second landmarks.

This result is important both for computation and analysis. First,
the approach of saving space and computation time by making the
information matrix sparse is being confirmed. This approach has been
proposed by Frese and Hirzinger (2001) and is the basis of the algorithm
presented in (Frese, 2004). It is also utilized in the well known work
of Thrun et al. (2002) on sparse extended information filters (SEIF).
Second the result implies that the large scale uncertainty of a map
estimate is generated by local uncertainties composed along the path
the robot has been traveling. Thus, in contrast to the local uncertainty
structure, it is simple and dominated by the map’s geometry (§12).
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Proof Outline

Due to lack of space, only the formal theorem and a sketch of the proof
will be given here, the complete derivation can be found in (Frese,
2004; Frese, 2005b).

First, the structure of A =
(
P RT
R S

)
is analyzed. It is a block matrix

with the first block row / column corresponding to the landmarks
and the second corresponding to the different robot poses. This is
the same situation as shown in figure 5 but with the current robot
pose included in S. As discussed in the previous section, the diagonal
blocks P and S are information matrices of two related subproblems:
P is the information matrix of the mapping subproblem, describing
the uncertainty of the landmarks, if the robot poses were known. Con-
versely, S is the information matrix of the localization subproblem,
describing the uncertainty of the robot poses, if the landmarks were
known. Both matrices are extremely sparse: P is block diagonal and S
is block tridiagonal.

The matrix under investigation will be the information matrix of
the landmarks only, i.e., without robot poses. It is P ′ = P −RTS−1R
by Schur complement. The role of RT in this formula is to provide
a mapping from robot poses to landmarks. It creates an off-diagonal
entry between two landmarks, whose magnitude depends on the entry
in S−1 corresponding to the two robot poses these landmarks have
been observed from. S−1 is the covariance of all robot poses given
the position of all landmarks. Hence the magnitude of an off-diagonal
entry corresponding to two landmarks depends on the covariance the
corresponding robot poses had if all landmark positions were known.

This covariance is well understood because it is the covariance of
different robot poses when localizing in an a-priori map. Consider what
happens when localizing for instance with an EKF: in each step the pose
estimate is replaced by a weighted sum of the old estimate and the
measurements of observed landmarks. The covariance with a fixed old
robot pose is thereby reduced by a constant factor. So the covariance
between two robot poses decreases exponentially with the number of
steps traveled in between leading to small off-diagonal entries in S−1.

So overall the off-diagonal entry between two landmarks, in P ′ de-
creases exponentially in the number of steps between observations of
those two landmarks making the matrix approximately sparse. Below
the formal theorem is stated.

THEOREM 1 (Information Matrix Sparsity). Consider a sequence of
odometry and landmark observations with parameter ω. Then the re-
sulting SLAM information matrix of all landmarks P ′ is approximately
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sparse. The off-diagonal block P ′l1l2 corresponding to two landmarks
l1 6= l2 decays exponentially with the smallest number of steps dl1l2
traveled between observation of l1 and l2.

‖P ′l1l2‖
min

{
‖P ′l1l1‖, ‖P ′l2 l2‖

} = O

((
1 +

4

3
ω

)−dl1l2
)

(24)

Proof. Published in (Frese, 2005b) including a formal definition of
the parameter ω.

The parameter ω describes the ratio between information gained
from landmark observations and transported from the last robot pose
via odometry. It is a sensor characteristic and remains bounded even
if the map grows. It governs the rate of exponential decay and thereby
how sparse “approximately sparse” means. An important insight is
that the more precise landmark observation is compared to odometry,
the smaller are the resulting off-diagonal entries. In the limit of no
odometry at all the matrix is exactly sparse (Walter et al., 2005). This
corresponds well to intuition, because with precise odometry spatial
information can be transported over large distances creating long range
coupling entries, whereas with imprecise odometry information about
landmarks observed long ago quickly vanishes.

12. Local vs. Global Uncertainty

It can be observed that there is a qualitative difference between local
and global structures of SLAM, i.e., between relations of neighboring
and of distant landmarks. Roughly speaking, the local uncertainty is
small but complex and depends on actual observations, whereas the
global uncertainty is large, rather simple and dominated by the map’s
geometry. This is a consequence of the preceding theorem:

The measurements themselves define independent relations between
landmarks and robot poses. For most sensors the uncertainty depends
on the distance (laser scanner, stereo vision) or is even infinite in one
dimension (mono vision). The information provided by the set of land-
mark observations from a single robot pose contains a highly coupled
uncertainty originating from the uncertainty of the robot pose. From
successive robot poses similar but different sets of landmarks are usually
observed. So the parts of the information corresponding to different
robot poses are highly coupled, but are always coupling different sets
of landmarks. As a result the overall information on a local scale is also
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Figure 6. (a) measurement uncertainty everywhere (b) measurement uncertainty
only in the encircled region.

highly coupled and very complex. This corresponds to the entries P ′l1l2
in the information matrix being high for landmarks l1, l2 that are near
to each other.

On a global scale the structure of the information is governed by
theorem 1. The coupling entry P ′l1l2 between distant landmarks is very
low. So the uncertainty of the relation between them is approximately
the composition of local uncertainties along the path from l1 to l2:

Consider the information matrix resulting from the integration of
several local pieces of information, for instance, the distance of each
landmark to any other landmark nearby. By (18), this matrix is the
sum of the information matrices for each piece of information. Each of
them has non-zero coupling entries only for the landmarks involved. So
the overall information matrix is sparse with all coupling entries being
zero, except those of adjacent landmarks.

Thus, as local information corresponds to a sparse information ma-
trix, an approximately sparse information matrix corresponds to in-
formation that can be approximately viewed as being the integration
of local information. To appreciate the uncertainty structure of such
information, imagine that measurement noise applies only to the mea-
surements in a small region (Fig. 6b). The noise corrupts the robot
position and orientation estimate when the robot moves through the
region. Thus the part of the map built afterward is affected by an
uncertain translation and rotation relative to the part before. The effect
of the rotation around the region grows linearly with the distance to
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the region. So globally it is much larger than the uncertain translation.
The magnitude of the rotation angle depends on the local uncertainty
in the region. Its structure, however, solely depends on the distances of
the different landmarks to the region, i.e., on the map’s geometry.

If all measurements are uncertain, the global effect is approximately
the sum of an uncertain rotation for each local region. The resulting
uncertainty structure can best be described as an uncertain bending of
the map (Fig. 6a). Compared to local uncertainty it is much larger, but
simpler because the maps geometry dominates its structure. From the
author’s web site (Frese, 2005a) an animation visualizing this uncertain
bending can be downloaded. It animates several random outcomes of
the mapping process before and after closing the loop (Fig. 3). The
“certainty of relation despite uncertainty of position” principle can also
be seen. Every uncertain aspect of the map, e.g. the room’s pose, moves
a lot whereas every aspect that is certain, e.g. the room’s shape, moves
only a little in the animation.

13. Requirements for an Ideal Solution

In this section some requirements, which an ideal SLAM solution should
fulfill, are postulated. They are based on an intentionally inexpert view
of the problem disregarding its apparent difficulty, but asking how
mapping should work when based on a common sense understanding of
maps. These requirements were first proposed by Frese and Hirzinger in
2001, at which time they were largely unfulfilled by existing algorithms.
Since then a lot of new efficient algorithms have been proposed that
will be discussed with respect to these requirements in §14.

Quality, Storage Space and Computation Time

(R1) Bounded Uncertainty The uncertainty of any aspect of
the map should not be much larger than the minimal uncertainty
that could be theoretically derived from the measurements.

This requirement is quite general saying all that can be known from
the measurements should at least be roughly represented in the map.
Consistently approximating some relations for the sake of efficiency
is acceptable to the extent that relations get slightly less precise, but
without losing all or almost all information on certain relations. Since
many relations can be known precisely from the measurements, not
representing one would violate the principle stated and hence (R1)
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implies the ability to represent relativity and hence to close large loops
achieving topologically consistent maps.

(R2) Linear Storage Space The storage space of a map cov-
ering a large area should be linear in the number of landmarks
(O(n)).

The soundness of this requirement can be seen from the following
example: imagine a building consisting of two parts, A and B, being
connected by a few doorways. Then the map of the whole building
consists of the map of both parts plus some information concerning the
connections and should thus have a size only slightly larger than the
size of a map of A plus the size of a map of B.

Simply storing all measurements will not meet (R2), since the stor-
age space is proportional to the number of measurements m, not to
the number of landmarks n. Thus, the map’s size would grow during
motion even when repeatedly traveling through the same area.

(R3) Linear Update Cost Incorporating a measurement into a
map covering a large area should have a computational cost at most
linear in the number of landmarks (O(n)).

Establishing this requirement is more difficult than the preceding
one: Let us assume that the setting above holds with a measurement
made in A. At first the measurement has to be incorporated into the
map of A, taking into account the known effect of A on the connection
between A and B. Then, the effect of these connections onto B must
be computed. This is equivalent to incorporating several measurements
concerning the connections into the map of B. However computation
can be deferred until the robot actually enters B, sharing the compu-
tational cost with all other measurements that have generated effects
on the connections. As the number of landmarks in the connections is
small, this should not take more time than incorporating the original
measurement into the map of A.

So the total cost for integrating a measurement into a map of A and
B should not be larger than the cost of integration into A plus the cost
of integration into B, thus being linear in the number of landmarks.

(R1) states that the map shall represent nearly all information con-
tained in the measurements, thus binding the map to reality. (R2) and
(R3) regard efficiency, requiring linear space and time consumption.
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Formalization of Map Quality

Requirement (R2) and (R3) concerning storage space and computation
time refer to criteria which are canonically applied to any algorithm.
However requirement (R1) must still be formalized appropriately:

DEFINITION 1 (Aspect). An aspect of a map is a function f mapping
the landmark positions to a real number f(x)

f : R2n −→ R. (25)

Examples for aspects of a map are: a landmark’s x− or y− coor-
dinate, the distance between two landmarks, the angle between three
landmarks or any linear combination of landmark coordinates. Consid-
ering the SLAM uncertainty structure (“Certainty of Relations despite
Uncertainty of Positions”) a relation is consequently an aspect of the
map, being invariant under rigid-body transformation of the whole map

frel(Rotα x+ Transd) = frel(x) ∀α, d, (26)

where Rotα is a rotation matrix, rotating the whole map by α and
Transd is a vector translating the whole map by d.

The uncertainty of an aspect f of a map estimate x̂ is its stan-
dard deviation

√
cov(f(x̂)). In terms of (R1) the “minimal uncertainty

that could be theoretically derived from the measurements” is the
corresponding standard deviation of the optimal maximum likelihood
estimate

√
cov(f(x̂ML)). The ratio between those uncertainties indi-

cates how much error is induced by the estimation algorithm and how
much error is caused by the sensors. So the relative uncertainty

ruc(f) :=

√
cov(f(x̂))√

cov(f(x̂ML))
(27)

of an aspect f indicates the quality of the estimation algorithm for
a particular map and aspect. It can be computed from C := cov(x̂),
CML := cov(x̂ML) and g the gradient of f as

ruc(f) =

√
cov(f(x̂))√

cov(f(x̂ML))
=

√
cov(f(x̂))

cov(f(x̂ML))
≈
√

gTCg

gTCMLg
. (28)

The last equation is the usual first order approximation for propagat-
ing covariances through functions. The term “any aspect of the map”
in (R1) formally stands for “any function f”. By virtue of (28) this
can be replaced by a conceptually much more convenient expression
involving “any vector g”. In order to systematically characterize the
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values for different choices of g, the so-called generalized eigenvalues λi
and eigenvectors vi defined by

Cvi = λiCMLvi (29)

are useful. They correspond to independent directions both with respect
to C and CML. Their properties are

vTi Cvi = λi ∀i, vTi CMLvi = 1 ∀i, (30)

vTi Cvj = 0 ∀i 6= j and vTi CMLvj = 0 ∀i 6= j. (31)

If g happens to be the i-th eigenvector vi, the relative error ruc(g) in
this aspect is the square root of the i-th eigenvalue

ruc(g) = ruc(vi) =

√
vTi Cvi
vTi CMLvi

=

√
λi
1

=
√
λi. (32)

For an arbitrary aspect g, ruc(g) is the square root of a convex combina-
tion of the different eigenvalues. The weights of the convex combination
are just the squares of the coefficients µi used in expressing g as a linear
combination g =

∑
i µivi of the eigenvectors

ruc(g) = ruc

(∑

i

µivi

)
=

√ ∑
i µ

2
i (v

T
i Cvi)∑

i µ
2
i (v

T
i CMLvi)

=

√∑
i µ

2
iλi∑

i µ
2
i

. (33)

So the generalized eigenvalues of C and CML characterize the rela-
tive error compared to the optimal maximum likelihood solution. Each
eigenvalue corresponds to an independent aspect of the map in which
the relative error is just the square root of the corresponding eigen-
value. In particular the square root of the largest eigenvalue bounds
the maximum relative error in any aspect of the map. So in order
to meet requirement (R1) formally, the largest eigenvalue must be a
small constant O(1). Analytically bounding these eigenvalues appears
to be extremely hard but for a specific map they can be determined by
Monte Carlo simulations (Frese, 2004). The eigenvalue spectrum allows
a much more thorough assessment of an algorithms estimation quality
than the usually used absolute (or rms) errors in the estimated land-
marks’ positions. Absolute errors are dominated by the largest error
component, namely the “uncertainty of positions”. So an estimation
algorithm could significantly increase errors in some precisely known
relations. This would not affect the landmarks absolute errors much
but be clearly visible in the eigenvalue spectrum.
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14. State of the Art

In this section a brief overview of the current state-of-the-art is given.
The different SLAM algorithms established in the literature are com-
piled and analyzed with respect to the requirements mentioned above.
The discussion focuses on the core estimation algorithm, a broader
survey is given by Thrun (2002) and in a recent textbook by Thrun
et al. (2005).

Algorithms

The evolution of SLAM algorithms can be divided into three phases:

In the first phase from the mid-eighties to the early nineties, the
mathematical formulation of SLAM was still open and the special
uncertainty structure discussed above was not yet fully recognized.

First approaches to building a map were based on so-called evidence
grids introduced by Moravec and Elfes (1985). They divide the map
into a regular grid with square cells of fixed size (typically ≈ 5cm). Each
cell stores a real number [0 . . . 1] representing the accumulated evidence
of this cell containing an obstacle. Evidence grids are well suited to
integrating the noisy low resolution information provided by ultrasonic
sensors. However, they cannot represent robot pose uncertainty and
thus are unable to perform SLAM.

Other authors followed a feature based approach as proposed by
Brooks (1985). They represent the map as a graph of uncertain metrical
relations between objects (Chatila and Laumond, 1985; Cheeseman and
Smith, 1986; Durrant-Whyte, 1988; Faugeras, 1989). These approaches
can incorporate uncertainty in the robot pose and led to an estimation
theoretic formulation of SLAM.

The second phase of SLAM development was initiated by the influ-
ential paper of Smith, Self, and Cheeseman (1988) who first formulated
SLAM systematically as a probabilistic estimation problem. They re-
alized that landmark estimates are highly correlated because of the
accumulated error in the robot pose and proposed representing all
landmark positions and the robot pose in a joined state vector in
combination with a full covariance matrix. This representation is called
a stochastic map and is basically an EKF.

The stochastic map has been widely used and extended by sev-
eral authors (Tardós, 1992; Castellanos et al., 1999; Hebert et al.,
1995; Newman, 1999). Later, Durrant-Whyte et al. introduced the
name simultaneous localization and mapping (1995). Surprisingly at
that point the field wasn’t aware of the original results by Gauss (1821)
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and later work in the field of surveying and photogrammetry (Triggs
et al., 2000, for a modern overview) which are much older than the
Kalman Filter (Kalman, 1960). In contrast to the EKF, most of these
approaches are based on an information matrix representation partly
exploiting the information matrix’ sparsity. So for over a decade the
main problem of large computation time remained. The most time
consuming part of the computation is namely to update the covariance
matrix, taking O(n2) time for n landmarks. This limited the use of
SLAM to small environments (n / 100 landmarks).

Recently, interest in SLAM has increased drastically and several,
more efficient algorithms have been developed. In contrast to the EKF
based approaches, most of these algorithms are efficient enough to
be used in medium sized environments (n ≈ 500 landmarks). Some
very fast approaches can even be used for large environments (n '
10000 landmarks), but for these algorithms there are some limitations
regarding the quality of the estimated map in certain situations.

Most approaches exploit the fact that the field of view of the in-
volved sensors is limited. Thus, at any point in the environments, only
few landmarks in the vicinity of the robot are observable and can be
involved in measurements. The number k of these landmarks influences
the computation time of the algorithm. It depends on the sensor and the
density of landmarks but does not grow when the map gets larger. So
it is small, practically k ≈ 10, and often considered constant k = O(1).

Guivant and Nebot (2001, 2003) developed a modification of the
EKF called Compressed EKF (CEKF ) that allows the accumulation
of measurements in a local region with k landmarks at cost O(k2) inde-
pendent from the overall map size n. When the robot leaves this region,
the accumulated result must be propagated to the full EKF (global
update) at cost O(kn2). Landmarks are grouped into constellations
and their coordinates expressed relative to some reference landmark for
each constellation. Thereby correlations between landmarks of distant
constellations become negligible and an approximate global update can

be performed in O(kn
3
2 ) with O(n

3
2 ) storage space needed.

Duckett et al. (2002) employ an iterative equation solver called relax-
ation to the linear equation system appearing in maximum likelihood
estimation. The idea is to find the optimum for a chosen robot pose
(or landmark) keeping all other landmarks and robot poses fixed. They
apply one iteration updating each robot pose (and landmark) after each
measurement with computation time O(kn) and O(kn) storage space.
After closing a loop, more iterations are necessary leading to O(kn2)
computation time in the worst case. This problem was recently solved
by Frese and Duckett (2004) by a method called Multilevel Relaxation
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(MLR). They employ a multilevel approach similar to the multigrid
methods used in the numerical solution of partial differential equations.
So computation time could be reduced to O(kn) even when closing large
loops.

Montemerlo et al. (2002) derived an algorithm called fastSLAM
from the observation that the landmark estimates are conditionally
independent given the robot pose. Basically, the algorithm is a particle
filter in which every particle represents a sampled robot trajectory and
associated Gaussian distributions of the different landmark positions.
The conditional distribution of the different landmarks given the robot
poses are independent, so n small covariance matrices suffice instead of
one large matrix. The computation time for integrating a measurement
is O(M log n) for M particles with O(Mn) storage space needed. Of the
discussed algorithms it is the only one that can handle uncertain data
association (Nieto et al., 2003), which is an important advantage. The
efficiency crucially depends on M being not too large. On the other
hand a large number of particles is needed to close a loop with large
error: A particle filter integrates measurements by choosing a subset
of particles that is compatible with the measurements from the set
of already existing particles (re-sampling) neither modifying the robot
trajectory represented by the particles chosen, nor back-propagating
the error along the loop. So at least one particle of the set must already
close that loop by chance, and either many particles are needed or there
will be gaps in a loop already closed.

Later Eliazar and Parr (2003), Hähnel et al. (2003) as well as Grisetti
et al. (2005) extended the framework to using plain evidence grids
as particles. The first appearance of this idea can be traced back to
Murphy (1999). This way maps can be constructed in difficult situations
without any sensor preprocessing such as landmark extraction or scan
matching.

Thrun et al. (2002) presented a constant time algorithm called Sparse
Extended Information Filter (SEIF). They followed a similar idea, also
proposed by Frese and Hirzinger (2001) and use an information matrix
instead of a covariance matrix to represent uncertainty. The algorithm
exploits the fact that the information matrix is approximately sparse
requiring O(kn) storage space as shown in §11. The representation
allows integration of a measurement in O(k2) computation time, but
to give an estimate a system of n linear equations must be solved.
Similar to the approach of Duckett et al. this is done by relaxation.
Thrun et al. propose not to relax all n landmarks, but only O(k),
thereby formally obtaining an O(k2) algorithm. This technique is called
amortization since the computation time for solving the equation sys-
tem is spread over several update steps. However, such an amortized
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algorithm no longer complies with (R1) because after closing the loop
the map’s error will be much larger than in the optimal estimate for
a long time. In the numerical literature relaxation is reputed to need
O(n) iterations with O(kn2) time for reducing the equation error by a
constant factor (Press et al., 1992, §19.5). SEIF will accordingly need
about O(kn2/k2) = O(n2/k) update steps or O(n/k) passes along the
loop until the effect of closing the loop is mostly incorporated into the
estimate.

It is interesting to note, that nevertheless even such an aggressive
amortization strategy does not slow down asymptotic convergence of
the map estimate. When passing through the environment t times, i.e.
repeating the same sequence of measurements t times, the error of any

relation in the map will decrease O(t−
1
2 ). The calculation above shows

that the equation error will decrease eO( kt
n

), since it decreases by a
constant factor every O(n/k) passes. Since the latter is asymptotically
faster, in the limit t→∞ the stochastic error will be dominant.

The SEIF algorithm can be modified (SEIF w. full update) to update
all landmarks after each measurement and performO(n) iterations after
closing a loop. Then the algorithm needs O(kn) computation time per
measurement complying with (R1)-(R3) with the exception of closing
a loop, where O(kn2) computation time is needed.

Paskin (2003) phrases the SLAM problem as a Gaussian graphical
model in his Thin Junction Tree Filter (TJTF). It maintains a tree
where the overall posterior distribution is represented as the product
of a low-dimensional Gaussian at each node. With this representation
an update can be performed in O(k3n) by passing marginalized distri-
butions along the edges of the tree. When a node involves too many
landmarks, TJTF sparsifies, i.e. further approximates the represented
distribution to maintain efficiency.

Frese (2004) has independently proposed a similar algorithm based
on a so-called tree map that works by hierarchically dividing the map
into local regions and subregions. At each level of the hierarchy each
region stores a matrix representing the landmarks at the region’s bor-
der. Thereby it effectively decomposes the large sparsely approximated
information matrix into a sum of small matrices exploiting the spe-
cial topology encountered in typical buildings. In a similar manner
to CEKF a measurement is integrated into a local subregion using
O(k2) computation time. The global update necessary when moving
to a different subregion requires only O(k3 log n) computation time by
virtue of the hierarchical decomposition. Computing an estimate for the
whole map takes O(kn) time (tree map w. global map). Furthermore
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Table I. Performance of different SLAM algorithms with n landmarks, m measure-
ments, p robot poses and k landmarks local to the robot: Maximum Likelihood (ML),
Extended Kalman Filter (EKF), Compressed Extended Kalman Filter (CEKF), Re-
laxation, Multi-Level Relaxation (MLR), FastSLAM, Sparse Extended Information
Filter (SEIF), Thin Junction Tree Filter (TJTF), Tree Map. The tree map algorithm
assumes a topologically suitable building. FastSLAM is a particle filter approach (M
particles). SEIF/full upd. denotes the SEIF algorithm but updating all landmarks
after each measurement. UDA stands for ’Uncertain Data Association’ meaning that
the algorithm can handle landmarks with uncertain identity.

(R1) (R2) (R3)

UDA non- loop memory update global loop

linear quality update

ML
√ √

m . . . . . . . (n+ p)3 . . . . . . .

EKF
√

n2 . . . . . . . . . . n2 . . . . . . . . . .

CEKF
√

n
3
2 k2 . . . . kn

3
2 . . . .

Relaxation
√ √

kn . . . . . . .kn . . . . . . . kn2

MLR
√ √

kn . . . . . . . . . . kn . . . . . . . . . .

FastSLAM
√ √

see §14 Mn . . . . . . . .M log n . . . . . . . .

SEIF kn . . . . . . . . . . k2 . . . . . . . . . .

w. full update
√

kn . . . . . . .kn . . . . . . . kn2

TJTF
√ √

k2n k3 . . . . .k3n . . . . .

Tree map
√ √

kn k2 . . . k3 log n . . .

w. global map
√ √

kn . . . . . . . . . . kn . . . . . . . . . .

it solves linearization problems by “nonlinear rotation” of individual
regions (see also §9).

Comparison

Table I shows an overview of the performance of the algorithms dis-
cussed. It can be seen that only multi-level relaxation and the tree map
based algorithm strictly fulfill all three requirements.

Requirement (R1) is completely fulfilled by ML, single or multi-
level relaxation, TJTF, the tree map algorithm, and also additionally
by EKF, CEKF, and SEIF w. full update, if the orientation error is
small enough to allow linearization. When closing a loop SEIF and
fastSLAM do not fulfill (R1) due to the problems mentioned before.

Requirement (R2) is met by relaxation, TJTF, MLR, the tree map
algorithm and fastSLAM (for M = O(1)) and SEIF.

Requirement (R3) is fulfilled by fastSLAM and SEIF, giving an
estimation that does not always meet (R1). Relaxation, SEIF w. full
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update, and CEKF come very close to meeting (R3). Relaxation and
SEIF w. full update need linear computation time except when closing

a large loop, while CEKF only needs O(n
3
2 ) even when closing loops.

The additional advantage of CEKF is that this computation is not
performed after each measurement, but only when the robot leaves a
local area of the map. Multi-level relaxation, TJTF, and, the tree map
algorithm fulfill (R3) completely.

What is the reason for the large progress in performance of recently
developed algorithms?

Least squares estimation and incremental least squares estimation
in general lead to linear equations systems, which is an established
and thoroughly studied area of numerical mathematics. So it is very
unlikely that a general solution that is faster than EKF with O(n2) will
be found. From the author’s perspective the key point is to identify
a property distinguishing SLAM from a general estimation problem.
Indeed, all faster approaches exploit such a property: relaxation, multi-
level relaxation, and SEIF exploit sparsity, fastSLAM exploits a special
factorization of the involved probability distribution and CEKF ex-
ploits some property of the correlation of distant landmarks. TJTF and
the tree map based algorithm exploit the fact that typical buildings can
be recursively divided into two parts, with very few landmarks of one
part being observable from the other part. This property is stronger
than general sparsity allowing extremely efficient updates (O(k3 log n))
but it is also more restrictive being, for instance, not met in general
cross country navigation.

15. Data Association

The task of data association or landmark identification is to recognize
a detected landmark as a landmark already represented in the map.
In other words, landmark observations are matched with landmarks
in the map including the decision to define unmatched landmarks as
new. In general, not associating a landmark observation is a harmless
error only resulting in a duplicate landmark being introduced in the
map. This may possibly lead to some problems when using the map
but does not affect the map in general. In contrast false association of
a landmark, i.e., confusing it with another landmark, usually ruins the
map completely since wrong information such as two different places
being the same is integrated.
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Up to now the discussion has assumed that all observed landmarks
have been identified before the measurements are passed to the SLAM
algorithm. However this task is far from being trivial.

Three types of information can be used by a data association algo-
rithm: appearance of landmarks, layout of a group of landmarks, and
bounds on the error in robot pose accumulated after the last observa-
tion of a landmark. It is obvious that the difficulty of data association
strongly depends on landmarks, sensors, and environment. In order of
increasing capability possible approaches are nearest-neighbor associ-
ation, matching a set of landmark observations simultaneously using
Mahalanobis distance, matching a local map patch, multi-hypothesis
tracking and lazy data-association.

In some settings the distance between confusable landmarks is larger
than the robot’s pose uncertainty accumulated after last observation
of the landmarks (Castellanos et al., 1999; Guivant and Nebot, 2001).
Then each landmark can be matched to the nearest neighbor according
to observation and current robot pose estimate.

A more complex approach is needed when there are several possible
matching candidates for each individual observation in the map. In
this case a whole set of observations is matched simultaneously by
iterating through all matching combinations that are compatible with
the bounds on the accumulated error in the robot’s pose. The plausi-
bility of a possible match can be evaluated by summing up the squared
distance between matched observation and landmark to which the ob-
servation is matched. A much better approach is to use Mahalanobis
distance based on the covariance matrix of the considered landmarks
provided by the SLAM algorithm (Neira and Tardós, 2000). Unlike
simple squared distance, Mahalanobis distance takes into account that
some relations between the landmarks are much more precisely known
than other relations so these relations affect likelihood of a match much
more.

Again, sensor noise, map size, and arrangement of landmarks decide
whether observations from a single robot pose can be uniquely matched
to the map. If not, as an alternative a local map patch around the
robot can be matched with the remaining map (Gutmann and Konolige,
1999; Frese, 2004).

In even more difficult situations it might be impossible to determine
a landmark’s identity at the moment it is observed. Then algorithms are
needed that can defer the decision about association of that landmarks
until further observations provide enough evidence. One approach is
multi-hypothesis tracking generating several copies of the uncertain
map whenever the identity of a landmark is ambiguous. This can be
done in a particle filter framework (Montemerlo and Thrun, 2003). Both
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the discrete uncertainty of landmark identification and the continuous
uncertainty generated by measurement noise are represented by the
set of particles, i.e. samples drawn from the resulting multi-modal dis-
tribution. So each particle corresponds to a map without uncertainty.
Alternatively one could use a mixture-of-Gaussian model where each
Gaussian represents a topological hypothesis, i.e. a map with fixed data
association but still retaining the continuous uncertainty generated by
measurement noise.

If the map contains several independent ambiguities, a particle filter
would need an exponentially increasing number of particles to cover all
possible combinations. Then lazy data-association is needed, i.e. the
algorithm must be able to revise a past data association decision when
new evidence suggests that it has been wrong. Hähnel et al. (2003)
have realized this idea by incrementally building and pruning the data-
association decision-tree. The tree has one level for each landmark
observation with the different children of each node corresponding to
different decisions on the landmark’s identity. The likelihood of the
data association corresponding to a node is evaluated using LLS and
is monotonically decreasing along the tree. Thus whenever a node is
less likely than the current most likely leaf, the node can be pruned
and need not be expanded. The algorithm always finds the most likely
solution which is an advantage but also a disadvantage since in the
worst case the tree can grow exponentially. Ranganathan and Dellaert
(2004) avoid the computational limitations of finding the most likely
solution by employing a Markov Chain Monte Carlo (MCMC) frame-
work (Neal, 1993) for searching through the space of possible data
associations, i.e. topologies. Duckett (2003) searches through the space
of possible robot trajectories using a genetic algorithm. It works on
a population of trajectories which are modified using mutation and
cross-over. Trajectories are selected according to how consistently the
observed sensor data can be integrated into a map assuming the robot
poses defined by the trajectory.

To conclude the discussion: Within a least square SLAM algorithm
determining the landmarks identity and estimating a map based on this
data association are two relatively independent subtasks. This is due to
the fact that the underlying Gaussian distributions are unimodal, i.e.,
they cannot represent the discrete uncertainty of not knowing which of
the landmarks in the map corresponds to the observation. Thus there
are two approaches. Either data association must be determined before
integrating a measurement. Uncertainty information from the SLAM
algorithm can greatly facilitate this task (Mahalanobis distance). Or
least square SLAM must be used as a core engine within a larger frame-
work. Then the framework generates different hypotheses by tentatively
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integrating a measurement. The likelihood of each hypothesis is in turn
evaluated using the core SLAM algorithm.

16. Summary

Three exceptional features distinguish SLAM from many other estima-
tion problems:

1. Error accumulation:
When moving through an unknown area the error of the robot pose
and, consequently, the global error of landmarks nearby can grow
arbitrarily high. Nevertheless, relative properties of these land-
marks such as distances or angles are known much more precisely
with an uncertainty independent from the overall uncertainty of the
robot pose. This gives rise to a highly specific uncertainty structure,
called the Certainty of Relations despite Uncertainty of Positions.
Relations between nearby landmarks are known precisely although
the absolute position of the landmarks is highly uncertain. On a
global scale, uncertainty is mainly a composition of local orien-
tation uncertainties along the path traveled. The error effects an
“uncertain bending” of the map, showing a simple geometrically
determined structure despite its magnitude. Conversely, on a local
scale the uncertainty is much smaller and more complex.

2. High dimensionality :
After each measurement a SLAM algorithm has to estimate the
robot pose (3 DOF) and the whole map (2n DOF for n landmarks).
So the overall dimension 3 + 2n of the estimation problem is very
large (> 500) and continues to grow. Therefore, common estimation
algorithms are not efficient enough for SLAM. However there has
been an enormous progress in recently published algorithms which
now allows both linear update time and storage space.

A theorem has been sketched that assures that the information
matrix resulting from marginalization of old robot poses is approx-
imately sparse, a property exploited by several efficient algorithms.
The theorem further theoretically substantiates the analysis of the
global uncertainty described above.

3. Nonlinearity :

It is common for estimation problems to have nonlinear measure-
ment equations. For the SLAM estimation problem, the equations
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are nonlinear in the robot’s orientation, ane the estimation error of
the robot’s orientation can grow unboundedly. So for a sufficiently
large map linearization is not suitable. This is a particular problem
of SLAM not often encountered in other estimation tasks. A critical
consequence is the distortion of distances between landmarks even
though the distances are well known from the measurements.

Due to nonlinearities in the measurement equations, the Jacobians
of the equations are non-constant. However, when transforming
them into robot coordinates by factoring out rotation by robot
orientation, they are nearly constant. This shows that mainly non-
linearity of orientation is of relevance.

SLAM evolved over a decade of research and has reached a level
of by now that it can be used in medium or even large environments.
Undoubtedly, in the future the focus will shift towards applying SLAM
as a component in larger systems and handling the challenges of uncer-
tain data association, very large, dynamical, and outdoor environments.
This poses new problems, both concerning the core algorithm and
possible applications.
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