
An O(logn) Algorithm for Simultaneous Localization and

Mapping of Mobile Robots in Indoor Environments

Ein O(log n) Algorithmus zur simultanen Lokalisierung und

Kartierung von mobilen Robotern in Innenräumen

Submitted to the

Technische Fakultät der
Universität Erlangen–Nürnberg

in partial fulfillment of the requirements for
the degree of

DOKTOR–INGENIEUR

from

Udo Frese

Erlangen — 2004

As dissertation accepted by the
Technische Fakultät der

Universität Erlangen–Nürnberg

Date of submission: 7th January 2004
Date of defense: 28th May 2004
Dean: Prof. Dr. rer. nat. A. Winnacker
Reviewer: Prof. Dr.-Ing. H. Niemann

Prof. Dr.-Ing. G. Hirzinger

3

To Frauke

4

Abstract
This thesis addresses the Simultaneous Localization and Mapping (SLAM) problem, a key prob-
lem for any truly autonomous mobile robot. The task for the robot is to build a map of its
environment and simultaneously determine its own position in the map while moving.

The problem is examined from an estimation-theoretic perspective. The focus is on the core
estimation algorithm which provides an estimate for the map and robot pose from two sensor
inputs: The first sensor is odometry, i.e. the observation of the robot’s movement from the revo-
lution of its wheels. The second is the observation of environment features, so called landmarks.
The optimal solution based on maximum likelihood or least square estimation needs excessive
computation time, i.e. O((n + p)3) for n landmarks and p robot poses. Popular approaches
like Extended Kalman Filter (EKF) are more efficient but still need O(n2) computation time and
suffer from linearization errors.

The first contribution of this thesis is an analysis of SLAM, in particular under the aspect of
the inherent uncertainty structure of a map estimate. The key result can be phrased as “Certainty
of relations despite uncertainty of positions”. The discussion further analyzes the linearization
error in SLAM and identifies the error in the robot’s orientation as dominant source.

The second and main contribution is a very efficient SLAM algorithm that works by hier-
archically dividing the map into local regions and subregions. At each level of the hierarchy
each region stores a matrix representing some of the landmarks contained in this region. On the
level of finest subdivision, i.e. the lowest level, these matrices are naturally small because the
regions are small and contain few landmarks only. On higher levels regions are large and contain
many landmarks. For keeping the matrices stored at higher levels small only those landmarks are
represented being observable from outside the region. This way it is ensured that even on high
levels of hierarchy each matrix represents only few landmarks and computation is efficient.

A measurement is integrated into a local subregion using O(k2) computation time for k land-
marks in a subregion. When the robot moves to a different subregion a global update is necessary
requiring only O(k3 log n) computation time. Furthermore, the proposed hierarchy allows “non-
linear rotation” of the matrix stored at a certain region. Thereby linearization problems can be
removed.

The algorithm is evaluated for map quality, storage space and computation time using simu-
lation experiments and experiments with a real mobile robot in an office environment.

5

6 ABSTRACT

Kurzfassung
Diese Arbeit beschäftigt sich mit dem Problem simultaner Lokalisierung und Kartierung (Si-
multaneous Localization and Mapping, SLAM), einem Schlüsselproblem für jeden wirklich au-
tonomen Roboter. In diesem Problem besteht die Aufgabe eines Roboters in Bewegung in der
Darstellung einer Karte seiner Umgebung sowie in der gleichzeitigen Bestimmung der eigenen
Position auf dieser Karte.

Das Problem wird aus einer schätztheoretischen Perspektive betrachtet. Dabei liegt der
Schwerpunkt auf dem zentralen Algorithmus, der eine auf zwei Sensorgrößen basierende
Schätzung für die Karte und die Roboterposition liefert: Die erste Sensorgröße ist die Odometrie,
das heißt, die Bestimmung der Roboterbewegung über die Drehungen seiner Räder. Die zweite ist
die Beobachtung von Umgebungsmerkmalen, so genannten Landmarken. Es gibt für dieses Pro-
blem eine optimale Lösung durch Maximum Likelihood bzw. quadratische Ausgleichsrechnung,
die allerdings unmäßig hohe Rechenzeit, nämlich O((n+p)3) für n Landmarken und p Roboter-
positionen benötigt. Gängige Ansätze, wie der Extended Kalman Filter (EKF), sind effizienter,
brauchen aber immer nochO(n2) Rechenzeit und werden zudem durch Linearisierungsprobleme
beeinträchtigt.

Der erste Beitrag in dieser Arbeit ist eine Diskussion von SLAM, speziell der inhärenten
Struktur der Unsicherheit einer Kartenschätzung. Das Schlüsselresultat läßt sich als “Sicherheit
von Beziehungen trotz Unsicherheit von Positionen” zusammenfassen. Weiterhin analysiert die
Diskussion Linearisierungsfehler in SLAM und identifiziert den Fehler in der Roboterorientie-
rung als dominante Ursache.

Im Hauptteil wird ein sehr effizienter SLAM Algorithmus erarbeitet, der die Karte hierar-
chisch in lokale Regionen und Unterregionen aufteilt. Auf jeder Ebene der Hierarchie speichert
jede Region eine Matrix, die einige der in der Region enthaltenen Landmarken repräsentiert. Auf
der untersten Ebene, das heißt der Ebene der feinsten Unterteilung, sind diese Matrizen automa-
tisch klein, weil die Regionen klein sind und nur wenige Landmarken enthalten. Auf höheren
Ebenen sind die Regionen groß und enthalten viele Landmarken. Um auch die in diesen Re-
gionen gespeicherten Matrizen klein zu halten, werden nur die Landmarken repräsentiert, die
von ausserhalb der Region beobachtbar sind. Dadurch ist sichergestellt, dass auch auf höheren
Ebenen jede Matrix nur wenige Landmarken repräsentiert und Berechnungen effizient bleiben.

7

8 KURZFASSUNG

Eine Messung wird in eine lokale Unterregion integriert unter Verwendung von O(k2) Re-
chenzeit für k Landmarken in der Region. Wenn der Roboter eine neue Unterregion betritt,
muss eine globale Aktualisierung mit O(k3 log n) Rechenzeit durchgeführt werden. Weiterhin
ermöglicht die vorgeschlagene Hierarchie die in einer Region gespeicherte Matrix “nichtlinear
zu drehen”. Damit werden Linearisierungprobleme vermieden.

Durch Simulationen und Experimente mit einem realen mobilen Roboter in einer norma-
len Büroumgebung erfolgt eine Auswertung des Algorthmus bezüglich der Kartenqualität, des
Speicherplatzbedarfs und der Rechenzeit.

Acknowledgments

The research results presented in this thesis were conducted during my work at the Institute of
Robotics and Mechatronics of the German Aerospace Center (DLR). It is my pleasure to thank
Prof. Gerd Hirzinger for the opportunity to work in the exciting field of robotics, for generous
support, inspiration and for the freedom to pursue the research topic I wished.

I am very grateful to Prof. Heinrich Niemann, the supervisor of this thesis, for the opportunity
to discuss my research at the Chair for Pattern Recognition (LME) at the University of Erlangen-
Nürnberg.

I am very much indebted to those who helped me along with advice, discussions, critical
comments, and by making the robot work. Especially, I wish to thank Berthold Bäuml, Frauke
Bokemeyer, Christoph Borst, Tom Duckett, Matthias Hähnle, Steffen Haidacher, Ulrich Hillen-
brand, Martin Hörmann, Christian Ott, Gisela Scheffler, Norbert Sporer, and Michael Suppa.

I would like to thank my parents Ingrid and Jürgen Frese for constant support and encourage-
ment. Finally, and most of all, I want to thank Frauke for patience and affection during the last
two years.

Oberpfaffenhofen, December 2003 Udo Frese

9

10 ACKNOWLEDGEMENTS

Contents

Abstract . 5
Kurzfassung (German) . 7
Acknowledgments . 9
Contents . 10
Inhalt (German) . 15
List of Figures . 17
List of Tables . 21
List of Notations . 25

1 Introduction 29
1.1 Simultaneous Localization and Mapping . 30
1.2 Structure of SLAM Uncertainty . 36
1.3 State of the Art Overview . 40
1.4 Thesis Contribution . 43
1.5 Thesis Overview . 46

2 Uncertainty Structure of Map Estimates 47
2.1 Measurement Equations . 48
2.2 Error Accumulation . 53
2.3 Representation of Relativity . 54
2.4 Implications of Closing the Loop . 55
2.5 Landmark Identification . 56
2.6 Maximum Likelihood Estimation . 57
2.7 Linear Least Squares . 58
2.8 Extended Kalman Filter . 60
2.9 Linearization Error . 61
2.10 Covariance vs. Information Matrices . 63
2.11 Sparsity of SLAM Information Matrices . 65

11

12 CONTENTS

2.12 Local vs. Global Uncertainty . 77
2.13 Requirements for an Ideal Solution . 79
2.14 State of the Art . 83
2.15 Summary . 89

3 Hierarchical Map Decomposition 91
3.1 Basic Idea . 91
3.2 Tree Map Data Structure . 93
3.3 Elimination of Landmarks by Schur-Complement 97
3.4 Compilation of an Estimate . 102
3.5 Assumptions on Topologically Suitable Buildings 105
3.6 Integration of Odometry Measurements . 109
3.7 Stepwise Optimal Elimination of Off-Diagonal Entries 113
3.8 Approximation Quality . 120
3.9 Relinearization by Nonlinear Rotation . 123
3.10 Discussion . 129

4 Maintenance of the Hierarchy 131
4.1 Main Algorithm . 134
4.2 Heuristical BIB Changing Control . 135
4.3 Global Update . 138
4.4 Hierarchical Tree Partitioning . 143
4.5 Transfer of a Subtree . 149
4.6 Computational Efficiency . 154
4.7 Discussion . 157

5 Simulation Experiments 159
5.1 Scenario . 159
5.2 Small Noise Experiment . 161
5.3 Large Noise Experiment . 165
5.4 Large Scale Map Experiment . 165
5.5 Discussion . 169

6 Real World Experiments 171
6.1 Scenario . 171
6.2 Computer Vision for Landmark Detection . 172
6.3 Detection of Circular Artificial Landmarks . 175

CONTENTS 13

6.4 Landmark Identification . 176
6.5 Large Map Experiment . 178
6.6 Statistical Evaluation Experiment . 183
6.7 Navigation Experiment . 185
6.8 Discussion . 186

7 Conclusion 187
7.1 Summary . 187
7.2 Outlook . 188

A Positive Definite Matrices 191
A.1 Properties . 191
A.2 Block Matrix Formulas . 193

B Technical Proofs 195

C Implementation 201
C.1 Implementation of the Linear Algebra Part . 201
C.2 Implementation of BIB Changing Control . 202
C.3 Insertion . 203
C.4 Determination of a Transfer Step . 206
C.5 Tracking the State of Landmarks . 210
C.6 Implementation of the Bookkeeping Part . 215

Bibliography 217

Index 225

14 CONTENTS

Inhalt

Abstract (Englisch) . 5
Kurzfassung . 7
Danksagungen . 9
Contents (Englisch) . 10
Inhalt . 15
Liste der Abbildungen . 17
Liste der Tabellen . 21
Liste der Symbole . 25

1 Einleitung 29
1.1 Gleichzeitige Kartierung und Lokalisation (SLAM) 30
1.2 Struktur der SLAM Unsicherheit . 36
1.3 Überblick über den Stand der Technik . 40
1.4 Beitrag der Arbeit . 43
1.5 Überblick über die Arbeit . 46

2 Unsicherheitsstruktur einer Kartenschätzung 47
2.1 Messgleichungen . 48
2.2 Fehlerakkumulation . 53
2.3 Repräsentation von Relativität . 54
2.4 Kreisschluss . 55
2.5 Landmarkenidentifikation . 56
2.6 Maximum Likelihood Schätzung . 57
2.7 Lineare quadratische Ausgleichsrechnung . 58
2.8 Erweiterter Kalman Filter . 60
2.9 Linearisierungsfehler . 61
2.10 Kovarianz- vs. Informationsmatrix . 63
2.11 Dünnbesetztheit von SLAM Informationsmatrizen 65

15

16 INHALT

2.12 Lokale vs. Globale Unsicherheit . 77
2.13 Anforderungen an eine Ideallösung . 79
2.14 Stand der Technik . 83
2.15 Zusammenfassung . 89

3 Hierarchische Kartenaufteilung 91
3.1 Grundidee . 91
3.2 Datenstruktur Baumkarte . 93
3.3 Eliminierung von Landmarken durch Schur-Komplement 97
3.4 Schätzung . 102
3.5 Annahmen über topologisch geeignete Gebäude 105
3.6 Integration von Odometriemessungen . 109
3.7 Schrittweise optimale Eliminierung von Nebendiagonaleinträgen 113
3.8 Qualität der Näherung . 120
3.9 Relinearisierung durch nichtlineare Rotation . 123
3.10 Diskussion . 129

4 Wartung der Hierarchie 131
4.1 Hauptalgorithmus . 134
4.2 BIB-Wechsel Kontrollheuristik . 135
4.3 Globale Aktualisierung . 138
4.4 Hierarchische Baumzerlegung . 143
4.5 Verschieben eines Unterbaumes . 149
4.6 Recheneffizienz . 154
4.7 Diskussion . 157

5 Simulationsexperimente 159
5.1 Szenario . 159
5.2 Experiment mit kleinem Rauschen . 161
5.3 Experiment mit grossem Rauschen . 165
5.4 Experiment mit grosser Karte . 165
5.5 Diskussion . 169

6 Reale Experimente 171
6.1 Szenario . 171
6.2 Bildverarbeitung zur Landmarkenerkennung . 172
6.3 Erkennung künstlicher kreisförmiger Landmarken 175

INHALT 17

6.4 Landmarkenidentifikation . 176
6.5 Experiment mit grosser Karte . 178
6.6 Experiment mit statistischer Auswertung . 183
6.7 Navigationsexperiment . 185
6.8 Diskussion . 186

7 Zusammenfassung und Ausblick 187
7.1 Zusammenfassung . 187
7.2 Ausblick . 188

A Positiv definite Matrizen 191
A.1 Eigenschaften . 191
A.2 Block-Matrix Formeln . 193

B Technische Beweise 195

C Implementierung 201
C.1 Implementierung Lineare Algebra . 201
C.2 Implementierung der BIB-Wechsel Kontrollheuristik 202
C.3 Einfügen . 203
C.4 Bestimmung von Übertragunsschritten . 206
C.5 Verfolgen des Landmarkenzustands . 210
C.6 Implementierung der Buchhaltung . 215

Literatur 217

Index 225

18 INHALT

List of Figures

1.1 SLAM basic idea . 31
1.2 SLAM based navigation system . 32
1.3 Statistical evaluation . 35
1.4 Structure of SLAM uncertainty . 38
1.5 Hierarchically decomposed building and corresponding tree 45

2.1 Example building . 48
2.2 Coordinates . 49
2.3 Error accumulation with and without landmark observations 53
2.4 Closing the loop . 55
2.5 Linearization error . 62
2.6 Information vs. covariance matrix . 64
2.7 Sparsity pattern of A . 67
2.8 Global uncertainty generated by uncertainty in a local region 78

3.1 Integration and decomposition of information 95
3.2 computeCIBAndSIB

(
χ2

1, χ
2
2, E

)
linearized 100

3.3 Data flow in a three level tree map . 104
3.4 computeEstimate

(
(ẑ, C, α), (H, h, P−1)

)
. 105

3.5 Example for a topologically suitable and unsuitable building 106
3.6 integrateEKFOdometry

(
z, Cz

)
. 110

3.7 integrateEKFObservation
(
z, Cz

)
. 111

3.8 Data flow between EKF and tree map . 111
3.9 compileEKF

(
(ẑ, C), (P−1, H, h), α

)
. 111

3.10 extractBIBFromEKF
(
x̂EKF, CEKF,N

)
. 112

3.11 Three steps of deducing rank(B) . 116
3.12 removeCoupling

(
A, b, x̂

)
. 120

3.13 Approximation when changing a BIB . 121

19

20 LIST OF FIGURES

3.14 computeCIBAndSIB
(
(χ2

1, e1), (χ2
2, e2), E

)
nonlinear 128

3.15 Estimate of the proposed algorithm . 128

4.1 Notation of nodes in a tree . 132
4.2 integrateTreemapObservation

(
z, Cz

)
. 134

4.3 findOrCreateBIB
(
z
)

. 137
4.4 Updated nodes in different cases . 139
4.5 setBIB

(
n, (χ2, e)

)
. 140

4.6 update
(
n
)

. 141

4.7 compileEstimate
(
n, (H, h, P−1), γ

)
. 141

4.8 accumulatedAngle
(
n
)

. 141
4.9 iteratedRelinearize

(
(H, h, P−1)

)
. 141

4.10 Tree and corresponding multigraph partitioning 144
4.11 Bal(n) as a function of bal(n) . 146

4.12 Parts of a tree for a fixed node r . 147
4.13 Example of an HTP optimization step followed by insertion of a new BIB. 150
4.14 transferSubtree

(
s, a

)
. 152

4.15 Transferring a subtree . 153

5.1 Small noise simulation experiment results . 162
5.2 Small noise simulation experiment performance 163
5.3 Large noise simulation experiment results and performance 166
5.4 Large scale simulation experiment: true map . 167
5.5 Large scale simulation experiment: map estimate 168

5.6 Large scale simulation experiment: performance 170

6.1 Real experiment floor plan . 173
6.2 Real experiment landmark detection. 174
6.3 Screen shot . 178

6.4 Map estimate before closing loop . 180
6.5 Final estimate . 181
6.6 Real experiment performance . 182
6.7 Several map estimates performed by the proposed algorithm. 184
6.8 Corresponding Maximum Likelihood estimates. 184

6.9 Error compared to ML estimate . 185
6.10 Navigation experiment . 186

LIST OF FIGURES 21

7.1 Mars rover and DIROKOL service robot . 189

C.1 isTooLarge
(
x̂, z
)

. 203
C.2 allBIBsRepresenting

(
M
)

. 203
C.3 recursiveCheck

(
n, l
)

. 204
C.4 Different parts of a tree . 205
C.5 findBestInsertionPoint

(
(n,A0,A1,B,M), size

)
. 205

C.6 createEmptyBIB
(
M
)

. 206
C.7 findNodeToBeOptimized

()
. 207

C.8 findBestTransfer
(
r
)

. 209
C.9 recursiveBest

(
(n,A0,A1,B, C,D), child , [slow . . . shigh] , besta, bVala

)
. 209

C.10 optimizeHTP
()

. 210
C.11 initLandmarkState

(
n, r a,M

)
. 212

C.12 Example for tracking landmark states . 213
C.13 updateLandmarkState

(
(n, r,A0,A1,B, C,D,M, p), child

)
. 215

22 LIST OF FIGURES

List of Tables

2.1 Symbols used in the proof of theorem 2 . 68
2.2 Performance of different SLAM algorithms . 88

3.1 Example for integration and decomposition of information 101

4.1 Calling hierarchy of all subalgorithms . 156

5.1 Artificial measurement noise parameter. 160
5.2 Average computation time and prefactors. 169

6.1 Average computation time and prefactors. 179

C.1 Calling hierarchy of optimizeHTP . 216

23

24 LIST OF TABLES

List of Notations

Symbol Reference Definition
General

n §1.3, §2.14 Number of landmarks
m §1.3, §2.14 Number of measurements
p §1.3, §2.14 Number of robot poses
k §1.3, §2.14 Number of landmarks local to the robot
Chapter 2

.̂ . . Estimate of a random variable
.̃ . . Error of the estimate of a random variable
pr = (px, py, pφ) (2.1), p. 50 Robot pose (x-position, y-position, orientation)
vr = (vx, vy, vφ) (2.1), p. 50 Robot velocity (x-translation, y-translation, rotation)

in robot coordinates
dr = (dx, dy, dφ) (2.8), p. 51 Discrete step the robot has moved (x-translation, y-

translation followed by rotation)
Cp (2.6), p. 50 covariance of odometric position estimate p̂
J1, J2 (2.11), p. 52 Jacobians of odometry (as a dynamic function)
J3, J4 (2.16), p. 52 Jacobians of odometry (as a measurement function)
J5, J6 (2.19), p. 53 Jacobians of landmark measurement
l = (lx, ly) (2.18), p. 53 Landmark position
m = (mx, my) (2.18), p. 53 Landmark observation in robot coordinates
x (2.21), p. 57 Map, i.e. vector of landmark positions (and robot

pose)
fi (2.21), p. 57 i-th measurement function
yi (2.21), p. 57 i-th measurement
Ci (2.21), p. 57 i-th measurement covariance

25

26 LIST OF TABLES

Symbol Reference Definition
χ2(x) (2.22), p. 57 Information block, containing some information, for

instance some measurements on the landmarks repre-
sented in x; minus the log-likelihood of x given these
measurements; special IBs are marked by a subscript

x̂ (2.23), p. 57 Map estimate
A, b (2.25), p. 58 Second and first order part of a quadratic function

xTAx+xT b used as an information block,A is a sym-
metric positive semidefinite matrix

Jfi (2.24), p. 58 Jacobian of i-th measurement function
C (2.29), p. 60 Covariance (among other things part of EKF state),

different covariances are distinguished by subscript
ruc(f) (2.96), p. 81 Relative uncertainty (compared to maximum likeli-

hood) of aspect f of a map
Chapter 3
(
P RT
R S

)
(3.4), p. 98 Decomposition of A as a 2× 2 block matrix

(cd) (3.4), p. 98 Decomposition of b as a 2 block vector
(yz) (3.4), p. 98 Decomposition of x as a 2 block vector
I Identity matrix of appropriate size
L(A),L(b) §3.2 Set of landmarks represented at a matrix (A), vector

(b) respectively
E §3.3 Set of landmarks to be eliminated
B,B′ Def. 6 Elimination matrix for A21(
B11 B12 B13
B21 B22 B23
B31 B32 B33

)
§3.7 Block decomposition of B

Rotα (3.40), p. 123 Rotation matrix rotating all landmarks by α
Transd (3.40), p. 123 Vector translating all landmarks by d
e := (x0, w, e0) (3.50), p. 126 Linearization point of an IB
e(x) (3.52), p. 126 Linearization error at x
Chapter 4

n, r, s, a Fig. 4.1 Node in the tree map
n↑, n↙, n↘, Fig. 4.1 Parent and children of node n
n↓r, n↓r Fig. 4.1 Child of n that is or is not respectively ancestor of r
nCIB, nSIB, nBIB,
nsize , nα, nx̂

page 133 Components stored at node n: CIB, SIB, BIB, size,
rotation angle α, estimate x̂

L(n) page 133 Landmarks represented at a node n in the tree map

LIST OF TABLES 27

Symbol Reference Definition
root page 133 Root of the tree
l page 133 Landmark
eN [l] page 133 Elimination node of landmark l
A,B, C, . . . page 133 Set of landmarks
optHTPSteps Fig. 4.2 Number of tree map optimization steps performed

each time after changing the actual BIB
maxDistance §4.2 Maximal distance of landmarks in the same BIB
maxAngle Fig. 4.9 Angle below which to stop iteration in nonlinear

mode
par(n) (4.2), p. 145 Partitioning of node n
nsize (4.3), p. 145 Number of BIBs below node n
bal(n) (4.3), p. 145 Balancing of node n
Bal(n) (4.3), p. 145 Balancing constraint for node n: bal(n) ∈ Bal(n)

lca §4.5 Least common ancestor of two nodes
Acronyms

ML §2.6 Maximum Likelihood
LLS §2.7 Linearized Least Square
EKF §2.8 Extended Kalman Filter
SLAM §1.1 Simultaneous Localization and Mapping
IB §3.2 Information Block
BIB §3.2 Basic Information Block
CIB §3.2 Condensed Information Block
SIB §3.2 Substitution Information Block
SPD §3.2, App. A Symmetric positive definite (xTAx > 0 ∀x 6= 0)
SPSD §3.2, App. A Symmetric positive semi definite (xTAx ≥ 0 ∀x)
HTP §4.4 Hierarchical tree partitioning

28 LIST OF TABLES

Chapter 1

Introduction

Throughout the history of robotics up to now there have been two driving forces: Autonomy and
applications. The quest for autonomy is motivated by the old dream to build an artefact acting
independently like a human being. A multitude of different robots and of different approaches for
controlling them has been devised. Accordingly a lot of scientific progress has been achieved, but
in general, robot autonomy is still more a long term vision than reality. Applications, on the other
hand, are mostly motivated by the idea to create something useful on a short-term perspective.
There are many commercially successful robot applications, especially in automotive industry.
However, most of these robots perform preprogrammed, repetitive movements with little or no
autonomy.

In recent years, there has been increasing commercial interest in new applications other than
industrial production. In the emerging field of service robotics robots operate in a human envi-
ronment and perform tasks like cleaning, fetching or carrying objects, surveillance, clearing, and
general assistance to handicapped persons. A service robot can move freely, neither mounted at a
specific place nor confined to a separated area. So the robot must constantly adapt its behavior to
the environment as perceived by its sensors. Thus, any successful application in service robotics
requires considerable autonomy for the robot.

In a typical scenario a service robot operates indoors like in an office, hospital or home
environment. Basically, it is a small computer-controlled vehicle about the size of a wheelchair
and may be equipped with a robot arm to manipulate objects. Such a robot is often called
a mobile robot. By measuring the revolution of its wheels a mobile robot is able to observe
its own movement. Typically an ultrasonic sensor or laser scanner is used to detect walls and
obstacles. Both measure a distance based on the time an ultrasonic or light pulse respectively
needs for traveling to the obstacle and back. For scanning distances along different directions,
either several sensors are being used or the sensor is fastened at a rotating motor. Such a scan

29

30 CHAPTER 1. INTRODUCTION

basically provides a horizontal slice of the environment. Other widely used sensors are electronic
cameras. Presumably, these are the most versatile sensors because they can be used to perceive
almost everything relevant to a service robot including objects, places, people, and obstacles. On
the other hand it is often very difficult to extract this information from camera images.

For a mobile robot the main challenge is navigation, i.e. moving from place to place. Fol-
lowing the founders of the research field J.J. Leonard and H.F. Durrant-Whyte, this task in-
volves answering the questions “Where am I?”, “Where am I going?”, and “How do I get
there?” [LDW92]. None of these questions can be answered without establishing a map be-
fore because to name a place or path some representation of the physical environment is needed.
So the first question is “What is my map?”. This is the topic of this thesis.

When operating in an indoor environment usually a floor plan is available and appears to
be usable as a map. Of course, this remains unsatisfactory if autonomy is the goal. If a map
has to be provided manually, a robot is not autonomous any more. But even from a practical
perspective this approach is much more difficult than it seems at first sight. In fact, providing a
precise map of a large building with sufficient details included to be useful is an expensive and
inconvenient task. For instance, Thrun et al. [TBF98] report that building a map manually for
a robotic museum-tour guide took one week, whereas building a map autonomously took about
one hour.

So the most convincing approach, both from the perspective of autonomy and of applications,
is to have the robot create its own map while moving through the building.

1.1 Simultaneous Localization and Mapping

SLAM1, i.e. the Simultaneous Localization and Mapping problem, aims at a fully autonomous
answer to the question “Where am I?” by providing an autonomously built map. While moving
through an environment the robot is demanded to derive a map from its perceptions and simul-
taneously determine its own position in this map. From the late eighties this problem has been
explored. First contributions were made by Chatila [CL85], Smith, Self and Cheeseman [SSC88]
and Durrant-Whyte [DW88]. The name simultaneous localization and mapping was later intro-
duced by Durrant-Whyte [DWRN95].

Figure 1.1 illustrates the basic idea. Even though the studies conducted in this thesis are
generally valid for a wide range of scenarios, let us consider the setting of the experiments to
be reported later in this thesis: A mobile robot moves through an office building. It is driven
by wheels and observes its own movements by integrating the wheels’ revolution (odometry).

1Also called Concurrent Mapping and Localization (CML) by some other authors

1.1. SIMULTANEOUS LOCALIZATION AND MAPPING 31

Figure 1.1: SLAM: A mobile robot moves through an unknown building, observing its own
movement (yellow/light curve with arrows) and landmarks (yellow/light lines). From these data
a map of the building is being computed as seen so far (blue/dark crosses). The robot’s own
position (blue/dark circle with triangle) in the map is being determined. In the experiments for
this thesis white circular discs are used as artificial landmarks. In a real application they would
be replaced by natural landmarks like corners, walls, doors, etc.

32 CHAPTER 1. INTRODUCTION

Landmark
detection

Landmark
identification

Motion
control robot pose

Map estimation
(SLAM)

Task
planning

Path
planning

a b c b c d

b c d

d e f c d e f

c d e f

c d

odometry

motor

map

camera

Figure 1.2: SLAM based navigation system: Landmarks are detected and identified by compar-
ing them with the landmarks already represented in the map. The identified landmark observa-
tions and odometry measurements are passed to the map estimation algorithm estimating robot
pose and map. Task planning, path planning and motion control use these information to drive
the robot. The map estimation algorithm is the key component of such a system. The proposed
algorithm is based on hierarchical decomposition of the map represented by a tree.

1.1. SIMULTANEOUS LOCALIZATION AND MAPPING 33

An electronic camera is used to observe distinguished features in the environment, so called
landmarks. By processing a camera image landmarks are detected determining their positions
in relation to the robot. When observed a second time a landmark is recognized as being the
same. This process is called identification and performed by comparing the relative position of
the observed landmarks with the landmarks in the map created so far. Based upon these data the
robot computes a map of the landmarks in the building and determines its own position in this
map. In a landmark-based approach, a map essentially is a set of positions of landmarks.

This map can be used, in turn, for task and path planning, i.e. to provide an answer to the
other two questions “Where am I going?” and “How do I get there?”. Therefore the map must be
extended to represent free space and paths. This may easily be achieved by a graph of waypoints:
While moving through a previously unknown area, every once in a while the robot’s position
is being added as a waypoint and being linked with adjacent waypoints in the graph. While
navigating later the robot heads from waypoint to waypoint. Like the landmarks the waypoints
are mathematically treated in the same way, even though they will not be observed again. Instead,
the waypoints’ position relative to nearby landmarks is known from the map. So when the robot
observes these landmarks, it implicitly knows the waypoints’ position, too.

All these operations are performed continously while the robot is moving such that the robot
has a map of the explored environment available at any time. Figure 1.2 shows the flow of data
in the SLAM system.

If odometry and landmark observations were exact, SLAM would be a simple problem to
solve: The robot pose would be directly obtained from odometry and the landmark positions
could be straightforwardly computed by composing the known robot pose with the observations
from the landmark sensor.

The difficulty in SLAM arises from the fact that measurements are never exact but always
subject to measurement noise. Thus, the map must be estimated from uncertain data, conse-
quently it is uncertain too. To give an example: for the robot used in the experiments for this
thesis, the landmark sensor has a measurement uncertainty of ≈ 0.05m and odometry of ≈ 1.6m
after 20m of traveling. In robotics it is very common to be faced with uncertain measurements.
These uncertainties, especially the uncertainty of the robot pose derived by odometry, are made
particularly difficult by SLAM because they accumulate while the robot is moving. Thus, uncer-
tainties can reach arbitrarily high values. This challenge has been verbalized in the foreword of
the well known textbook “Autonomous Robot Vehicles” [CW90]:

34 CHAPTER 1. INTRODUCTION

“The key scientific and technological issue in robotics is that of coping with uncer-
tainty [. . .] Mobile robots operating in large, unstructured domains must be able to
cope with significant uncertainty in the position and identity of objects. In fact, the
uncertainty is such that one of the most challenging activities for a mobile robot is
simply going from A to B.”

Tomás Lozano-Pérez

It is important to realize that it is not possible to treat the measurements as if they were
exact and simply accept the resulting error in the map. Instead, the measurements must be
evaluated statistically by combining them in a way that takes their uncertainty into account.
Figure 1.3 shows, what remarkable differences this makes. The goal certainly is to achieve a map
that is as precise as possible despite uncertain measurements. This task is much more difficult
than computing an exact map from exact measurements. It is performed by the map estimation
algorithm estimating the map and robot pose by statistically evaluating odometry and identified
landmark observations. It is the core part of any SLAM system (“the SLAM algorithm”).

When considering a complete SLAM system (Fig. 1.2), most of its parts heavily depend on
the specific environment, robot, and sensor used. In contrast, the map estimation algorithm works
very much the same regardless of these factors. Indeed, there are SLAM implementations in
different environments including indoor, outdoor, underwater, and airborne as well as different
robots and sensors including ultrasonic, laser scanner, and camera. A brief overview will be
given in §1.3. All these implementations basically solve the same estimation problem by their
core algorithm. Therefore, the core estimation algorithm is the main focus of most work on
SLAM, including this thesis.

Basically, there is an optimal solution for SLAM under reasonable assumptions: The mea-
surement noise is assumed to be independently Gaussian distributed with known covariance. This
allows to evaluate the likelihood of a particular map given the observations made by the robot so
far. The map with the largest likelihood, the Maximum Likelihood Estimate (ML-estimate) is the
best estimate possible [PTVF92, §15.1]2.

Thanks to the Gaussian error distribution, the optimal map can be computed by least
squares estimation by solving a large linear equation system. A standard least squares es-
timation algorithm like Levenberg-Marquardt [PTVF92, §15.5] can perform this computa-
tion. This approach is well established and has been theoretically and experimentally veri-
fied [SSC88, LM97, DNDW+99]. Historically, the use of least squares estimation for the pur-

2Best possible means that it has a maximum probability of causing the observed measurements. Furthermore, it
is the map with the highest conditional probability given the measurements, if the true map is assumed to be drawn
from a uniform a-priori distribution.

1.1. SIMULTANEOUS LOCALIZATION AND MAPPING 35

2m

(a) True map with robot trajectory along
the outer corridor. Landmarks are depicted
by “ggg” symbols. The robot is shown at
start and end of the trajectory.

2m

(b) Map estimate derived by treating odometry mea-
surements as if they were exact.

2m

(c) Map estimate derived by statistical evalua-
tion.

Figure 1.3: Statistical evaluation of measurements: The map estimate based on treating odometry
as if it was exact is nearly useless. The map estimate based on a statistical evaluation still has
errors, especially in the overall map orientation but is much better. All maps shown in §1 – §5
are based on simulations with comparatively large artificial measurement noise.

36 CHAPTER 1. INTRODUCTION

pose of building maps dates back to the invention of this method by C.F. Gauss himself (“Theoria
combinationis observationum erroribus minimis obnoxiae”, Göttingen, 1821 [Gau21]).

When performing SLAM a growing map must be provided while the robot is moving. This
requires computing an up to date estimate after each measurement. Each time a large system
of equations must be solved. For n landmarks and p robot poses (places from which the robot
observed landmarks) the computational cost of the Levenberg-Marquardt algorithm is O((n +

p)3). To give a figure, a medium-sized office building3 mapped in the experiments reported in this
thesis covers an area of 60m× 45m and contains 29 rooms, n = 725 landmarks, p = 3297 robot
poses, and m = 29142 measurements. It can be seen that the Levenberg-Marquardt algorithm
is far too slow. Many researchers, the author of this thesis included, have been motivated by
this challenge and devised more efficient algorithms for performing the map estimation. Most
of these approaches compute an approximation to the ML estimate to improve efficiency. In this
case, apart from computation time, the quality of the provided estimate needs to be considered.
In general three criteria are important to assess the performance of a SLAM algorithm:

(I) Quality of the map estimate. Specifically, the uncertainty of the map estimate in compari-
son to the corresponding uncertainty of the optimal maximum likelihood estimate

(II) Storage space used by the map

(III) Computation time for updating the estimate after integrating a measurement

The goal of the thesis is to follow these criteria in two steps: First, the requirements for an algo-
rithm to be postulated from a theoretical perspective will be analyzed and second, an algorithm
fulfilling these requirements as far as possible will be devised.

1.2 Structure of SLAM Uncertainty

SLAM is different from many other estimation problems in that there is a very specific structure
in the uncertainty of the estimate. This uncertainty and, hence, its structure is not caused by a
particular SLAM algorithm but is inherent to the general type of sensors used4. The landmark
sensor measures the landmark position relative to the robot and odometry measures the robot
movement relative to itself. Both cannot observe absolute position or orientation like a compass
or the Global Positioning System (GPS), but measure some local relation to the robot. Figure 1.4

3Part of the DLR, Institute of Robotics and Mechatronics’ building, Oberpfaffenhofen, Germany
4This may be observed in the uncertainty of the optimal maximum likelihood estimate. Since any other estimator

yields a larger uncertainty, this uncertainty is inherent to the problem.

1.2. STRUCTURE OF SLAM UNCERTAINTY 37

shows the consequences. For instance, the pose of a room at the end of a long corridor relative
to its other end is derived from a long chain of local measurements and is, thus, quite uncertain.
For a longer chain the uncertainty will be larger, so the error is accumulating and becoming
larger and larger while the map grows. But although the room’s pose can become arbitrarily
uncertain, only its shape is rather precisely known. The reason is that the perceived shape of the
room is only affected by the measurement error occurring while the room is mapped, not by the
entire accumulated error. This structure is very important both for understanding SLAM and for
devising an appropriate algorithm. To say it in a nutshell:

Certainty of Relations despite Uncertainty of Positions.

One should realize however, that the whole notion of an absolute position although technically
helpful is somewhat artificial. All measurements are invariant under translation and rotation of
the whole environment including the robot. Thus, to have well defined absolute positions, the
first robot pose must be arbitrarily set as the origin and orientation of a global coordinate system.
So actually, absolute position means position relative to the first robot pose. In general, distant
relations are more uncertain than local relations. In particular, absolute positions corresponding
to relations to the first robot pose, are the most uncertain relations in general.

There is a remarkable theorem by Newman [New99, DNC+01] further highlighting this struc-
ture. When considering the situation while a robot is moving through the same area over and over
again the map will get more and more precise. The limit of moving through the same area in-
finitely often will make all relations between landmarks exact. The only remaining uncertainty
is the relation between the landmarks and the first robot pose, i.e. the overall pose of the map
in absolute coordinates. This limiting situation is the extreme case of the general uncertainty
structure: All relations are exact, i.e. perfectly certain, whereas all absolute landmark positions
are still uncertain because the overall pose of the map in absolute coordinates is uncertain.

The implications of this structure are most prominent in the case of a long circular corridor
that forms a closed loop (Fig. 1.4a). At the end of the loop the robot returns to its start. This situ-
ation becomes apparent to the robot when it observes and identifies an already known landmark.
This measurement actually closes the loop, by providing the information to the SLAM algorithm
that the robot has returned to the start of the loop. Due to accumulated error there will be a large
gap in the map estimate between start and end (Fig. 1.4c). This is strongly inconsistent with
the measurement closing the loop. When integrating this measurement the map estimate must
change significantly. While the robot has moved along the loop it has observed adjacent land-
marks from the same robot pose or two nearby poses. Thus the relative location of landmarks is
precisely known and the loop cannot be closed by introducing a gap somewhere else in the loop,

38 CHAPTER 1. INTRODUCTION

2m

(a) True map with robot trajectory along
the outer corridor.

1 m

(b) Errors accumulate while the robot
is moving.

1 m

(c) The room’s pose is uncertain while
its shape is certain.

2m

(d) Closing the loop requires deforming the
whole map to back-propagate the error.

Figure 1.4: Structure of SLAM uncertainty.

1.2. STRUCTURE OF SLAM UNCERTAINTY 39

because this would be inconsistent with the measurements made there. Hence, to make the map
consistent with all measurements, it must be smoothly deformed matching start and end of the
loop (Fig. 1.4d).

This process is sometimes called “back-propagating the error along the loop”. When per-
forming maximum likelihood estimation all this happens automatically since the estimator is
derived from a consistent statistical model. Any algorithm unable of back-propagating violates
criterion (I) because it provides an estimate being highly inconsistent with one of the measure-
ments. Thus, for any SLAM algorithm, especially for one computing an approximate estimate,
closing the loop is the hardest test case: To perform the back-propagation, the underlying data
structure of the map must represent information on the uncertainty of the landmarks, specifically
that the relative position of adjacent landmarks along the loop is precisely known despite of the
uncertainty of their absolute position.

Many algorithms are based on an Extended Kalman Filter (EKF) [Gel74, SSC88] and repre-
sent uncertainty by a covariance matrix. For these approaches the critical information is repre-
sented in the strong correlation between nearby landmarks and weak correlation between distant
landmarks. Historically, it is interesting to note that after the use of a covariance-based repre-
sentation, first proposed by Smith et al. [SSC88], it took several years until the “importance of
correlations” was fully realized [HBBC95, CTS97]. For example, a formerly popular represen-
tation was to store just a 2 × 2 covariance matrix for each individual landmark position instead
of a large 2n× 2n matrix describing correlations between each pair of landmarks. In the former
data structure the information on tight coupling of adjacent landmarks despite the uncertainty in
their absolute positions was left out. So when closing the loop the estimates for the landmarks
along the loop could not be appropriately adjusted and a gap remained in the loop.

To summarize, closing the loop is the hardest test case for any SLAM algorithm: Since the
estimate changes significantly after integrating a single measurement, errors introduced by the
algorithm are far more obvious than in maps without loop. For this reason, the experiments
presented in §5 and §6 all contain large loops.

Another important structural issue in SLAM is nonlinearity: The equations involved are non-
linear, mainly in robot orientation φ, which occurs as a

(
cosφ − sinφ
sinφ cosφ

)
rotation matrix. Nonlinearity

is commonly treated by linearization. Severe linearization errors result, if the error in robot ori-
entation exceeds ≈ 15◦. Some algorithms can solve this problem by relinearizing, i.e. updating
the linearization point and recomputing all Jacobians once the estimate changes. For all EKF
based approaches this is impossible, so they are limited to scenarios with small orientation er-
ror. The data structure used in this thesis allows to apply “nonlinear rotations” to parts of the
map. Any error in the robot orientation having affected linearization can be efficiently corrected

40 CHAPTER 1. INTRODUCTION

without recomputing all Jacobians.

1.3 State of the Art Overview

In this section a brief overview over the current state of the art is given. The different SLAM
algorithms established in literature are compiled and their properties regarding the criteria men-
tioned above are specified. A more detailed analysis is deferred to §2.14 after discussion of the
SLAM problem.

Algorithms

The evolution of SLAM algorithms can be broadly divided into three phases:

In the first phase from the mid-eighties to the early nineties, the mathematical formulation of
SLAM was still an open question and the special uncertainty structure discussed above was not
yet fully recognized.

First approaches to build a map were based on so called evidence grids introduced by
Moravec and Elfes [ME85, Elf89] in 1985. They divide the map into a regular grid with square
cells of fixed size (typically ≈ 5cm). Each cell stores a real number [0 . . . 1] representing the
evidence of this cell containing an obstacle. The evidence is accumulated from different mea-
surements involving this cell. Evidence grids are well suited to integrate the noisy low resolution
information provided by ultrasonic sensors. However, they cannot represent robot pose uncer-
tainty and thus are unable to perform SLAM.

Other authors followed a feature based approach as proposed by Brooks [Bro85]. They rep-
resent the map as composed from distinguished objects instead of using an unstructured repre-
sentation as evidence grids. In order to represent uncertainty they maintain a graph of uncertain
relations between the objects [CL85, CS86, DW88, Fau89]. These approaches can incorporate
uncertainty in the robot pose and led to an estimation theoretic formulation of SLAM.

The second phase of SLAM development was initiated by the influential paper of Smith, Self
and Cheeseman [SSC88] who first formulated SLAM mathematically thoroughly as an estima-
tion problem. They realized that landmark estimates are highly correlated because of the accumu-
lated error in the robot pose and proposed to represent all landmark positions and the robot pose
in a common state vector in combination with a full covariance matrix of them. This representa-
tion is called stochastic map and basically is an Extended Kalman Filter (EKF) [Gel74]. It has
been widely used and extended by several authors [Tar92, CTS97, CMNT99, HBBC95, New99].

1.3. STATE OF THE ART OVERVIEW 41

However, the main problem of large computation time remained. The most time consuming part
of the computation is to update the covariance matrix, taking O(n2) time for n landmarks. This
limited the use of SLAM to small environments (n / 100 landmarks).

Recently, interest in SLAM has increased drastically and several, more efficient algorithms
have been developed. In contrast to the EKF based approaches, most of these algorithms are
efficient enough to be used in medium sized environments (n ≈ 500 landmarks). Some very fast
approaches can even be used for large environments (n ' 10000 landmarks), but for these algo-
rithms there are some limitations regarding the quality of the estimated map in certain situations.

Most approaches exploit that the field of view of the involved sensors is limited. Thus, at
any point in the environments, only few landmarks in the vicinity of the robot are observable and
can be involved in measurements. The number k of these landmarks influences the computation
time of the algorithm. It depends on the sensor and the density of landmarks but does not grow
when the map gets larger. So it is small, practically k ≈ 10 and theoretically mostly considered
constant k = O(1).

Guivant and Nebot [GN01, GN02] developed a modification of the EKF called Compressed
EKF (CEKF) that allows the accumulation of measurements in a local region with k landmarks
at cost O(k2) independent from the overall map size n. When the robot leaves this region, the
accumulated result must be propagated to the full EKF (global update) at cost O(kn2). An
approximate global update can be performed more efficiently in O(kn

3
2) with O(n

3
2) storage

space needed.
Duckett et al. [DMS00, DMS02] employ an iterative equation solver called relaxation to the

linear equation system appearing in maximum likelihood estimation. They apply one iteration
after each measurement with computation time O(kn) and O(kn) storage space. After closing
a loop, more iterations are necessary leading to O(kn2) computation time in the worst case.
This problem was recently solved by Frese and Duckett [FD03] by a method called Multilevel
Relaxation. They employ a multilevel approach similar to the multi grid methods used in the
numerical solution of partial differential equations. So computation time could be reduced to
O(kn) even when closing large loops.

Montemerlo et al. [MTKW02] derived an algorithm called fastSLAM from the observation
that the landmark estimates are conditionally independent given the robot pose. Basically, the
algorithm is a particle filter [DdFG01] in which every particle represents a sampled robot tra-
jectory and associated Gaussian distributions of the different landmark positions. These distri-
butions are independent, so n small covariance matrices instead of one large matrix is needed.
The computation time for integrating a measurement isO(M log n) for M particles withO(Mn)

storage space needed. This algorithm can cope with uncertain landmark identification – which

42 CHAPTER 1. INTRODUCTION

is a unique advantage. The efficiency crucially depends on M being not too large. On the other
hand a large number of particles is needed to close a loop: A particle filter integrates measure-
ments by choosing a subset of particles that is compatible with the measurements from the set of
already existing particles (resampling) neither modifying the robot trajectory represented by the
particles chosen, nor back-propagating the error along the loop. So at least one particle of the
set must already close that loop by chance, and either many particles are needed or there will be
gaps in a loop closed already.

Thrun et al. [TKGDW02] presented a constant time algorithm called Sparse Extended Infor-
mation Filter (SEIF). They followed a similar idea, also proposed by Frese and Hirzinger [FH01]
and use a so called information matrix instead of a covariance matrix to represent uncertainty.
The algorithm exploits that the information matrix is approximately sparse requiringO(kn) stor-
age space. A proof for sparsity also being central to the algorithm presented in this thesis, will
be given in §2.11. The information matrix representation allows to integrate a measurement in
O(k2) computation time, but to give an estimate a system of n linear equations must be solved.
Similar to the approach of Duckett et al. this could be done by applying one iteration of relax-
ation with O(kn) computation time. Thrun et al. propose not to relax all n landmarks, but only
O(k), thereby formally obtaining an O(k2) algorithm. However, it is not clear, whether this will
suffice in general because in numerical literature relaxation is reputed needing O(n) iterations
with O(kn2) computation time for solving an equation [Bri99, PTVF92, §19.5].

To the author’s knowledge the four algorithms CEKF, relaxation, fastSLAM, and SEIF dis-
cussed above are the most efficient algorithms available today.

Systems

SLAM, when reduced to the core map estimation algorithm, is a well formalized and truly gen-
eral problem. This can be concluded from the wide diversity of SLAM implementations involv-
ing different environments, robots, sensors and landmarks that have been successfully deployed
in the last years. In all SLAM systems discussed below least squares and maximum likelihood
estimation are applied as core algorithm.

The most common type of application are wheeled robots in office environments: Castel-
lanos and Tardos [CTS97] use a laser scanner to detect walls and edges of walls. Durrant-
Whyte [DWRN95] detects edges from ultrasonic data. Neira and Tardos [NT01] as well as
Castellanos [CT00] detect edges as vertical lines using a camera and computer vision. Duckett et
al. [DMS00] as well as Gutmann and Konolige [GK99] do not extract explicit landmarks but use
raw laser scans instead, deriving the spatial relation between different scans by a scan-matching

1.4. THESIS CONTRIBUTION 43

algorithm. Duckett and Nehmzow [DN00] recognize places by classifying ultrasonic sensor re-
sponse patterns. Gutmann et al. [GFS03] use color landmarks extracted from images by a camera
fastened at a quadruped and a humanoid robot.

Outdoor applications usually use quite specific approaches that depend on the environment
and terrain under consideration: Guivant and Nebot [GN02] use a car equipped with a laser
scanner as a robot and move through a park detecting trees as landmarks. Folkesson and Chris-
tensen [FC03] autonomously map a military urban warfare training facility with an outdoor mo-
bile robot using walls as landmarks. Montemerlo et al. [MTKW02] conducted a conceptual study
for an autonomous robot to be deployed on Mars, detecting rocks on a basically planar surface
with a laser scanner. Feder and Leonard [Fed99] as well as Williams et al. [WDDW02] use an
autonomous underwater vehicle (AUV) and an underwater sonar scanner to detect buoys as land-
marks. Kin and Sukkarieh [KS03] implemented SLAM on an unmanned airplane using white
plastic sheets as landmarks detected by a camera.

Thrun et al. realized impressive applications with algorithms based on Expectation Maxi-
mization (EM): A robotic museum tour guide [BCF+99, TBF98], deployed in the “Deutsches
Museum zu Bonn” and “Carnegie Museum of Natural History”, conducted several thousand
tours. An outdoor wheeled mobile robot equipped with laser scanner autonomously explored a
part of an abandoned mine [THF+03] and a small helicopter performed autonomous 3D terrain
mapping [TDH03].

1.4 Thesis Contribution

Analysis

The first contribution of this thesis is a thorough analysis of the SLAM problem (§2) as such.
The structure of the inherent uncertainty of an estimated map is characterized as briefly sketched
in §1.2. Formally, the central topic is the information matrix of all landmarks. Its structure
corresponds to the uncertainty structure of an estimated map. The algorithm presented in this
thesis and the SEIF algorithm proposed by Thrun et al. [TKGDW02] approximate this matrix
by a sparse matrix. In the discussion a formal proof is given that the information matrix of all
landmarks is indeed approximately sparse, i.e. most entries are very small.

Furthermore, the linearization error incurring in SLAM will be analyzed by discussing its
sources and structure. The duality between information and covariance based representations
will be explained and related to the three “textbook” methods for solving SLAM, i.e. maximum
likelihood, least squares and EKF.

44 CHAPTER 1. INTRODUCTION

Finally, a set of three requirements which an ideal SLAM algorithm should satisfy will be
proposed and established. These requirements concern map quality, storage space and computa-
tion time. They were proposed prior to the development of the algorithm [FH01]. The discussion
includes a mathematical formalization of the term “Quality of the Map Estimate” introduced in
§1.2.

Algorithm

The second and main contribution of this thesis is a novel, highly efficient SLAM algorithm (§3,
§4). It works by dividing the map hierarchically into regions of k landmarks. Integration of
a measurement takes O(k2) time within a region and O(k3 log n) when the robot changes to a
different region. This is less than linear in the number of landmarks and much more efficient
than all SLAM algorithms currently known. The basic outline is as follows:

The algorithm uses so called information matrices as uncertainty representation. Instead
of using a large matrix representing all landmarks, it decomposes the matrix into many small
matrices each representing only a few landmarks. The decomposition is designed in such a way
that only a few small matrices need to be updated in order to integrate a new measurement, which
can be done extremely efficiently.

To derive the decomposition, the map is dynamically divided into a hierarchy of regions and
subregions. Each region at each level of the hierarchy stores an information matrix representing
some of the landmarks contained in this region. On the level of finest subdivision these matrices
are naturally small because the corresponding regions are small and contain only few landmarks.
On higher levels regions are large and contain many landmarks. In order to keep the information
matrices stored at these regions small, only those landmarks are represented that may also be
observed from outside the region. For a large region most landmarks lie not close to the region’s
border and only few can be observed from the outside. This is particularly applicable and accu-
rate for indoor environments. Often the border of a region is a door or corridor and, thus, very
small. This way it is ensured that even on high levels of the hierarchy each matrix represents
only few landmarks and computation is efficient.

A new measurement is integrated into the region at the robot’s current location. The estimate
for the landmarks in this region is updated using the EKF equations in O(k2) time. When the
robot enters a new region a global update is necessary. The key point for the overall efficiency
is that only the region containing the robot and the region in the hierarchy above need to be
updated. All other regions remain untouched. Thus, a global update takes only O(k3 log n)

computation time. The update integrates the whole information provided by the measurement

1.4. THESIS CONTRIBUTION 45

eiejekelemeneo

epeqereseteuevewex

ey

ez

aa

ab

ac

ad

ae

af

ag

ah

ai

aj

ak al am an ao ap aq ar

as at au av aw ax ay

ea

ec

ed

ef

az

ba

bb

bc

bd

be

b f

d j

eb

ee

eg
eh

bgbhbib jbkb l

bm bn bo bp bq b r bs

b t bu

bv

bwbxbybz
ca

cb
cc cd

ce
cfcgchci

cj

ck cl cm cn co

cpcqcrcs

ct

cu cv cw cx
cy

czda
db

dc
dd de d f dg

di

dkdl

(a)

ag ah an au
av bi bm bp
bq ek el es
et

ag ah bi
bm bp bq

an au
av bi bp
bq ek el es
et

ea eb ec ek
el es et

an au av
bi bp bq
ea eb ec

an au av bi
bp bq
ek el es

et

(b)

Figure 1.5: First two levels of a hierarchically decomposed building (a) and respective tree rep-
resentation (b). The first level is indicated by bold dark-gray lines, the second level by bold
light-gray lines. The region corresponding to a node is shown next to the node.

46 CHAPTER 1. INTRODUCTION

including effects on distant landmarks, for instance when closing a loop. However, it does not
update the complete map estimate because this would need O(kn) computation time. Instead,
the algorithm exploits that only an estimate for the landmarks of the local region needs to be
computed. This is the only way to achieve an update time sublinear in n because changing the
estimate for all landmarks takes O(n). Nevertheless updating the whole map is still feasible in
practice, because the prefactor involved in O(kn) is extremely small as will be shown in the
experiments.

Figure 1.5 shows an example for such a hierarchy and its representation using a tree.

A further advantage of hierarchical decomposition is the solution of linearization problems
caused by nonlinearities in the robot’s orientation. Hierarchical decomposition allows to change
the linearization point that has been used to integrate measurements in a specific region by ap-
plying a “nonlinear rotation” to the information matrix stored at this region. That is why the
algorithm computes a solution very close to maximum likelihood even when facing large orien-
tation errors.

1.5 Thesis Overview

This thesis is organized as follows:

§2 Chapter 2 discusses the uncertainty structure of map estimates

§3 Chapter 3 presents the linear algebra part of the proposed algorithm which manipulates,
decomposes and integrates small parts of information using information matrices

§4 Chapter 4 describes the bookkeeping part of the algorithm building and maintaining the
hierarchy

§5 Chapter 5 evaluates the algorithm with respect to map quality, storage space and computa-
tion time with simulation experiments

§6 Chapter 6 presents experiments with a real robot using computer vision based landmark
detection

§7 Finally chapter 7 summarizes the thesis’ main contributions and suggests potential direc-
tion for future research

Chapter 2

Uncertainty Structure of Map Estimates

This chapter provides a brief discussion of the structure of the SLAM problem. The analysis
is not strictly formal but based both on thought experiments and mathematical derivation. It
provides the insights that have been used in devising the algorithm presented in this thesis:

Simultaneous Localization and Mapping (SLAM) is the problem of estimating a map and the
robot’s pose within this map from landmark and odometry observations. As the measurements
are subject to errors, so is the estimated map. The nature of these measurements is that they
are relative to the robot and unable to notice the absolute position of the robot and the environ-
ment. Consequently, regardless of the estimator used, relative aspects of the map estimate will
be comparatively certain, whereas absolute aspects will be comparatively uncertain.

The first section (§2.1) formally introduces the measurement equations used in this thesis.
The main part of this chapter (§2.2 . . . §2.5 and §2.10. . . §2.12) discusses the structure of this

inherent uncertainty. The analysis is substantiated by a proof of the approximate sparsity of
SLAM information matrices:

The off-diagonal entries corresponding to two landmarks decay exponentially with
the distance traveled between observation of the first and second landmark.

This result has strong implications both for the algorithm presented in this thesis and for under-
standing the structure of SLAM uncertainty. The key result can be summarized as

Certainty of Relations despite Uncertainty of Positions.

The second part of the chapter (§2.6 . . . §2.9) compares three common estimation techniques:
Maximum Likelihood (ML), Linear Least Squares (LLS) and Extended Kalman Filter (EKF).
Under the assumption of Gaussian measurement noise all three are related and for linear mea-
surement equations they are even identical. SLAM is a nonlinear problem, so the latter two suffer

47

48 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

2m

(a)

2m

(b)

Figure 2.1: Building used as an example throughout the thesis (a) “true” building and robot
trajectory (b) exact map without measurement noise.

from linearization error. In §2.9 the structure of the linearization error is analyzed identifying the
orientation nonlinearity as primary source of error.

Section §2.13 takes an intuitive perspective on the problem and proposes three requirements
an ideal SLAM solution should fulfill. Section §2.14 discusses the current state of the art un-
der this perspective. Finally the last section (§2.15) summarizes the analysis of the uncertainty
structure and sketches connections to the algorithm. Throughout this thesis, the building shown
in figure 2.1 will be used as an example.

2.1 Measurement Equations

In this section the variables describing the robot and landmarks and the measurement equations
for odometry and landmark observations are defined:

When moving through a planar or nearly planar environment, the state of the mobile robot
is described by three variables two for the robot position and one for the robot orientation
(Fig. 2.2a). Similarly, a landmark is described by two variables for its position (Fig. 2.2c). For
the purpose of this discussion a map consequently is a state vector of stacked landmark positions
and robot poses. Depending on the context the vector may represent just the most recent, none or
all robot poses. Since SLAM is an estimation theoretic problem the uncertainty of measurements
and map estimates is important. Being described as a covariance matrix or alternatively as a so
called information matrix, both are symmetric positive definite matrices, in which each row and
column corresponds to one variable of the state vector.

2.1. MEASUREMENT EQUATIONS 49

PSfrag replacements

pr(t)

pr(t0)

pr(t1)

pφ

px

py

vφ vx

vy

dx
dy

dφ

mx

my

l

lx
ly

(a)

PSfrag replacements

pr(t)

pr(t0)

pr(t1)

pφ

px
py

vφ

vx
vy

dx

dy

dφ

mx

my

l

lx
ly

(b)

PSfrag replacements

pr(t)

pr(t0)

pr(t1)

pφ

px
py

vφ

vx
vy

dx
dy

dφ

mx

my

l

lx

ly

(c)

Figure 2.2: Coordinates describing the robot state pr = (px, py, pφ)T and measurements: (a)
Continuous odometry measurement: velocity in robot coordinates vr = (vx, vy, vφ)T (b) Dis-
crete odometry measurement: relative movement dr = (dx, dy, dφ)T from p(t0) to p(t1) (c)
Landmark measurement: relative position m = (mx, my)

T of landmark at l = (lx, ly)
T

In general, the uncertainty for an estimate is derived from an a-priori model for the measure-
ment and measurement uncertainty. The measurement is defined by a measurement function that
maps the system state, i.e. map and robot pose to the measurement. Its Jacobian determines how
much the measurement uncertainty as defined by a covariance matrix contributes to the uncer-
tainty of the estimate. Thus in the following formulas for measurement functions, Jacobians and
covariances of odometry and the landmark sensor will be derived:

In order to make the discussion independent from specific sensors it is assumed that the
landmark sensor provides a landmark position and odometry provides the robot’s velocity in
robot coordinates with corresponding covariance matrix. This approach is feasible for most
landmark sensors (laser scanner, stereo vision, mono vision with preprocessing) and considering
odometry for all robots using wheels, tracks [CW90] or legs [Eur02] for locomotion. Odometry
measurements are continuous occurring at every point of time. Nevertheless, the result is passed
to the SLAM algorithm in discrete steps. This requires integrating the continuous measurements
for some time and deriving a discrete measurement of the path traveled.

Continuous Odometry Equations

The discussion in this thesis is restricted to the planar environment case. The robot state is rep-
resented by 3 variables as pr = (px, py, pφ)T . The system provides an estimate for the robot’s

50 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

velocity v̂r = (v̂x, v̂y, v̂φ)T in robot coordinates. The measurement noise is assumed to be Gaus-
sian and white with known covariance Cv obtained from a calibrated model of the mobile robot.
By rotating vr by an angle of pφ, vr is transformed into world coordinates and the kinematic
equation of the system is derived. If v is replaced by v̂ and pr by p̂r the odometric estimate for
the robot position can be computed as

ṗr =

ṗx

ṗy

ṗφ

 =

cos pφ − sin pφ 0

sin pφ cos pφ 0

0 0 1

vx

vy

vφ

, ˙̂pr =

cos p̂φ − sin p̂φ 0

sin p̂φ cos p̂φ 0

0 0 1

v̂. (2.1)

To derive a differential equation for the estimation error p̃r = p̂r − pr, the rotation by pφ is
factored out resulting in a rotation by p̂φ − pφ = p̃φ in front of the velocity estimate v̂r:

˙̃pr = ˙̂pr − ṗr =

cos pφ − sin pφ 0

sin pφ cos pφ 0

0 0 1

cos p̃φ − sin p̃φ 0

sin p̃φ cos p̃φ 0

0 0 1

v̂x

v̂y

v̂φ

−

vx

vy

vφ

Linearizing sin p̃φ and cos p̃φ at p̃φ → 0 and defining ṽ = v̂ − v yields

˙̃pr ≈

cos pφ − sin pφ 0

sin pφ cos pφ 0

0 0 1

1 −p̃φ 0

p̃φ 1 0

0 0 1

v̂x

v̂y

v̂φ

−

vx

vy

vφ

 (2.2)

=

cos pφ − sin pφ 0

sin pφ cos pφ 0

0 0 1

0 0 −v̂y
0 0 v̂x

0 0 0

p̃x

p̃y

p̃φ

+

ṽx

ṽy

ṽφ

 . (2.3)

To the first order v̂xp̃φ ≈ vxp̃φ and v̂yp̃φ ≈ vyp̃φ, so

˙̃pr ≈

cos pφ − sin pφ 0

sin pφ cos pφ 0

0 0 1

0 0 −vy
0 0 vx

0 0 0

p̃x

p̃y

p̃φ

+

ṽx

ṽy

ṽφ

 (2.4)

=

0 0 − cos pφvy − sin pφvx

0 0 − sin pφvy + cos pφvx

0 0 0

︸ ︷︷ ︸
A(pφ,vx,vy):=

p̃x

p̃y

p̃φ

+

cos pφ − sin pφ 0

sin pφ cos pφ 0

0 0 1

︸ ︷︷ ︸
B(pφ):=

ṽx

ṽy

ṽφ

. (2.5)

From this differential equation another differential equation for the covariance of the position
estimate Cp can be derived [Hon90, §7.3]:

Ċp = B(pφ)CvB(pφ)T + A(pφ, vx, vy)Cp + CpA(pφ, vx, vy)
T (2.6)

2.1. MEASUREMENT EQUATIONS 51

Since A(pφ, vx, vy) and B(pφ) depend on true orientation and true velocity, they cannot be used
for actual computation. Replacing by the corresponding estimatesA(p̂φ, v̂x, v̂y) andB(p̂φ) yields
a good estimator for the covariance

˙̂
Cp = B(p̂φ)Cv B(p̂φ)T + A(p̂φ, v̂x, v̂y) Ĉp + ĈpA(p̂φ, v̂x, v̂y)

T . (2.7)

The error made thereby is part of the general linearization error and discussed in §2.9. A non-
linearized analysis of the odometry error can be found in [Min88]. Equation (2.1) and (2.7)
are computed1 in the control loop of the mobile robot exploiting the high sensor rate of motor
encoders (typically 100 - 2000Hz).

The models used for the simulated and real experiments are described in §5.1 and §6.1.

Discrete Odometry Equations

Even with good algorithms SLAM involves a lot of computation and cannot be implemented in
the robot’s controller loop. Anyway, this is not necessary. Landmark sensors and recognition
systems typically run at a low rate of 2-25Hz. Between two landmark observations a SLAM
algorithm simply updates the robot’s position estimate according to odometry. Only after the
next landmark observation is available a more complex update is necessary. Thus, the odometry
data between two landmark observations at time t0 and t1 is accumulated. It is then passed to
the SLAM algorithm in form of a discrete step dr = (dx, dy, dφ)T with corresponding covariance
Cd. The step corresponds to a translation of (dx, dy)

T in robot coordinates followed by a rotation
of dφ (Fig. 2.2b). The robot controller continously integrates (2.1) providing p̂r(t) and (2.7)
providing Ĉp(t). So the step of the path traveled from time t0 to time t1 must be computed from
the values p̂r(t0), Ĉp(t0) and p̂r(t1), Cp(t1) of the odometry at these two points by solving

p̂r(t1) = f1(p̂r(t0), d), (2.8)

with f1 mapping old robot pose p̂r(t0) and step d to new robot pose p̂r(t1):

s := sin p̂φ(t0), c := cos p̂φ(t0) (2.9)

f1

p̂x(t0)

p̂y(t0)

p̂φ(t0)

,

dx

dy

dφ

 =

p̂x(t0)

p̂y(t0)

p̂φ(t0)

+

c −s 0

s c 0

0 0 1

dx

dy

dφ

. (2.10)

1Numerically integrating (2.7) for a time step ∆t by Euler integration may lead to non-positive definite results
later in (2.13). It is advisable to integrate a small discrete step ∆t v using (2.8) and (2.12) instead.

52 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

The Jacobians of f1 with respect to p̂r(t0) and dr are

J1 :=
∂p̂r(t1)

∂p̂r(t0)
=

1 0 −sdx − cdy
0 1 cdx − sdy
0 0 1

, J2 :=

∂p̂r(t1)

∂dr
=

c −s 0

s c 0

0 0 1

. (2.11)

The corresponding equation for the covariance Cd of d̂ follows from the white noise assumption
for v̂. Both p̂(t0) and d̂ are independent and the covariance for p̂(t1) can be expressed as

Cp(t1) = J1Cp(t0)JT1 + J2CdJ
T
2 . (2.12)

Using J−1
2 = JT2 (2.8) is solved for d̂ and (2.12) for Cd yielding the step

d̂ = JT2 (p̂r(t1)− p̂r(t0)) (2.13)

Cd = JT2
(
Cp(t1)− J1Cp(t0)JT1

)
J2 (2.14)

passed to the SLAM algorithm. Equation (2.10) expresses odometry as a dynamic equation
which maps the old state pr(t0) and the measurement dr to the new state pr(t1). The correspond-
ing measurement equation which maps old and new state to measurement is

dx

dy

dφ

 := f2

p̂x(t0)

p̂y(t0)

p̂φ(t0)

,

p̂x(t1)

p̂y(t1)

p̂φ(t1)

 =

c s 0

−s c 0

0 0 1

p̂x(t1)− p̂x(t0)

p̂y(t1)− p̂y(t0)

p̂φ(t1)− p̂φ(t0)

 (2.15)

J3 :=
∂dr

∂p̂r(t0)
=

−c −s 0

s −c 0

0 0 −1

, J4 :=

∂dr
∂p̂r(t1)

=

c s 0

−s c 0

0 0 1

. (2.16)

Landmark observation

A huge amount of different landmarks and landmark sensors have been proposed in litera-
ture [CW90]. Some common examples are

• Artifical landmarks: ultrasonic beacons, radio transmitters, infrared transmitters, laser re-
flectors, visual markers of specific color or pattern, inductive loops in the ground

• Natural landmarks: corners, walls, vertical lines, visual corners, doors, ceiling grates, trees

• Landmark sensors: ultrasonic transducers, laser range scanners, cameras

In this thesis the discussion will be restricted to point landmarks in the plane that can be described
by two coordinates (lx, ly)

T and sensors that allow measuring the location of the landmark rel-
ative to the robot (mx, my)

T (Fig. 2.2c). This is feasible for most of the examples mentioned

2.2. ERROR ACCUMULATION 53

2m

(a)

1 m

(b)

Figure 2.3: Error accumulation for map in figure 2.1 (a) without (b) with landmark obser-
vations. All maps in §1 – §5 are based on simulations where the measurements are perturbed by
comparatively large artificial noise and bias (See §5 for a detailed specification).

above. Similar to odometry a measurement covariance Cm must be provided. It is further as-
sumed, that the landmarks can be identified (see discussion in §2.5). The measurement equation
and Jacobians are

c := cos pφ, s := sin pφ (2.17)
(
mx

my

)
:= f3

(
lx

ly

)
,

px

py

pφ

 =

(
c s

−s c

)(
lx − px
ly − py

)
(2.18)

J5 :=
∂m

∂pr
=

(
−c −s −s(lx − px) + c(ly − py)
s −c −c(lx − px)− s(ly − py)

)
=

(
−c −s my

s −c −mx

)
(2.19)

J6 :=
∂m

∂l
=

(
c s

−s c

)
. (2.20)

2.2 Error Accumulation

Consider the robot moving through a known environment, i.e. by using an a-priori map or in a
region already mapped with SLAM, then the uncertainty of the robot’s pose remains bounded,
as each observation of two landmarks reduces the uncertainty basically down to the landmark’s

54 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

uncertainty plus the uncertainty of the observation.
However, if the robot moves through an unknown region the uncertainty of its pose in ab-

solute coordinates will get arbitrarily large because the odometric error accumulates over time
(Fig. 2.3a). The uncertainty can be reduced by fusing odometry with several measurements of a
new landmark as the landmark passes by (Fig. 2.3b). For most sensors this effects much better
results than just using odometry [TBF98]. Nevertheless, estimating the robot’s position after
traveling a long distance is still subject to accumulated error: Due to the limited sensor range the
position is derived from a chain of several relations between successive landmarks.

For outdoor applications the problem can be facilitated by using a compass [LF99, DMS02],
which is known not to work properly in buildings containing large amounts of steel.

The fact that errors may accumulate to arbitrarily high values distinguishes SLAM from many
other estimation problems and gives rise to the problems discussed in §2.3 and §2.9.

2.3 Representation of Relativity

The author believes that the dominant aspect of SLAM is the need to model

Certainty of Relations despite Uncertainty of Positions

This may be called ability to represent relativity. In the example scenario for instance, the pose
of the room will be quite uncertain, while its shape will be highly certain.

If the robot moves through an unknown region and observes a sequence of landmarks, the
uncertainty of relative positions of the landmarks only depends on the measurement errors of the
landmarks by the robot and on the odometric error between those measurements. So the most
precisely known relations are those concerning the relative location of adjacent landmarks.

The uncertainty of the absolute robot pose before observing the first landmark however in-
creases the uncertainty of the absolute position of all landmarks, acting as an unknown rigid body
transformation on the whole set of observed landmarks. As the absolute robot pose is subject to
error accumulation, the common situation is that relations are quite certain, whereas absolute
positions can be arbitrarily uncertain. In extremely large maps this effect can appear at different
scales: The relative positions of some landmarks in a room are much more precisely known than
the position of the room in the building, which, seen as a relative position with respect to other
rooms in turn is much more precisely known than the absolute position of the building.

Thus, a SLAM system should be able to represent the certainty of relations between land-
marks despite large uncertainty in the absolute position of the landmarks. In particular, a repre-
sentation assigning a single uncertainty value to each landmark only is insufficient.

2.4. IMPLICATIONS OF CLOSING THE LOOP 55

1 m

(a)

2m

(b)

Figure 2.4: Closing the loop: (a) before (b) after integration

It is a very important result for the theory of SLAM when repeatedly moving through the
same environment the uncertainty of any relation converges to zero [New99, DNC+01, theorem
2.2]. This theorem clarifies the uncertainty structure in the limit being of theoretical interest, but
in general this is probably neither practical nor necessary. Most applications can exclusively be
based on relative information: When navigating, for instance, it is not necessary to compute the
exact trajectory from start to finish in some global coordinate system. Path planning will rather
result in a sequence of waypoints. The location of each waypoint will be known relative to the
surrounding landmarks. So that the robot, knowing its own pose relative to those landmarks, will
be able to navigate from one waypoint to the next. A path defined this way will even remain
valid when the map changes significantly while the robot is moving.

So it is important to focus on the behavior of the SLAM system when moving through the
building the first time. The structure of the uncertainty is still complex and a single measurement
may have a significant effect on the estimate. This effect is most prominent and probably the
most important test case in general when closing large loops.

2.4 Implications of Closing the Loop

Assume the robot moves along a closed loop and returns to the beginning of the loop but has not
yet re-identified any landmark, so this is not known to the robot. Typically, the loop is not closed
in the map due to the error accumulated along the loop (Fig. 2.4a).

56 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

At the beginning of the loop a landmark is re-identified and the corresponding measurement
is integrated into the map causing the loop to get closed. To achieve this, the SLAM system has
to ”deform” the whole loop to incorporate the information of a connection between both ends of
the loop without introducing a break somewhere else (Fig. 2.4b).

This goal is sometimes referred to as the map being ”topologically consistent” or “globally
consistent” [LM97, DMS02], meaning that two parts of the map are represented to be adjacent if
and only if this was observed by the robot. Within a landmark based approach adjacency is not
explicitly modeled. Topological consistency has to be interpreted in the sense that two landmarks
are represented being near to each other (the distance being low with low uncertainty), if and only
if this was observed by some measurement.

It has to be emphasized that correct treatment of uncertainty contained in the measurements
will implicitly yield the necessary deformation. More specifically, the precisely known relative
location of each landmark with respect to adjacent landmarks prevents any break in the loop:
If there was a break the relative positions of the landmarks on both sides of the break were
highly incorrect, thus being inconsistent with the measurements made in this vicinity. So the
map estimate which is consistent with all measurements automatically deforms smoothly when
closing large loops.

An important insight is that any representation for the uncertainty of a map estimate must be
able to “represent relativity” in order to achieve this kind of behavior.

2.5 Landmark Identification

The algorithm presented in this thesis assumes that observed landmarks can be identified. This
is a very difficult, but highly important problem, since the fact of closing a loop is only evident
from the re-identification of some other landmarks. Moreover, when integrating a wrongly iden-
tified landmark often the whole map is ruined as a consequence because two different places are
assumed to be the same.

There are some approaches taking advantage of a tight integration of mapping and identi-
fication [BFJ+99]. Some explicitly represent multi hypothesis map distributions arising from
uncertain identification [DWMdB+01]. However, it is often a good idea to separate both, as the
SLAM problem can be formulated rather independently of the sensors used, whereas landmark
identification usually depends heavily on them.

A great advantage of having an uncertainty representation for the map estimate is that it
can provide a measure of plausibility for an assumed identification. Under the assumption of
Gaussian noise such a measure can be provided by comparing the Mahalanobis distance with the

2.6. MAXIMUM LIKELIHOOD ESTIMATION 57

χ2 distribution. This allows comparing different possible identifications of a group of observed
landmarks and choosing the most likely one. Except for unusually dense landmarks (like vertical
lines) this approach provides a reliable identification [NT01] and is used in real experiments
described in this thesis (§6.4). In the simulation experiments, the identification is assumed to be
correct.

2.6 Maximum Likelihood Estimation

There is a thorough and straightforward approach for optimally solving SLAM if independent
Gaussian measurement errors with a-priori known covariance are assumed and computation time
is no issue. In this case the optimal solution is the maximum likelihood (ML) solution [PTVF92,
§15.1]. It is based on the a-priori known probability distribution for the measurement given
the map. After the measurement has been made, this distribution is interpreted as a likelihood
distribution for the maps given the measurement. The map with the largest likelihood is the ML
estimate. Of all maps it has the largest probability of causing the observed measurements and
thus is optimal in this sense. It is also the map with the largest probability if the true map is
assumed to be drawn from a uniform a-priori distribution. By definition of Gaussian errors the
likelihood for a map given a single measurement yi is

pi(x) ∝ e−
1
2
qi(x), qi(x) := (yi − fi(x))TC−1

i (yi − fi(x)). (2.21)

Assume that the data under consideration consist of n landmarks, p robot poses and m mea-
surements, the landmark positions and different robot poses form the parameter vector x having
size 2n + 3p in the equation. The vector yi is the i-th measurement, Ci its covariance and fi(x)

is the corresponding measurement equation, i.e. the value the measurement should have if the
landmark and robot poses were x.

The likelihood of x given all measurements is the product of the individual likelihoods, due
to stochastical independence:

p(x) ∝
m∏

i=1

e−
1
2
qi(x) = e−

1
2

Pm
i=1 qi(x) = e−

1
2
χ2(x), with χ2(x) :=

m∑

i=1

qi(x). (2.22)

The function χ2(x) is the negative log-likelihood of map x given the measurements and measures
how good a map x explains the measurements made. Its name originates from the fact that
its minimum follows a so called “chi-square” distribution. ML estimation means finding the
maximum of p(x) which is the minimum of χ2(x):

x̂ML = arg max
x

p(x) = arg min
x
χ2(x). (2.23)

58 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

In order to find the numerical minimum, a least squares nonlinear model fitting algorithm like
Levenberg-Marquardt can be employed [PTVF92, §15.5], by iteratively linearizing the measure-
ment equations. The linearized equations yield a quadratic approximation to χ2, the minimum of
which can be found by solving a large linear equations system. This approach requires to repre-
sent all old robot poses in the equations system, which consequently has O(n+ p) equations and
variables. Solving such a system needs O((n + p)3) computation time and has to be performed
in each iteration of the Levenberg-Marquardt algorithm. So this approach is not a practical solu-
tion for SLAM. Its invaluable benefit, however, lies in the fact that it can provide a reference for
discussion and for comparison with efficient approaches.

2.7 Linear Least Squares

If the measurement functions fi are linearized at some point x0
i with Jacobian Jfi , the χ2 function

becomes quadratic:

f lin
i (x) =fi(x

0
i) + Jfi(x

0
i)(x− x0

i) (2.24)

χ2
lin =

m∑

i=1

(
yi − f lin

i (x)
)T
C−1
i

(
yi − f lin

i (x)
)

=

m∑

i=1

(
yi − fi(x0

i)− Jfi(x0
i)(x− x0

i)
)T
C−1
i

(
yi − fi(x0

i)− Jfi(x0
i)(x− x0

i)
)

=
m∑

i=1

(
ylin
i − Jfi(x0

i)x
)T
C−1
i

(
ylin
i − Jfi(x0

i)x
)
,

with ylin
i := yi − fi(x0

i) + Jfi(x
0
i)x

0
i

=xT

(
m∑

i=1

Jfi(x
0
i)
TC−1

i Jfi(x
0
i)

)

︸ ︷︷ ︸
A

x + xT

(
2

m∑

i=1

Jfi(x
0
i)
TC−1

i ylin
i

)

︸ ︷︷ ︸
b

+ const . (2.25)

Such a quadratic function can always be represented as xTAx + xT b + const, with a symmetric
positive definite (SPD) matrixA and a vector b. The linearized least squares (LLS) estimate x̂LLS

being the same as the linearized maximum likelihood estimate, can be computed by

x̂LLS = arg min
x
χ2

lin(x) (2.26)

0 =
∂χ2

lin

∂x
(x̂LLS) = 2Ax̂LLS + b =⇒ x̂LLS = A−1b/2. (2.27)

2.7. LINEAR LEAST SQUARES 59

The matrix A is called information matrix. Its inverse A−1 is the error covariance of the
estimate x̂LLS [PTVF92, §15.6]. High entries in A correspond to precisely known relations. This
matrix is sparse and has an important structure that is discussed in §2.11.

The quality of a linearized least squares estimate depends on the points of linearization cho-
sen: If all measurements are always linearized at the latest estimate and the whole process is
iterated until convergence, the final estimate is the ML estimate. Actually this is the way nonlin-
ear least squares algorithms like Levenberg - Marquardt work. However this approach involves
re-evaluating all Jacobians and thus storing all measurements.

Another approach is to linearize each measurement once and forever at the estimate in the
moment of measurement. This way there is no need to re-evaluate the Jacobians and the mea-
surements can be accumulated in matrix A and vector b. Each measurement involves only 5 or
6 variables in the case of landmark observation or odometry respectively. So Jfi is sparse and
the accumulation can be performed in O(1). Nevertheless, to provide an estimate the equation
system Ax̂ = b/2 has to be solved, which takes O((n+ p)3) or O((n+ p)2) exploiting sparsity.
With this approach, the estimate is subject to linearization error depending on the error in the
different estimates used for linearization. The error magnitude depends on the robot and envi-
ronment. Since especially the robot orientation error accumulates, it may easily exceed 45◦ in
practical settings, for instance rendering all linearization of sine and cosine useless. The effect
of the linearization error is discussed in §2.9 and illustrated in figure 2.5a (page 62).

It is important to note that the information matrix A represents all landmark positions and all
robot poses. This means that there are two rows / columns for each landmark and three for each
robot pose. A landmark observation can be integrated without extending the matrix. However, for
each odometry measurement three new rows / columns corresponding to the new robot pose have
to be added. Thus, the size of the representation still depends on the number of robot poses and is
still growing even when moving through an already mapped area. This problem can be avoided
by removing old robot poses from the representation via Schur complement (§3.3). The resulting
information matrix P ′ of all landmarks and the actual robot pose is not exactly sparse any more.
In §2.11 a proof for its approximate sparsity will be given. It can be replaced by conservative
sparse approximation, so the matrix has onlyO(n) entries and equation solving can be performed
in O(n2). The algorithm proposed in this thesis takes this approach but hierarchically subdivides
P ′, so that incremental equation solving can be performed even in O(logn) computation time.

60 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

2.8 Extended Kalman Filter

The Extended Kalman Filter (EKF) [Gel74] is the tool most often applied to SLAM [SSC88,
Tar92, HBBC95, CMNT99] using the same measurement equations as for ML estimation. The
EKF integrates all measurements into a covariance matrixCEKF of the landmark positions and the
actual robot pose without any measurements to be stored afterwards. The estimate x̂EKF provided
is the same as for linearized least squares, so EKF suffers the same linearization problems as will
be discussed in §2.9.

Since the EKF maintains a covariance matrix instead of an information matrix, elimination
of old robot poses is no problem but can simply be done by removing corresponding rows and
columns. Actually, most implementations do not even generate rows and columns for old robot
poses, but simply replace the old robot pose with the new one whenever integrating an odometry
measurement. The updated estimate x̂′EKF with covariance C ′EKF after an odometry measurement
y with covariance Cy is given by

x̂EKF =

(
x̂l

x̂p

)
, CEKF =

(
Cll Clp

Cpl Cpp

)
(2.28)

x̂′ =

(
x̂l

f1(x̂p, y)

)
(2.29)

C ′ =

(
I 0

0 J1

)T

C

(
I 0

0 J1

)
+

(
0

J2

)T

Cy

(
0

J2

)
=

(
Cll ClpJ1

JT1 Cpl JT1 CppJ1 + JT2 CyJ2

)
. (2.30)

Here x̂l is the first part of the state vector corresponding to the landmarks and x̂p the part
corresponding to the robot pose. The covariance matrix CEKF is block decomposed accordingly.
The function f1 defined in (2.10) is the EKF dynamic equation that maps the old robot pose and
the odometry measurement to the new robot pose. The Jacobians J1 with respect to xp and J2

with respect to y are given in (2.11).

The key problem is to update the covariance matrix CEKF after a landmark observation. From
(2.25) it can be seen that a single term JTCyJ is added to the information matrix A resulting in

J :=

(

0, . . . , 0,

landmark
↓
J6 , 0, . . . , 0,

robot
↓
J5

)
(2.31)

A′ = A + JTC−1
y J (2.32)

b′ = b + 2JTC−1
y (y − f3(ˆxEKF) + J ˆxEKF), (2.33)

with f3 measurement function, J its Jacobian, y the measurement and Cy the measurement co-
variance. The function f3 is given by (2.18), its Jacobians J5 by (2.19) and J6 by (2.20). Since

2.9. LINEARIZATION ERROR 61

the measurement is two dimensional, the change in the information matrix A has rank 2 and the
resulting change in C = A−1 and x̂ = A−1b/2 can be efficiently computed via the Woodbury
formula (appendix A.2). The result is the well known EKF update equation [SSC88, Gel74]

C ′ = A′−1 =
(
C−1 + JTC−1

y J
)−1 (2.34)

Woodbury
= C − CJT

(
JCJT + Cy

)−1
JC (2.35)

x̂′ = A′−1b′/2 = C ′b′/2 (2.36)

=
(
C−1 + JTC−1

y J
)−1 (

C−1x̂+ JTC−1
y (y − f3(x̂) + Jx̂)

)
(2.37)

=
(
C−1 + JTC−1

y J
)−1 (

(C−1 + JTC−1
y J)x̂ + JTC−1

y (y − f3(x̂))
)

(2.38)

= x̂ +
(
C−1 + JTC−1

y J
)−1

JTC−1
y (y − f3(x̂)) (2.39)

Woodbury
= x̂ + CJT

(
JCJT + Cy

)−1
(y − f3(x̂)) . (2.40)

For the SLAM problem, the update is moderately efficient due to the sparsity of the measurement
Jacobian J . The measurement only involves the robot pose and landmark position, so J is 0

except in 5 columns. Consequently, if there are n landmarks, evaluating JC or CJ T takes O(n)

operations and computing the inverse of the so called innovation covariance
(
JCJT + Cy

)−1

takes O(1) operations. The dominant operation for the EKF is the update of C taking O(n2)

operations. Compared withO((n+p)3) for linearized least squares, EKF is much more efficient.
But as computation time is still so large EKF can practically be used for small environments
(n / 100) only.

2.9 Linearization Error

There are two sources for a linearization error: The error of the robot’s orientation estimate
p̂φ (orientation error) and the error of the measurements d and m. This important fact can be
seen when transforming the measurement Jacobians (J1 . . . J6 from §2.1 equation (2.11), (2.16),
(2.19), (2.20)) into robot coordinates. Therefore a rotation matrix R2 or R3 is multiplied left and
/ or right to the Jacobian if the functions result and / or argument is given in world coordinates:

s := sin p̂φ, c := cos p̂φ, R2 :=

(
c −s
s c

)
, R3 :=

c −s 0

s c 0

0 0 1

 (2.41)

62 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

2m

PSfrag replacements

φ [◦]

error [%]

(a)

0

2

4

6

8

10

12

14

-30 -20 -10 0 10 20 30

PSfrag replacements

φ [◦]
er

ro
r[

%
]

(b)

Figure 2.5: Linearization error: (a) closing the loop with EKF / LLS (b) linearization error
of linearized rotation

∣∣(cosφ
sinφ

)
−
(

1
φ

)∣∣ as a function of angular error φ

J1 =R3

1 0 −dy
0 1 dx

0 0 1

RT

3 , J2 =R3

1 0 0

0 1 0

0 0 1

, J3 =

−1 0 0

0 −1 0

0 0 −1

RT

3 , (2.42)

J4 =

1 0 0

0 1 0

0 0 1

RT

3 , J5 =

(
1 0

0 1

)
RT

2 , J6 =

(
−1 0 my

0 −1 −mx

)
RT

3 (2.43)

.

The variables dx, dy, mx, my involved in the transformed Jacobians are directly measurable. So
their errors do not accumulate and are small enough to be neglected. Not so for the rotation
matrices R2, R3 depending on pφ. When moving through an unmapped area the orientation error
accumulates. In practical settings 45◦ may easily be exceeded rendering all linearizations of sine
and cosine useless.

The effect of processing the example scenario with EKF instead of using ML estimation
is disastrous (Fig. 2.5a). Begin and end of the loop do not match and, even worse, the room
although precisely known gets significantly larger than before. The reason for this is that EKF
would have to move and rotate the room implicitly to make the map consistent. Instead, a rotation
linearizing the angle at 0 is performed resulting in

Rot(φ) :=

(
cosφ − sinφ

sinφ cosφ

)
φ=0−→

(
1 −φ
φ 1

)
=
√

1 + φ2 · Rot(arctanφ). (2.44)

2.10. COVARIANCE VS. INFORMATION MATRICES 63

The last equation can be seen by observing that the matrix is orthogonal and the first column
vector

(
1
φ

)
has a length of

√
1 + φ2 and an angle of arctan

(
φ
1

)
< φ. The consequence is that

the room is larger than before and rotated by too small an angle. The linearization error made
by linearized rotation of a unit vector by angle φ is shown in figure 2.5b. It grows quadratically
with φ, so a large angular error results in a very large linearization error whereas a small angular
error results in a negligible linearization error.

As a rule of thumb the linearization error is more than 3.4% when the angular error exceeds
15◦. This is comparable to a typical stochastical error making the linearized estimate inconsistent
with the nonlinear χ2 likelihood, for instance referring to the distance between two landmarks.
On the other hand the linearization error is less than 0.38% and negligible if the angular error is
below 5◦. In order to cope with nonlinearity it thus suffices to use linearization points with an
error of < 5◦. It is not necessary to be more precise.

Despite the well known magnetic disturbances in many buildings, if the robot is equipped
with a compass, the orientation error can be bounded. The resulting linearization error can
probably be neglected [DMS02]. If not the orientation error introduces severe artefacts into the
linearized map estimate. These errors grow with growing map size.

The specific structure of the Jacobians exhibited in (2.42) allows to change the point of lin-
earization of measurements already integrated into an information matrix by applying a rotation
to that matrix. This fact is exploited by the algorithm presented in this thesis to handle lineariza-
tion errors due to wrong robot orientation with utmost efficiency (§3.9).

2.10 Covariance vs. Information Matrices

Covariance and information matrices are complementary representations of uncertainty, since
one is the inverse of the other. This duality extends to the operation of taking a submatrix, which
is equivalent to applying Schur - complement in the inverse (Woodbury formula, appendix A.2):

P −RTS−1R
Inverse←−−−−→ P ′

Schur Complement

x
xSubmatrix

(
P RT
R S

) Inverse←−−−−→
(
P ′ R′T
R′ S′

)
(2.45)

This diagram certainly holds for any decomposition of A into 2 × 2 blocks
(
P RT
R S

)
. Of par-

ticular interest is the decomposition with rows and columns of the first block corresponding to
landmarks (maybe including the current robot pose) and rows and columns of the second block

64 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

S
P RT

R S
P RT

R

Landmarks
Landm

arks
Landmarks

Landm
arks

Robot pose

R
obot pose

R
obot pose

Robot pose

Robot posesLandmarks

Landm
arks

R
obot poses

Robot posesLandmarks

Landm
arks

R
obot poses

invert

invert

C
om

plem
ent

S
chur

S
ubm

atrix

PSfrag replacements

A A−1

P − RTS−1R
C−1

EKF = CEKF

Figure 2.6: Relation between the least squares information matrix A =
(
P RT
R S

)
(lower left)

which represents all robot poses and the covariance matrix CEKF (upper right) used by EKF only
representing the actual robot pose. A−1 is the covariance matrix corresponding to A representing
all robot poses (lower right). C is derived from A−1 as a submatrix. Accordingly C−1

EKF (upper
left) is the information matrix corresponding to CEKF representing only the actual robot pose. It
is derived from A via Schur complement.
So on the whole, taking a submatrix of a covariance matrix is equivalent to applying Schur
complement to an information matrix.

2.11. SPARSITY OF SLAM INFORMATION MATRICES 65

corresponding to (old) robot poses. In this case P ′ =
(
P − RTS−1R

)−1 is the covariance matrix
of all landmarks (and the current robot pose) as used by the EKF.

The Schur complement P −RTS−1R equals the corresponding submatrix P minus a correc-
tion term RTS−1R. This term can be thought of as somehow “transferring” the effect of S into
the realm of P via a mapping provided by the off-diagonal block RT . The Schur complement
plays a very important role in the algorithm proposed in this thesis when used for manipulating
information in an information matrix representation.

Taking a submatrix of the information matrix or applying Schur - complement to the covari-
ance matrix corresponds to random variables (landmark positions, robot poses) in the removed
rows and columns being exactly known. Conversely taking a submatrix of the covariance matrix
or applying Schur - complement to the information matrix corresponds to random variables in
the removed rows and columns being unknown, i.e. all information about them is discarded.

The main difference between information and covariance matrix lies in the representation
of indirect relations. Assume the robot is at pose P1 observing landmark L1 and moves to
P2 observing L2. The measurements directly define relations P1-L1, P1-P2, P2-L2, indirectly
constituting a relation L1-L2. The covariance matrix explicitly stores this relation in the off-
diagonal entries corresponding to L1-L2, whereas the information matrix does not.

Thus the information matrix A =
(
P RT
R S

)
used by LLS is sparse, having non-zero off-

diagonal entries only for those pairs of random variables which are involved in a common mea-
surement (Fig. 2.6). The inverse A−1 is the covariance matrix for the landmarks and all robot
poses. A−1 represents all indirect relations explicitly and thus is not sparse. Removing the rows
and columns corresponding to old robot poses yields the covariance matrix C of the EKF. Its
inverse C−1 is the information matrix of all landmarks and the current robot pose. However, the
inverse is not the corresponding submatrix of A, as eliminating all old robot poses from A re-
quires computing their implicit effect on relations between the other random variables by Schur
complement.

Although A is sparse the Schur complement P − RTS−1R is dense, because S−1 is dense.
What is turning out is that it is approximately sparse with an off-diagonal entry (P−RTS−1R)l1l2
corresponding to two landmarks l1, l2 decaying exponentially with the distance traveled between
observation of l1 and l2. This important result will be shown in the next section:

2.11 Sparsity of SLAM Information Matrices

In this section the central result for the SLAM uncertainty structure is derived, saying that the
information matrix appearing in SLAM is approximately sparse:

66 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

In the SLAM information matrix off-diagonal entries corresponding to two land-
marks decay exponentially with the distance traveled between observation of first
and second landmark.

This result is important both for computation and analysis. First, the approach of saving space
and computation time by making the information matrix sparse is being confirmed. This ap-
proach has been proposed by the author of this thesis [FH01] and is the basis of the algorithm
presented here. It is also utilized in the well known work of Thrun et al. on sparse extended
information filters (SEIF) [TKG+02]. Second the result implies that the large scale uncertainty
structure of a map estimate is generated by local uncertainties composed along the path the robot
has been travelling. Thus, in contrast to the local uncertainty structure, it is rather simple and
dominated by the map’s geometry. This topic will be discussed in §2.12.

Proof Outline

First, the structure of information matrix A for all landmarks and all robot poses is being ana-
lyzed. It is a block matrix A =

(
P RT
R S

)
with the first block row / column corresponding to the

landmarks and the second corresponding to the different robot poses2. As discussed in the previ-
ous section, the diagonal blocks P and S are information matrices of two related subproblems:
P is the information matrix of the mapping subproblem, describing the uncertainty of the land-
marks, if the robot poses were known. Conversely, S is the information matrix of the localization
subproblem, describing the uncertainty of the robot poses, if the landmarks were known. Both
matrices are extremely sparse: P is block diagonal and S is block tridiagonal.

The matrix under investigation will be the information matrix of the landmarks only, i.e.
without robot poses. It is P − RTS−1R by Schur - complement. The role of RT in this formula
is to provide a mapping from robot poses to landmarks. It creates an off-diagonal entry between
two landmarks, whose magnitude depends on the entry in S−1 corresponding to the two robot
poses these landmarks have been observed from. S−1 is the covariance of all robot poses given
the position of all landmarks. Hence the magnitude of an off-diagonal entry corresponding to two
landmarks depends on the covariance the robot poses had if all landmark positions were known.

This covariance decays exponentially with the distance traveled. Intuitively the reason there-
fore is that in each localization step the pose estimate is replaced by a weighted sum of the old
estimate and the measurements of observed landmarks. The covariance with a fixed old robot
pose is reduced by a constant factor. Formally, this result is derived by bounding the eigenval-

2Observe the difference to figure 2.6, where the current robot pose is included in P .

2.11. SPARSITY OF SLAM INFORMATION MATRICES 67

R S
RTP

Robot posesLandmarks

Landm
arks

R
obot poses

PSfrag replacements

Joi

Joi3 Joi4

i i+ 1

(a)

R S
RTP

Robot posesLandmarks

Landm
arks

R
obot poses

PSfrag replacements

Joi

Joi3

Joi4

i

i + 1

Jli
Jli5 Jli6

l

(b)

R S
RTP

Robot posesLandmarks

Landm
arks

R
obot poses

PSfrag replacements

Joi

Joi3

Joi4

i

i+ 1

Jli

Jli5

Jli6

l

(c)

Figure 2.7: Sparsity pattern of A =
(
P RT
R S

)
: (a) Jacobian Joi for an odometry measurement;

Non-zero blocks generated in S thereby (b) Jacobian Jli for a landmark measurement; Non-
zero blocks generated in P , R and S thereby (c) example for a complete matrix

ues of S (lemma 1 [Tee00]) and applying a theorem on the decay of off-diagonal entries in the
inverse of band matrices (theorem 1 [DMS84]).

The proof is based on a close inspection of different parts of A affected by different measure-
ments, being formally defined in the following subsection. Keeping in mind the structure of A as
shown in figure 2.7 and the summary of definitions in table 2.1 will be sufficient to understand
the argument of the proof.

Sparsity Pattern of the Information Matrix A

As mentioned above, the information matrix for landmarks and robot poses can be decomposed
as A =

(
P RT
R S

)
with the first block row / column corresponding to landmarks and the second

corresponding to robot poses. As each landmark is represented by 2 coordinates and each robot
pose by 3, P consists of 2 × 2 - blocks for each landmark, S of 3 × 3 - blocks for each robot
pose and R of 3 × 2 - blocks coupling landmarks and robot poses. So with n landmarks, m
measurements and p robot poses, P is a 2n×2n, R a 3p×2n and S a 3p×3p matrix. Throughout
the whole section subscripts Pll, Rli and Sij refer to the block corresponding to landmark l and
robot pose i or j respectively. The matrix A has a very specific sparsity pattern being analyzed
in the following (Fig. 2.7):

Therefore denote by subscript oi the i-th odometry measurement measuring robot pose i+ 1

68 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

Symbol Equation Format Definition
Pll (2.52) 2× 2 Diagonal block of A corresponding to landmark l
P ill (2.50) 2× 2 Contribution of the observation of landmark l from pose i to Pll
Ril (2.50) 3× 2 Block of R corresponding to landmark l and robot pose i defined from

the observation of landmark l from pose i
Sii (2.53) 3× 3 Diagonal block of S corresponding to robot pose i
Slii (2.51) 3× 3 Contribution of the observation of landmark l from pose i to Sii
SLii (2.53) 3× 3 Contribution of all landmark observations from pose i to Sii
SOii (2.53) 3× 3 Contribution of both odometry observations from pose i and i−1 to Sii
P ′l1l2 (2.57) 2× 2 Block corresponding to landmark l1 and l2 of the information matrix P ′

of all landmarks without robot poses.
Li Landmarks observed from robot pose i
Ol Robot poses from which landmark l has been observed
dl1l2 (2.56) Number of movements between observation of landmarks l1 and l2

Table 2.1: Symbols used in the proof of theorem 2

relative to robot pose i with Coi measurement covariance and Joi measurement Jacobian. Further
let Li denote the set of landmark measurements taken from robot pose i and conversely Ol the
set of robot poses from which landmark l has been observed. Clearly l ∈ Li holds if and only
if i ∈ Ol. For a landmark l ∈ Li let Cli be the covariance of the measurement of landmark l
from robot pose i and Jli the measurement Jacobian. By (2.25), the information matrix A of all
landmarks and all robot poses is the sum of JTj C

−1
j Jj over all measurements with Jj Jacobian

and Cj covariance. With the definitions made above, these measurements can be grouped by the
robot pose and separated into odometry and landmark measurements as

A =

m∑

j=1

JTj C
−1
j Jj =

p∑

i=1

(
JToiC

−1
oi Joi +

∑

l∈Li
JTliC

−1
li Jli

)
. (2.46)

The Jacobian Joi is sparse having a 3 × 3 nonzero block Joi3 at the columns corresponding to
robot pose i and another block Joi4 at the columns corresponding to robot pose i + 1. Similarly,
Jli has a 2× 3 nonzero block Jli5 at the columns corresponding to robot pose i and a 2× 2 block
Jli6 at the columns corresponding to landmark l (Fig. 2.7a, b). Expressions for Joi3, Joi4, Jli5, Jli6
are given in §2.1 by equations (2.16), (2.19), (2.20), but do not matter for discussion.

The structure of the Jacobians can be formally expressed using projection matrices. Let
therefore Ii denote the block row of the identity matrix corresponding to robot pose i and Il the
block row corresponding to landmark l and express the Jacobians as

Joi = Joi3Ii + Joi4Ii+1, Jli = Jli5Ii + Jli6Il (2.47)

2.11. SPARSITY OF SLAM INFORMATION MATRICES 69

A =

p∑

i=1

(Joi3Ii + Joi4Ii+1)TC−1
oi (Joi3Ii + Joi4Ii+1)

+

p∑

i=1

∑

l∈Li
(Jli5Ii + Jli6Il)

TC−1
li (Jli5Ii + Jli6Il)

(2.48)

=

p∑

i=1

ITi (JToi3C
−1
oi Joi3)Ii + ITi+1(JToi4C

−1
oi Joi3)Ii

+

p∑

i=1

ITi (JToi3C
−1
oi Joi4)Ii+1 + ITi+1(JToi4C

−1
oi Joi4)Ii+1

+

p∑

i=1

∑

l∈Li
ITi (JTli5C

−1
li Jli5)Ii + ITl (JTli6C

−1
li Jli5)Ii

+

p∑

i=1

∑

l∈Li
ITi (JTli5C

−1
li Jli6)Il + ITl (JTli6C

−1
li Jli6)Il.

(2.49)

An expression like ITi (. . .)Il places the 3 × 2 matrix in parentheses at the row and column
corresponding to robot pose i and landmark l. The other combination ITi (. . .)Ij, ITl (. . .)Ii and
ITl (. . .)Il act similar. From (2.49) it can be seen that each odometry measurement generates four
small blocks at the intersections of the rows and columns corresponding to two successive robot
poses (Fig. 2.7a). Correspondingly, each landmark measurement is generating four small blocks
at the intersections of the rows and columns corresponding to the robot pose and the landmark
(Fig. 2.7b).

The terms in expression (2.49) can be separated into those that belong to P , R and S. From
the result it can be seen, that P is block diagonal, S is block tridiagonal and R is sparse with a
block being non-zero, if the landmark corresponding to that column has been observed from the
robot pose corresponding to that row (Fig. 2.7c):

P =

p∑

i=1, l∈Li
ITl (JTli6C

−1
li Jli6)︸ ︷︷ ︸

P ill:=

Il, R =

p∑

i=1, l∈Li
ITi (JTli5C

−1
li Jli6)Il, (2.50)

S =

p∑

i=1

(
ITi (JToi3C

−1
oi Joi3)Ii + ITi+1(JToi4C

−1
oi Joi3)Ii

+ITi (JToi3C
−1
oi Joi4)Ii+1 + ITi+1(JToi4C

−1
oi Joi4)Ii+1

)
+

p∑

i=1, l∈Li
ITi (JTli5C

−1
li Jli5︸ ︷︷ ︸
Slii

)Ii.

(2.51)

In the following discussion the block diagonals of P and S will be of great importance, so an
explicit formula for the diagonal block Sii corresponding to robot pose i and Pll corresponding
to landmark l is derived. This is performed by grouping (2.50) and (2.51) by values of l and i

70 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

respectively. The result for Pll is a sum over Ol, the set of robot poses from which landmark l
has been observed. Similarly, the result for Sii is a term originating from odometry plus a sum
over Li the set of landmarks observed from robot pose i:

Pll = IlPI
T
l =

∑

i∈Ol
(JTli6C

−1
li Jli6) =

∑

i∈Ol
P i
ll (2.52)

Sii = IiSI
T
i = JToi3C

−1
oi Joi3 + JTo(i−1)2C

−1
o(i−1)Jo(i−1)2 +

∑

l∈Li
JTli5C

−1
li Jli5 (2.53)

= JToi3C
−1
oi Joi3 + JTo(i−1)2C

−1
o(i−1)Jo(i−1)2︸ ︷︷ ︸

SOii :=

+
∑

l∈Li
Slii

︸ ︷︷ ︸
SLii :=

. (2.54)

It can be observed that one part (SOii) of Sii originates from odometry measurements and another
part (SLii) originates from landmark observations. In the latter part matrices S lii from all landmark
observations made from that robot pose accumulate. Nevertheless, Sii and SLii are bounded, since
the number of landmark observations from a certain robot pose depends on the sensor / landmark
trait and will not grow when the map gets larger. As for the diagonal block Pll corresponding
to landmark l this is different. Here matrices from all observations of this landmark accumulate.
Since the same landmark may be observed over and over again, Pll will usually grow linear with
time. Each block Ril of R is affected only by a single measurement of landmark l from robot
pose i. So it is bounded and 0, if the landmark has not been observed from there. Table 2.1 gives
an overview of the different parts defined above.

Schur Complement

As discussed above the information matrix A is sparse. However, its dimension depends on the
number of robot poses. Thus, it grows even when moving through an area visited before and
cannot be used for representation in a SLAM algorithm. So the robot poses must be eliminated
via Schur complement (see §3.3 lemma 8 for a proof). The resulting information matrix for the
landmarks alone is

P ′ := P − RTS−1R (2.55)

and the inverse of the corresponding covariance matrix maintained by EKF. It is not sparse, since
S−1 is dense. The purpose of this section is to prove that it is approximately sparse and in
particular, that an entry P ′l1l2 decays exponentially with the distance dl1l2 between observation of
landmarks l1 and l2. Formally the distance is defined as

dl1l2 := min
{
|i− j|

∣∣ i ∈ Ol1 , j ∈ Ol2
}
, (2.56)

2.11. SPARSITY OF SLAM INFORMATION MATRICES 71

the number of robot movements between observation of l1 and l2. Let l1 6= l2 and consider

P ′l1l2 = −
p∑

i,j=1

RT
il1

(S−1)ijRjl2 = −
∑

i∈Ol1

∑

j∈Ol2

RT
il1

(S−1)ijRjl2. (2.57)

This equation is of high importance, because since Ril1 and Rjl2 are bounded, asymptotically
P ′l1l2 behaves like block (S−1)ij of S−1 corresponding to the robot poses, when l1 and l2 have
been observed. Block (S−1)ij decays exponentially with the distance |i − j| to the diagonal as
will be derived later. By definition |i− j| ≥ dl1l2 for all involved i ∈ Ol1 and j ∈ Ol2 , so in the
end P ′l1l2 can be shown to decay exponentially with the distance dl1l2 .

Exponential Decay of Off-Diagonal Entries

This subsection proves that an off-diagonal entry (S−1)ij decays exponentially with the distance
|i − j| to the diagonal. The result is then used to derive that P ′l1l2 decays exponentially with the
distance dl1l2 between observation of l1 and l2. Thereby the approximate sparsity of the SLAM
information matrix P ′ is proven. The rate of decay depends on the ratio between SOii and SLii , i.e.
between the information gained from odometry and landmark observations:

Definition 1 (Characteristic Parameter). For a sequence of odometry and landmark observa-
tions the characteristic parameters are:

ω := max
{
ω|SLii ≥ ωSOii ∀i

}
η := max

i,l
‖P i

ll‖ ρ := min
i, l∈Li

‖P i
ll − RT

il(S
L
ii)
−1Ril‖ (2.58)

Intuitively, this definition means: a) In each robot pose the information gained from land-
marks is at least ω times the information transported from the last pose by odometry. b) The
information gained from a single landmark measurement assumed the robot pose was known
is at most η. c) The information gained about a landmark from all observations from a certain
unknown robot pose assumed that all other landmarks were known is a least ρ.

Nevertheless, b) and c) need some explanation: P i
ll is a submatrix of the information matrix

for a single landmark observation of l from pose i (Fig. 2.7b). Thus, as discussed before, it
represents the information known about landmark l from that measurement if all other random
variables, in this case the robot pose, were known. Similarly,

(
P ill Ril
RTil S

L
ii

)
is a submatrix of the

information matrix of all landmark observations from pose i. Therefore it represents the infor-
mation there were known about landmark l and robot pose i if all other random variables, in this
case the other landmarks, were known. Thus, the Schur complement P i

ll − RT
il(S

L
ii)
−1Ril rep-

resents the same information without information about the robot pose. So in the end the term
describes the information, if all other landmarks were known but the robot pose was unknown.
The parameter ρ gives a lower bound on this information.

72 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

From the explanation above may be seen that3

P i
ll ≥ RT

il(S
L
ii)
−1Ril. (2.59)

All three parameters ω, η, ρ depend on the sensor / landmark / environment characteristic and
do not change when the map size grows. So they may be considered as being constant

ω = O(1), η = O(1), ρ = O(1). (2.60)

The central argument of the overall proof uses a theorem by Demko, Moss and
Smith [DMS84, theorem 2.4] that provides an exponentially decaying bound for the entries of
the inverse of a symmetric positive definite (SPD) band matrix S. The bounds refer to a single
entry of S denoted by S#ij ∈ R to avoid confusion with the 3 × 3 matrix block Sij ∈ R3×3

corresponding to robot pose i and j. The bound depends on the norm ‖S‖ and condition number
cond(S) of S. The matrix norms refer to the usual spectral or 2-norm ‖S‖ := max|v|=1 |Sv|
being equal to the largest eigenvalue of S (largest singular value for a non-symmetric matrix).
The derived condition number is equal to the ratio between largest and smallest eigenvalue.

Theorem 1 (Demko, Moth, Smith [DMS84]). Let S be an SPD w-banded matrix. Then for
entry (S−1)#ij of S−1 holds

|(S−1)#ij| ≤ αλ|i−j|, with λ :=

(√
cond(S)− 1√
cond(S) + 1

) 2
w

(2.61)

and α = ‖S−1‖max

1,

(
1 +

√
cond(S)

)2

2 cond(S)

≤ 2‖S−1‖. (2.62)

Some technical lemmas are needed. Their proof is provided in appendix B. For lemma 1 an
even stronger version has been proven in [Tee00].

Lemma 1. Let S be a block diagonal SPD matrix with block bandwidth w. Then the norm ‖S‖
is at most 2w − 1 times the norm of any diagonal block (= maxi ‖Sii‖).

Lemma 2. For all ω ≥ 0 the following inequality holds:
√

1 + 3
ω

+ 1
√

1 + 3
ω
− 1
≥ 1 +

4

3
ω (2.63)

3In the usual positive definite sense: A ≤ B ⇐⇒ ∀x : xTAx ≤ xTBx (see appendix §A.1)

2.11. SPARSITY OF SLAM INFORMATION MATRICES 73

From theorem 1, lemma 1 and 2 follows:

Lemma 3. Let S be a block tridiagonal SPD matrix with 3 × 3 blocks, smallest eigenvalue
λmin ≥ 1 and largest eigenvalue λmax ≤ 1 + 3

ω
. Then for i 6= j the norm of block (S−1)ij of the

inverse is at most ‖(S−1)ij‖ ≤ 6
(
1 + 4

3
ω
)1−|i−j|

.

Proof. S has a bandwidth ofw = 6. Since the condition number of S is cond(A) = λmax

λmin
≤ 1+ 3

ω
,

the parameter λ central to theorem 1 is

λ =

(√
cond(S)− 1√
cond(S) + 1

) 2
m

≤

√
1 + 3

ω
+ 1

√
1 + 3

ω
− 1

− 1

3

lemma 2
≤

(
1 +

4

3
ω

)− 1
3

. (2.64)

The block of S−1 corresponding to robot pose i and j has column indices [3i− 2 . . . 3i] and row
indices [3j − 2 . . . 3j]. Thus the minimal distance to the diagonal for any entry of that block is

min
∣∣ [3i− 2 . . . 3i]− [3j − 2 . . . 3j]

∣∣ = min
∣∣ [(3i− 2)− 3j . . . 3i− (3j − 2)]

∣∣ (2.65)

= min
∣∣ [3(i− j)− 2 . . . 3(i− j) + 2)]

∣∣ i6=j= min [3|i− j| − 2 . . . 3|i− j|+ 2] (2.66)

=3|i− j| − 2. (2.67)

So by theorem 1 the size of each entry k, l of the 3× 3 block (S−1)ij is at most

|((S−1)ij)#kl| ≤ 2‖S−1‖
(

1 +
4

3
ω

)− 1
3

(3|i−j|−2)

≤ 2

(
1 +

4

3
ω

)1−|i−j|
. (2.68)

Since (S−1)ij is a 3× 3 block, its norm is at most 3 times as large as the largest entry (appendix.
A.1, (A.24)):

‖(S−1)ij‖ ≤3
3

max
k,l=1

((S−1)ij)#kl ≤ 6

(
1 +

4

3
ω

)1−|i−j|
(2.69)

The next step is to derive an exponentially decaying bound for the off-diagonal entries of
S−1. For technical reasons in the proof of theorem 2 the matrix to be considered is RTS−1R not
S−1. So instead of deriving a bound for (S−1)ij, directly a bound for RT

il1
(S−1)ijRjl2 is given.

Lemma 4. For a sequence of odometry and landmark observations with parameter ω, η, ρ, and
all robot poses i, j and all landmarks l1 6= l2 the following bound holds:

‖RT
l1i

(S−1)ijRjl2‖ ≤ 6η

(
1 +

4

3
ω

)1−|i−j|
. (2.70)

74 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

Proof. Let SL := diagi(S
L
ii) be the part of S that originates from the landmark measurements

and SO := S − SL be the remaining part originating from odometry. The block diagonal of SO

is diagi(S
O
ii), but SO itself is block tridiagonal (compare figure 2.7).

The first step is to scale SO, so matrices of comparable norm appear on the block diagonal.
Let therefore LiLTi = SLii be a Cholesky decomposition of SLii and define the inverse of L :=

diagi(Li) as scale matrix. This way the scaled matrix L−1SLL−1T is the identity matrix and the
scaled matrix L−1SOL−1T is normalized relative to SL. So it is possible to bound it by ω:

Matrix SO is block tridiagonal and L is block diagonal. Thus, L−1SOL−1T is block tridiag-
onal, too. Further SLii ≥ ωSOii by definition 1. So for each diagonal block it follows that

(L−1SOL−1T)ii = L−1
i SOiiL

−1T
i

definition 1
≤ 1

ω
L−1
i SLiiL

−1T
i =

1

ω
L−1
i LiL

T
i L
−1T
i =

1

ω
I. (2.71)

The matrix L−1SOL−1T is tridiagonal, so lemma 1 can be applied with w = 2 and the eigen-
value λmax

(
L−1SOL−1T

)
is at most 3

ω
. By construction L−1SLL−1T = I , so the eigenvalues of

L−1SL−1T = L−1(SL + SO)L−1T lie in the interval
[
1 . . . 1 + 3

ω

]
. It follows from lemma 3 that

‖LTi (S−1)ijLj‖ = ‖((L−1SL−1T)−1)ij‖
lemma 3
≤ 6

(
1 +

4

3
ω

)1−|i−j|
(2.72)

and ‖RT
il1

(S−1)ijRjl2‖ = ‖RT
il1
L−1T
i LTi (S−1)ijLjL

−1
j Rjl2‖ (2.73)

≤‖RT
il1
L−1T
i ‖ ‖LTi (S−1)ijLj‖ ‖L−1

j Rjl2‖ (2.74)

≤‖RT
il1
L−1T
i ‖ 6

(
1 +

4

3
ω

)1−|i−j|
‖L−1

j Rjl2‖. (2.75)

Now the next step is to find a bound for ‖L−1
j Rjl2‖ (which also holds for ‖RT

il1
L−1T
i ‖):

‖L−1
j Rjl2‖2 = ‖(L−1

j Rjl2)T (L−1
j Rjl2)‖ = ‖RT

jl2
L−1T
j L−1

j Rjl2‖ (2.76)

= ‖RT
jl2

(SLjj)
−1Rjl2‖

(2.59)
≤ ‖P j

l2l2
‖

definition 1
≤ η. (2.77)

It follows ‖L−1
j Rjl2‖ ≤

√
η, which is substituted into (2.75) yielding

‖RT
il1(S−1)ijRjl2‖ ≤ 6η

(
1 +

4

3
ω

)1−|i−j|
. (2.78)

To prove approximate sparsity of P ′, the norm of its off-diagonal blocks P ′l1l2 must be
bounded relative to the corresponding diagonal blocks ‖P ′l1l1‖ and ‖P ′l2l2‖. Therefore, a lower
bound for a diagonal block ‖P ′ll‖ is derived in the following lemma:

2.11. SPARSITY OF SLAM INFORMATION MATRICES 75

Lemma 5. For a sequence of odometry and landmark observations with parameter ω, η, ρ, and
all landmarks l it holds that

‖P ′ll‖ ≥ ρ |Ol|. (2.79)

Proof. Since S ≥ SL it follows that S−1 ≤ (SL)−1 and

P ′
(2.55)
= P − RTS−1R ≥ P −RT (SL)−1R (2.80)

⇒ P ′ll ≥Pll −
∑

i,j∈Ol
RT
il((S

L)−1)ijRjl. (2.81)

SL is block diagonal, so (SL)−1 = diagi((S
L
ii)
−1) and ((SL)−1)ij = 0 for i 6= j

P ′ll =Pll −
∑

i∈Ol
RT
il(S

L
ii)
−1Ril =

∑

i∈Ol
P i
ll −RT

il (S
L
ii)
−1Ril

definition 1
≥ ρ |Ol|. (2.82)

The final step is to substitute the bound of lemma 4 into (2.57) to derive an overall bound. A
sum of different powers of (1 + 4

3
ω)−1 appears. The exact exponents depend on the robot poses

the landmark has been observed from, so it is difficult to find a closed expression. However all
exponents are at least dl1l2 , which is defined as the minimal distance (in number of robot poses)
between observation of l1 and l2. Using this property the sum can be bounded by the following
lemma (proof in appendix B):

Lemma 6. Let 0 ≤ γ < 1 andA,B ⊂ N be two sets of natural numbers with a minimal distance
d between elements ofA and B: d ≤ |i− j| ∀i ∈ A, j ∈ B. Then the following inequality holds:

∑

i∈A, j∈B
γ|i−j| ≤ 2

γd

1− γ min{|A|, |B|} (2.83)

Theorem 2 (Information Matrix Sparsity). Consider a sequence of odometry and landmark
observations with parameter ω, η, ρ. Then the resulting SLAM information matrix of all land-
marks P ′ is approximately sparse. The off-diagonal block P ′l1l2 corresponding to two landmarks
l1 6= l2 decays exponentially with the smallest number of steps dl1l2 traveled between observation
of l1 and l2.

‖P ′l1l2‖
min

{
‖P ′l1l1‖, ‖P ′l2l2‖

} ≤ η

ρ

(
24 + 16ω +

9

ω

)(
1 +

4

3
ω

)−dl1l2
= O

((
1 +

4

3
ω

)−dl1l2
)

76 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

Proof. By equation (2.57) P ′l1l2 is a sum over different robot poses i, j. Each term in the sum can
be bounded by lemma 4 yielding

‖P ′l1l2‖
(2.57)
=

∥∥∥∥∥∥
−
∑

i∈Ol1

∑

j∈Ol2

RT
il1

(S−1)ijRjl2

∥∥∥∥∥∥
(2.84)

≤
∑

i∈Ol1

∑

j∈Ol2

∥∥RT
il1

(S−1)ijRjl2

∥∥ (2.85)

lemma 4
≤ 6η

∑

i∈Ol1

∑

j∈Ol2

(
1 +

4

3
ω

)1−|i−j|
(2.86)

= 6η

(
1 +

4

3
ω

) ∑

i∈Ol1

∑

j∈Ol2

(
1 +

4

3
ω

)−|i−j|
. (2.87)

The sum can be bounded by lemma 6 withA := Ol1 ,B := Ol2 , γ :=
(
1 + 4

3
ω
)−1 and d := dl1l2 :

lemma 6
≤ 6η

(
1 +

4

3
ω

)(
2 min{|Ol1 |, |Ol2|}

1−
(
1 + 4

3
ω
)−1

(
1 +

4

3
ω

)−dl1l2
)

(2.88)

=12η

(
1 +

4

3
ω

)(
1 +

3

4ω

)
min{|Ol1|, |Ol2|}

(
1 +

4

3
ω

)−dl1l2
(2.89)

=ηmin{|Ol1|, |Ol2|}
(

24 + 16ω +
9

ω

)(
1 +

4

3
ω

)−dl1l2
. (2.90)

By lemma 5 it holds that

min
{
‖P ′l1l1‖, ‖P ′l1l1‖

}
≥ ρmin{|Ol1 |, |Ol2|} (2.91)

⇒ ‖P ′l1l2‖
min

{
‖P ′l1l1‖, ‖P ′l1l1‖

} ≤ η

ρ

(
24 + 16ω +

9

ω

)(
1 +

4

3
ω

)−dl1l2
. (2.92)

Even with an asymptotically increasing map size, ω, η and ρ remain constant, since they depend
on the quality of the measurements such as sensor noise, typical distance to landmarks, typical
number of landmarks. They do not depend on how many measurements were made. So the final
asymptotic formula is

‖P ′l1l2‖
min

{
‖P ′l1l1‖, ‖P ′l1l1‖

} ≤ O

((
1 +

4

3
ω

)−dl1l2
)
. (2.93)

2.12. LOCAL VS. GLOBAL UNCERTAINTY 77

The algorithmic approach taken in this thesis is to divide the map hierarchically into small
parts and represent each part at each level of hierarchy by a small matrix. Implicitly, the hierarchy
represents a sparse information matrix as an approximation to P ′. With this approach small
off-diagonal entries have to be neglected. Theorem 2 provides the certainty that not too much
information is being lost thereby.

2.12 Local vs. Global Uncertainty

It can be observed that there is a qualitative difference between local and global structures of
SLAM, i.e. between relations of neighboring and of distant landmarks. Roughly speaking, the
local uncertainty is small but complex and depends on actual observations, whereas the global
uncertainty is large, rather simple and dominated by the map’s geometry. This is a consequence
of theorem 2 and will be clarified in the following:

The measurements themselves define independent relations between landmarks and robot
poses. For most sensors the uncertainty depends on the distance (laser scanner, stereo vision) or
is even infinite in one dimension (mono vision). The information provided by the set of landmark
observations from a single robot pose contains a highly coupled uncertainty originating from the
uncertainty of the robot pose. From successive robot poses usually similar but different sets of
landmarks are observed. So the parts of the information corresponding to different robot poses
are highly coupled, but are always coupling different sets of landmarks. As a result the overall
information on a local scale is also highly coupled and very complex. This corresponds to the
coupling entries P ′l1l2 in the information matrix being high for landmarks l1, l2 that are near to
each other.

On a global scale the structure of the information is governed by theorem 2. The coupling
entry P ′l1l2 between distant landmarks is very low. So the uncertainty of the relation between
them is approximately the composition of local uncertainties along the path from l1 to l2:

Consider the information matrix resulting from the integration of several local bits of infor-
mation, for instance, the distance of each landmark to any other landmark nearby. By (2.25),
this matrix is the sum of the information matrices for each bit of information. Each of them has
non-zero coupling entries only for the landmarks involved. So the overall information matrix is
sparse with all coupling entries being zero, except those of adjacent landmarks.

Thus, as local information corresponds to a sparse information matrix, an approximately
sparse information matrix corresponds to information that can approximately be viewed as being
the integration of local information. To see the uncertainty structure of such information, imagine

78 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

2m

(a)

2m

(b)

Figure 2.8: Global uncertainty generated by the uncertainty in a local region. Random outcome
of a map estimate with (a) measurement uncertainty everywhere (b) measurement uncer-
tainty only in the encircled region.

that measurement noise applies only to the measurements in a small region (Fig. 2.8b). The
noise corrupts the robot position and orientation estimate when the robot moves through the
region. Thus the part of the map built afterward is affected by an uncertain translation and
rotation relative to the part before. The effect of the rotation around the region grows linear
with the distance to the region. So globally it is much larger than the uncertain translation. The
magnitude of the rotation angle depends on the local uncertainty in the region, namely on how
much orientation error is being accumulated while moving through the region. Its structure,
however, solely depends on the distances of the different landmarks to the region, i.e. on the
map’s geometry.

If all measurements are uncertain, the global effect is approximately the sum of an uncertain
rotation for each local region. The resulting uncertainty structure can best be described as an
uncertain bending of the map (Fig. 2.8a). Compared to local uncertainty it is much larger, but
simpler because the maps geometry is dominating it’s structure.

The main target of SLAM is modeling global uncertainty. But often representation of local
uncertainty is necessary to support landmark identification or allow task planning based on ob-
jects represented in the map. The approach of decomposing the map into regions and using a

2.13. REQUIREMENTS FOR AN IDEAL SOLUTION 79

small information matrix for each region ideally suits the SLAM uncertainty structure: Local
uncertainty is precisely captured in the small matrix representing a local region, whereas the
global uncertainty structure does not need to be represented explicitly, since it is in very good
approximation nothing more than the composition of local uncertainties.

2.13 Requirements for an Ideal Solution

In this section some properties, which an ideal SLAM solution should have, are postulated. They
are based on an intentionally naive view of the problem blinding out its apparent difficulty, but
asking how mapping should work when based on a common sense understanding of maps. These
properties were proposed prior to the development of the algorithm [FH01]. There is a discrep-
ancy between these intuitive requirements and the performance of most established algorithms as
will be discussed in the following. This made the author presume that some absolutely specific
property, which makes SLAM different from general estimation problems, has to be exploited to
meet the requirements proposed. For the algorithm presented in this thesis the specific property
is that typical buildings can be hierarchically divided into parts with each part having only few
connections with the remainder of the building.

Quality, Storage Space and Computation Time

The requirements refer to those three important criteria for a SLAM algorithm discussed in §1.1:
Quality, Storage space and Computation time

(R1) Bounded Uncertainty The uncertainty of any aspect of the map should not
be much larger than the minimal uncertainty that could be theoretically derived from
the measurements.

This postulate is quite general saying all that can be known from the measurements should
at least roughly be represented in the map. Consistently approximating some relations for the
sake of efficiency is acceptable to the extent, relations get slightly less precise, but without losing
all or almost all information on certain relations. As many relations can be known precisely
from the measurements, not representing one would violate the principle stated and hence (R1)
implies the ability to represent relativity. As explained above, representing relativity comprises
to be able to close large loops achieving topologically consistent maps.

80 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

(R2) Linear Storage Space The storage space of a map covering a large area
should be linear in the number of landmarks (O(n)).

The soundness of this postulate can be seen from the following example: Imagine a building
consisting of two parts, A and B, being connected by a few corridors. Then the map of the whole
building consists of the map of both parts plus some information concerning the connections and
should thus have a size only slightly larger than the size of an A map plus the size of a B map.

It is worth noting that simply storing all measurements will not meet (R2), since the storage
space is proportional to the number of measurementsm not to the number of landmarks n. Thus,
the map’s size would grow during motion even when repeatedly travelling through the same area.

(R3) Linear Update Cost Incorporating a measurement into a map covering a
large area should have a computational cost at most linear in the number of land-
marks (O(n)).

Establishing this postulate is more difficult than the preceding one:

Let us assume that the same setting like above holds with a measurement made in A. At first
the measurement has to be incorporated into the map of A, taking into account the known effect
of A on the connection between A and B. Then, the effect of these connections onto B must be
computed. This is equivalent to incorporating several measurements concerning the connections
into the map of B. However computation can be deferred until the robot actually enters B sharing
the computational cost with all other measurements having generated effects on the connections
that have to be integrated upto then. As the number of landmarks in the connections is small this
should not take more time per measurement than incorporating the original measurement into
the map of A, at least for large maps.

So the total cost for integrating a measurement into a map of A and B should not be larger
than the cost of integration into A plus the cost of integration it into B, thus being linear in the
number of landmarks.

(R1) states the map shall represent nearly all information contained in the measurements,
thus binding the map to reality. The other postulates regard efficiency, requiring linear space and
time consumption. The most important postulate from a practical point of view is (R3) limiting
the amount of time spent on each measurement.

2.13. REQUIREMENTS FOR AN IDEAL SOLUTION 81

Formalization of Map Quality

Requirement (R2) and (R3) concerning storage space and computation time refer to criteria
which are canonically applied to any algorithm. However with respect to map quality require-
ment (R1) must still be formalized appropriately.

Definition 2 (Aspect). An aspect of a map is a function f mapping the landmark positions to a
real number f(x)

f : R2n −→ R. (2.94)

Examples for aspects of a map are: a landmark’s x− or y− coordinate, the distance between
two landmarks, the angle between three landmarks or any linear combination of landmark coordi-
nates. Considering the SLAM uncertainty structure (“Certainty of Relations despite Uncertainty
of Positions”) a relation consequently is an aspect of the map being invariant under rigid body
transformation of the whole map

frel(Rotα x + Transd) = frel(x) ∀α, d, (2.95)

where Rotα is a rotation matrix, rotating the whole map by α and Transd is a vector translating
the whole map by d.

The uncertainty of an aspect f of a map estimate x̂ is its standard deviation
√

cov(f(x̂)).
In terms of (R1) the “minimal uncertainty, that could be theoretically derived from the mea-
surements” is the corresponding standard deviation of the optimal maximum likelihood estimate√

cov(f(x̂ML)). The ratio between those uncertainties indicates how much error is induced by
the estimation algorithm and how much error is caused by the sensors. So the relative uncertainty
of an aspect f of the map

ruc(f) :=

√
cov(f(x̂))√

cov(f(x̂ML))
(2.96)

indicates the quality of the estimation algorithm for a particular map and aspect. It can be
computed from C := cov(x̂), CML := cov(x̂ML) and g the gradient of f as

ruc(f) =

√
cov(f(x̂))√

cov(f(x̂ML))
=

√
cov(f(x̂))

cov(f(x̂ML))
≈
√

gTCg

gTCMLg︸ ︷︷ ︸
ruc(g)

. (2.97)

The last equation is the usual first order approximation for propagating covariances through
functions with g being the gradient of f . The term “any aspect of the map” in (R1) formally

82 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

stands for “any function f”. By virtue of (2.97) this can be replaced by a conceptually much
more convenient expression involving “any vector g”. For any given g the expression ruc(g)

can be computed from the covariances C and CML. To systematically characterize the values for
different choices of g, the so called generalized eigenvalues λi and eigenvectors vi defined by

Cvi = λiCMLvi (2.98)

are useful [HJ90]. They correspond to independent directions both with respect to C and CML.
Their properties are

vTi Cvi = λi, vTi CMLvi = 1, vTi Cvj = 0 ∀i 6= j and vTi CMLvj = 0 ∀i 6= j. (2.99)

If g happens to be the i-th eigenvector vi, the relative error ruc(g) in this aspect of the map may
easily be determined as the square root of the i-th eigenvalue:

ruc(g) = ruc(vi) =

√
vTi Cvi
vTi CMLvi

=

√
λi
1

=
√
λi (2.100)

For an arbitrary aspect g, ruc(g) is the square root of a convex combination of the different
eigenvalues. The weights of the convex combination are just the square of the coefficients µi
used in expressing g as a linear combination

∑
i µivi of the eigenvectors.

∑

i

µivi := g (2.101)

ruc(g) = ruc

(∑

i

µivi

)
=

√
(
∑

i µivi)
T C (

∑
i µivi)

(
∑

i µivi)
T CML (

∑
i µivi)

(2.102)

=

√ ∑
i µ

2
i (v

T
i Cvi)∑

i µ
2
i (v

T
i CMLvi)

=

√∑
i µ

2
iλi∑

i µ
2
i

(2.103)

So the generalized eigenvalues of C and CML characterize the relative error compared to the
optimal maximum likelihood solution. Each eigenvalue corresponds to an independent aspect
of the map in which the relative error is just the square root of the corresponding eigenvalue.
Especially the square root of the largest eigenvalue bounds the maximum relative error in any
aspect of the map. So in order to meet requirement (R1), formally the largest eigenvalue must be
a small constant O(1).

It appears to be very hard to derive an analytic expression for this eigenvalue for any practical
algorithm. However, it can be determined for a particular map by Monte Carlo simulation. For
the algorithm presented in this thesis, this evaluation is performed by simulation experiments in
§5 and by real experiments in §6.

2.14. STATE OF THE ART 83

2.14 State of the Art

Basically there were three stages of SLAM development:

Mathematical Formulation

From the first works on map building in the mid-eighties to the early nineties, the special structure
of SLAM uncertainty had not been fully identified. In general the used uncertainty representa-
tions treated different parts of the map as stochastically independent. This assumption makes it
possible to devise unquestionable efficient algorithms but cannot back-propagate errors and thus
cannot close a loop. So these approaches are limited to relatively small environments (to give a
figure: ≈ 15m).

In 1985 Moravec and Elfes [ME85, Elf89] proposed so called evidence grids as a represen-
tation for a map consisting of a regular grid of square cells with fixed size (typically ≈ 5cm).
Each cell stores the evidence that there is an obstacle in the cell as a real number between 0

and 1. When integrating a measurement all cells in the sensors field of view are updated: If
the sensor reports an obstacle in a certain direction and distance, the evidence in the corre-
sponding cell is increased and the evidence in all cells with same direction and smaller dis-
tance is decreased. This approach is absolutely efficient and suits well to process data from
noisy ultrasonic sensors with low resolution. Since ultrasonic sensors were the most promi-
nent type of sensors at this time, this approach has been utilized and extended by many re-
searchers [ME88, Zel91, SC94, PNDW96, YL97]. The major drawback is that the uncertainty
of the robot pose cannot be incorporated because this would blur the map and make it useless.

A different approach was proposed by Brooks [Bro85]: His idea was to achieve a structured
representation and build the map as a collection of objects or landmarks and a graph of uncer-
tain relations between them [CL85, CS86, DW88, Fau89]. The uncertainty of each relation is
described as Gaussian distribution. Two relations between the same pair of landmarks can be
integrated into a single relation and consecutive relations can be composed analytically [Fau89].
To derive information from the graph relations along a path in the graph are composed and in-
formation derived from different paths are integrated. Much later, Frese et al. as well as Schlegel
and Kämpke re-adpoted this idea using sets instead of distributions as uncertainty representa-
tion [FHBH00, SK02]. These approaches incorporate uncertainty in the robot pose but cannot
generally provide a consistent estimate for all landmarks based on all measurements. However,
this developement made it possible to formulate SLAM under the perspective of estimation the-
ory.

84 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

Stochastic Map

Mathematically, SLAM was first thoroughly derived as estimation problem by Smith, Self and
Cheeseman [SSC88]. All landmark positions and the robot pose were represented in a common
state vector and a complete covariance matrix. So the representation could handle the uncertainty
of the robot pose. In particular, the high correlation between landmarks and robot pose caused
by the accumulated error of the robot pose could be represented. This representation was called
stochastic map, basically being an Extended Kalman Filter (EKF) [Gel74]. Later, Durrant-Whyte
introduced the name simultaneous localization and mapping [DWRN95].

This approach was extended and improved by several authors [Tar92, HBBC95, CTS97,
CMNT99, New99]. But still the main challange of large computation time necessary for updat-
ing the covariance matrix (O(n2) for n landmarks) remained. Even though the computation time
was significantly smaller than for ML-estimation (O((n + p)3) for p robot poses) computation
had to be performed after each measurement. So SLAM was still limited to small environments
(to give a figure / 100 landmarks).

Several authors tried to reduce computation time by treating landmarks [GOR94, VBX96,
Ren93, UJC97], or local submaps [Fed99] as stochastically independent. As discussed above,
the uncertainty structure of SLAM is that relations between adjacent landmarks are precisely
known, even though the absolute positions of landmarks are rather uncertain. This leads to high
correlations of landmarks [CTS97, FH01]. The above mentioned approaches ignore this struc-
ture: When treating two landmarks as if they were stochastically independent, the covariance
of their distance basically is the sum of the covariances of the landmarks. So it is impossible
to express that relations between some landmarks are precisely known, although the landmarks’
positions are very uncertain. Thus, these approaches either diverge and report too little uncer-
tainty for the landmarks or they are strongly conservative [UJC97] giving an uncertainty much
too large for the relations of adjacent landmarks.

Lu and Milios [LM97] avoided the use of EKF by directly solving the linear equations sys-
tem of maximum likelihood estimation taking O(p3) computation time. They do not extract
landmarks but directly derive uncertain relations between different robot poses by comparing
laser scans (consistent pose estimation). The advantage is that average computation time is much
lower because no covariance matrix has to be maintained. But when closing a loop the equation
system needs to be solved taking order of one minute computation time for about p ≈ 1000

robot poses. This approach has been improved by Gutmann and Konolige [GK99] introducing
an effective scheme for detecting a loop has been closed. A further advantage is that nonlinearity
problems can be solved by recomputing the Jacobians of the measurement functions, which is
not possible for EKF based approaches.

2.14. STATE OF THE ART 85

Thrun et al. [TBF98, BFJ+99] used a grid based data structure both for representing local
maps as evidence grids (similar to [Elf89]) and for representing likelihood distributions of dif-
ferent robot poses as histograms. These poses constitute reference frames for the local maps.
This two layered approach allows to incorporate uncertainty about the robot pose without blur-
ring the map as is the case for plain evidence grids. Furthermore, non-Gaussian and even multi
modal distributions can be represented, which is not possible in all EKF or least squares based
approaches. So this algorithm achieves a large degree of robustness even when using noisy ultra-
sonic sensors. This approach had actually been used for building the map for a robotic museum
tour guide [BCF+99]. The most likely map is computed by the expectation maximization (EM)
algorithm being rather slow (more than 30 minutes in the example shown), so the approach is
robust but practical only for off-line use.

Efficient SLAM

In the last five years interest in SLAM has increased significantly and resulted in several more
efficient algorithms (see [Thr02] for a broad review). In contrast to EKF based approaches most
of these algorithms are efficient enough to be used in medium large environments (n ≈ 500).
Some fairly fast approaches can even be used for large environments (n ' 10000) but for these
algorithms the quality of the estimated map has to be regarded. Most approaches exploit that
only a few landmarks local to the robot at a given time can be involved in measurements. The
number k of these landmarks influences the computation time of these algorithms, practically
being ≈ 10 and theoretically mostly considered constant k = O(1).

Guivant and Nebot [GN01, GN02] developed a modification of EKF called Compressed EKF
(CEKF) that allows accumulating measurements in a local region with k landmarks at costO(k2)

independent of the overall map size n. When the robot leaves the local region the accumulated
result must be propagated to full EKF (global update) at cost O(kn2). The global update can
be performed more efficiently by conservatively neglecting some correlations. However, this
violates the uncertainty structure discussed in §2.3 and cannot be used directly. Instead, all land-
marks are grouped locally into so called constellations and the position of all landmarks in a
constellation is expressed relative to two reference landmarks. The state vector consists of the
absolute positions of all reference landmarks and the relative positions of all other landmarks.
For two distant landmarks of different constellations, the correlation of their absolute positions
basically is the same like the correlation between their corresponding reference landmarks. Thus,
the correlation between their relative positions is very small and can be conservatively neglected.
With this approximation a global update requires an update of the following correlations: a) Be-

86 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

tween all landmarks and the landmarks of the current constellation and b) between all landmarks
and all reference landmarks. Altogether for constellations of size c, O(n(c+ n

c
)) = O(nc+ n2

c
)

entries have to be updated. Each entry needs O(k) computation time, so the overall time for a
global update is O(knc+ kn2

c
). The asymptotically optimal result is achieved with c :=

√
n lead-

ing toO(kn
3
2) computation time andO(n

3
2) storage space. Practically, often c is chosen as O(k).

Then computation time is O(k2n + n2). It turns out, that often the O(n2) part is comparable to
the O(k2n) part.

Duckett et al. [DMS00, DMS02] iteratively solve the linear equations system appearing in
maximum likelihood estimation. They make use of an equation solver called relaxation, which
is also known as Gauss-Seidel iteration in numerical literature and as “Gibbs sampling with zero
temperature” in the context of Markov Chain Monte Carlo methods. They decompose the map
into different “places” which are linked by spatial relations derived from odometry and laser scan
matching. The absolute poses of these places are used as variables to be estimated. This way the
size of the representation is O(kn) and does not grow like in the Lu and Milios approach if the
robot moves through an already visited area. Directly solving the equation system would need
O(n3) computation time, which is avoided by performing only one iteration of relaxation after
each step of the robot. Thereby the computational effort is distributed while the robot is moving
taking O(kn) per pose. However, when closing a large loop a single iteration is insufficient, so
up to O(n) iterations with O(kn2) computation time are needed for fully back-propagating the
error. This problem was recently solved by Frese and Duckett [FLD04] using a method called
Multilevel Relaxation. A multilevel approach was employed that is similar to the multi grid
methods used in the numerical solution of partial differential equations. Thereby the computation
time could be reduced to O(kn) even when closing large loops. This approach can also handle
nonlinearities by recomputing the measurement Jacobians, which is not possible for EKF based
approaches.

Montemerlo et al. [MTKW02] observed that the landmark estimates are conditionally in-
dependent given the robot pose. This can be seen at the diagonal structure of the matrix P in
§2.11. A particle filter [DdFG01] is being used to represent the distribution of robot poses. Each
particle represents a sampled robot trajectory and the conditional distribution of the landmark
given the robot trajectory as well. Since the landmarks are conditionally independent, they can
be represented by a small EKF for each. The robot trajectory need not actually be stored, so
the representation needs O(Mn) storage space for M particles. As per clever bookkeeping the
integration of a measurement is done quickly with O(M log n) computation time. The unique
advantage is that this algorithm can handle uncertain landmark identification. The key point for

2.14. STATE OF THE ART 87

efficiency is how many particles are needed. Particle filters integrate measurements by resam-
pling, i.e. by choosing a subset of particles being compatible with the measurements from the
set of existing particles. So for closing a large loop one of the M particles must already have
closed the loop incidentally with an remaining error comparable to the error of a single landmark
measurement. This is the critical point for the performance of the algorithm, because the number
M of particles needed can be rather large: If the loop has n landmarks the distance travelled will
be O(n), the robot’s orientation uncertainty may be up to O(

√
n) and the position uncertainty

may be O(n
3
2). To make sure that there is probably one particle incidentally closing the loop,

O(
√
nn

3
2n

3
2) = O(n

7
2) particles are needed. In practice it is presumably not possible to use so

many particles. When reducing the number of particles precision is sacrificed for speed and some
residual error will remain after closing a large loop.

Thrun et al. [TKGDW02] followed an idea also proposed by Frese and Hirzinger [FH01]
using an information matrix instead of a covariance matrix to represent uncertainty. This matrix
is approximately sparse. A proof was given in §2.11 of this thesis. The algorithm approximates
the matrix by a sparse matrix with O(kn) storage space and is therefore called Sparse Extended
Information Filter (SEIF). An information matrix representation is of advantage because the
entries of uninvolved landmarks do not change when integrating a measurement. So updating the
representation takes O(k2). In contrast to SEIF the whole covariance matrix has to be updated
in EKF based approaches. However, to derive an estimate a linear equation system with the
information matrix has to be solved. This is performed iteratively by relaxation. With one
iteration per measurement the result would be an O(kn) algorithm similar to the approach of
Duckett et al. with some problems when closing loops. Thrun et al. propose not to relax all O(n)

landmarks but justO(k) after each measurement, thereby formally obtaining anO(k2) algorithm.
However, in numerical literature relaxation is reputed to need O(n) iterations, i.e. O(kn2) time
to reduce the equation error by a constant factor [Bri99, PTVF92, §19.5]. For instance, having
observed O(n) landmarks each O(1) times, the algorithm will have spent only O(n) time on
equation solving. So it is remaining unclear, whether this approach will suffice in general.

Comparison

Table 2.2 shows an overview of the performance of the algorithms discussed. It can be seen that
only multi level relaxation and the proposed algorithm strictly fulfill all three requirements:

Requirement (R1) is completely fulfilled by Maximum Likelihood estimation (ML) and sin-
gle or multi level relaxation and also additionally by EKF and CEKF, if the orientation error is
small enough (/ 15◦, see §2.9) to allow linearization. When closing a loop SEIF and fastSLAM
do not fulfill (R1) due to the problems mentioned before.

88 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

(R1) (R2) (R3)
UDA nonlinear quality memory update global upd. loop

ML
√ √

m (n+ p)3

EKF
√

n2 n2

CEKF
√

n
3
2 k2 kn

3
2

Relaxation
√ √

kn kn kn2

Multi level relaxation
√ √

kn kn

FastSLAM
√ √

? Mn M log n

SEIF ? kn k2

Proposed algorithm
√ √

kn k2 k3 log n resp. kn

Table 2.2: Performance of different SLAM algorithms with n landmarks, m measurements, p
robot poses and k landmarks local to the robot. The proposed algorithm assumes a topologically
suitable building (see §3.5). O(k3 log n) is the computation time for a local, O(kn) for a global
map. FastSLAM is a particle filter approach (M particles). Compare the remarks in §2.14 con-
cerning the quality of the estimates provided by fastSLAM and SEIF. UDA stands for ’Uncertain
Data Association’ meaning landmarks with uncertain identity.

Requirement (R2) is met by relaxation, fastSLAM (for M = O(1)) and SEIF.
Requirement (R3) is fulfilled by fastSLAM and SEIF, giving an estimation that does not

always meet (R1). Among the approaches meeting (R1), relaxation and CEKF come very close
to meet (R3). Relaxation needs linear computation time with the exception of closing a large
loop, while CEKF only needs O(n

3
2) even when closing loops. The additional advantage of

CEKF is that this computation is not performed after each measurement, but only when the robot
leaves a local area of the map. Multi level relaxation avoids the O(n2) problem of relaxation
when closing a loop and thus fulfills (R3) completely.

What is the reason for the large discrepancy between the computation time postulated by re-
quirement (R3) and the one achieved by the algorithms discussed? 4

Least squares estimation and incremental least squares estimation in general lead to linear
equations systems which is an established and thoroughly studied area of numerical mathematics.
So it is very unlikely to find a general solution being faster than EKF with O(n2). From the
author’s perspective the key point is to identify a property distinguishing SLAM from a general
estimation problem. Indeed, all faster approaches exploit such a property: Relaxation, multi level

4Multi level relaxation [FLD04] has been published recently and was developed after the algorithm presented in
this thesis.

2.15. SUMMARY 89

relaxation and SEIF exploit sparsity, fastSLAM exploits a special factorization of the involved
probability distribution and CEKF exploits some property of the correlation of distant landmarks.

The author of this thesis has tried to pursue this line of thought further and identified a prop-
erty stronger than the above mentioned: A typical building can be (recursively) divided into two
parts, with very few landmarks of one part being observable from the other part. The proposed
algorithm exploits this property by decomposing the map into a hierarchy of regions and sub-
regions, representing only those landmarks at a region that are also observable from outside the
region. Each region stores a small information matrix of size O(k × k) because only few, i.e.
O(k) landmarks are represented there5. For integrating a measurement only the region contain-
ing the robot and all its superregions need to be updated. There are O(logn) superregions and
each update takes O(k3), so an overall update takes O(k3 logn). The proposed algorithm fulfills
(R1) and (R2) and even exceeds (R3). This will be discussed in the following two chapters.

2.15 Summary

SLAM is the problem of simultaneously estimating a map and the robot pose in that map from
landmark and odometry measurements. The estimation has to be performed while the robot is
moving, providing a new estimate whenever a measurement occurs. Three exceptional features
are distinguishing SLAM from many other estimation problems:

1. Error accumulation:
When moving through an unknown area the error of the robot pose and, consequently, the
global error of landmarks nearby can grow arbitrarily high. Nevertheless, relative prop-
erties of these landmarks like distances or angles are known much more precisely with
an uncertainty independent from the overall uncertainty of the robot pose. This gives rise
to a highly specific uncertainty structure, called the Certainty of Relations despite Uncer-
tainty of Positions. Relations between nearby landmarks are known precisely although the
absolute position of the landmarks is highly uncertain. On a global scale, uncertainty is
a composition of local uncertainties along the path traveled. Its main source is the su-
perposition of uncertain rotations generated at each moment by any new orientation error
originating from movement. The error resulting from these rotations effects an “uncer-
tain bending” of the map, showing a simple geometrically determined structure despite of
its magnitude. Conversely, on a local scale the uncertainty is much smaller and of more
complex structure.

The algorithm presented in this thesis exploits the specific SLAM uncertainty structure by
decomposing the map into small regions, each represented by a small matrix. So this com-

5for a class of topologically suitable buildings as discussed in §3.5

90 CHAPTER 2. UNCERTAINTY STRUCTURE OF MAP ESTIMATES

plex local uncertainty structure can be suitably represented in the matrix. As the global
structure is composed of different local uncertainties there is no need of explicit represen-
tation.

2. High dimensionality:
After each measurement a SLAM algorithm has to estimate the robot pose (3 DOF) and the
whole map (2n DOF for n landmarks). So the overall dimension 3 + 2n of the estimation
problem is very large (> 500) and increasingly growing. Therefore, the common estima-
tion algorithms are not efficient enough for SLAM: ML and LLS both need O((n + p)3)

computation time per measurement (p number of robot poses) and EKF needsO(n2). EKF
stores a full covariance matrix of all landmarks (O(n2)) whereas ML has to store all previ-
ous measurements (O(n+p)). For LLS this can be avoided by eliminating old robot poses
leading to O(n2) storage space and O(n3) computation time.

In this chapter, a theorem has been proven (theorem 2) that assures that the information
matrix resulting from elimination of old robot poses is approximately sparse. The the-
orem has important consequences: It allows to implement LLS with O(n) storage and
O(n2) computation time. It further theoretically substantiates the analysis of the global
uncertainty described above. The algorithm presented in this thesis utilizes the structure
established by the theorem to reduces the computation time to O(logn).6

3. Nonlinearity:
It is common for estimation problems to have nonlinear measurement equations. For
SLAM equations are nonlinear in the robot’s orientation, the estimation error of which
can grow unboundedly. For a sufficiently large map linearization is not suitable. This is
a particular problem of SLAM not often encountered in other estimation problems. ML
provides an optimal estimate even with nonlinear measurement equations. Technically,
ML performs iterative least squares and re-evaluates the measurement Jacobians in each
iteration. Both, LLS and EKF, are subject to linearization errors. A severe consequence is
the distortion of distances between landmarks even though the distances are well known
from the measurements.

Due to the nonlinearities the measurement Jacobians are variable. When transforming
them into robot coordinates by factoring out rotation by robot orientation, they are nearly
constant. This shows that only nonlinearity of orientation is of relevance. The algorithm
utilizes this property to change the point of linearization of measurements already inte-
grated by applying a rotation matrix to the resulting information matrix.

6under the assumption of a topologically suitable building (see §3.5)

Chapter 3

Hierarchical Map Decomposition

The algorithm presented in this thesis decomposes the information provided by measurements
into many small parts which are organized hierarchically. It consists of two separate components:
The first component described in this chapter manipulates, decomposes and integrates these parts
of information using linear algebra operations. The second component presented in §4 maintains
a hierarchical decomposition of the map represented by a tree, integrates and decomposes the
overall information using the subalgorithms provided by the first part and stores the results at the
different nodes of the tree.

Sections 3.1 and 3.2 explain the general idea. Sections 3.3 to 3.8 present the linear alge-
bra subalgorithms used for manipulation of information. Section 3.9 deals with how to avoid
linearization problems. In section 3.5 conditions are discussed a building must satisfy for the
algorithm to be efficient.

3.1 Basic Idea

The key observation about SLAM is that in all measurements only local landmarks are being
involved. The robot’s sensors have a limited range and in typical indoor environments the field
of view is limited by walls. Furthermore, navigation and most other tasks need only information
local to the robot. For instance, a path could be defined relative to local landmarks and the robot
could follow this path by relocalizing itself relative to these landmarks. On the other hand, a
single landmark observation can globally change the map, for instance, when closing a large
loop. So SLAM cannot be completely reduced to updating independent local submaps.

Motivated by these insights, the algorithm provides an estimate only for the landmarks local
to the robot. Nonetheless, it computes a consistent estimate that is identical1 to the full least

1for landmark – landmark observation the estimate is identical, for landmark – robot observations approximately

91

92 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

squares estimate for the whole map. With a local estimate available observations of local land-
marks can directly be integrated into the estimation using EKF equations without considering the
global map. Similar to CEKF [GN02] integration takes a time independent of the overall size of
the map.

When the robot moves every once in a while the set of local landmarks changes and a global
update is necessary to compute an estimate for the new local landmarks. The central challenge
for the algorithm is to maintain the information appropriately performing the update efficiently.

The basic idea is to organize the map hierarchically by decomposing the information into
small parts called information blocks (IBs) and distributing these IBs along the hierarchy. Then
each update involves only a small part of the information. For verification, reconsider figure 1.5a
with a building that is virtually divided into two parts. Let these parts be named A and B and
consider the following question:

If the robot is in part A, what is the information needed about B?

Some landmarks of B are observable from A and thus may be involved in measurements while
the robot is in A. For integrating these measurements, the algorithm must have all information
about these landmarks explicitly available. It is important that this information comprises more
than just the measurements that directly involve those landmarks. Rather all measurements in
B can indirectly yield information about the landmarks observable from A. So the information
needed about B is the whole integrated information of all measurements made while the robot is
in B on landmarks observable from A. In the following this information is said to be condensed,
since it comprises everything from the measurements made in B that is actually needed outside
of B.

The idea can be applied recursively by dividing the building into a hierarchy of regions
(Fig. 1.5a). The recursion stops when the size of a region is comparable to the robot’s field of
view. The condensed information for the different regions can be computed by recursion. For a
specific region condensed information for two subregions is integrated. After that, all landmarks
not being observable from outside the region are removed from representation. This process is
called elimination of landmarks. This is how the information is decomposed into two parts: Part
1 contains information about eliminated landmarks and is stored at the region and not considered
further. Part 2 contains information about the landmarks observable from outside and is passed
to the next region above. This part contains every information about the region that is necessary
when the robot is outside of the region.

At each moment the robot position corresponds to a particular region on the lowest level

equal (see §3.6)

3.2. TREE MAP DATA STRUCTURE 93

of hierarchy called the actual region into which new landmark observations can be integrated.
When the robot is moving the actual region changes from time to time and a global update has
to be performed. The key advantage of the hierarchical decomposition is that for such a global
update only the condensed information of the actual region and all regions above need to be
updated. All other regions remain unaffected.

In a similar way an estimate for the local landmarks can be computed. The final integrated
information about a landmark is stored in the region where the landmark has been eliminated. So
the information about landmarks of the actual region can be collected by traversing the hierarchy
from the top region down to the actual region.

3.2 Tree Map Data Structure

This section introduces the tree map data structure used by the algorithm for representing a
hierarchically divided map. At first, it will be assumed that the robot’s observations are landmark
– landmark measurements. Under this assumption the algorithm is exact. No approximation is
performed. In §3.6 the algorithm will be extended to integrate also landmark – robot and robot –
robot (odometry) measurements using slight approximation.

Data Structure

In the algorithm, the hierarchy is realized by a binary tree. Each node corresponds to a region
and stores information about the landmarks of this region in so called information blocks (IBs).
These IBs are quadratic error functions that describe the negative log-likelihood for a vector of
landmark positions given the information represented by the IB.

Internally they are represented by a small matrix (the information matrix) and a vector. It
is said that an information block, a matrix or a vector respectively represents a landmark, if it
contains information about it. This means that a row / column of the matrix or an entry of the
vector corresponds to the landmark. All notions refering to information like “integration” and
“decomposition” correspond to actual linear algebra operations on these matrices and vectors.

The regions corresponding to nodes are not defined in a strict geometrical sense, but rather as
a set of landmarks being close to each other. At each moment there is one leaf called the actual
leaf that corresponds to the region where the robot is currently located. All leaves hold a Basic
Information Block (BIB). New measurements are integrated into the BIB of the actual leaf called
the actual BIB. Thus, integration of all BIBs constitutes the complete information contained
in the tree map. The information is recursively integrated and decomposed along the tree as
described in the previous section: Each node holds a Condensed Information Block (CIB) for the

94 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

information about landmarks observable from outside the region. The node is said to represent
these landmarks, since the nodes CIB contains all information about this region needed from
outside the region. Figure 1.5b (page 45) shows the tree corresponding to the hierarchy of figure
1.5a and the landmarks represented at each node.

Furthermore, each node holds a Substitution Information Block2 (SIB) containing the infor-
mation about the landmarks eliminated at the node. This information is only needed when the
robot is inside the region, i.e. the actual leaf is below this node. The distribution of information
between the different node’s CIBs and SIBs is made formal in the following definition:

Definition 3 (Information stored at a node). A node represents those landmarks that are repre-
sented both in BIBs inside and in BIBs outside the subtree below this node. It stores a Condensed
Information Block (CIB) that contains the integrated information of all BIBs below this node on
the landmarks represented at this node. It further stores a Substitution Information Block (SIB)
that contains the information from the childrens’ CIBs that is not contained in the nodes CIB.
For a leaf it stores the information from the BIB that is not contained in the nodes’ CIB.

According to this definition, a landmark is represented from each leaf where the BIB rep-
resents the landmark up to the least common ancestor of all those leaves. The least common
ancestor is called elimination node of the landmark, since it is that node the landmark is elimi-
nated from the CIB and finally stored into a SIB. It is the lowest node the landmark is represented
exclusively below. The algorithm maintains an array of elimination nodes for the different land-
marks.

The CIB contains all information that must be known about a node’s region, if the robot is
outside that region. It is computed recursively: A node integrates the CIB of both children and
eliminates all landmarks for which it is the elimination node. The result is the node’s CIB, which
is stored and passed to the parent. The information about the eliminated landmarks is the node’s
SIB. Since all landmarks are being eliminated once, the integration of all SIBs is the complete
information represented by the map and the same as the integration of all BIBs. Altogether the
intention of this approach is to eliminate landmarks as early as possible, so all CIBs and SIBs
represent only few landmarks and all involved matrices are small and efficient to handle.

Figure 3.1 shows the information flow at a single node and a three level tree: The information
from the CIBs of both children is integrated (+) and then decomposed again (S). A detailed
explanation will be given in §3.4. For the moment, the symbols (+) and (S) can be viewed as
black box operations.

Summary: The purpose of the tree map is to compute estimates from measurements. The in-
2the name is explained in §3.3

3.2. TREE MAP DATA STRUCTURE 95

+

SPSfrag replacements

χ2
1 χ2

2

χ2
CIB

χ2
SIB +

S

+

S

+

S

SS SS

SIB

()

SIB

SIB

SIBSIBSIB SIB

CIB CIB

CIB CIB CIB CIB

BIB BIB BIB BIB

PSfrag replacements

χ2
1

χ2
2

χ2
CIB

χ2
SIB

Figure 3.1: Integration and decomposition of information in a single node (oval) and a three level
tree: Two IBs χ2

1 and χ2
2 from the nodes children are integrated (+) and then decomposed (S) into

a CIB χ2
CIB and a SIB χ2

SIB. The CIB is passed to the parent and the SIB stored at the node.

formation from the measurements is stored in the BIBs and the estimates are computed from the
information from the SIBs. So the integrated information of all BIBs equals the integrated infor-
mation of all SIBs. The difference is that the information in the BIBs is distributed according to
where the robot was when the measurements was made. On the contrary, all information known
about a specific landmark is contained in the SIB at the elimination node of this landmark. So in
the end computation of SIBs is a task of compiling information from BIBs. From this perspective
the role of a CIB is that of an intermediate result: A node’s CIB contains all information from the
BIBs below that node that has not yet been compiled into SIBs below. It still has to be processed
on higher levels and integrated with further information from other parts of the tree.

Remark: The original idea in §3.1 was to represent all landmarks that can be observed from
outside the region. However definition 3 represents only those landmarks that have been observed
from outside. The reason for this is that deciding whether a landmark is observable or not requires
the representation of walls and obstacles in the map which is not performed by the algorithm.
As a consequence, the set of landmarks represented at a node changes whenever a landmark is
observed for the first time outside that node. In this case additional updates have to be performed.

Integration of a measurement

It is currently assumed that all observations are measurements of relative landmark positions (see
§3.6). As long as the observed landmarks are represented in the actual BIB, the measurement
can be integrated there and the local estimate can be updated by EKF equations. Such an update

96 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

does not use the tree map at all and its computation time is independent from the size of the map.
When a landmark is observed that is not represented in the actual BIB, a new BIB must be

made the actual one and a global update is required. Since the actual BIB has changed all CIBs
and SIBs of ancestor nodes are invalid and must be updated. However most CIBs and SIBs are
not ancestors and remain unaffected, so computation is highly efficient.

Compilation of an estimate

After a new BIB is made the actual one and the global update has been performed, an estimate
for the landmarks represented in the new actual BIB has to be computed. This is done proceeding
from the root down to the actual BIB. At each node an estimate for landmarks represented at the
childrens’ nodes is computed by combining an estimate for landmarks represented at the node
with the nodes’ SIB.

Representation of IBs

The purpose of the algorithm is to compute a maximum likelihood estimate for the map. This is
equivalent to finding the minimum of the negative log-likelihood given the stochastical informa-
tion known from the measurements (§2.6). Since Gaussian noise is assumed, this is a quadratic
error function χ2

all(x). Each information block also represents a quadratic error function χ2
IB(x)

refering to the conditional likelihood of landmark position vector x given the information repre-
sented by the IB. χ2

IB(x) is the negative logarithm of this likelihood and stored using a symmetric
matrix A, a vector b and a constant γ as

χ2
IB(x) := xTAx + xT b + γ =

∑

i,j

Aij xixj +
∑

i

bi xi + γ. (3.1)

This is the usual representation of a multidimensional quadratic function. The constant coef-
ficient is γ, first order coefficients are found in b and second order coefficients in A. The er-
ror function χ2(x) is ≥ 0 for all x, which implies that A is symmetric positive semidefinite
(SPSD)3 . Each row / column of A and each entry of b corresponds to a landmark’s x- or y-
coordinate or the robot’s x-, y-coordinate or orientation φ. Matrix A is the information matrix
for x given the information represented by the IB. It represents the uncertainty of the informa-
tion of the IB. The information itself, say the landmarks’ coordinates, is given by the minimum
arg minx χ

2(x) = A−1b/2, so it is represented in vector b but in a way that depends on the
uncertainty in A.

3An extensive discussion of the mathematical properties of positive definite and positive semidefinite matrices
can be found in [HJ90] and in a brief overview in appendix A

3.3. ELIMINATION OF LANDMARKS BY SCHUR-COMPLEMENT 97

Notation

In this chapter the linear algebra part of the algorithm will be described. It provides the sub-
algorithms for manipulation and integration of IBs. These subalgorithms are then used by the
bookkeeping part described in §4 to compute the IBs stored at different nodes of the tree.

Throughout §3 and §4, it will be assumed, that each vector / matrix is augmented with the
information, which row / column corresponds to which random variable (robot pose: x, y, φ;
landmark: x, y). Further, a few notational conventions will be defined as follows (see page 25
for a complete list of symbols):

Symbol Definition
A, P,R, S, . . . Upper case letter denote matrices
b, p, q, u, v, . . . Lower case letter denote vectors
α, β, γ, . . . Greek letter denote scalars
A,B, C, . . . Calligraphy letter denote sets of landmarks
L(A),L(b) Set of landmarks represented by matrix A or vector b
χ2(x) Quadratic error function. The negative log-likelihood of landmark

positions / robot pose x given the information represented by χ2.
x̂, ŷ, ẑ Lower case letter with ĥat denote estimates

3.3 Elimination of Landmarks by Schur-Complement

This section presents how to use a mathematical technique called Schur - complement to compute
a node’s CIB and SIB from the CIB of both children. The first step is to integrate the CIB from
both children by simply adding. The second step is to eliminate some landmarks by decomposing
the result into two parts: The first part does not depend on eliminated landmarks any more (CIB).
The second part is a maximum likelihood substitution of eliminated landmarks by the remaining
ones with a known uncertainty (SIB). The structure of the SIB as a substitution with uncertainty
is the reason for the second part of the decomposition being called substitution information block.

This operation is a redistribution of information, since the integrated information of both
input CIBs or the input BIB respectively is equal to the integrated information of the resulting
CIB and SIB. The subalgorithm is shown as a structure chart4 (Fig. 3.2, computeCIBAndSIB).
Figure 3.1 illustrates the underlying data flow. In the following, the formulas for the integration
and decomposition are derived:

4Structure charts are used to describe the algorithm formally. They are intended as a detailed reference and to
provide the information necessary for implementing the algorithm.

98 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

Lemma 7. Let χ2
1(x) and χ2

2(x) be two stochastically independent information blocks. Then the
integrated information is χ2(x) = χ2

1(x) + χ2
2(x).

Proof. By definition a χ2 function is the negative logarithm of the likelihood given the informa-
tion represented by that function. The likelihood of x, considering independent information from
χ2

1 and χ2
2, is the product of the individual likelihoods

χ2(x) = − ln
(
e−χ

2
1(x) · e−χ2

2(x)
)

= χ2
1(x) + χ2

2(x). (3.2)

If both IBs represent different sets of landmarks, the matrices and vectors have to be permuted
and extended, so the same columns / rows correspond to the same landmark.

The following discussion deals with two different groups of landmarks: The landmarks that
are going to be eliminated and stored in the SIB and the landmarks that are stored in the CIB and
passed to the parent node. For ease of notation it is assumed that A is decomposed into 2 × 2

blocks such that block row / column 1 corresponds to landmarks to be eliminated and block row
/ column 2 to remaining landmarks:

χ2(x) =xTAx + xT b + γ (3.3)

= χ2

(
y

z

)
=

(
y

z

)T(
P RT

R S

)(
y

z

)
+

(
y

z

)T(
c

d

)
+ γ. (3.4)

Vector block z and matrix block S correspond to the landmarks to be eliminated, vector block y
and matrix block P to the remaining landmarks and matrix block R corresponds to the couplings
between both groups of landmarks.

Lemma 8 (Schur Complement). Let χ2(yz) be an information block as in (3.4) with P being
symmetric positive definite (SPD). Then χ2(x) can be uniquely decomposed into an information
block χ2

CIB(z) on z and an information block χ2
SIB(Hz+h− y) on Hz+h− y, with χ2

SIB(0) = 0:

χ2
SIB(w) = wTPw, H = −P−1RT , h = −P−1c/2. (3.5)

Proof. The IB χ2(yz) gives the negative log likelihood of positions y of the landmarks to be
eliminated together with positions z of the remaining landmarks. To derive an IB for z means
to compute a likelihood for z alone. Therefore for each z the minimum over all y must be taken
and substituted into χ2. So, the first step is to find the y that minimizes χ2(yz) as a function of z

y∗(z) := arg min
y
χ2

(
y

z

)
. (3.6)

3.3. ELIMINATION OF LANDMARKS BY SCHUR-COMPLEMENT 99

Therefore χ2(x) is block decomposed and expanded resulting in

χ2(x) = χ2

(
y

z

)
=:

(
y

z

)T(
P RT

R S

)(
y

z

)
+

(
y

z

)T(
c

d

)
+ γ (3.7)

= yTPy + yTRT z + zTRy + zTSz + yT c+ zTd+ γ. (3.8)

At the z dependent minimum y∗(z), the gradient with respect to y is

0 =
∂χ2(yz)

∂y

(
y∗(z)

)
= 2Py∗(z) + 2RTz + c (3.9)

⇒ y∗(z) = P−1(−RT z − c/2) = −P−1RT

︸ ︷︷ ︸
H

z−P−1c/2︸ ︷︷ ︸
h

. (3.10)

Substituting the maximum likelihood estimate y = y∗(z) yields an information block χ2
CIB(z)

containing all information about the landmarks corresponding to z that are not eliminated:

χ2
CIB(z) :=χ2

(
y∗(z)

z

)
= χ2

(
Hz + h

z

)

=(zTHT + hT)P (Hz + h) + (zTHT + hT)RT z + zTR(Hz + h)

+ zTSz + (Hz + h)T c+ zTd+ γ.

(3.11)

=zT
(
HTPH +HTRT +RH + S

)
z

+ zT
(
2HTPh+ 2Rh+HT c+ d

)
+
(
hTPh+ cTh

)
+ γ

(3.12)

=zT
(
S − RP−1RT

)
z + zT

(
−RP−1c+ d

)
+
(
−1

4
cTP−1c

)
+ γ (3.13)

The second information block is χ2
SIB(w) = wTPw, with w = Hz + h − y. Expanding this

expression yields

χ2
SIB(Hz + h− y) =

(
Hz + h− y

)T
P
(
Hz + h− y

)

=zTHTPHz + 2hTPHz − 2yTPHz

+ hTPh− 2yTPh+ yTPy

(3.14)

=zTRP−1RT z + cTP−1RT z + 2yTRT z

+
1

4
cTP−1c+ yT c+ yTPy

. (3.15)

Adding equation (3.13) and (3.15) verifies that the information from χ2 has indeed been decom-
posed as

χ2
CIB(z) + χ2

SIB(Hz + h− y) = (3.16)

100 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

Figure 3.2: computeCIBAndSIB
(
χ2

1, χ
2
2, E

)
linearized

χ2
1, χ2

2: IBs to be integrated; E : set of landmarks to be eliminated
IF χ2

2 6= 0

THEN (A1, b1) := χ2
1; (A2, b2) := χ2

2

Sort and extend A1, A2, b1, b2 so that columns and rows correspond to the same
landmark. And landmarks E are first.
A := A1 +A2; b := b1 + b2

ELSE (A, b) := χ2
1

Apply lemma 8 to compute χ2
CIB, χ2

SIB, H , h, P−1

return χ2
CIB as CIB and χ2

SIB, H , h, P−1 as SIB

zTSz + zTd+ 2yTRT z + yT c+ yTPy = χ2

(
y

z

)
= χ2(x). (3.17)

By construction χ2
SIB(y) ≥ 0 holds. Since χ2

SIB(Hz+hz) = 0 and χ2(yz) ≥ 0, it follows that
χ2

CIB(z) = χ2(Hz+hz) ≥ 0 and in particular that S − RTP−1R is positive semidefinite. The IB
χ2

CIB contains all information about z. The IB χ2
SIB expresses the information, that y ≈ Hz + h

with an uncertainty of P−1, where Hz + h is the maximum likelihood estimate for y given z.

In order to prove the uniqueness consider any decomposition

χ2
CIB
′
(z) + χ2

SIB
′
(H ′z + h′ − y) = χ2

(
y

z

)
(3.18)

fulfilling the conditions of the lemma. The minimum of (3.18) for a given z is χ2
CIB(z)

′ at y =

H ′z+h′. The corresponding minimum of χ2(yz) is χ2(y∗(z)z) = χ2
CIB(z) at y = y∗(z) = Hz+h.

So χ2
CIB
′
(z) = χ2

CIB(z) and H = H ′, h = h′.

Example

Table 3.1 shows an example of the application of lemmas 7 and 8: There are 3 landmarks (a, b, c)
considered one-dimensional for simplicity. The first IB (χ2

1) contains the information of the
distance between a and b with a standard deviation of 1. The second IB (χ2

2) contains the corre-
sponding information for landmark b and c. The two IBs are integrated into χ2. Then landmark
b is eliminated by decomposing the information into χ2

CIB and χ2
SIB. Table 3.1 shows different

views (columns) on the different IBs (rows).
Column 1) depicts a graphical description with straight lines representing distance informa-

tion. The arrow in row χ2
SIB indicates the structure of the information in the SIB, providing

information about b if and only if information about a and c is given.

3.3. ELIMINATION OF LANDMARKS BY SCHUR-COMPLEMENT 101

1) Graph of
Relations

2) Equations plus
Noise

3) Information Block as represented by
the algorithm

4) Information Block
for (a, b, c)

χ2
1
ja jb b− a = 1 +N(1)

χ2
1(ab) = (b− a− 1)2/12 =

(ab)T
(

1 −1
−1 1

)
(ab) + (2

−2)
T

(ab) + 1

(
1 −1
−1 1

)
,
(

2
−2

)
, 1

χ2
2
jb jc c− b = 2 +N(1)

χ2
2(bc) = (c− b− 2)2/12 =

(bc)T
(

1 −1
−1 1

)
(bc) + (4

−4)
T

(bc) + 4

(
1 −1
−1 1

)
,
(

4
−4

)
, 4

χ2 ja jb jc b− a = 1 +N(1)

∧
c− b = 2 +N(1)

χ2
(
a
b
c

)
= 5 +

(
a
b
c

)T(1 −1 0
−1 2 −1
0 −1 1

)(
a
b
c

)
+
(

2
2
−4

)T(a
b
c

)
(

1 −1 0
−1 2 −1
0 −1 1

)
,
(

2
2
−4

)
, 5

χ2
CIB
ja jc c− a =

3 +N(
√

2)

χ2
CIB(ac) =

(ac)T
(

1
2
− 1

2

− 1
2

1
2

)
(ac) + (6

−6)
T

(ac) + 41
2

(
1
2

− 1
2

− 1
2

1
2

)
,
(

6

−6

)
, 41

2

χ2
SIB
ja jb jc
6� �� �

b =
1
2
a+ 1

2
c− 1

2

+N(
√

1
2
)

H = (1
2

1
2), h = −1

2
, P = 2,

χ2
SIB(w) = wTPw

=⇒ χ2
SIB

(
H(ac) + h− b

)
= 1

2
+

(
a
b
c

)T(1
2
−1 1

2
−1 2 −1
1
2
−1 1

2

)(
a
b
c

)
+
(−4

2
2

)T(a
b
c

)

(1
2
−1 1

2
−1 2 −1
1
2
−1 1

2

)
,
(−4

2
2

)
, 1

2

Table 3.1: Example for integration and decomposition of informationχ2
1+χ2

2 = χ2 = χ2
CIB+χ2

SIB.

Column 2) shows the measurement equations with N(σ) denoting zero-mean Gaussian noise
with standard deviation σ. The equations in rows χ2

1 and χ2
2 are original measurement equations.

Row χ2
CIB is derived by adding the equations for χ2

1 and χ2
2, since N(1) +N(1) = N(

√
2) due to

independence. Row χ2
SIB is derived correspondingly by subtracting both equations and dividing

the result by 2. Observe the structure of the equation for χ2
SIB: It defines b as a function of a and

c with additional uncertainty.

Column 3) contains the actual representation of the IB by a quadratic function as used by
the algorithm. Note, that χ2

1 and χ2
2 use only 2 × 2 matrices, since they do not represent c

and a respectively and that χ2
CIB does not represent b, which was the overall purpose in this

example. χ2
SIB is used by the algorithm in a factored way as wTPw, with w := Hz+h− y. This

corresponds to its special structure mentioned above. The table shows both, the actually stored
parameter (H , h, P) and the effective IB χ2

SIB(Hz + h − y). χ2
1 and χ2

2 are derived from the
measurement equations in the usual way by squaring the error in the equation and dividing by
the measurement covariance σ2. χ2 is χ2

1 + χ2
2 following lemma 7. χ2

CIB and χ2
SIB are computed

by lemma 8. As expected they equal the IBs that could be derived from the respective equations

102 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

in column 2.
Column 4) once again shows the information blocks as a quadratic function represented by

information matrix, vector and scalar. They are extended to 3 × 3 with the rows and columns
corresponding to landmarks a, b, c to be easily compared. It can be observed that the operation
performed indeed integrates and decomposes the information: The sum of χ2

1 and χ2
2 equals χ2

which in turn equals the sum of χ2
CIB and χ2

SIB.

The following two technical lemmas are derived from lemma 8 and will be applied in §3.7.
They deal with decomposing the expressions xTAx and xTA−1x for a 2 × 2 block matrix A.
These expressions have the same mathematical structure as an IB, but do not represent a map.
The proof for the lemmas is provided in appendix B.

Lemma 9. Let A =
(
P RT
R S

)
be an SPD matrix and x = (yz) be decomposed accordingly, with

z given. Then the minimum over y of xTA−1x is zTS−1z at y = RTS−1z or x = A
(

0
S−1z

)
. The

corresponding minimum over z with y given, is yTP−1y at z = RP−1y or x = A
(
P−1y

0

)
.

When using lemma 8 to build up the tree map recursively, both parts of the decomposition
are used: The SIB is stored at the node and the CIB is passed to the node’s parent. In §3.7 the
lemma will be used to discard the information deliberately, which is contained in the SIB. This
makes some entries in the matrix zero, so a simpler representation for the remaining information
is achieved. This application motivates the following definition and lemma (proof in appendix
B):

Definition 4. Let A be an SPSD 2× 2 block matrix. Then an elimination matrix for block row /
column 1 is an SPSD matrix B with 0 ≤ B ≤ A 5 and A − B = (0 0

0 ∗). Such a matrix is called
minimal, if B ≤ B′ holds for all other elimination matrices B ′.

Lemma 10. LetA =
(
P RT
R S

)
be an SPSD 2×2 block matrix, with P being SPD. Then the unique

minimal elimination matrix for block row and column 1 is B := (PR)P−1(PR)
T . In the case of the

first block being one-dimensional, B = uuT with u = 1√
P

(PR).

3.4 Compilation of an Estimate

When the CIB and SIB of each node in the whole tree are available an estimate with a corre-
sponding estimation covariance for the landmarks represented in a certain BIB can be computed:

5See appendix A.1: B ≤ A⇐⇒ ∀x : xTBx ≤ xTAx

3.4. COMPILATION OF AN ESTIMATE 103

Start with an estimate x̂, with covariance C for the landmarks represented at the root. Since
no landmark is represented there it is empty x̂ = (), C = (). Then proceed down to the BIB.
At each node use the estimate for the landmarks represented at that node and the SIB stored
at the node to derive an estimate for the landmarks represented at the node’s children. Lemma
11 states how to perform this computation and the whole subalgorithm is given in (Fig. 3.4,
computeEstimate).

Lemma 11. Let χ2(x) be decomposed as in lemma 8 and let ẑ be an estimate with covariance
C. Then the optimal estimate for y is ŷ = Hẑ+h with covariance cov (yz) =

(
HCHT+P−1 HC

CHT C

)
.

Proof. By lemma 8, χ2(x) is decomposed as

χ2(x) = χ2

(
y

z

)
= χ2

CIB(z) + χ2
SIB(Hz + h− y). (3.19)

So, ŷ = Hẑ + h is a maximum likelihood estimate for y, since it minimizes χ2
SIB(Hz + h − y)

and thus minimizes χ2(yz). Hence χ2
SIB(w) = wTPw expresses the information that Hz+h = y

with a covariance of P−1. The estimation covariance for Hẑ + h is HCHT , because C is the
covariance for z. Both are independent, so the given estimate for Hz + h and the information
about (Hz + h) − y from the SIB can be combined by subtracting

y = (Hz + h) − (Hz + h− y) (3.20)

=⇒ cov

(
ŷ

ẑ

)
= cov

((
Hẑ + h

ẑ

)
−
(
Hẑ + h− ŷ

0

))
(3.21)

= cov

(
Hẑ + h

ẑ

)
+ cov

(
Hẑ + h− ŷ

0

)
=

(
H

I

)
C

(
H

I

)T

+

(
I

0

)
P−1

(
I

0

)T

(3.22)

=

(
HCHT HC

CHT C

)
+

(
P−1 0

0 0

)
=

(
HCHT + P−1 HC

CHT C

)
. (3.23)

With lemma 7, 8 and 11 the necessary tools for using a tree map to perform least squares
estimation of the map are available. Figure 3.3 gives an example of the operations involved in a
three level tree. Lemma 7 and 8 are used from the leaves up to the root and lemma 11 from the
root down to the leaves. When a global update is performed only the way from the old actual
BIB up to the root and down again to the new actual BIB has to be computed.

104 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

+

S

++

S

+

+

S

+

S

+

S

+

S

+

S

+

()

PSfrag replacements

χ2
CIBχ2

CIBχ2
CIBχ2

CIB

χ2
CIB χ2

CIB

χ2
SIB χ2

SIBχ2
SIB χ2

SIB

χ2
SIB

χ2
SIB χ2

SIB

χ2
BIB χ2

BIBχ2
BIB χ2

BIB

Figure 3.3: Data flow in a three level tree map: A dashed oval represents a tree node. 4 different
BIBs are integrated (+) and decomposed (S) into SIBs following the tree upwards (black arrows).
Estimates are generated from the stored SIBs following the tree downwards (gray arrows). The
(()) mark above the root node indicates that the root node represents no landmark and, thus, the
CIB computed by the root node is empty. After changing a BIB only the path from that BIB up
to the root and down again needs to be recomputed. Along the upward (black) connection infor-
mation is passed in information blocks, whereas along the downward connections it is passed as
an estimate with corresponding covariance.

3.5. ASSUMPTIONS ON TOPOLOGICALLY SUITABLE BUILDINGS 105

Figure 3.4: computeEstimate
(
(ẑ, C, α), (H, h, P−1)

)
ẑ: estimate with covariance C; (H,h, P−1): SIB; α: rotation for SIB

Remove all rows and columns of ẑ, C that do no correspond to landmarks represented in H
nonlinear: Apply equation (3.48) with α on H,h, P−1 a

Apply lemma 11 to compute x̂, C ′

return x̂, C ′

aSee §3.9 on relinearization by nonlinear rotation

3.5 Assumptions on Topologically Suitable Buildings

As discussed before, a node in the tree map combines the information from its childrens’ CIBs
to compute the SIB stored at the node and the CIB passed to the parent node. The time needed
for this computation depends on the size of the matrices involved, which is determined by the
number of landmarks represented at the node’s children. So for the algorithm to be efficient it is
crucial that each node represents only a few landmarks. Thus, the tree must hierarchically divide
the building in a way that each node, i.e. each region, contains only a few landmarks observable
from outside the region. Achieving this goal requires some sophisticated optimization of the tree,
since it is not a simple bookkeeping task.

It is not generally possible to have such a hierarchical partitioning. But as experiments and
the following considerations confirm, this is possible for typical buildings, which will be called
“topologically suitable”. Certainly, this is not a formal proof, and later an counter-example for
a not topologically suitable building will be given.

Typical buildings allow such a hierarchical partitioning because they are hierarchical them-
selves, consisting of floors, corridors and rooms. Different floors are only connected through a
few staircases, different corridors through a few crossings and different rooms most often only
through a single door and the adjacent parts of the corridor. Thus, on the different levels of hi-
erarchy natural regions are: rooms, part of a corridor including adjacent rooms, one or several
adjacent corridors and one or several consecutive floors (Fig. 3.5a). For all these regions, land-
marks observable from outside the region are those located at connections of the region to the
rest of the map. As there are only a few connections only a few landmarks will be observable
from outside.

To allow a thorough theoretical analysis of the algorithm it is formally assumed that the
building is topologically suitable and the algorithm finds a proper partitioning. This is defined in
the following:

Definition 5 (Topologically suitable building). Let the building be decomposed into a hierarchy

106 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

(a) DLR Institute of Robotics and Mechatronics.

(b) Topologically unsuitable building.

Figure 3.5: a) A typical topologically suitable building with the first three level of a suitable
hierarchical partitioning. b) Counter-example for a not suitable building, for example a large
storeroom. When dividing it into two regions (for instance gray line) there will always be many
landmarks observable from both regions.

3.5. ASSUMPTIONS ON TOPOLOGICALLY SUITABLE BUILDINGS 107

of regions according to definition 3. Let k (“number of local landmarks”) be the maximum
number of landmarks represented in a BIB.

Then the building is said to be topologically suitable if the following holds:

1. For each node only O(k) landmarks exist that are represented both in BIBs inside and in
BIBs outside the subtree of this node.

2. Each BIB shares landmarks only with O(1) other BIBs.

The parameter k is small, since the robot can only observe a few landmarks simultaneously
because its field of view is limited both by walls and sensor range. In particular, k does not
increase when the map gets larger and n grows to infinity.

A counter-example for a not topologically suitable building is a large open storeroom with
many boxes, where the robot can navigate arbitrarily not confined to designated paths. A region
corresponding to one half of the hall will have a whole border line with the region corresponding
to the other half and thus violate condition 1 (Fig. 3.5b).

For cross-country navigation, the same problem appears, when the robot builds an area-wide
map covering every detail. However, in most cases the goal is to explore a large area rather than
mapping a small area in detail. Thus, the robot will use passable paths once it has found them.
So again, each region will be connected to the remaining map only with a few of these paths and
definition 5 is fulfilled.

Condition 1 is powerful. The fact that buildings have such a loosely connected topology
indeed is a key property distinguishing SLAM from many other estimation problems. Exploiting
such a property is essential, since recursive least squares is quite a fundamental problem, which
has been subject of research for many decades. So one cannot expect to find a universal – not
problem specific – solution to reduce computation time from O(n2) to something as fast as
O(logn).

Computational Efficiency

By condition 2 there are O(n
k
) nodes in the tree with each node storing matrices of dimension

O(k × k) (condition 1). Thus, the storage requirement of the tree map is O(k2 · n
k
) = O(nk)

being linear in the number of landmarks.
Computation time depends on the situation: When a measurement involves only landmarks

represented in the actual BIB it can be integrated into this BIB and the estimate can be updated
using EKF equations. There are O(k) landmarks represented in the actual BIB, so computation

108 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

time therefore is O(k2) and thus independent from n. This is the same performance as achieved
by CEKF [GN02].

Otherwise, a different BIB is made actual one and a global update has to be performed. The
update basically requires recomputing the CIB and SIB from the old actual BIB up to the root
and compiling an estimate from the root down to the new actual BIB. Each of the involved nodes
represents O(k) landmarks by condition 1, so the computation takes O(k3) per node, with matrix
multiplication and inversion being the dominant operations. There are O(logn) nodes involved
in the update, so the overall time is O(k3 logn).

Under some special circumstances, more nodes have to be updated so additional computation
is necessary for bookkeeping. This is analyzed in detail in §4.6 after the whole algorithm has
been developed. The result is O(k3 + k2 log n) for bookkeeping and O(logn) nodes updated
with O(k3) each, so total computation time of a global update is O(k3 logn).

In order to compute an estimate not only for local but for all landmarks, estimate compilation
must be performed recursively from the root down to all BIBs taking O(kn). It will turn out
in the experiments in §5 that the prefactor involved in this asymptotical expression is extremely
small. So while from a theoretical perspective the possibility to perform updates in sublinear
time is most appealing, practically the algorithm makes it possible to compute an estimate for all
landmarks even for extremely large maps.

Overall the algorithm clearly meets the requirements proposed in §2.13 matching linear stor-
age space requirement (R2) and even exceeding linear update cost requirement (R3).

The algorithm is designed for the case of an extremely large building, so n is asymptotically
growing to infinity, whereas k is small and not growing. Technically, if k is not growing, it is
bounded and therefore k = O(1). Nevertheless, in the analysis of the algorithm’s computation
time, the formal dependency on k is retained. The reason therefore is best explained with the
algorithms overall complexity of O(k3 log n) as an example: The constant hidden in the O of
O(k3 log n) (about 0.38µs on a Intel Xeon, 2.67 GHz according to the experiments) is moder-
ate. When considering k to be for instance 10 = O(1), the constant in the resulting complexity
O(logn) is k3 = 1000 times higher. While being theoretically correct to give O(logn) as an ex-
pression for the runtime complexity, assuming k = O(1), it is practically misleading. Therefore
throughout this thesis, k is assumed to be small but not necessarily constant.

Violation of the Assumption

The number of landmarks represented at different nodes determines the algorithm’s computation
time. There is no influence on the computed result, which is the maximum likelihood estimate

3.6. INTEGRATION OF ODOMETRY MEASUREMENTS 109

for the integrated information of all BIBs. So if definition 5 is “slightly violated”, the algorithm
simply takes some more computation time. The main reason for demanding such a strong con-
dition is to allow an easy and theoretically sound analysis of the computation time. A slight
violation does not completely break down the algorithm’s performance.

If the assumption is only violated locally in a specific area of the map, efficiency will only
decrease when the robot is in that area. This is quite an important advantage, since in the majority
of cases a violation will be caused by a single large room but not affect the whole map: In an area
where condition 1 is violated, different BIBs share more common landmarks than elsewhere in
the map. So the algorithm will try to put these BIBs together in a common subtree. All nodes that
represent too many landmarks lie in this subtree. The overall area which then corresponds to the
the root of the subtree will only have few connections to the rest of the map as any topologically
suitable building. So condition 1 holds for the subtree’s root node and all other nodes not inside
the subtree. Now, if the actual BIB is not inside the subtree, the algorithm will not access the
subtree at all and the performance will not be influenced by the violation inside the subtree.

3.6 Integration of Odometry Measurements

Up to now the observations have been assumed to consist of landmark – landmark measurements,
i.e. information about the relative locations of a group of landmarks. In reality they are normally
landmark – robot measurements, i.e. information about the relative location of a landmark with
respect to the robot. Another source of information is odometry, i.e. robot – robot measurements
providing information of the current robot location relative to a previous robot location.

A possible way to integrate odometry as taken by [LM97, GK99] is to represent and estimate
each robot pose as a random variable in the map. This leads to an increasing number of random
variables, not only when mapping new parts of the building but even when moving through
an area visited before. So this approach violates requirement (R2) (see §2.13) and appears to
be impractical for long term operation. The algorithm described in this thesis takes a different
approach and does not represent the robot pose, not even the actual one in the tree map at all:

If odometry can be neglected, i.e. the robot’s motion is evident from the landmark observation
alone, a group of landmark - robot measurements can easily be converted into an IB on the
landmarks involved and integrated into a suitable BIB. But the usual situation is, that odometry
cannot be neglected. Then an Extended Kalman Filter (EKF) is used as a preprocessing stage for
the measurements maintaining an estimate of the robot pose and the local landmarks. When the
actual BIB changes the information from the EKF state is decomposed into information about
landmarks and about the robot pose. The information about the landmarks is stored in the old

110 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

Figure 3.6: integrateEKFOdometry
(
z, Cz

)
z: odometry measurement; Cz : covariance of z

Apply equation (2.29) to update x̂, C

actual BIB. The information about the robot pose is combined with the information from the new
actual BIB and stored in the EKF state.

Landmark – Robot Measurements

First assume that odometry can be neglected: Each robot pose is considered as a separate random
variable that can be eliminated since it will not appear in any further measurement.

The landmark measurements made at a certain robot pose are integrated into an IB repre-
senting the robot pose and all involved landmarks as a random variables. Then the robot pose
is eliminated from the IB using Schur complement (lemma 8). The resulting IB does not repre-
sent the robot pose any more and can be integrated into the actual BIB just the same way like
pure landmark – landmark measurements. In fact, the information contained in the IB defines
the relative location of the involved landmarks, so it is mathematically quite similar to a set of
landmark – landmark measurements.

With this approach, no direct information about the robot’s movement like odometry is used,
i.e. the relative location of different robot poses is only indirectly defined by simultaneously
observed landmarks. The precondition of this approach is that at least two common landmarks
are being observed from successive robot poses. If this condition is met, the resulting accuracy is
often much higher than the one obtainable from odometry alone [GK99]. It is hence no big loss
to neglect odometry. Theoretically, it is quite appealing to avoid the use of odometry, since the
assumption of stochastical independence between successive odometry measurements is hardly
true in reality. If the condition is not met, the result, however, is quite disastrous: The two
robot poses will have a completely undefined spatial relation and the map disintegrates into two
unrelated parts at this point.

It is possible to heuristically prevent disintegration of the map: In the rare case, when there
are less than two commonly observed landmarks, “virtual” measurements on recently observed
landmarks are added. These virtual measurements are derived from the last observation of a land-
mark and odometry. Although this is not a theoretically thorough approach, it will presumably
be a good choice in practice.

3.6. INTEGRATION OF ODOMETRY MEASUREMENTS 111

Figure 3.7: integrateEKFObservation
(
z, Cz

)
z: landmark measurements; Cz : covariance of z

Apply equation (2.40), (2.35) to update x̂, C

+

S E − +

0

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

EKF EKF

old new

treemap

PSfrag replacements

χ2
extractedχ2

extracted

χ2
BIB χ2

BIBχ2
BIBold

χ2
BIBnew

[{r} ∪ L(BIBold)] [{r} ∪ L(BIBnew)]

[L(BIBold) ∩ L(BIBnew) 7→ {r}]

[L(BIBold)] [L(BIBnew)]

Figure 3.8: Data flow between EKF and tree map when changing the actual BIB from BIBold to
BIBnew: The information χ2

extracted is subtracted (-) from the EKF state. The couplings between
robot pose and landmarks not represented in BIBnew are eliminated (E) discarding some infor-
mation (0). Then the information about the actual robot pose is separated (S). The information
about the landmarks is added to BIBold (+) and stored. Then the estimate for the landmarks repre-
sented in BIBnew is computed (see figure 3.3) and combined with the information about the robot
pose (+). The result is a new EKF state. The landmarks represented in intermediate results are
shown in brackets (r = robot pose, L(BIB) denotes the landmarks represented in BIB). The term
L(BIBold) ∩ L(BIBnew) 7→ {r} refers to the special structure of the separated information about
the robot pose, which is a mapping from L(BIBold)∩L(BIBnew) to the robot pose with additional
uncertainty. Black arrows depict information matrices, gray arrows covariance matrices.

Figure 3.9: compileEKF
(
(ẑ, C), (P−1, H, h), α

)
(ẑ, C): landmark estimates; (P−1, H, h): SIB for robot pose; α: rotation for SIB

Store (z − ẑ)TC−1(z − ẑ) as χ2
extracted

Apply lemma 11 to compute x̂, C ′

return x̂, C ′

112 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

Figure 3.10: extractBIBFromEKF
(
x̂EKF, CEKF,N

)
x̂EKF, CEKF: EKF state; N : landmarks represented in the next BIB

χ2(x) := xTC−1
EKFx+ xT (−2C−1

EKFx̂EKF)− (1− ε)χ2
extracted

a

Sort χ2 to have robot pose in block 1, landmarks L(χ2) − N in block 2 and landmarks
L(χ2) ∩ N in block 3
χ2 := removeCoupling

(
χ2, x̂

)

nonlinear: Rotate χ2
actualBIB by accumulatedAngle using (3.44) b

χ2 := χ2 + χ2
actualBIB − εχ2

extracted

Apply lemma 8 to compute χ2
CIB, χ2

SIB, P
−1, H, h. Remove 0 rows / columns of block 2.

nonlinear: Set e according to (3.50)
return (χ2

CIB, e) and (χ2
SIB, P

−1, H, h)

aSee discussion on rank deficiency in §3.7 for the role of ε� 1.
bSee §3.9 and (Fig. 4.8, accumulatedAngle) on nonlinear rotation

Robot-Robot Measurements (Odometry)

When odometric measurements have to be integrated, it is necessary to represent the robot pose
as a random variable. Keeping all old robot poses would constantly increase the map size even if
the robot moves through an area visited before. As this would violate (R2), previous robot poses
have to be eliminated. Eliminating a random variable introduces coupling coefficients between
all random variables that had coupling coefficients with the eliminated one. Finally the robot
pose has coupling coefficients with all landmarks ever observed, ruining the representation size
of the tree map.

A conservative approximation is performed to avoid this dilemma. All coupling coefficients
are eliminated except those with landmarks represented in the actual BIB. This means to deliber-
ately discard the information contained in the eliminated coupling coefficients to make the repre-
sentation less complex. Theorem 2 (§2.11) ensures, that not too much information is discarded,
since the coupling coefficients between the robot pose and a landmark decay exponentially with
the distance travelled since observation of the landmark.

The measurements are integrated by an EKF as a preprocessing stage. It represents
the robot pose and all landmarks represented in the actual BIB and can directly inte-
grate odometry (Fig. 3.6, integrateEKFOdometry) and landmark observations (Fig. 3.7,
integrateEKFObservation). The information about the robot pose is exclusively contained
in the EKF and not transferred into the tree map. When a global update becomes necessary all
coupling coefficients between the robot pose and landmarks not represented in the new actual
BIB are eliminated (Fig. 3.8):

First, the EKF state is converted into an information block χ2. Then, the informationχ2
extracted

3.7. STEPWISE OPTIMAL ELIMINATION OF OFF-DIAGONAL ENTRIES 113

is subtracted. This is the information obtained from the tree map the last time the EKF was initial-
ized and must not be integrated a second time. The resulting difference is the information gained
from measurements since the last change of the actual BIB. Next, the elimination of the coupling
coefficients is performed by subtracting a SPSD matrix cancelling the necessary coefficients.
This means, a part of the information is deliberately discarded to give the remaining information
a simpler structure. §3.7 shows how the matrix can be chosen to lose as little information as
possible. After this the robot pose is eliminated from the IB by Schur complement (lemma 8)
and the resulting CIB is added to the actual BIB (Fig. 3.10, extractBIBFromEKF) replacing it
in the treemap. The corresponding SIB defines the robot pose as a function of landmarks in the
actual BIB. Since all coupling coefficients to landmarks not represented in the new BIB have
been eliminated, this function only depends on landmarks represented both in the old and in the
new BIB. After the estimate for these landmarks has been generated by updating the tree map,
the SIB can be integrated with this estimate (Fig. 3.9, compileEKF). The result is the estimate
for the landmarks of the new actual BIB and the robot pose. Together with the corresponding
covariance matrix the estimate is used as a new EKF state.

3.7 Stepwise Optimal Elimination of Off-Diagonal Entries

In this section a procedure is derived to eliminate some coupling entries in an information block
by subtracting a so called elimination matrix. This means deliberately discarding some informa-
tion to give the remaining information a simpler structure, but to discard as little information as
possible. The key idea therefore is the formalization of the term “as little as possible”, which
is discussed in a mathematical analysis. The problem is reduced from a k-dimensional problem
to k 1-dimensional problems by eliminating different coupling entries columnwise. For the 1-
dimensional problem, a closed optimal solution is derived. The overall solution is suboptimal
but should be fairly good since it is made of k optimal solutions.

In the discussion it is assumed that the rows / columns of the considered information matrix
A are grouped into 3 block-rows and -columns, so that the blockA21 = AT12 corresponding to row
2 and column 1 is to be eliminated. The different block-rows / columns correspond to different
random variables:

Block-row / column Random variables
1 Robot pose
2 Landmarks represented in the old but not in the new actual BIB
3 Landmarks represented in both the old and new actual BIB

114 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

The block A21 contains the coupling coefficients between the robot pose and the landmarks
not represented in the new actual BIB. These coefficients have to be eliminated to transfer the
robot pose into the new actual BIB. The following definition formalizes the desired elimination
matrix:

Definition 6 (Elimination matrix). Let A be a SPSD 3 × 3 block matrix. Then an elimination
matrix for block A21 is a SPSD matrixB with 0 ≤ B ≤ A andA−B =

(∗ 0 ∗
0 ∗ ∗
∗ ∗ ∗

)
, (A−B)21 = 0.

The first step is to characterize an elimination matrixB that is minimal in the positive definite
sense:

B ≤ B′ ⇐⇒ xTBx ≤ xTB′x ∀x for all elimination matrices B ′. (3.24)

Intuitively B ≤ B ′ means, that in any aspect B contains less information than B ′ and thus it is
always better to use B than B ′ to eliminate the desired coupling coefficients.

Reduction to the 1-Dimensional Case

Three technical lemmas follow that are needed in lemma 15 and 16 to characterize a minimal
elimination matrix. The implications of this characterization are discussed after derivation.

Lemma 12. Let B, D be SPSD with 0 < D ≤ B. Then there exists a linear combination
B′ := B − λ∗D, with λ∗ > 0, 0 ≤ B′ and rank(B′) < rank(B).

Proof. Without loss of generality, it can be assumed that B is regular because otherwise B and
D can be transformed to a basis for image(B) ⊃ image(D). The idea is to subtract the highest
multiple of D from B for which the result remains positive semidefinite. It will be shown that
the result is singular and thus of smaller rank than B. Formally consider

Bλ := B − λD, λ∗ = max {λ|0 ≤ Bλ} . (3.25)

For λ = 0, Bλ > 0 and λ∗ > 0. Since D > 0, one diagonal entry of D is > 0 and for a
sufficiently large λ, B − λD will have a negative diagonal entry not being positive definite any
more. Hence λ∗ is well defined. For λ > λ∗ the smallest eigenvalue of Bλ will be negative and
for λ <= λ∗ positive or 0. Thus by continuity it must be 0 for λ = λ∗ and B′ := Bλ∗ is singular
and of smaller rank than B.

Lemma 13. If B is an elimination matrix for A and there exists a SPSD matrix D, with D21 = 0

and 0 < D ≤ B, then there exists an elimination matrix B ′ < B with rank(B′) < rank(B).
This is especially the case if there exists a linear combination u 6= 0; u ∈ image(B) of columns
of B with u1 = 0 or u2 = 0.

3.7. STEPWISE OPTIMAL ELIMINATION OF OFF-DIAGONAL ENTRIES 115

Proof. Lemma 12 is applied. The result Bλ∗ is of smaller rank. It still has to be verified that it is
an elimination matrix:

(A−Bλ∗)21 = (A− B + λ∗D)21 = (A− B)21 = 0. (3.26)

For the special case: Since u ∈ image(B), u = Bw for some w. Set D := 1
wTBw

(Bw)(Bw)T .
Since Bw 6= 0 it follows, that w 6∈ kernel(B), wTBw > 0 and 0 < D. By construction
D21 = 1

wTBw
(Bw)2(Bw)T1 = 0. Further it follows from Cauchy - Schwarz inequality (appendix

A.1) that D ≤ B, because for every x

xTDx =
1

wTBw
(xTBw)2

Cauchy-Schwarz
≤ 1

wTBw
(xTBx)(wTBw) = xTBx. (3.27)

So D fulfills the requirements of this lemma and the existence of an elimination matrix with
smaller rank is proven.

Lemma 14. Let B be an elimination matrix for A and E a matrix with image(E) ⊂ image(B)

(for instance any selections of columns of B). If rank(E1) < rank(E) or rank(E2) < rank(E),
then there exists an elimination matrix B ′ < B with rank(B′) < rank(B).

Proof. Assume rank(E1) < rank(E): There are rank(E) linear independent columns in E. The
first block rows of these columns are contained in image(E1) which has a dimension smaller
than rank(E). Thus they are linear dependent and there exists a linear combination 0 6= u ∈
image(E) of these columns with a zero first block row u1 = 0. Since image(E) ⊂ image(B),
the existence of a elimination matrix of smaller rank follows from lemma 13.

If rank(E2) < rank(E), the same argument holds for the second block row.

The following two lemmas characterize the minimum elimination matrices as elimination
matrices with the same rank as the submatrix of eliminated coefficients and establishes that these
are incomparable (two of them are neither ≤ nor ≥).

Lemma 15 (Rank of a minimal elimination matrix). Let B be an elimination matrix for A.
Then there exists an elimination matrix B ′ with rank(B′) = rank(A21) and B′ ≤ B. In particu-
lar, there exists no elimination matrix with a rank of less than rank(A21).

Proof. Since B21 = A21, rank(B) ≥ rank(A21). Assume there exists no elimination matrix of
rank smaller than rank(B). Application of lemma 14 with E := B•1 yields that rank(B•1) =

rank(B21) = rank(A21). Due to symmetry of B and since rank is invariant under transposing,
it follows that rank(B1•) = rank(BT

•1) = rank(A21). Another application of lemma 14 with
E := B yields that rank(B) = rank(B1•) = rank(A21) (Fig. 3.11).

116 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

B12 B13B11

B21 B22 B23

B32B31 B33

PSfrag replacements

E

E1

E2

(a) rank(B•1) = rank(B21)

by lemma 14 with E := B•1

B12 B13B11

B21 B22 B23

B32B31 B33

PSfrag replacements

E

E1

E2

(b) rank(B1•) = rank(B•1)

by symmetry

B12 B13B11

B21 B22 B23

B32B31 B33

PSfrag replacements

E

E1

E2

(c) rank(B) = rank(B1•)

by lemma 14 with E := B

Figure 3.11: Three steps of deducing rank(B) from the rank of B21 = A21 in lemma 15.

Normally, A21 has full rank, so the rank of the sought elimination matrix is the minimum of
col(A21) and row(A21). Typically there are different elimination matrices of minimal rank. The
following lemma establishes that these are incomparable by ≤. So considering two of them the
first is better in one aspect and the second is better in another aspect. Thus, an explicit quality
measure must be defined to choose the best elimination matrix.

Lemma 16. Let B, B ′ be two different elimination matrices for a matrix A. If rank(B) =

rank(B′) = rank(A21), then B and B ′ are incomparable (B 6≤ B ′ and B′ 6≤ B).

Proof. Assume B and B ′ would be comparable, so without loss of generality B ≤ B ′. Then
D := B′ − B satisfies the conditions of lemma 13 and an elimination matrix B ′′ of smaller rank
would exist. This contradicts lemma 15.

The message of lemma 15 is: When looking for the best elimination matrix for A, only those
of rank equal to rank(A21) need to be considered, since every other elimination matrix is worse
in all aspects. There are still several choices and by lemma 16 each of them is better in one aspect
and worse in another aspect. In order to decide which of the minimal rank elimination matrices
to choose, a quality measure has to be defined. This is quite difficult for the n-dimensional case,
so the elimination is performed stepwise by eliminating A21 one column after the other. For
the 1-dimensional problem of eliminating a single column, a quality measure can be naturally
defined and the optimum elimination matrix with respect to this measure can be determined:

3.7. STEPWISE OPTIMAL ELIMINATION OF OFF-DIAGONAL ENTRIES 117

Optimum Solution for the 1-Dimensional Case

Assume that the block to be eliminated consists of one column A21 = r: By lemma 15, a mini-
mum elimination matrix has rank 1 and can be written asB = xxT . In order to compare different
choices of x the expression xTA−1x is used as a measure of the relative loss of information. This
idea will be substantiated by the next lemma. It follows the formalization of requirement (R1) as
discussed in §2.13 and compares the uncertainty of some aspect g of the map before and after ap-
plying the elimination matrix. The uncertainty before application is gTA−1g and after application
it is gT (A − xxT)−1g. The result of the lemma is that uncertainty grows inverse proportionally
to 1 − xTA−1x. This shows that xTA−1x measures the relative part of the information lost by
subtracting xxT from A:

Lemma 17. Let A be an SPD matrix and x a vector. If xTA−1x < 1, then A− xxT is SPD and
for any g, it holds

gT (A− xxT)−1g ≤ 1

1− xTA−1x
gTA−1g (3.28)

with equality for g = x.

Proof. The proof applies Cauchy - Schwarz inequality (A.1) and Sherman - Morrison (A.2)
formula to evaluate (A − xxT)−1. The formula ensures regularity of A − xxT if and only if
xTA−1x 6= 1. So A− xxT is SPD as long as xTA−1x < 1 and its inverse is computed as

gT (A− xxT)−1g
Sherman - Morrison

= gTA−1g + gT
A−1x xTA−1

1− xTA−1x
g (3.29)

= gTA−1g +
(gTA−1x)2

1− xTA−1x

Cauchy - Schwarz
≤ gTA−1g

(
1 +

xTA−1x

1− xTA−1x

)
(3.30)

=
1

1− xTA−1x
gTA−1g. (3.31)

In (3.30) and thus in (3.28) equality holds, if x = g.

Minimizing the relative information loss xTA−1x is a good optimization criterion, since it
corresponds to requirement (R1) (§2.13) demanding the uncertainty of any aspect of the map
being comparable to the uncertainty that could be derived from the measurements. In contrast to
this approach, using the absolute loss of information tr(xxT) = xTx as an optimization measure
violates (R1), since the same absolute information loss can only be a small fraction of the in-
formation available or nearly all information represented in a map. In the latter case uncertainty
would grow so high that the map is nearly unusable.

Lemma 18. The minimum for the expression
(

λ
λ−1r

)T (ψ rT

r S

)−1(λ
λ−1r

)
is λ = 4

√
ψ(rTS−1r).

118 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

The proof of this lemma can be found in appendix B. The following theorem is the central
result of this section yielding the optimal elimination matrix in the sense defined above:

Theorem 3. Let A be a 3 × 3 block SPD matrix being decomposed as A =

(
ψ rT wT

r S WT

w W X

)
with

1-dimensional first block row / column. Then the best elimination matrix for A21 is xxT with x
defined as

x = A

γ

δS−1r

0

,with

α = rTS−1r, β = (ψ − α)−1,

λ = 4
√
ψ(rTS−1r), γ = β(λ− λ−1α), δ = β(−λ+ ψλ−1).

(3.32)

Proof. The block r to be eliminated is 1-dimensional, so by lemma 15 all minimum elimination
matrices have rank 1 and can be written as B = xxT for a vector x. Since x2x

T
1 = B21 = r and

x1 is 1-dimensional it follows that x2 = r/x1. So x can be parameterized as:

x :=

λ

λ−1r

z

, B := xxT =

λ2 rT λz

r λ−2rrT λ−1rzT

λz λ−1zrT zzT

 (3.33)

The expression to be optimized is xTA−1x with respect to λ and z. The first step is to optimize
with respect to z by applying lemma 9, with y =

(
λ

λ−1r

)
given. So block row 3 corresponds

to the optimized part and block row 1 and 2 to the fixed part of x. In order to apply lemma 9
formally , A must be decomposed as a 2× 2 block matrix

x =

((
λ

λ−1r

)

z

)
, A =

((
ψ rT

r S

) (
wT

WT

)

(w W) X

)
. (3.34)

The resulting minimum is

yT

(
ψ rT

r S

)−1

y at x = A

((
ψ rT

r S

)−1
y

0

)
(3.35)

hence

(
λ

λ−1r

)T(
ψ rT

r S

)−1(
λ

λ−1r

)
at x = A

((
ψ rT

r S

)−1(λ
λ−1r

)

0

)
. (3.36)

The minimum with respect to λ is found by applying lemma 18 and expanding
(
ψ rT

r S

)−1(λ
λ−1r

)

using the block matrix inversion formula (appendix. A.2):

α = rTS−1r, β = (ψ − α)−1, λ = 4
√
ψ(rTS−1r), (3.37)

3.7. STEPWISE OPTIMAL ELIMINATION OF OFF-DIAGONAL ENTRIES 119

(
ψ rT

r S

)−1(
λ

λ−1r

)
=

(
β −β(rTS−1)

−(S−1r)β S−1 + (S−1r)β(rTS−1)

)(
λ

λ−1r

)

=

(
λβ − λ−1βα

(S−1r) (−λβ + λ−1(1 + βα))

)

=

(
β(λ− λ−1α)

(S−1r)β (−λ+ ψλ−1)

)
. (3.38)

The last equation follows from observing 1 + βα = βψ. The final result (3.32) is obtained by
substituting (3.38) into (3.36).

Solution for the n-Dimensional Case

Theorem 3 allows to eliminate one column of coupling coefficients. So the idea for eliminating
a whole block A21 of coupling coefficients is to apply theorem 3 successively to each column
of A21 (Fig. 3.12, removeCoupling). However, care must be taken, not introduce coefficients
into columns already eliminated. This means that the corresponding entries of x must be 0

when optimizing xTA−1x. This is equivalent to removing those rows / columns from A−1. Also
equivalent, but easier to implement is the following approach iterating through all columns i of
A21: First compute an elimination matrix xixTi for column i with block row 2 by theorem 3.
Then apply lemma 10 to eliminate the rest of that column by a second elimination matrix wiw

T
i .

This forces the following elimination matrices to be 0 in column / row i. The final elimination
matrix returned as result is

∑
i xix

T
i .

In order to apply theorem 3 it is necessary to compute A−1
22 . An efficient way for this is

updating the inverse after each change in A using the Sherman-Morrison formula (appendix
A.2). Subtraction of the second elimination matrix wiwTi does not affect A22, since wi2 = 0, so
no update is necessary.

Rank deficiency

In the overall algorithm matrix A is the information gained since the last change of the actual
BIB. Sometimes A can be rank deficient, being SPSD but not SPD anymore. This happens when
some landmark is represented in the old actual BIB but has not been observed since the last
change. Theoretically this is not too much of a problem: If xxT ≤ A, x must be orthogonal to
kernel(A). Otherwise, there would exist a y ∈ kernel(A), with xTy 6= 0 and

yT (xxT)y = (yTx)2 > 0 = yTAy (3.39)

120 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

Figure 3.12: removeCoupling
(
A, b, x̂

)

A, b: IB xTAx+ xT b, block A21 of A to be eliminated; x̂ = −A−1b/2

IF col(A21) > row(A21)

THEN exchange block row / column 1 and 2 in A, b
W := A; S := W22; SI := S−1

FOR i = 1 . . . col(A21)

Find elimination matrix xxT for row i of W2 by theorem 3. (Using SI as S−1)
A := A− xxT ; W := W − xxT ; b := b− 2x(xT x̂)

S := S − x2x
T
2 ; SI := SI + 1

1−xT2 SIx2
(SIx2)(SIx2)T

Find elimination matrix wwT for row / column i of W by lemma 10
W := W − wwT

return A, b

contradicting xxT ≤ A. So the problem could be reduced to the regular part ofA by transforming
A into a basis for image(A). However, such an approach is practically cumbersome, since due to
round-off errors A never is exactly singular. In this thesis, a heuristical solution is applied (Fig.
3.10, extractBIBFromEKF): When computing the information gained through measurements
only (1− ε)χ2

extracted instead of χ2
extracted is subtracted. The result is ≥ εχ2

extracted and thus SPD.
After performing the elimination the missing εχ2

extracted is subtracted. The result can be slightly
negative. The algorithm requires only the sum of all BIBs not each individual BIB to be positive
definite, so this does not pose a problem. In the experiments for this thesis ε = 0.001 was chosen.

3.8 Approximation Quality

Structure of the Discarded Information

Consider again the example of figure 3.1 with three landmarks a, b, c decomposed into χ2
1(a, b)

and χ2
2(b, c). Assume the robot r observes the landmarks in the following sequence (Fig. 3.13):

landmark a⇒ odometry 1⇒ landmark b⇒ odometry 2⇒ landmark c

The combination of observation a, odometry 1 and observation b gives information on the relation
a − b stored in χ2

1. To transfer the robot pose into χ2
2 it is expressed relative to b, since a is not

represented in χ2
2. Therefore the relations a− r and b− r are converted into relations a− b and

b − r. Thereby some part of the information is sacrificed, since a − b and b − r both involve
information from the original b− r measurement, so the information must be split. The relation
b − r defines the robot pose relative to landmark b and is used to transfer this information into

3.8. APPROXIMATION QUALITY 121

a) χ2
1:
ja jb
jr ⇒

ja jb
jr ⇒
ja jb
jr →
ja jb
jr →

b) χ2
2: →
jb
jr
jc
⇒
jb
jr
jc
⇒
jb
jr
jc

c) χ2
1+χ2

2:
ja jb jc

exact:
ja jb jc

Figure 3.13: Approximation when changing a BIB: a) Operations on χ2
1: observation of a, move-

ment of robot r, observation of b, elimination of the coupling between a and r (the information
b− r is implicitly split). b) Operations on χ2

2: transfer of r, movement, observation of c c) Infor-
mation in χ2

1 + χ2
2 vs exact information: The uncertainty of a− c in χ2

1 + χ2
2 includes > 2 times

the uncertainty of b− r, which does not affect a− c in an exact representation.

χ2
2. Combining the relation with odometry 2 and observation c gives information on the relation
b− c stored in χ2

2.

In comparision with [Fed99] the strength of the algorithm lies in the exactness of the remain-
ing computation, once information has been stored in a BIB. Implicit information like the relative
position a− c in the example is handled correctly, thus preventing any gap or break in the map.
Consider the information on a, b, c actually discarded. The information gained from observation
b is split into two parts: One of them is integrated into χ2

1 for the relation a− b and the other one
is integrated into χ2

2 for the relation b−c. From the view of each relation the effective uncertainty
of observation b is increased by a factor

√
2. If the odometry error is large compared to the error

of observing a landmark, the additional error introduced by the approximation is comparatively
small. The relation a − c is affected in a similar way: It is implicitly derived by the algorithm
as (a− b) + (b− c) and thus contains two times the uncertainty of the split observation b, being
about twice as large as its original uncertainty. Again, this additional error must be compared to
the odometric error (odometry 1 and 2).

This example illustrates that the quality of the approximation depends on the ratio between
the uncertainty of landmark observation and and the odometric uncertainty of a distance about
the size of one region. Usually, mobile robots have pretty large odometry errors, so rather small
regions should already achieve good results.

122 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

In the experiments in §5 and §6 the regions have a diameter of at most 5m and 7m.

The Necessity of Discarding Information

After separation of information about local landmarks, the remaining information about the robot
pose can be uniquely expressed as a substitution by the local landmarks’ positions plus additional
uncertainty (lemma 8). This means that the robot pose is defined relative to the local landmarks,
i.e. if an estimate for all local landmarks is given, an estimate for the robot pose can be derived.
If one of the landmarks is not available, the substitution is without information. This can be
verified by the following argument: If information on the robot pose is available with or without
information on some landmark, then this landmark is either completely uninvolved or the infor-
mation on the robot pose is redundant, generating implicit information on the landmark. This is
a contradiction that all information about the landmarks has been separated in the beginning.

When changing the actual BIB, some landmarks represented in the old actual BIB are not
represented in the new one. So the information on the robot pose remaining after separation of
all information about the landmarks is of little use in the new BIB. In order to obtain information
only involving landmarks represented in the new actual BIB some information on landmarks
represented in the old actual BIB must be sacrificed. As a consequence the estimate is a con-
servative approximation of the optimal least squares estimate. This problem of conservatively
transferring the robot pose between different regions is the fundamental problem for all submap
based approaches [Fed99].

Requirement (R1)

In requirement (R1) Bounded Uncertainty, postulated in §2.13, it has been pointed out that ap-
proximations in a SLAM algorithm certainly may diminish precision in all aspects of the map
but should not lead to a nearly complete loss of information in any aspect.

As established by lemma 17, the minimization criterion used by the algorithm is equivalent to
relative growth of covariance. So each individual elimination operation respects the demand of
(R1) to the largest possible extent. The remaining question is whether the sequence of elimination
operations performed while the robot is moving through the building still complies with (R1). In
this thesis, an experimental investigation (§5.2) of this question has been carried out. Furthermore
the following general argument explains why the algorithm can be expected to behave according
to (R1):

Each measurement is affected by the elimination operation only once, i.e. the next time when
the actual BIB is changed. As long as the fraction of information lost in each elimination op-

3.9. RELINEARIZATION BY NONLINEAR ROTATION 123

eration is bounded, the fraction of information lost on the whole map holds the same bound.
Consequently the map is also topologically consistent: If a pair of landmarks is being observed
to be close to each other with suitable precision this information will be stored in the actual
BIB with a slightly smaller but nonetheless significant precision. Once stored it will remain
in the BIB and all following estimates will predict those landmarks to be close to each other.
This is a highly important property of structural quality not met by several other submap based
approaches, if two landmarks are represented in different submaps [Fed99, Jen01].

3.9 Relinearization by Nonlinear Rotation

SLAM, the problem of estimating a map from odometry and landmark observations is essentially
nonlinear. Nearly all approaches linearize the measurement functions and are thus subject to
linearization error. As pointed out in §2.9 there are two sources of nonlinearity although only
the orientation nonlinearity poses a problem. It severely distorts the map, when the robot’s
orientation uncertainty gets larger than about ≈ 15◦ (see §2.9).

A straightforward way to handle nonlinearities is to use an iterative nonlinear least squares
algorithm like Levenberg-Marquardt [PTVF92, §12]: After computing a linearized estimate all
measurement Jacobians have to be evaluated at the new estimate (relinearized) and the whole
process is iterated until convergence. When different measurements have been integrated into
the same information block or covariance matrix, it is not possible to relinearize one of them
any more. At first sight this approach seems to require storing all measurements making the
size of the map representation grow even when moving through an area visited before and thus
violates requirement (R2) (§2.13). Furthermore, relinearizing several measurements is a type of
update that cannot be performed efficiently by EKF equations. Handling nonlinearity appears to
be computational expensive. This probably is the reason why the problem is not much addressed
in literature [JU96, FHBH00].

The tree map data structure used in the algorithm of this thesis is ideally suited to deal with
orientation nonlinearity. Since the measurements are integrated into BIBs the problem of grow-
ing map representation is avoided. As distinct BIBs are still independent, a nonlinear rotation
can be applied to an individual BIB compensating for the orientation error of the BIB as a whole:

Relinearizing an Information Block

All measurement functions f are independent of translation and rotation:

f(x) = f(Rotα x), (3.40)

124 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

with Rotα consisting of (cosα − sinα
sinα cosα) diagonal blocks for each landmark represented by x. By

taking the derivative of the equation, it can be seen that the Jacobian of f at a rotated linearization
point Rotα x is the rotated Jacobian at x:

∂f(x)

∂x
=
∂(f(Rotα x))

∂x
=
∂f(x)

∂x

∣∣∣
Rotα x

·Rotα (3.41)

∂f(x)

∂x

∣∣∣
Rotα x

=
∂f(x)

∂x
· Rot−α . (3.42)

Thus, when computing a BIB using a linearization point rotated by α, the result is a BIB rotated
by −α:

χ2(x) = xTAx + xT b (3.43)

χ′2(x) := χ2(Rot−α x) = xT (RotT−αARot−α)︸ ︷︷ ︸
A′

x+ xT (RotT−α b)︸ ︷︷ ︸
b′

. (3.44)

Such a rotation can be applied to compensate for the landmarks of the BIB being rotated in the
estimate. This way the measurements are approximately relinearized at a new estimate without
actually recomputing and integrating all measurement Jacobians. Considering the linearization
error, the different BIBs are now independent and the situation is like having many small maps
instead of one large map. The remaining linearization error is the one each BIB would have, if
seen as an individual map. This error is much smaller and probably even negligible. There is
one exception to this rule i.e. the BIB containing the information of the initial robot pose being
(0, 0, 0). This information is absolute and hence not rotation invariant. So the BIB and all its
ancestors cannot be relinearized. However, since the orientation of the BIB is fixed, it is never
subject to significant linearization error anyway.

The general idea can be applied in a straightforward way by relinearizing some BIBs with
large error and consequently updating the CIB and SIB of all ancestor nodes. If a large loop is
closed many BIBs are rotated and are suddenly subject to linearization errors. Instantly relin-
earizing all these BIBs takes more than O(k3 logn) and at most O(k2n) computation time. In
order to avoid this problem only a few BIBs are relinearized in each step. So final iteration to
convergence is carried out in many small steps interleaved with the robot moving on. Thus, the
SLAM algorithm is not blocked giving an preliminary estimate but it takes some time until the
final result is available.

This process can be accelerated considerably by relinearizing not only BIBs but also internal
nodes of the tree, removing the common orientation error of a large region. If an internal node is
relinearized the orientation error of the region of that node as a whole is compensated, whereas
the relative orientation error of the different subregions remains. Since the linearization error
grows quadratically with the error in orientation used for computing the Jacobians, even such

3.9. RELINEARIZATION BY NONLINEAR ROTATION 125

a first step will reduce the error in the whole region drastically. Further relinearization steps
can follow to individually relinearize subregions reducing the error even more. This way the
linearization error decays more rapidly.

Normally, when rotating a node, all SIBs of descendants of that node would also have to be
rotated, but this would take too much computation time. Instead, the rotation angle is stored at the
node and applied to the SIB, when it is actually needed to compute an estimate applying lemma
11. The necessary computations for rotating a SIB χ2

SIB described by the parameter H, h, P−1

are given by

χ2
SIB

(
z

y

)
=(Hz + h− y)T P (Hz + h− y) (3.45)

χ′2SIB(x) =χ2
SIB(Rot−α x) = χ2

SIB

(
Rot−α y

Rot−α z

)
(3.46)

=
(
H(Rot−α z) + h− (Rot−α y)

)T
P
(
H(Rot−α z) + h− (Rot−α y)

)
. (3.47)

Since rotation matrices are orthogonal, Rot−α RotT−α = I and χ′2SIB(x) is

=
(

RotT−αH Rot−α︸ ︷︷ ︸
H′

z + RotT−α h︸ ︷︷ ︸
h′

−y
)T
· RotT−α P Rot−α︸ ︷︷ ︸

P ′

·
(

RotT−αH Rot−α z + RotT−α h− y
)

(3.48)

P ′−1 = RotT−α P
−1 Rot−α . (3.49)

Updating the estimate after relinearizing a BIB only requires processing up to the root and down
to the actual BIB again (O(k3 logn)). Since all ancestor nodes of the relinearized BIB have to be
recomputed anyway, the sibling nodes of these ancestors can be relinearized without additional
cost. This method is very powerful because even after closing a large loop the linearization error
can be drastically reduced by a single O(k3 log n) operation.

Tracking the Linearization Point

The algorithm keeps track of the linearization points used in the different IBs of the tree map.
This is being done heuristically: Formally, the measurement functions and thus the linearization
points involve the different robot poses which are not represented in the map at all. So storing
the actual linearization points is useless. Instead, for each BIB the algorithm stores the estimate
for landmarks’ positions as reported by the EKF after integrating all measurements into this BIB.
Even though the absolute orientation of the robot is usually quite uncertain, the error of the ori-
entation relative to landmarks is quite low (< 5◦) and – what matters most – is not accumulating

126 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

(§2.2). As discussed in §2.9 the linearization error induced thereby is very small (< 0.4%) and
therfore usually negligible compared to the stochastical error of the estimate. Thus, whenever
two IBs are to be integrated they are both rotated before, so that the linearization point is aligned
as well as possible with the most recent estimate.

For each IB χ2 the algorithm stores a triplet e := (x0, w, e0). The first component x0 is the
vector of landmark positions reported by the EKF while integrating measurements into this BIB.
The second component w is a weight vector defining the importance of the different landmarks
while aligning x0 with the most recent estimate x̂. The last component heuristically measures
the linearization error made during computation of that IB. The triplet e is initialized from the
estimate x̂ of the EKF and from the information χ2(x) = xTAx+ xT b transferred from the EKF
to the actual BIB during a global update (Fig. 3.10, extractBIBFromEKF):

e := (x̂, w, 0), with wl := trAll ∀l = 1 . . . k. (3.50)

As usual matrix A and vector x consist of k blocks of size 2 × 2 and 2 respectively each repre-
senting a landmark. The expressions All and xl refer to the block corresponding to landmark l.
The weight vector w reflects the amount of information on different landmarks in χ2 using the
trace of the diagonal block All. This block is the information matrix for landmark l, if all other
landmarks were known. So its trace is a heuristical value for defining the relative importance
of landmark l. The reason for introducing a weight vector is to prevent inprecisely measured
landmarks from disturbing the rotation angle.

When an IB is rotated by α and moved by d, the linearization point x0 is rotated and moved
accordingly resulting in

x′0 := Rotα x
0 + Transd, e′ := (x′0, w, e0). (3.51)

Here Transd is a vector of k blocks with each block equal to d. Adding Transd moves all
landmarks by d. As the IBs are translation invariant and as translation is a linear operation, χ′2

is not affected by d only by α as in (3.44).

For a vector x the weighted squared distance between x and x0 defines a measure for the
linearization error at x:

e(x) := e0 +

k∑

i=1

wi(x
0
i − xi)T (x0

i − xi). (3.52)

Obviously, the minimum of e(x) is e0 at the linearization point x0. When two IBs χ1 and
χ2 are integrated the corresponding linearization error functions e1(x) and e2(x) described by

3.9. RELINEARIZATION BY NONLINEAR ROTATION 127

(x0
1, w1, e

0
1) and (x0

2, w2, e
0
2) are added. The result

e′(x) :=e1(x) + e2(x) =

k∑

i=1

w1i(x
0
1i − xi)T (x0

1i − xi) +

k∑

i=1

w2i(x
0
2i − xi)T (x0

2i − xi) (3.53)

=
k∑

i=1

(w1i + w2i)︸ ︷︷ ︸
w′i

(
w1ix

0
1i + w2ix

0
2i

w1i + w2i︸ ︷︷ ︸
x′0i

−xi
)T(

w1ix
0
1i + w2ix

0
2i

w1i + w2i
− xi

)

+ e0
1 + e0

2 +

k∑

i=1

w1i + w2i

w1iw2i

(
x0

1i − w0
2i

)T (
x0

1i − w0
2i

)

︸ ︷︷ ︸
e′0

(3.54)

again has the same structure which can easily be verified by expanding e1(x), e2(x) and e′(x)

but is omitted here for lack of space. It is compatible to (3.52) and can be described by a triplet
(x′0, w′, e′0), x′0 being interpreted as the linearization point for the IB resulting from integration
of χ2

1 and χ2
2. The inconsistency between x0

1 and x0
2 is reflected by e′0 which therefore mea-

sures the linearization error already inherent in the resulting IB. Prior to integration both IBs are
rotated, so x0

1 and x0
2 are both aligned with x̂. This implicitly minimizes e′0. 6

Determination of the Rotation Angle

Before the integration of two IBs (§3.3) both are moved and rotated by applying (3.44) and (3.51),
so the linearization error at the most recent estimate e′(x̂) is minimal. The following lemma gives
an analytical solution to this problem. The proof is given in appendix B.

Lemma 19. Let x0 and x̂ be two vectors of landmark positions and w a corresponding weight
vector. Let

eα,d(x̂) :=

k∑

i=1

wi(x
′0
i − x̂i)T (x′0i − x̂i), with x′0 := Rotα x

0 + Transd (3.55)

be the weighted squared distance between x̂ and x0 rotated by α and moved by d. Then the α, d
combination, that minimizes eα,d(x̂) is

¯̂x :=

∑k
i=1 wix̂i∑k
i=1 wi

, x̄0 :=

∑k
i=1 wix

0
i∑k

i=1 wi
, α = arctan2

(
−¯̂xxx̄0

x − ¯̂xyx̄0
y

−¯̂xyx̄0
x + ¯̂xxx̄0

y

)
, d = ¯̂x− Rotα x̄0.

(3.56)

6Defining the initial weights as wi = trAii in (3.50) is consistent with w′i = w1i + w2i in (3.54), because
trA′ii = tr(A1ii + A2ii) = trA1ii + trA2ii with A1, A2 and A′ being the information matrices of χ2

1, χ2
2 and

χ′2 = χ2
1 + χ2

2 respectively.

128 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

Figure 3.14: computeCIBAndSIB
(
(χ2

1, e1), (χ2
2, e2), E

)
nonlinear

χ2
1, χ2

2: IBs to be integrated; E : set of landmarks to be eliminated
IF χ2

2 6= 0

THEN IF Exists a saved estimate x̂

THEN Find optimal rotation α↙ and translation d by lemma 19 with x̂ (0 if not
marked rotatable). Store α↙
Rotate and move χ2

1, e1 by α↙, d using (3.44), (3.51)
Find optimal rotation α↘ and translation d by lemma 19 with x̂ (0 if not
marked rotatable). Store α↘
Rotate and move χ2

2, e2 by α↘, d using (3.44), (3.51)
(A1, b1) := χ2

1; (A2, b2) := χ2
2

(x0
1, w1, e

0
1) := e1; (x0

2, w2, e
0
2) := e2

Sort and extend A1, A2, b1, b2, x0
1, x0

2, w1, w2, such that columns and rows corre-
spond to the same landmark. And landmarks E are the first block.
A := A1 +A2; b := b1 + b2

Use (3.54) to compute e′ := (x′0, w′, e′0)

ELSE (A, b) := χ2
1; e′ := e1

Apply lemma 8 to compute χ2
CIB, χ2

SIB, H , h, P−1

Remove rows corresponding to E from x′0 and w′

IF χ2
1 and χ2

2 are marked as rotatable

THEN mark χ2
CIB as rotatable

return χ2
CIB, e′ as CIB and χ′2SIB, H , h, P−1 as SIB

2m

Figure 3.15: Result of the proposed algorithm for the example introduces in figure 1.3. The
corresponding EKF and ML estimates are shown in figure 2.5a and 1.3c. It can be observed, that
the algorithm provides a very good estimate despite the large orientation error of ≈ 140◦.

3.10. DISCUSSION 129

The complete procedure for combining two IBs with nonlinear rotation is described as a
structure chart (Fig. 3.14, computeCIBAndSIB) replacing the linearized version in figure 3.2. The
version of computeCIBAndSIB used in the algorithm is the only major difference between linear
and nonlinear mode. Additionally, in nonlinear mode some further bookkeeping is necessary and
in case of closing a large loop several iterations of relinearization must be performed (§4.3).

3.10 Discussion

Summary

The algorithm presented in this thesis achieves its efficiency by processing information as a col-
lection of small Information Blocks (IBs). Each IB represents some uncertain information about
a small set of landmarks. The decomposition of information is based on hierarchical decom-
position of the map into regions represented as a tree (tree map). For each region condensed
information of all measurements made in that region on landmarks observable from outside the
region is computed and stored at the regions node. Whenever the robot is outside the region
only condensed information needs to be known about this region. The key advantage of this data
structure is that integrating a group of local landmark observations only requires an update of
condensed information from the leaf which represents the corresponding region up to the root
of the tree. Such an operation takes O(k3 logn) computation time (n number of landmarks, k
number of local landmarks)7. The tree map needs O(kn) storage space meeting requirement
(R2) and is exceeding requirement (R3). As long as only landmark – landmark measurements
are involved, the algorithm computes the exact optimal estimate except for errors generated by
linearization and numerics exceeding requirement (R1).

In order to integrate landmark – robot observations and odometry measurements an Extended
Kalman Filter (EKF) representing local landmarks is used for preprocessing. Each measurement
only requires O(k2) computation time independent from the overall size of the map. When the
actual region is left and a new region is entered information about landmarks is transferred into
the tree map requiring a global update (O(k3 logn)). Information about the robot pose is directly
transferred into a new EKF state by conservative approximation incorporating an optimization
process to lose as little information as possible. Usually, this approximation only increases the
estimation error by a small constant factor. This is compliant with requirement (R1) saying that
the uncertainty of any aspect of the map should not be much higher than the uncertainty that
could be derived from measurements. As a consequence the map is topologically consistent: If

7If the building is topologically suitable as discussed in §3.5

130 CHAPTER 3. HIERARCHICAL MAP DECOMPOSITION

two landmarks have been observed to be close to each other they are represented to be close to
each other in the map.

The algorithm provides a nonlinear extension that allows to handle the linearization error in
the measurement equations by nonlinear rotation of individual IBs. This is a way to approximate
the new measurement Jacobians without actually recomputing them after a region has been ro-
tated in the estimate. This relinearization procedure is applied to all regions updated anyway.
When closing a loop further regions are updated. This approach takes several iterations to con-
verge being interleaved with further global updates as the robot continues moving. However,
even the first estimate after one iteration is much better than the result without relinearization at
all and needs only slightly more computation time (Fig. 3.15).

This chapter introduced the subalgorithms to manipulate information blocks. They mostly
perform numerical linear algebra computation and are the only place in the overall algorithm
where actual data are processed. Some further remarks on implementation are provided by ap-
pendix C.1. The next chapter will deal with the bookkeeping part. It maintains the tree map
representation of the hierarchy and uses the following three subalgorithms derived in this chapter
to manipulate information:

• Integrate and decompose IBs (Fig. 3.2, 3.14, computeCIBAndSIB)

• Compile an estimate (Fig. 3.4, computeEstimate)

• Transfer information from the EKF into the tree map (Fig. 3.10, extractBIBFromEKF)

Annotation

To conclude the discussion, assume a different view on the same problem:

What does a least squares estimator finally do when providing an estimate for some landmarks
based on measurements involving many more landmarks?

All measurements can contain some indirect information on the landmarks to be estimated,
so an entire information matrix has to be computed. In order to provide an estimate the inverse
of this matrix is required. If only a few landmarks are to be estimated, a small part of the inverse
suffices. So in some sense the purpose of the algorithm is to compute a small part of the inverse
of a large matrix efficiently. From this perspective when computing P −1 from P for the SIB
(lemma 8) the actual inversion occurs. Here the information is converted from information to
covariance matrix representation. This can also be seen from the units of measurement, which
are inverse squares distance (m−2) in BIB and CIB and square distance (m2) in the matrix P−1

of SIB. Matrix H also used in SIB has no unit.

Chapter 4

Maintenance of the Hierarchy

Chapter 3 provided subalgorithms to manipulate so called Information Blocks (IBs) which are
pieces of information about some landmarks. The IBs are integrated according to a hierarchical
decomposition of the map represented by a tree. This chapter explains the bookkeeping part
of the algorithm maintaining the tree and integrating the information using the subalgorithms
derived in the preceding chapter.

The original information is stored as Basic Information Blocks (BIBs) in the leaves of the
tree. By definition 3 and (4.1) each node represents those landmarks represented both in some
BIBs below that node and in some BIBs not below that node. So a certain landmark is rep-
resented a) in the leaves where the corresponding BIB represents the landmark and b) in all
ancestor nodes of these leaves up to the least common ancestor of all of them. This least com-
mon ancestor is called the landmarks’ elimination node, i.e. the node the landmark is eliminated
from representation and where final integrated information of this landmark is stored.

Each node contains two information blocks: One is the Condensed Information Block (CIB)
containing the integrated information of all BIBs below this node on the landmarks represented
at this node. The other one is the Substitution Information Block (SIB) containing the complete
integrated information on the landmarks eliminated at this node.

While the robot moves through the map there is always one actual BIB into which the current
measurements are being integrated. As long as measurements involve only landmarks repre-
sented at the actual BIB computation time does not depend on the maps size. When the actual
BIB must be changed a global update has to be performed. In so far the behavior is similar to
Compressed EKF [GN02]. When utilizing a tree map it is not necessary to modify the whole
representation because recomputing all nodes from the actual BIB up to the root will do. This is
the key advantage gained by organizing computation hierarchically using a tree.

131

132 CHAPTER 4. MAINTENANCE OF THE HIERARCHY

a b c b c d

b c d

d e f c d e f

c d e f

c d e e g h i

e

PSfrag replacements n

n↙ = n↓r n↘ = n↓r

r

n↑

Figure 4.1: Notation of different nodes in a tree: Node (n), parent (n↑) and children (n↙, n↘). In
each node the represented landmarks are listed (e, g, . . .). The landmarks eliminated at a node
are slashed (6c, 6d). In this example, r is a descendant of n↙, then n↓r = n↙ and n↓r = n↘. Here
L(n) = {e, g}, L(n↙) = {c, d}, L(n↘) = {c, d, e, g} and L(n↑) = ∅.

In this chapter the bookkeeping part of the algorithm is described. Its purpose is to build and
maintain the tree. This is done by operating on the tree itself and using computeCIBandSIB (Fig.
3.2, 3.14) to update CIB and SIB stored at a node from the CIBs of its children. This way the
following properties of the tree map are maintained:

1. All CIBs and SIBs are up to date

2. Each landmark’s elimination node is the least common ancestor of all BIBs representing
that landmark

3. The tree is balanced

4. The tree hierarchically partitions the set of BIBs in a way that at any level of hierarchy a
partition shares only a few landmarks with BIBs not belonging to the partition. (Thus the
node corresponding to the partition represents only a few landmarks, and computation at
this node is efficient)

The first three items are pure bookkeeping properties that can be perfectly maintained. The
fourth item is an optimization task to find the best Hierarchical Tree Partitioning [Vij91, HL95]
which is theoretically NP-complete [GJ79]. The algorithm contains an incremental tree opti-
mization subalgorithm that improves the partitioning represented by the tree by moving a single
subtree in each optimization step. As a consequence, O(logn) additional nodes have to be up-
dated in each step taking O(k3 logn) computation time. Hence the asymptotical complexity is

133

not affected. The algorithm’s overall performance critically depends on this subalgorithm being
able to maintain a suitable partitioning. (see §3.5 and §4.4)

As discussed in §3.5 all statements about asymptotical complexity in this thesis depend on
the mapped building being topologically suitable. This means that all nodes represent O(k)

landmarks and a BIB shares landmarks with at most O(1) different BIBs. Under this assumption
the tree map needs O(kn) storage space and a global update operation recomputes O(logn)

nodes with O(k3) time per node and O(k3 + k2 log n) additional bookkeeping overhead. So
the overall complexity is O(k3 log n). This result will be discussed in detail in §4.6 after the
algorithm has been presented.

Notation

The subalgorithm described in this chapter works on the tree considering sets of landmarks being
represented somewhere in the tree. In order to make the description easier to understand, a few
notational conventions will be defined as follows:

For a node n, the terms ancestor of n, descendant of n, below n or above n shall always
include n if not mentioned otherwise. The notation for different nodes related to a node n is
shown in the following table and figure 4.1. A complete list of symbols can be found on page 25.

Symbols Definition
n, r, . . . Boldface Roman letters correspond to nodes in the tree

nCIB, nSIB, nBIB,
nsize , nα, nx̂

Subscripts denote components stored at a specific node by the
algorithm (CIB, SIB, BIB, size, α, x̂)

n↙, n↘, n↑ Subscript arrows denote a nodes left child, right child and par-
ent

n↓r, n↓r For a node n and a descendant node r, n↓r denotes the child of
n that is ancestor of r and n↓r denotes the other child, which is
not ancestor or r.

root Root of the tree

L(n) Set of landmarks represented at node n

eN [l] Elimination node of landmark l (stored in an array by the algo-
rithm)

A,B, C, . . . Calligraphy letters correspond to sets of landmarks

Following definition 3 in §3.2, the set of landmarks represented at a node n is given by

L(n) = {l|∃ leaf n1 below n : l ∈ L(n1BIB) ∧ ∃ leaf n2 not below n : l ∈ L(n2BIB)} . (4.1)

134 CHAPTER 4. MAINTENANCE OF THE HIERARCHY

Figure 4.2: integrateTreemapObservation
(
z, Cz

)
z: measurements,Cz : covariance of z; global: x̂EKF: EKF estimate, CEKF: covariance of x̂
IF isTooLarge (x̂EKF, z) ∨ ∃l ∈ L(z) : l 6∈ L(x̂EKF) ∧ ∃n : l ∈ L(n)

THEN (newBIB, isNonlinearLoop) := findOrCreateBIB (z)

IF isNonlinearLoop THEN integrateEKFObservation (z, Cz)

(χ2
BIB, (P

−1, H, h)) := extractBIBFromEKF (x̂EKF, CEKF,L(z))

setBIB
(
actBIB, χ2

BIB

)

FOR optHTPSteps times

optimizeHTP ()

IF isNonlinearLoop THEN iteratedRelinearize
(
(P−1, H, h)

)

α := accumulatedAngle (actBIB) ; actBIB := newBIB
(x̂, C) := compileEKF

(
actBIB, (P−1, H, h), α

)

IF not isNonlinearLoop THEN integrateEKFObservation (z, Cz)

ELSE integrateEKFObservation (z, Cz)

4.1 Main Algorithm

A SLAM algorithm has to provide two main routines called by the application process-
ing a) odometry measurements and b) a set of landmark observations. For EKF these are
integrateEKFOdometry (Fig. 3.6) and integrateEKFObservation (Fig. 3.7).

The algorithm described in this thesis uses an EKF as a front end to process indi-
vidual measurements in O(k2) time. Odometry measurements are directly handled by
integrateEKFOdometry. If possible landmark observations are processed directly by the EKF.
This is the case for landmarks represented in the EKF and for new landmarks as long as there are
not too many landmarks represented. If a known landmark is observed and the landmark is not
represented in the EKF information about this landmark has to be retrieved from the tree map
and a global update is necessary.

Before integrating the measurements it has to be ensured that the actual BIB represents all
landmarks involved. This may mean to make another BIB the actual one, to extend an existing
BIB and make it actual or to create a completely new BIB. The heuristical criterion to choose
one of these options is described in §4.2 (findOrCreateBIB). With regard to perform the change
to the new actual BIB, all information from the EKF except about the robot pose is stored in the
actual BIB as described in §3.6 (extractBIBFromEKF). While this is being done some updating
in the tree map (§4.3, setBIB) is carried out. In the next step an estimate of the landmarks in the
new BIB is compiled. The estimate is integrated with the information about the robot pose from
the old EKF state (§4.3, compileEstimate) yielding a new EKF state. During these operations
the algorithm performs some re-organization of its internal data structure by executing a fixed

4.2. HEURISTICAL BIB CHANGING CONTROL 135

number of optimization steps of the partitioning described by the tree (§4.4, optimizeHTP).
In the particular situation of closing a large loop in nonlinear mode (detected by

findOrCreateBIB) iterative relinearization is required. The actual integration of a measurement
is always performed by the EKF while the algorithm itself transfers information from the EKF
to the tree map and vice versa (§3.6). If a single measurement results in a large change of the
robot orientation estimate, the EKF state and thus the actual BIB will be affected by linearization
errors. As this error appears in a single BIB and not between two different BIBs it cannot be
corrected by the relinearization scheme proposed in §3.9. The following approach avoids this
problem: In the special situation of closing a large loop the measurements are directly integrated
into the EKF as if they referred to new landmarks and then a global update is performed. So the
loop is closed by a global update and not by the EKF. Thus, the actual BIB is not affected by
linearization errors. Instead, the linearization error occurs between the actual BIB and the other
BIB containing the landmark having closed the loop. Hence it can be corrected by a relineariza-
tion scheme iteratively relinearizing until none of the rotation angles changes too much any more
(< maxAngle = 2◦ in the experiments in this thesis).

A chart of the main algorithm is shown in (Fig. 4.2, integrateTreemapObservation). The
data flow between EKF and tree map has been explained in §3.6, figure 3.8.

4.2 Heuristical BIB Changing Control

New measurements are integrated into a designated BIB called actual BIB. While the robot is
moving, this BIB has to be changed from time to time through the heuristical control discussed
in this section. Given a set of landmark observations, the control chooses a BIB into which the
measurements can be integrated, either by extending a BIB to represent all landmarks necessary
or by creating a new BIB. The control is designed to avoid BIBs with too many landmarks, a
landmark being represented in too many BIBs and having to change the actual BIB too often,
which all three can deteriorate the algorithms performance.

In order to choose the best new BIB, a set of five criteria is obeyed: Criterion (I) defines
potential new BIBs; (II) requires which landmarks have to be represented or must be introduced
by extending the new BIB; (III) limits the extension of a BIB to meet (II); Criterion (IV) defines
which BIB to choose when several are possible and when to create a new BIB. Finally (V) is a
special rule to trigger iterative relinearization when closing a large loop in nonlinear mode.

(I) Coherence: New and old actual BIB must have at least two landmarks in common.

There are two reasons to discard BIBs with less than two landmarks in common:

136 CHAPTER 4. MAINTENANCE OF THE HIERARCHY

First: When changing the actual BIB, the information about the robot pose must be trans-
ferred from the old EKF state to the new EKF state (Fig. 3.8). So, the robot pose must be
expressed relative to landmarks both represented in the old and the new actual BIB. This is not
possible if both had less than two landmarks in common.

Second: The nonlinear rotation scheme proposed in §3.9 can correct errors in relative ori-
entation of two BIBs even after measurements have been integrated into these BIBs. On the
contrary correcting errors is not possible after different measurements have been integrated into
the same BIB. Thus the algorithm requires that the measurements integrated into the same BIB
have a relative orientation error that allows linearization (/ 5◦). This is provided if old and new
actual BIB have two landmarks in common.

(II) Representation: The new actual BIB must be extended to represent the observed land-
marks and the landmarks that are observable according to the EKF.

The landmarks observed must be represented in the new BIB to be able to integrate the
measurement. Some landmarks can be predicted to be observable from their position relative to
the robot as reported by the EKF. These landmarks are required to be represented in the new BIB
to avoid having to change the actual BIB too soon again.

(III) Size: The distance between two landmarks in the same BIB may not exceed a specified
limit maxDistance (after a potential extension induced by (II)).

This is the criterion actually making the algorithm divide measurements and thus the map into
different BIBs. The specified distance determines the size of the BIBs and thus influences k. A
rule of thumb is the double viewing range of the landmark sensor (5m and 7m in the experiments
in §5 and §6).

An alternative criterion would directly limit the number of landmarks represented in a single
BIB. The criterion proposed is a much better approach as can be seen in the following example:
When for instance a new corridor is mapped usually some landmarks are missed and will only be
mapped when the robot moves through the same region again. With a maximum distance crite-
rion these landmarks can easily be integrated into an existing BIB. When enforcing a maximum
number of landmarks criterion they would have to be stored in new BIBs which would basically
correspond to the same region of some previous BIBs. This would mean to change the actual
BIB very often when moving through the corridor.

The following criterion defines, which BIB to choose if several are possible by (I) – (III):

(IV) Optimality: Among all BIBs fulfilling (I) and being extendable to meet (II) without

4.2. HEURISTICAL BIB CHANGING CONTROL 137

Figure 4.3: findOrCreateBIB
(
z
)

z: measurements; global: x̂EKF: EKF estimate
Compute observable landmarksO from x̂EKF

bib := allBIBsRepresenting (L(x̂))

M := L(z) ∪ O; N := L(z); best := |M| ; bestN := ()
FOR All nodes n ∈ bib

IF |L(x̂EKF) ∩ L(n)| ≥ 2

THEN N := N −L(n)

IF not isTooLarge (nx̂, z)

THEN cost := |M−L(n)|
IF cost < best THEN best := cost ; bestN := n

IF bestN 6= ()
THEN Extend BIB bestN to represent all landmarks fromM except new ones.

ELSE IF |M ∩ L(x̂)| < 2 THEN M :=M∪ {last observed landmark}
IF |M ∩ L(x̂)| < 2 THEN M :=M∪ {second last observed landmark}
bestN := createEmptyBIB ({l ∈M|l is not new})

return (bestN, (N 6= ∅))

violating (III) select the one that needs to be extended by as few landmarks as possible. If this is
not is possible, create a new one.

The purpose of choosing the BIB to be extended as little as possible is to keep the BIBs small
and thus computation time low. If a new BIB has to be created (I) still must be met. So if the
landmarks required by definition of (II) do not contain at least two landmarks from the actual
BIB, the last two observed landmarks will be added.

(V) Loop: If a landmark is observed being neither new nor represented in any BIB fulfilling
(I), a large loop has been closed and iterative relinearization must be applied.

When two BIBs share at least two common landmarks the orientation of those BIBs is cou-
pled by the landmarks and thus the relative orientation error is low. If for a landmark there is no
BIB with this property, this landmark may close a large loop thereby leading to a large change in
the robot orientation estimate. So iterative relinearization must be applied to prevent linearization
errors from being integrated into the BIB.

The subalgorithm (Fig. 4.3, findOrCreateBIB) finds the optimal BIB following (IV) in
O(k3 + k2 log n) time. This is done by computing the O(k) different BIBs sharing a common
landmark with the actual BIB, testing them against (I) – (III) and then selecting the one to be
extended by the smallest number of landmarks. The technical details are given in appendix C.2.

138 CHAPTER 4. MAINTENANCE OF THE HIERARCHY

4.3 Global Update

After BIB changing control took the decision to make a new BIB to be the actual one, accu-
mulated information from the EKF is stored in the old actual BIB of the tree map and the EKF
is initialized with information from the tree map concerning the landmarks of the new actual
BIB (Fig. 3.8, §3.6). This requires another update of parts of the tree by recomputing CIBs and
SIBs of certain nodes. The subalgorithms in this section determine the nodes to be recomputed.
According to the overall purpose of hierarchical decomposition most of the nodes remain valid.

After a BIB’s change

Changing the information in a BIB requires updating all CIBs and SIBs from the leaf containing
the BIB up to the root (Fig. 4.4a, b). As the BIB’ structure, i.e. the set of represented landmarks
changes further nodes have to be updated and for each landmark two different cases appear:

In figure 4.4c the situation is described, what’s happening if a landmark is not represented
in the new BIB any more: The elimination node moves downward to the first node, where the
landmark is still represented in both children. Such a node is called y-node for this landmark.
This now is the least common ancestor of all BIBs representing that landmark and thus the
landmark’s elimination node. All nodes from the new elimination node up to the old one must
be updated additionally to those from the BIB up to the root.

The complementary situation is, when a landmark is represented in the new BIB that has
not been represented in the old BIB (Fig. 4.4d): The landmark’s elimination node moves up to
the least common ancestor of the old elimination node and the BIB. So all nodes from the old
elimination node up to the new one have to be updated additionally to those from the BIB up to
the root.

A combination of different cases appears, if some landmarks are freshly represented and
some vanish from being represented. In order to simplify bookkeeping the algorithm distin-
guishes between marking a node invalid and updating a marked node. When a node is marked
invalid a flag is set signaling recomputation of the node’s state whereas the precedent state is still
accessible. Not before the node is updated, its CIB and SIB are recomputed from the childrens’
CIBs or from the BIB using computeCIBandSIB. Recomputation is performed recursively, so if
one or both children have been marked invalid, they are recomputed, too.

The algorithm first changes the elimination node for all recent landmarks in the new BIB
while invalidating all nodes from the former elimination node to the new one and then proceeds
with updating from the new BIB up to the root. If an elimination node of a vanished landmark is
encountered, the elimination node is set as the next y-node below invalidating all nodes from the

4.3. GLOBAL UPDATE 139

a b c b c d

b c d

d e f c d e f

c d e f

c d e e g h i

e

PSfrag replacements

nn′a
(a) Initial situation L(n) = {b, c, d}

a b c b c d

b c d

d e f c d e f

c d e f

c d e e g h i

e

PSfrag replacements

nn′a
(b) The information in nBIB changes,
but L(n) remains

a b c b c

b c

d e f c d e f

c d e f

c e e g h i

e

PSfrag replacements

nn′a
(c) L(n) changes to {b, c}

a b c b c d f

b c d f

d e f c d e f

c d e f

c d e f e g h i

e

PSfrag replacements

nn′a
(d) L(n) changes to {b, c, d, f}

a b c b c d

b c d

d e f c d e f

c d e f

c d e

e g h i

e

e

PSfrag replacements
n

n′ a

(e) Empty BIB n′ inserted

a b c b c d

b c d

d e f c d e f

c d e f

c d e f

e f k l e g h i

e f

e f

PSfrag replacements

n

n′

a

(f) n′ changes to n, L(n) = {e, f, k, l}

Figure 4.4: Different cases for which node has to be updated after the BIB nBIB has been changed.
The updated nodes are shaded. In (b) only the information contained in the BIB changes. In (c)
landmark d disappears from the BIB. In (d) landmark f appears in the BIB. In (e) – (f) a new BIB
n with landmarks {e, f, k, l} is inserted above a, which is realized by first inserting an empty BIB
n′ (e) and then changing that BIB to n (f).

140 CHAPTER 4. MAINTENANCE OF THE HIERARCHY

Figure 4.5: setBIB
(
n, (χ2, e)

)
n: leaf node in which to replace the BIB, χ2: BIB, e: linearization error for χ2

FOR All landmarks l ∈ L(χ2)

newEN := least common ancestor of eN [l] and n
IF eN [l] 6= newEN
THEN Mark nodes eN [l] to newEN (exclusively) invalid

eN [l] := newEN
B := L(nBIB); nBIB := (χ2, e)

FOR All landmarks l ∈ B − L(χ2) with eN [l] = n
eN [l] := ()

FOR n′ from n up to root
IF n′ is no leaf

THEN FOR All landmarks l ∈ B − L(n′↓n) with eN [l] = n′

eN [l] := y-node for l below (or equal) n′↓n
Mark nodes eN [l] to n′ (exclusively) invalid

Mark n invalid
update (n′) a

Mark n′ as to be optimized b

aOptimization: Update only the list of landmarks represented in the node and defer re-
computation of the CIB and SIB to compileEstimate

bMark this note as to be processed by the HTP subalgorithm. (§4.4)

new elimination node up to the old one. Having finished a node, its CIB and SIB is recursively
updated.

All updated nodes share a common landmark with the old or new BIB. According to part (2)
of definition 5 there are only O(1) BIBs and thus O(logn) nodes with this property. So even in
a worst case scenario only O(logn) nodes need to be updated. The subalgorithm are shown in
(Fig. 4.5, setBIB) and (Fig. 4.6, update).

To insert a new BIB n into the tree, first an empty BIB n′ is inserted above some node a.
Therefore a is replaced by a combination node having n′ and a as children (Fig. 4.4e). Since
L(n′) = ∅, only n′ and n′↑ need to be updated. In a second step n′ is changed to n and all affected
nodes are updated (Fig. 4.4f). This is equivalent to the situation discussed when a new BIB
contains landmarks not represented before.

Compiling an Estimate

If all CIBs and SIBs are updated, compiling an estimate for the landmarks represented at a certain
BIB is straightforward: The SIB stored at a node allows computing an estimate of the landmarks

4.3. GLOBAL UPDATE 141

Figure 4.6: update
(
n
)

n: node to be updated recursively
IF n is marked invalid

THEN IF n is no leaf

THEN update (n↙)

update (n↘)

E := {l ∈ L(n↙) ∪ L(n↘) | eN [l] = n}
(nCIB, nSIB) := computeCIBandSIB (L(n↙CIB), L(n↘CIB), E)

ELSE E := {l ∈ L(nBIB) | eN [l] = n}
(nCIB, nSIB) := computeCIBandSIB (nBIB, E)

Figure 4.7: compileEstimate
(
n, (H, h, P−1), γ

)
n: leaf node to compute estimate for; (H,h, P−1): SIB defining robot pose; γ:SIB rotation
x̂ := (); C := (); α := 0

FOR n′ from root down to n
update (n′) a

(x̂, C) := computeEstimate ((x̂, C, α), n′SIB)

n′x̂ := x̂; α := α+ n′αCHILD
(CHILD: which child to go next)

(x̂, C) := computeEstimate
(
(x̂, C, γ), (H,h, P−1)

)

return(x̂, C)

aNecessary only if recomputation of the CIB and SIB in setBIB has been defered.

Figure 4.8: accumulatedAngle
(
n
)

n: node to compute the accumulated rotation angle for
α := 0

FOR n′ from root to n
α := α+ nαCHILD (CHILD: which child to go next)

return α

Figure 4.9: iteratedRelinearize
(
(H, h, P−1)

)
(H,h, P−1): SIB defining the robot pose; global: actBIB: actual BIB

bib := allBIBsRepresenting (L(actBIB))

FOR All n ∈ bib
FOR All n′ from n to root

Mark n′ invalid
compileEKF

(
actBIB, (H,h, P−1), 0

)
a

UNTIL nα changed by < maxAngle for all ancestors of all n ∈ bib

aRotation angle for robot pose SIB is unimportant, since the robot pose is not used here.

142 CHAPTER 4. MAINTENANCE OF THE HIERARCHY

represented at the node’s children from an estimate of the landmarks represented at the node
(lemma 11, computeEstimate). The root node represents no landmark, so the estimate for the
root node is empty and computeEstimate can be applied incrementally from the root down to
the BIB the estimate is to be compiled for. If a global estimate i.e. an estimate for all landmarks
is desired computeEstimate is applied recursively. Evaluation of the covariance in (3.23) can be
omitted computing only ŷ = Hẑ + h in every node. Thus computation is extremely fast despite
needing asymptotically O(kn) time (see §5.4).

Another point to consider is the question of nonlinear rotation (see §3.9). When rotating a
CIB for relinearization (in computeCIBandSIB), all SIBs below this CIB would have to be ro-
tated, too. As this is too expensive, the rotation angle is stored at the node (nαLEFT , nαRIGHT) and
rotation is deferred until a SIB is used. So while proceeding from the root to the BIB the algo-
rithm accumulates the rotation angle to be applied to each SIB (Fig. 4.8, accumulatedAngle).
The estimates generated are stored in nx̂ and used for relinearization. Finally, the SIB containing
information about the robot pose is integrated into the estimate. The whole algorithm is shown
as a structure chart in (Fig. 4.7, compileEstimate).

Relinearization

Whenever a node is updated using computeCIBandSIB the latest estimate stored at the node is
used to relinearize the CIB by applying a nonlinear rotation (§3.9). So linearization error can be
reduced with nearly no additional cost while the robot is moving.

This is not sufficient when closing a large loop with high orientation error. This makes it
necessary to apply appropriate nonlinear rotations along the loop immediately. Otherwise, the
map may become inconsistent at the place where the loop has been closed. In order to prevent
this closing a nonlinear loop will explicitly be detected when changing the actual BIB (§4.2) and
iterated relinearization is performed: During each iteration, all BIBs sharing common landmarks
with the actual BIB and all their ancestors are updated applying a further nonlinear rotation
as usual. Iteration is terminated, when no node is rotated by more than one specified angle
maxAngle (2◦ in the experiments) (Fig. 4.9, iteratedRelinearize).

So linearization errors can be reduced rapidly, because an update of an internal node applies a
nonlinear rotation efficiently to a large piece of the map. Since a BIB shares landmarks only with
O(1) other BIBs, only O(logn) nodes are updated, so one single iteration takes only O(k3 log n)

time. There is good reason to assume that the number of iterations needed to close a loop depends
on the orientation error of the loop but not on the length of the loop or overall size of the map.1

1Note this subalgorithm is not an iterative linear equation solver like conjugate gradients, but a Newton type
nonlinear equation solver like Levenberg-Marquardt with a direct linear equation solver used in each iteration.

4.4. HIERARCHICAL TREE PARTITIONING 143

4.4 Hierarchical Tree Partitioning

At this point the algorithm has almost been described completely, subalgorithms to integrate
measurements updating the tree map and computation of an estimate included. The remaining
open question is where to insert a new BIB, thus, a new node into the tree. Actually, the algorithm
could be used as described so far, if the tree was given a priori. This point is decisive because the
performance of the algorithm crucially depends on the quality of the tree:

The height of the tree determines how many nodes have to be updated during a global update.
The number of landmarks represented at a node determines the size of the matrices involved in
updating the nodes parent and thus computation time needed. By definition 3, a node represents
those landmarks that are represented both in BIBs inside and in BIBs outside the subtree below
this node. So the goal is to subdivide the set of BIBs hierarchically into a balanced tree (i.e.
subdivide the map into regions), such that for each subtree as few landmarks as possible are
represented in BIBs outside this subtree (i.e. observable from outside the region). This is easy
to achieve for the leaves of the tree because they are corresponding to small regions in the map
(enforced by criterion (III), §4.2). However internal nodes correspond to large regions containing
many landmarks. But to ensure that only few landmarks are being represented the region is
chosen skillfully, i.e. most landmarks of a region are not observable from outside.

The computation time of the proposed algorithm is only O(k3 log n), if the tree is balanced
having a height of O(logn) and well partitioned, so that the number of landmarks represented
at each node including internal nodes is O(k). In reality, a good tree (i.e. a good partitioning
of the map) is not known in advance and must be generated and optimized constantly while the
robot is moving and new BIBs are being added. Asymptotical analysis assumes, that the tree
optimization subalgorithm achieves this goal. See discussion in §3.5 and §4.6.

Relation to Graph Theory

This problem is equivalent to the Hierarchical Tree Partitioning Problem (HTP) known from
graph theory and parallel computing. It is a hierarchical version of the Graph Partitioning Prob-
lem or in case of a binary tree of the Graph Bisection Problem, which are both known to be
NP-complete [GJ79]. However, successful heuristical algorithms have been developed to solve
these in practice [Vij91, FM82]. The graph bisection problem is posed as follows:

Divide the nodes of a (multi-) graph into two (approximately) equal partitions with a minimal
number of edges connecting nodes of different partitions.

Minimizing the number of landmarks involved in computation at the root node of a tree map

144 CHAPTER 4. MAINTENANCE OF THE HIERARCHY

a b c b c d

b c d

d e f c d e f

c d e f

c d e e g h i

e

e g h i

b c d

c d e fd e f

a b c
b

f

d

e

c

Figure 4.10: Tree and corresponding multigraph partitioning: A set of BIBs corresponds to a
multigraph, where each BIB forms a node and each landmark forms a multi-edge connecting
all BIBs representing this landmark. In turn a hierarchical partitioning of the graph (gray bars)
corresponds to a tree with BIBs as leaves and (sub-) partitions as internal nodes. The landmarks
represented in different nodes correspond to edges being incident to different partitions.

is equivalent to finding a minimum bisection for the following multigraph (Fig. 4.10): In the
graph, each BIB forms a node with each landmark forming a multi-edge connecting all BIBs that
represent this landmark. A bisection of this multigraph divides the BIBs into root↙ and root↘.
The landmarks involved in computation at the root node are those represented both below root↙
and root↘. They correspond to edges connecting different partitions in the graph constructed.
The bisection problem is to minimize the number of these edges, thereby yielding an optimal
decomposition of the map into two regions.

There are several heuristical approaches established in parallel computing that could be used
to find a good tree map for a set of BIBs [FM82, Vij91, HL95]. However, all these approaches
perform an offline computation requiring O(n) to O(n logn) computation time, changing the
whole tree and thus necessitating a complete recomputation of all CIBs and SIBs (O(k2n)). As
HTP optimization is not meant to be the dominant part of the overall computation a step by
step optimization scheme has been developed: In each single step only one subtree is moved
to a different location. The time per step is limited to O(k2 log n) for finding the subtree and
O(k3 log n) for updating all necessary nodes.

Optimization criteria

Finding the best transfer step (i.e. a subtree and where to move it) in O(k2 log n) time is quite a
challenge. In fact, the exact criteria used by the algorithm have been inspired by a method called
multilevel tree partitioning [HL95], but were tailored for efficient enforcement. The general idea

4.4. HIERARCHICAL TREE PARTITIONING 145

is to optimize the partitioning of a node (II) under the constraint the node is still balanced (III)
giving priority to ancestor nodes (I):

(I) Priority: Optimizing a node is more important than optimizing its descendant nodes.

When a node is updated, its ancestor nodes are updated too so in general they are updated
more often and thus more important for computation time. All recursive subdivision algorithms
in graph partitioning implicitly employ this priority.

(II) Partitioning: For a given node n minimize the sum of the landmarks represented in
both children of this node

par(n) := |L(n↙)|+ |L(n↘)| . (4.2)

Maintaining a good partitioning, i.e. minimizing par(n) for all nodes n is the main goal of
the HTP subalgorithm because it determines the computation time needed for updating n. When
succeeding, par(n) = O(k)∀n.

A more obvious definition would be par′(n) := |L(n↙) ∪ L(n↘)| actually being the size of
the matrix A involved in computation at node n by equation (3.4). There is subtle reason for
using par(n) instead of par′(n), which applies to landmarks both in L(n↙) and L(n↘). These
contribute with 1 to par′ and 2 to par(n), whereas landmarks exclusively contained in L(n↙)

or L(n↘) contribute with 1 to both. When using par(n) the algorithm is encouraged to collect
all BIBs representing a certain landmark either left or right of n. Once this is done, a subtree
containing all these BIBs may be moved to a different position, thus completely removing the
landmark from representation at n. This optimization can not be carried out in a single step, so
it is of advantage to encourage the subalgorithm to take the above mentioned intermediate step.

(III) Balancing: For a node n define the size nsize as the number of BIBs below this node
and the balancing bal(n) by (4.3). Enforce a balancing constraint of bal(n) ∈ Bal(n). During
insertion temporarily allow violation of the balancing constraint. In this case enforce an even
harder constraint in the next optimization step for n.

bal(n) :=
n↙size

nsize
, Bal(n) :=

[
2
5
. . . 2

3

]
bal(n) < 1

3[
1
3
. . . 2

3

]
1
3
≤ bal(n) ≤ 2

3[
1
3
. . . 3

5

]
2
3
< bal(n)

(4.3)

The balancing bal(n) of a node is always in [0 . . . 1], with 1
2

corresponding to a perfectly
balanced node with an equal number of BIBs on each side. Figure 4.11 shows the enforced
balancing constraint Bal(n) as a function of bal(n). Apart from temporal violation this criterion

146 CHAPTER 4. MAINTENANCE OF THE HIERARCHY

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

PSfrag replacements

bal(n)
B

al
(n

)
Figure 4.11: Bal(n) as a function of bal(n): The diagonal line allows to compare the balancing
bal(n) with the enforced balancing constraint Bal(n). It can be seen, that the constraint is either
already fulfilled (diagonal line is between lower and upper bound) or there is at least a distance
of 1

15
≈ 0.067 between bal(n) and the allowed interval Bal(n).

guarantees that bal(n) ∈ Bal(n) ⊂
[

1
3
. . . 2

3

]
and thus the the height of the tree is at most

log 3
2
n ≤ 1.71 logn = O(logn).

There is a good reason for not enforcing the constraint while inserting a new BIB: Maintain-
ing the criterion would lead to new BIBs being inserted alternately left and right of a given node.
Otherwise the number of leaves below one child of this node would grow and below the other it
would not. This policy would result in a extremely badly partitioned tree difficult to be improved
by the optimization subalgorithm. A better approach is to insert at the best position regarding
criterion (I) – (II). If this violates (III) for any node this node is marked “to be optimized”. The
optimization algorithm restores the nodes balancing prioritizing it over good partitioning.

It has a major advantage to priorize partitioning over balancing during insertion and vice
versa during optimization. The optimization subalgorithm can transfer arbitrary subtrees to a
different position in the tree, whereas during insertion the only choice is where to insert the new
BIB. Thus the optimization subalgorithm can most often find a well balanced and well partitioned
solution not possible during insertion. The reason for enforcing a harder constraint (2

5
instead 1

3

or 3
5

instead 2
3
) if the balancing constraint has been temporarily violated lies in the problem of

finding the optimal transfer step in O(k2 logn) and will be explained in the following:

Finding the best transfer step

This subsection gives an overview how to find an optimal transfer step. It will be discussed, how
the definitions of (I) – (III) were designed to make an efficient search possible. The key point is
that a node r divides the tree into three parts (Fig. 4.12): below r↙, below r↘ and not below r.
All criteria do not depend on the specific shape of these parts. They only depend on the question

4.4. HIERARCHICAL TREE PARTITIONING 147

PSfrag replacements

r

Figure 4.12: A node r divides the tree into three parts: below r↙, below r↘ and not below r

whether a BIB or landmark is represented in the respective parts or not.
The detailed subalgorithm is found in appendix §C.3 to §C.5, its general outline is as follows:

1. Choose a node r that has been marked to be optimized for optimization

2. Find the optimum subtree s to move from below r↙ to below r↘ or vice versa considering
(II) and (III) for r

3. Find where below r↘ (or below r↙ resp.) to move subtree s to considering (I), (II) and
(III) for all affected nodes from r down to the point of insertion

In step 1 a node is chosen that is marked to be optimized and for which all descendants are
not marked. The reason for this policy is that it is much likelier to find a good transfer step for
a node, when the subtree below has already been well partitioned because the transfer step is
restricted to move a single subtree only. At first sight this seems contrary to criterion (I) that
demands prioritizing higher nodes. However, priority is achieved in step 2 by ensuring that the
optimization of r does not affect ancestors of r but taking no care affecting descendants of r.

In step 2 the subtree to be transferred is determined according to (II) and (III). The subtree
is always removed from below one child of r (r↙ or r↘ resp.) and moved to some place below
the other child (r↘ or r↙ resp.). For r it does not make a difference where the subtree is moved
to below the other child. What matters is that it is moved not where it is moved to. That is why
the exact point of insertion can be determined in step 3 when applying the optimization criterion
for the affected descendants of the other child. Transferring the subtree to a place above r is not
allowed, since it would exert influence on ancestor nodes and violate (I). Transferring the subtree
to a place below the same child will not affect r at all. After all, the decision taken in step 2 is:

Which subtree s is best to be transferred from one side of r to the other.

148 CHAPTER 4. MAINTENANCE OF THE HIERARCHY

The search for the optimal subtree is performed by evaluating all possible candidates s,
whether transferring the subtree below s to the other side of r (from r↓s to r↓s) will violate (III)
and how par(r) will change. From all feasible s the one with the lowest par(r) is selected. Cri-
teria (II) and (III) have been designed, so that there are only O(k log n) candidates that need to
be evaluated. All these are on O(k) paths from r down to some BIB, so checking all candidates
is not too expensive. Two cases arise:

1. The node r is already balanced:
Then it is a valid transfer step to change nothing at all, so by criterion (II) the best transfer
step must decrease par(r) and thus either |L(r↙)| or |L(r↘)|. It must involve a subtree,
whose root represents some landmarks of L(r↙) or L(r↘). As discussed in §4.2 there
only exist O(k) BIBs with this property. The ancestors up to r of all these BIBs possibly
represent the same landmark, so there are O(k log n) candidates to be evaluated.

2. The node r is not balanced:
The priority is to restore the balancing constraint bal(r) ∈ Bal(r). This constraint is even
harder than in case 1, requiring bal(r) ≥ 2

5
, if bal(r) was < 1

3
or bal(r) ≤ 3

5
if bal(r)

was > 2
3
. Bal(r) has been defined this way to ensure that the size of the subtree to be

transferred is at least 2
5
− 1

3
= 2

3
− 3

5
= 1

15
of the number of BIBs below r (Fig. 4.11).

Obviously there are at most 15 = O(1) disjoint subtrees as large as rsize

15
. The roots of

these disjoint subtrees and all their ancestors up to r are the only possible candidates for a
transfer step and at most O(logn).

The purpose of the definition of Bal(r) in (4.3) is to ensure a minimum size for the subtree
to be moved, so there are only few possible candidates. If Bal(r) was defined as

[
1
3
. . . 2

3

]
,

a subtree of size 1 may be sufficient to restore the balancing. In the worst case O(n)

candidates to would have to be checked, but this would take too long.

The fact of only a few subtrees to be evaluated when optimizing a node is the key property
for the O(k2 log n) optimization algorithm used in this thesis.

In step 3, the new location of the subtree is determined. This is the same procedure as used
for inserting a completely new BIB. The algorithm optimizes criterion (II) and (III) for different
affected nodes prioritizing ancestor nodes following (I). For a node n it only matters, whether the
subtree is inserted above n, below n↙ or below n↘. It has no influence where exactly the subtree
is inserted. It only matters where relative to n. Given this property and criterion (I) the optimal
insertion point can be determined recursively:

For a node n the three possibilities directly above n, somewhere below n↙ and somewhere
below n↘ are compared considering par(n). If the best option is directly above n this is the

4.5. TRANSFER OF A SUBTREE 149

final insertion point otherwise recursion is applied to n↙ or n↘ respectively. The balancing
criterion (III) only limits the choice directly above n: If the number of BIBs below the subtree to
be inserted is smaller than half the number of BIBs below n, it is not allowed to insert directly
above n since this would violate (III). As mentioned above, (III) is not enforced considering the
choice between n↙ and n↘ since this would lead to extremely badly partitioned trees. Instead
all nodes down to the insertion point get marked as to be optimized. If one of them violates the
balancing constraint it will be repaired when the node is optimized next time.

Figure 4.13 shows an example for optimizing a tree. The technical details of implementation
can be found in appendix C.

4.5 Transfer of a Subtree

This section describes a subalgorithm for transferring a whole subtree (below a node s) from one
place in the tree to another place (above a) for executing the best optimization step determined
by the HTP optimization algorithm described in the previous section.

Before it is possible to move the subtree s to above a, a new node must be inserted there. This
node has a and s as children and a↑ as parent. Conversely, after moving the subtree, the former
parent s↑ must be deleted. The algorithm consists of three steps (Fig. 4.15):

1. Insert a new node above a with an empty dummy BIB d (one representing no landmark)
as other child

2. Swap d and s

3. Remove d and the former parent of s, which is now the parent of d

For step 1 and 3 no updating is required except in d and its parent d↑. Step 2 has to update all
nodes invalidated due to the subtree of s being moved. It is important to note that the number of
these nodes is extremely limited: The only nodes invalidated are those from s and a to the least
common ancestor lca of both (to root in nonlinear mode). The reason for this is obvious from
the definition of a CIB (Definition 3): A node’s CIB is only invalidated if either the set of BIBs
below that node or the set of BIBs not below that node is changing. When transferring a subtree
no BIB is added or removed but the BIBs below s alterate their position in the tree:

1. The nodes (CIBs and SIBs) from s↑ to lca exclusively are invalidated since s is below those
nodes before and not afterwards

2. The nodes (CIBs and SIBs) from a↑ to lca exclusively are invalidated, since s is below
those nodes afterward but not before

150 CHAPTER 4. MAINTENANCE OF THE HIERARCHY

a b c b c d

b c d

d e f c d e f

c d e f

c d e e g h i

e

PSfrag replacements

r

s
(a) Node r is chosen to be optimized. All nodes below
have been optimized by prior HTP steps. r is unbal-
anced bal(r) = 4

5 , so s may have size ssize ∈ [1 . . . 3].

?

a b c b c d

b c d

d e f c d e f

c d e f

c d e e g h i

e

PSfrag replacements

r

s

(b) Size ssize = 4 is too large, so r would
be unbalanced if s was transfered to r↘
and s is not feasible.

?

a b c b c d

b c d

d e f c d e f

c d e f

c d e e g h i

e

PSfrag replacements

r

s

(c) Transferring s would make bal(r) = 2
5 , L(r↙) =

L(r↘) = {c, d, e}, par(r) = 6, so s is feasible.

?

a b c b c d

b c d

d e f c d e f

c d e f

c d e e g h i

e

PSfrag replacements

r

s
(d) Transferring s would make bal(r) =
3
5 , L(r↙) = L(r↘) = {b, c, e},
par(r) = 6, so s is feasible.

?

a b c b c d

b c d

d e f c d e f

c d e f

c d e e g h i

e

PSfrag replacements

r

s

(e) Transferring s would make bal(r) = 3
5 , L(r↙) =

L(r↘) = {b, c, d, e}, par(r) = 8, so s is feasible but
worse than (c).

?

a b c b c d

b c d

d e f c d e f

c d e f

c d e e g h i

e

PSfrag replacements

r

s

(f) Transferring s would make bal(r) =
2
5 , L(r↙) = L(r↘) = {c, d},
par(r) = 4, so s is feasible and better
than (c).

Figure 4.13: Example of an HTP optimization step followed by insertion of a new BIB.

4.5. TRANSFER OF A SUBTREE 151

?

a b c b c d

b c d

d e f c d e f

c d e f

c d e e g h i

e

PSfrag replacements

r

s
n

(g) Transferring s would make bal(r) = 3
5 ,

L(r↙) = L(r↘) = {d, e, f}, par(r) = 6, so s
is feasible but worse than (f).

?

a b c b c d

b c d

d e f c d e f

c d e f

c d e e g h i

e

PSfrag replacements

r

s
n

(h) Transferring s would make bal(r) = 3
5 ,

L(r↙) = L(r↘) = {c, d, e, f}, par(r) = 8,
so s is feasible but worth than (f).

a b c b c d

b c d

c d e f d e f

c d e f e g h i

c d e

c d

PSfrag replacements
rsn

(i) The best subtree (f) is transfered to r↘. There
is only one option for where to insert s here. As
next operation a new BIB with landmarks {a, b}
will be inserted.

?

a b c b c d

b c d

c d e f d e f

c d e f e g h i

c d e

c d

PSfrag replacements
rs

n

(j) Insert above n: bal(n) = 1
6 infeasible;

left below: L(n↙) = L(n↘) = {c, d},
par(n) = 4; right below: L(n↙) = L(n↘) =

{a, b, c, d}, par(n) = 8; left below is chosen.

a b c b c d

b c d

c d e f d e f

c d e f e g h i

c d e

c d

?

PSfrag replacements
rs

n

(k) above n: L(n↙) = {a, b, c}, L(n↘) = {b, c, d},
par(n) = 6; left below: L(n↙) = {b, c}, L(n↘) =

{b, c, d}, par(n) = 5; right below: L(n↙) = {a, b, c},
L(n↘)={a, b, c, d}, par(n)=7; left below is chosen.

a b c a b

a b c b c d

b c d

c d e f d e f

c d e f e g h i

c d e

c d

PSfrag replacements
rsn

(l) New BIB is inserted at the chosen position in the
tree.

152 CHAPTER 4. MAINTENANCE OF THE HIERARCHY

Figure 4.14: transferSubtree
(
s, a

)
s subtree to transfer; a insert above this node

d := new empty leaf; ap := new node with d and a as children; sp := s↑
Make ap child of a↑ replacing a
update (ap)

a

lca := least common ancestor of a and s
All landmarks l ∈ L(s)

IF eN [l] = lca
THEN y := next y-node for l below lca↓s

IF s is below y
THEN y :=next y-node for l below lca↓a

eN [l] := least common ancestor of y and ap
ELSE IF lca is ancestor of eN [l] THEN eN [l] := lca

Swap s and a
Mark nodes from s↑ and a↑ to lca (nonlinear: to root) invalid and to be optimized
update (lca); Delete sp and d a

Update nsize for all n from s, a to the root. b

aOptimization: Update only the list of landmarks represented in the node and defer re-
computation of the CIB and SIB to compileEstimate

bEntry nsize is the number of BIBs below n. It is used by the HTP subalgorithm (§4.4).

3. The SIB of lca is invalidated being computed from the CIBs of its children

4. In nonlinear mode: The nodes (CIBs and SIBs) from lca to root get invalid because lca
and further nodes below have been recomputed using a new linearization point

For all landmarks l represented at s the elimination node may change when s is transferred.
This does not lead to additional nodes becoming invalid like when a new BIB is inserted. Three
different cases depending on the relation between eN [l] and lca arise:

1. eN [l] is a proper ancestor of lca:
eN [l] will not change. No BIB moves outside or inside the subtree of lca and the same
holds for eN [l]. (landmark c in figure 4.15)

2. eN [l] = lca:
eN [l] remains the same or moves down to some ancestor of a. Which is the case depends
where landmark l is represented in the subtrees of both children of lca. If s is the only
node below lca↓s representing l, l is only represented below lca↓a after the tree has moved
and eN [l] must be set to the least common ancestor of these nodes. Whether this is the
case can be decided by finding the next y-node below lca↓s. If it is above s, another BIB

4.5. TRANSFER OF A SUBTREE 153

a b c b c d

b c d

d e f c d e f

c d e f

c d e e g h i

c e c

c

PSfrag replacements
s

a

d

lca

(a) Initial situation

a b c b c d

b c d

d e f c d e f

c d e f

c d e

e g h i

e

c e c

c

PSfrag replacements
s ad

lca

(b) Step 1: Dummy BIB d inserted

a b c b c d

b c d

c d

d e f c d e f

c d e f e g h i

c d e

c d c

c

PSfrag replacements
s ad

lca

(c) Step 2: Nodes s and d swapped

a b c b c d

b c d

d e f c d e f

c d e f e g h i

c d e

c d c

c

PSfrag replacements
s a

d

lca

(d) Step 3: Dummy BIB d removed

Figure 4.15: Three steps of transferring subtree s to above a. The nodes that have to be updated
are marked gray.

154 CHAPTER 4. MAINTENANCE OF THE HIERARCHY

represents l and eN [l] remains the same. Otherwise eN [l] must be set to the least common
ancestor of a↑ and the next y-node below lca↓a. (landmark e in figure 4.15)

3. eN [l] is proper descendant of lca:
Since landmark l is represented in s but not in lca, it must be represented in some BIB
which is below lca but not below s. After the move of the subtree, landmark l will still
be represented there and will additionally be represented at the new location of s. So the
elimination node must be set to the least common ancestor lca (landmark d in figure 4.15)

A structure chart is shown in (Fig. 4.14, transferSubtree) and an example in figure 4.15.

4.6 Computational Efficiency

The algorithm’s computation time depends on two parameters n and k. n is the number of land-
marks and k is the number of landmarks represented in each BIB. n depends on the size of the
building mapped and grows as the map gets larger. k is indirectly controlled by the parameter
maxDistance (see isTooLarge, §4.2) used by BIB changing control (5m and 7m in the experi-
ments in this thesis). The algorithm groups landmarks into one BIB that have a mutual distance
of at most maxDistance. The resulting k depends on the density of landmarks in the building
and is a qualitative parameter for the building / landmark / sensor combination that does not grow
when the map gets larger. It is assumed that each landmark is only contained in O(1) different
BIBs, so the overall number of BIBs is O(n

k
).

Altogether, the algorithm is designed for the typical situation when k is small (≈ 10) and n is
very large (> 1000). The algorithm uses an EKF as front end to process odometry and landmark
observations. It maintains an estimate for the local landmarks represented in the actual BIB.
Processing odometry and observations of these landmarks is efficiently performed by the EKF
without having to consider the overall map. Computation time for this is O(k) and O(k2) per
measurement. This behavior is the same as shown by the Compressed EKF algorithm [GN02]
and allows fully exploitation of sensors with high observation frequency.

When a landmark is observed not being represented in the actual BIB the actual BIB has to
be changed and information transferred from the EKF into the tree map and vice versa. This
is the main step of the algorithm. It takes O(k3 logn) computation time as will be discussed in
the following. This is much faster than the corresponding “global update” step in CEKF taking
O(kn

3
2). There are three major factors contributing to the computation time needed:

1. The linear algebra computation performed at each node:
The number of landmarks represented at a node’s children determines the size of the ma-

4.6. COMPUTATIONAL EFFICIENCY 155

trices involved in computation at this node. The time needed to perform computation for
a single node is cubic in this number. To minimize the time spent the HTP subalgorithm
(§4.4) optimizes the tree to represent as few landmarks in each node as possible. As dis-
cussed in §3.5 for topologically suitable buildings the algorithm can be expected to find a
tree representing only O(k) landmarks in each node. This assumption is further confirmed
by the experimental result presented in §5 and §6. As a consequence the linear algebra
computation performed at a single node takes O(k3) time.

2. The number of nodes updated:
Basically, a node is computed from its children. If a node changes, only the ancestors of
this node have to be updated. This is the fundamental advantage gained from representing
information in a hierarchy. As the tree is balanced the algorithm never has to update more
thanO(logn) nodes, takingO(k3 logn) computation time. In some cases additional nodes
have to be updated (see §4.3) although never more than O(logn).

3. The bookkeeping:
The algorithm performs a considerable amount of bookkeeping mainly to determine which
nodes to update, to find an optimal point to insert a new BIB and to improve the tree to
make further computation more efficient. The last point is a heuristical approximation to
the hierarchical tree partitioning problem which is NP-complete in theory. Nevertheless,
the bookkeeping part only uses O(k3 + k2 logn) computation time. This is asymptotically
the same with respect to n and even less with respect to k than linear algebra computations.

The tree has O(n
k
) leaves, so O(n

k
) nodes. By definition 5 each node contains a fixed number

of O(k × k) matrices. The amount of storage space needed is O(nk). Normally, the algo-
rithm provides an estimate for the landmarks represented in the actual BIB with O(k2) resp.
O(k3 log n) computation time. If an estimate for all landmarks is desired, computeEstimate
must be recursively applied to all nodes. Evaluation of covariance in (3.23) can be omitted only
computing ŷ = Hẑ + h with O(k2) time. Since there are O(n

k
) nodes it takes O(nk) with an

extremely small prefactor (table 5.2, 6.1) to compute an estimate for the whole map.
Table 4.1 shows the calling hierarchy of the algorithm together with the time needed

for each subalgorithm. The time spend in linear algebra computation (computeCIBandSIB,
compileEstimate, removeCoupling) is marked boldface. The implementation of optimizeHTP
is described in appendix C, and the corresponding calling hierarchy in table C.1.

An overview of the performance of different algorithms established in literature is given in
§2.14, table 2.2. Among the algorithms computing a sufficiently good estimate for closing loops
the proposed algorithm is asymptotically fastest. When comparing the performance it has to be

156 CHAPTER 4. MAINTENANCE OF THE HIERARCHY

integrateTreemapObservation O(k3 log n)

isTooLarge O(k2)

findOrCreateBIB O(k3 + k2 logn)

allBIBsRepresenting O(k2 log n)

O(k) times O(k3)

isTooLarge O(k2)

createEmptyBIB O(k logn)

initLandmarkState O(k log n)

findBestInsertionPoint O(k log n)

O(logn) times O(k log n)

· · · O(k)

updateLandmarkState O(k)

extractBIBFromEKF O(k3)

removeCoupling O(k3)

setBIB O(k3 log n)

· · · O(k logn)

O(logn) times O(k3 log n)

update O(k3)

computeCIBandSIB O(k3)

O(1) times O(k3 log n)

optimizeHTP O(k3 log n)

· · · =⇒ See appendix C, table C.1.
When closing a loop: O(1) times O(k3 log n)

iteratedRelinearize O(k3 log n)

O(logn) times O(k3 logn)

update O(k3)

computeCIBandSIB O(k3)

compileEstimate O(k3 log n)

O(logn) times O(k3 log n)

computeEstimate O(k3)

compileEKF O(k3)

integrateEKFObservation O(k2)

Table 4.1: Calling hierarchy of all subalgorithms with computation time needed. The calling
hierarchy for optimizeHTP is shown in appendix C, table C.1.

4.7. DISCUSSION 157

kept in mind that the proposed algorithm only computes an estimate for the local landmarks not
for the complete map, which takes O(kn) computation time. However the involved prefactor
is extremely small and normally only a local estimate is necessary anyway. Thus, it is a great
advantage being able to compute a local estimate more efficiently than a complete map. Further-
more, the algorithm needs equal or less storage space than all other algorithms. Comparing to
the requirements stated in §2.13 it may be concluded:

The tree map uses O(kn) storage space being compliant to requirement (R2).

Odometry and observation of a local landmark are integrated usingO(k) andO(k2)

computation time. Every once in a while a global update is necessary needing
O(k3 log n) computation time for topologically suitable buildings. The time is spent
inO(logn) linear algebra operations takingO(k3) each and O(k3 +k2 log n) book-
keeping overhead. If k is constant, the algorithm needs O(1) for local measurements
and O(logn) for a global update, which even goes beyond requirement (R3).

4.7 Discussion

Summary

The bookkeeping part maintains the hierarchy by optimizing the tree and calling linear algebra
routines to update nodes when necessary. A main task is to determine, which nodes have to be
recomputed during a global update.

A precondition for efficient computation is, that the tree is balanced and partitions the BIBs
so onlyO(k) landmarks are represented at each node. In order to maintain this property the algo-
rithm employs a hierarchical tree partitioning (HTP) subalgorithm. In theory, the HTP problem is
NP-complete. For keeping computation time bounded the algorithm performs one optimization
step per global update, optimally moving a single subtree to a different location. Three criteria
formalize the idea of a balanced and well partitioned tree. They were designed in a way that
allows to compute the best optimization step in O(k2 logn).

While updating the algorithm applies nonlinear rotations to the affected nodes to reduce
linearization error. In case of closing a large loop relinearization is performed several times until
the result converges. With this strategy the linearization error is reduced to a negligible extent.

A tree map needs O(nk) storage space and computation time needed by the algorithm is:
O(k) for odometry, O(k2) for observation of a local landmark and O(k3 log n) for a global
update. This complies with requirements (R2), surpasses (R3) and is much faster than CEKF
which needs O(kn

3
2).

158 CHAPTER 4. MAINTENANCE OF THE HIERARCHY

Annotations

How does the tree depend on the measurements?

It is interesting to note that the algorithm is oblivious apart from some small exceptions: The
computation applied to measurements and measurement uncertainties is independent of their
actual values. The shape of the tree and whether a landmark is represented at a node or not
only depends on which landmarks are observed when a certain BIB is the actual BIB. The only
exception is the control used for changing the actual BIB depending on the estimated position
of the landmarks. A practical advantage of such a property is that the bookkeeping part can be
verified without actually working on data.

What happens, when moving through an already known area?

By the nature of least squares estimation moving through an already known area will give
independent information on the same landmarks and thus reduce the overall map uncertainty.
Also in this case the algorithm does more than just localizing the robot. However, most of the
bookkeeping work is only necessary while the map is extended, i.e. new landmarks are being
observed: No new BIBs and no new landmarks have to be inserted, so the elimination nodes
do not change and there is no necessity of optimizing the tree. The only operation performed
is an update from the actual BIB to the root and compilation of an estimate. So in this case the
algorithm becomes faster by a considerable constant factor.

How can it be possible to reduce computation time from O(n2) to O(logn)?

Assuming k = O(1), the algorithms computation time O(logn) appears to be surprisingly
low compared to O(n2) of EKF. The main operation of EKF basically is the update of the in-
verse of a matrix after a change of small rank [Hag89]. This is a general well known problem
most likely not be expected to be solved in significantly less computation time. Presumably the
only way to reduce the computation time is to exploit a specific property of the SLAM problem
making SLAM different from general least squares estimation.

The presented algorithm follows this idea exploiting the specific structure of SLAM in two
ways: First it is only necessary to provide an estimate for local landmarks. Second at least
typically, the map can be decomposed into a hierarchy in a very sparse and loosely connected
way. These two are powerful properties making it possible to devise a much more efficient
algorithm for this special case than it would be possible for general least squares estimation.

Chapter 5

Simulation Experiments

This chapter presents the simulation experiments conducted to verify the algorithm with respect
to the requirements (R1)-(R3) proposed in §2.13. The simulation environment computes exact
measurements from a CAD model of the simulated building and robot trajectory and corrupts
the measurements with artificial Gaussian noise before passing them to the estimation algorithm.
The simulation experiments focus on behavior of the algorithm as an approximate least square
or ML estimator. It takes for granted that least square estimation is indeed a reasonable way
to create a map, which has been proven in literature. The experiments evaluate map quality
(R1), storage space (R2) and computation time (R3) of the proposed algorithm for three different
scenarios: a typical building, a scenario with large measurement noise and a large scale map. For
this purpose, a simulation approach is advantageous allowing to repeat the same experiment with
identical measurements but new independent measurement noise. This way statistical quantities
e.g. error covariance matrix can be determined by Monte Carlo simulation. With these quantities,
the quality of any aspect of the map can be evaluated as demanded by requirement (R1) “bounded
uncertainty” (§2.13).

Evaluation of practical feasibility of the algorithm including real data, unreliable landmark
detection and problems of landmark identification will be performed in §6.

All simulations have been conducted on an Intel Xeon, 2.67 GHz, 512 MB, LINUX, gcc
2.95.3, options -O3.

5.1 Scenario

The simulation program uses an a-priori CAD model of the building and of the robot trajectory
to be simulated. In this chapter the same fictional building as in §2 is used. Simulation of the
robot’s motion is composed of alternating movement and observation steps. For each movement

159

160 CHAPTER 5. SIMULATION EXPERIMENTS

Scenario Landmark sensor Odometry
distance
noisea

distance
biasb

angular
noise

field of view velocity
noisec

orient.
biasd

robot ra-
dius

Small noise 2.5% 2◦ ±70◦, 3m 0.01
√

m 0.3m
Large noise 10% 4.5 mm

◦ 5◦ ±70◦, 3m 0.07
√

m 5
◦

m 0.3m
Large scale map 2.5% 2◦ ±70◦, 3m 0.01

√
m 0.3m

Table 5.1: Artificial measurement noise parameter: aproportional to distance, bproportional to
observation angle, cproportional to square root of speed, dproportional to distance traveled

step the relative pose is passed over to the algorithm. In contrast, measurements are simulated
for each landmark in the simulated field of view for an observation step. The ideally simulated
measurements of position relative to the robot (see §2.1) are corrupted by artificial Gaussian noise
and passed on to the SLAM algorithm including the landmarks’ identities. The noise parameters
are displayed in table 5.1. Artifical noise is generated with random numbers using the routines
ran4 and gasdev as recommended by [PTVF92, §7].

Constant angle noise and proportional distance noise is an appropriate noise model for the
landmark sensor. The noise model for odometry is assuming a two wheeled robot with wheel
revolution measurement corrupted by continuous Gaussian noise. Basically, experience shows
that the error accumulated while traveling a certain distance is independent of traveling speed.
According to continuous noise theory this is achieved, when noise is proportional to square root
of velocity. Consequently, accumulated noise is proportional to square root of distance traveled.

To give a figure: If the proportionality constant is 0.01
√

m, as in the small error experiments,
after traveling 4m, each wheel has accumulated an error of 0.01

√
m·
√

4m = 0.02m. If the wheels
have a distance of 0.3m to the robot’s center, this leads to an orientation error of

√
2·0.02m
2·0.3m ≈ 2.7◦.

In the large noise simulation experiment, an additional bias both on landmark sensor and
odometry is assumed. Unequal wheel diameters or calibration errors can be a cause for such bias.
It is probably the most common reason for excessively large orientation error of a mobile robot.
The bias is multiplied by a random number ∈ [−1 . . .+ 1]. It is constant for each experiment but
varies randomly over several runs.

The first two experiments (”small noise”, ”large noise”) are based on the same building also
used in illustrations in §2 but with a longer trajectory (Fig. 5.1a). They were designed to analyze
map quality in case of low and high measurement error. The third experiment (”large scale map”)
is a large 10 × 10 cell grid, each grid cell being a copy of the building used before (Fig. 5.4).
It contains n = 11300 landmarks and was designed to analyze asymptotical behavior of storage
space and computation time.

The algorithm’s parameters are optHTPSteps = 5 steps of tree optimization per global

5.2. SMALL NOISE EXPERIMENT 161

update and maxDistance = 5m or maxDistance = 7m as maximum diameter of a region. For
easier understanding walls are included in the drawings. In a real implementation this would
certainly require the landmark sensor to detect these walls.

5.2 Small Noise Experiment

The small noise simulation experiment allows statistical evaluation of the estimation error and
comparison with EKF and ML, verifying that requirement (R1) “bounded uncertainty” is met.
Figure 5.1 shows the result using the same 16m× 14m map as throughout §2.

The optimal ML estimate (Fig. 5.1b) shows little error being realistic for a well calibrated
robot and a map of that size. It can be observed that room and corridors slightly overlap. Since
all landmark based algorithms just estimate positions and have no notion of occupied and free
space this result was expected. Of all the algorithms in §2.14 fastSLAM [TBF98] is the only
one to incorporate this kind of information. The EKF estimate (Fig. 5.1c) resembles the ML
estimate at visual inspection with the orientation error being comparatively small and inducing no
visible linearization problems. In contrast, rigorous comparison of covariances of the algorithms
involved shows that there is still a significant difference between ML and EKF estimate. Finally,
the estimate computed by the proposed algorithm (Fig. 5.1d) also looks similar only with the
upper left room being more tilted than in other estimates. At visual inspection the three estimates
basically appear of same quality and are perfectly usable for navigation.

The tree representation of the map internally used by the proposed algorithm is shown in
figure 5.2a indicating that the tree is well balanced and well partitioned, i.e. no node represents
too many landmarks. Conclusively, the building is indeed topologically suitable in the sense
discussed in §3.5.

Figure 5.2b compares the relative error in the three estimates in all aspects of the map. The
error covariances C = E

(
(x̂− xtrue)(x̂− xtrue)

T
)

for the proposed algorithm, CEKF for EKF
and CML for ML are approximatively determined by Monte Carlo simulation with 1000 runs.
The number of necessary runs is growing with the size of the covariance matrix. So only the
covariance of eight selected landmarks, one in each corner and one in each room is evaluated.
The covariance C is compared to CEKF as well as CML considering all aspects of the map as
discussed in §2.13. To give an example: If a particular aspect i.e. a landmark coordinate or
distance between two landmarks has a relative error of 110%, this means that the error of this
aspect in the estimate from the proposed algorithm is 10% larger than in the ML estimate.

Comparison for all aspects of the map is performed by computing generalized eigenvectors
corresponding to independent aspects. The eigenvalue corresponding to an eigenvector gives the

162 CHAPTER 5. SIMULATION EXPERIMENTS

2m

(a) True map with robot trajectory.

2m

(b) Optimal ML estimate.

2m

(c) EKF estimate.

2m

(d) Estimate generated by the proposed al-
gorithm.

Figure 5.1: Small noise simulation experiment: True map and estimates generated by different
algorithms. The robot starts at the position indicated by the circle/triangle symbol (Fig. 5.1a)
moves up-left-down-right along the outer corridors, maps the lower-right room, maps the upper-
right room, moves up-left-down around the outer corridor again and through the central corridor,
mapping the upper-left and lower-left room on the way. Finally, it performs a second down-left-
up loop along the outer corridor and back through the central corridor to the starting position.

5.2. SMALL NOISE EXPERIMENT 163

an ao ap
av aw

am an at
au av

am an ap
at av aw

bi bp bq bg bh bi
bp bq br

bg bi bp
bq br

am ap at aw
bg bi bp br

aa ab ac ag
ah ai bm

ac ad ae ai
aj ak as

aj ak al
am as at

ac ai aj ak
am as at

aa ac ag ah
ai am at bm

aa ag ah am
ap at aw bg
bi bm bp br

bk bl bv cd

bn bo bp bt
bu bv bw cd

bv bw bx
by bz

bl by bz ca
cb cc cd

bl bv bw
by bz cd

bl bn bo bp
bv bw cd

bk bl bn bo
bp bv cd

ag ah bj bk
bl bm bn bo

bi b j bk bl
bn bo bp bv

ag ah bi b j
bk bl bm bn
bo bp bv

bm bn bo bp

ag ah bi b j
bk bl bm bn
bo bp bv

ag ah bi b j
bk bl bm bn
bo bp bv

db dc dd
de df

df dg di dk de df dg

de df dg
di dk

db dc de
df d i dk

bj bk bl cz
da db dc di
dk dl

bn bo di
dk dl

b j bk b l bn
bo db dc di
dk dl

b j bk b l
bn bo db
dc di dk

ag ah bi b j
bk bl bm bn
bo bp

aa ag ah ap
aw bg bi bm
bp br

en eo ew
ex ey

aa af ag en
eo ey ez

aa ag en
eo ew ey

em en eo
eu ev ew

aa ag em en
eo eu ew

ek el em
es et eu

ei ej ek
eq er es

ei ek em
eq es eu

aa ag ei
em eq eu

ed ee ef eg
eh ei ep eq

bg cn co dj
ea eb ec ed
ee ef

bf d j ea
eb ec ee

bf bg cn co
dj ea eb ec
ed ee ef

bf bg cn co
dj ea eb ed
ee ef ei eq

cg ch ci
cj ck

ce cf cg ch
cn co eb

cg ch cj ck
cn co eb

cm cn co dj bg cg cm
cn co dj

bg cg cm
cn co dj

cj ck cl cm cl cm cn

cj ck cl
cm cn

bg cg cj ck
cm cn co dj

bg cg cj ck
cn co dj eb

bf bg cn
co dj ea
eb ei eq

aa ag bf
bg dj ea
eb ei eq

be bf d j eb az ba bb be
bf bs dj ea

az ba bb
be bf bs
dj ea eb

bb bg br
bs ea

az ba bb be
bf bg br bs
dj ea eb

ax ay az ba
bb bd be cq

ay az ba
bc bd be

ax ay az
ba bb bc
bd be cq

aq ar ay
bc bd

ap aq aw
ax ay

ap aq aw ax
ay bc bd

ap aw ax ay
az ba bb bc
bd be cq

ap aw az ba
bb bd be bf
bg br cq dj
ea eb

cq cr cs ct cs ct cu
cv cw

cq cr cs
ct cv cw

bd be bf
cp cq cv
cw cx cy

bd be bf cp
cq cr cv cw

ba cp cq
cr cw

ba bd be bf
cp cq cr cw

ap aw ba bd
be bf bg br
cq dj ea eb

aa ag ap aw
bf bg br d j
ea eb

aa ag ap
aw bg br

PSfrag replacements

robot pose p

comp. time / measurement [ms]

accumulated comp. time [s]

storage space [KB]

landmarks n

eigenvalue #

relative error [%]

(a) Tree representation of the map. Size of the node ovals is proportional to number of represented landmarks.

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

error p.alg. vs. ML
error p.alg. vs. EKF

error EKF vs. ML
PSfrag replacements

robot pose p

comp. time / measurement [ms]

accumulated comp. time [s]

storage space [KB]

landmarks n

eigenvalue #

re
la

tiv
e

er
ro

r[
%

]

(b) Relative error spectrum compare to ML
and EKF.

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600
0

20

40

60

80

100

120
n

EKF
p.alg.

PSfrag replacements

robot pose p

comp. time / measurement [ms]

accumulated comp. time [s]

st
or

ag
e

sp
ac

e
[K

B
]

la
nd

m
ar

ks
n

eigenvalue #

relative error [%]

(c) Storage space.

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600
0

20

40

60

80

100

120
n

EKF
p.alg.

PSfrag replacements

robot pose p

co
m

p.
tim

e
/m

ea
su

re
m

en
t[

m
s]

accumulated comp. time [s]

storage space [KB] la
nd

m
ar

ks
n

eigenvalue #

relative error [%]

(d) Computation time per measurement.
Observe the local updates ≈ 0.02ms.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500 600
0

20

40

60

80

100

120
n

EKF
p.alg.

PSfrag replacements

robot pose p

comp. time / measurement [ms]

ac
cu

m
ul

at
ed

co
m

p.
tim

e
[s

]

storage space [KB] la
nd

m
ar

ks
n

eigenvalue #

relative error [%]

(e) Accumulated computation time.

Figure 5.2: Small noise simulation experiment: (a) Internal tree representation used by the pro-
posed algorithm, (b) average relative error compared to ML and EKF map, (c) storage space, (d)
computation time per measurement, (e) accumulated computation time.

164 CHAPTER 5. SIMULATION EXPERIMENTS

relative error in the two estimates for the aspect corresponding to the eigenvector. The sorted
eigenvalues are shown in figure 5.2b. The smallest eigenvalue is 110% (87% vs. EKF) and the
largest 395% (181% vs. EKF). This means that the map estimate computed by the proposed
algorithm has an error 10% larger in the best aspect and 295% larger in the worst aspect than the
ML estimate. The typical (median) relative error is 137% compared to ML with two outliers of
395% and 293% and typically (median) 125% compared to EKF. The outliers are also apparent in
the plot comparing EKF to ML, so they are probably caused by linearization errors occurring in
EKF and the proposed algorithm. Observed by Frese and Duckett [FD03] linearization errors in
the relative landmark-robot position, though small, can create apparent orientation information
perturbing orientation of the overall map or individual rooms.

The overall result meets requirement (R1) very well. Any real structural problem in an algo-
rithm would lead to relative errors beyond ' 10000%: For instance, the error of an open loop
has a magnitude of some meters, whereas the error of a closed loop has a magnitude of some
centimeters, so any algorithm that can not close loops would have a relative error of ≈ 10000%.

The next figure plots storage space requirement of the proposed algorithm and EKF over
robot pose p (Fig. 5.2c). Further the number of landmarks n is plotted over p. With 497KB and
439KB the proposed algorithm and EKF have similar memory requirements. Apparently, the
asymptotical difference between O(kn) and O(n2) is not yet strong enough for n = 115. The
result is plotted w.r.t. p instead of n because when the robot moves through an already known
area, n does not increase. Thus, it is difficult to compare the plot and the respective O(k2),
O(kn) and O(k3 log n) asymptotical expressions. Comparability is facilitated in a large scale
map experiment (§5.4) because in this experiment n is basically growing monotonically with p
and all plots are w.r.t. n. Thus, the discussion about requirement (R2) and (R3) is deferred to the
large scale map experiment.

Figure 5.2d and 5.2e show the computation time for a single measurement and accumulated
computation time respectively. Computation time per measurement for the EKF grows up to
9.05ms for n = 115. The corresponding plot for the proposed algorithm is more difficult to
interpret: Most operations are local updates and require 0.02ms time. The time needed for a
global update is 1.12ms in average but grows upto 6.48ms depending on the number of nodes
updated (scattered points in the plot). This is comparable to the time needed by the EKF but
this number alone does not give the whole picture: A global update is only performed after
several meters of traveling and there is never more than one global update for a single robot
pose. Consequently, computation time per robot pose and accumulated computation time are
much lower for the proposed algorithm than for EKF (Fig. 5.2e).

5.3. LARGE NOISE EXPERIMENT 165

5.3 Large Noise Experiment

The large noise simulation experiment evaluates the quality of the map estimate with respect
to requirement (R1) when a large accumulated orientation error (140◦) occurs before closing a
loop. It is the same example as used before, except for larger artificial sensor noise and bias. The
magnitude of the error is shown in figure 2.3b before closing the first loop. When closing a loop
relinearization is performed (see §3.9,§4.1) until no BIB changes more than maxAngle = 2◦.

Figures 5.3a-c show the estimates provided by different algorithms. The EKF estimate is
clearly unusable, whereas the estimate of the proposed algorithm appears to be slightly worse
than the ML estimate showing that the proposed algorithm still works extremely well, especially
when compared to the result of EKF.

The relative error spectrum is shown in figure 5.3d ranging from 41% to 1229%. It can be
seen that the ML estimate is not optimal any more since the smallest eigenvalue 41% is below 1.
This is due to the sensor bias not considered in the ML likelihood model. The typical (median)
relative error is 187%, whereas the two outliers have increased to 654% and 1229%. This is
consistent with linearization effects causing this behavior, since larger sensor noise leads to larger
linearization errors. In general, the estimate is still excellent when taking into account that all
other nonlinear algorithms need much more computation time. Indeed problems generated by
linearization are largely ignored in literature.

Computation time is basically similar to the previous example with local update below
0.02ms and global update 2.30ms with some outliers where loops are closed and several iter-
ations are required to reduce the linearization error. Considering that nonlinear problems usually
are much more difficult to solve than linear ones, it is extremely surprising that such a good
estimate can be computed with so little additional effort.

5.4 Large Scale Map Experiment

The third experiment uses an extremely large map consisting of a 10× 10 cell grid with each cell
being a copy of the building used in previous experiments. The overall experiment encompasses
n = 11300 landmarks, m = 312020 measurements and p = 63974 robot poses. The intention
is to show performance of the algorithm on large scale maps and to determine the prefactors
involved in the asymptotical O(k2), O(k3 log n) and O(kn) expressions for computation time
and storage space. Figure 5.4 shows the true map with the robot moving columnwise through the
grid using the same trajectory (Fig. 5.1a) in every cell. The result is shown in figure 5.5.

The tree representation stores an average number of k = 5.81 landmarks in each leaf (BIB)
of the tree. In figure 5.6a the storage space consumption of the proposed algorithm and EKF is

166 CHAPTER 5. SIMULATION EXPERIMENTS

2m

PSfrag replacements
robot pose p

comp. time per measurement [ms]
accumulated comp. time [s]

landmarks n
eigenvalue #

relative error [%]
(a) ML estimate.

2m

PSfrag replacements
robot pose p

comp. time per measurement [ms]
accumulated comp. time [s]

landmarks n
eigenvalue #

relative error [%]
(b) EKF estimate.

2m

PSfrag replacements
robot pose p

comp. time per measurement [ms]
accumulated comp. time [s]

landmarks n
eigenvalue #

relative error [%]
(c) Estimate of the proposed algorithm.

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12 14 16

error p.alg. vs. ML

PSfrag replacements
robot pose p

comp. time per measurement [ms]
accumulated comp. time [s]

landmarks n

eigenvalue #

re
la

tiv
e

er
ro

r[
%

]

(d) Relative error spectrum compared to ML

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600
0

20

40

60

80

100

120
n

p.alg.

PSfrag replacements

robot pose p

co
m

p.
tim

e
pe

rm
ea

su
re

m
en

t[
m

s]

accumulated comp. time [s]

la
nd

m
ar

ks
n

eigenvalue #
relative error [%]

(e) Computation time per measurement.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 100 200 300 400 500 600
0

20

40

60

80

100

120
n

p.Alg.

PSfrag replacements

robot pose p

comp. time per measurement [ms]

ac
cu

m
ul

at
ed

co
m

p.
tim

e
[s

]

la
nd

m
ar

ks
n

eigenvalue #
relative error [%]

(f) Accumulated computation time.

Figure 5.3: Large noise simulation experiment: (a)-(c) Estimates generated by different algo-
rithms, (d) relative error compared to the ML map, (e)-(f) computation time.

5.4. LARGE SCALE MAP EXPERIMENT 167

20m

Figure 5.4: Large scale simulation experiment: True map. The building consists of a 10 × 10

cell grid, where each cell is a copy of the building shown in figure 5.1a. The overall experiment
encompasses n = 11300 landmarks, m = 312020 measurements and p = 63974 robot poses.

168 CHAPTER 5. SIMULATION EXPERIMENTS

20m

Figure 5.5: Large scale simulation experiment: Map estimate. As in previous experiments,
several corridors overlap and the overall orientation has a large error both caused by the fact that
errors are accumulating.

5.5. DISCUSSION 169

computation time storage space
local update global update global map
1.21µs · k2 0.38µs · k3 logn 0.15µs · kn 679B · kn

0.02ms 2.51ms 5.62ms 25002KB

Table 5.2: Average computation time, storage space and corresponding average prefactors for
asymptotical expressions (Intel Xeon, 2.67 GHz, k ≈ 5.81, n = 0 . . . 11300).

plotted over n. The EKF experiment was aborted earlier due to large computation time. It is
evident that storage space consumption is linear for the proposed algorithm (O(kn)) and super-
linear (O(n2)) for EKF. The prefactor involved in O(kn) is shown in table 5.2.

Computation time per measurement and accumulated computation time are shown in figures
5.6b-c. Time for three different computations is given: Local updates (dots below < 0.5ms),
global updates computing a local map (scattered dots above 0.5ms) and the additional cost for
computing a global map are plotted w.r.t. n. The algorithm is extremely efficient updating an
n = 11300 landmark map in 12.37ms and on average 0.20ms per measurement. As predicted by
theory, computation time for a local update O(k2) does not grow, computation time for a global
update O(k3 logn) grows slowly and time for computing a global map O(kn) grows linear in n.
All corresponding prefactors are shown in table 5.2. In particular, the prefactor for computing a
global map is extremely small being the most impressive result from a practical perspective.

Figure 5.6d shows the height of the internal tree representation plotted over n. Its growth is
moderate with n being a prerequisite for efficient computation.

5.5 Discussion

The simulation experiments described in this chapter clearly show the algorithm’s extreme effi-
ciency when computing large maps. Even in situations subject to large orientation error a high
quality estimate is generated. At visual inspection all maps look excellent in comparison to op-
timal maximum likelihood estimates. When strictly applied the relative error criterion (§3.5)
reveals two aspects in which the algorithm produces an estimate significantly inferior to the ML
estimate. However, this problem is also apparent in the EKF estimate assumed being caused by
linearization. Besides, comparison of the algorithms confirms that the error is only slightly larger
(median relative error 137% and 187% with large orientation error) higher than the minimal er-
ror possible. Storage space consumption has been found to be indeed linear in n although with a
fairly high prefactor.

Conclusively, the algorithm meets all three requirement proposed in §2.13 as far as these
experiments show.

170 CHAPTER 5. SIMULATION EXPERIMENTS

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 2000 4000 6000 8000 10000 12000

EKF
p.Alg.

PSfrag replacements
robot pose p

computation time [ms]
accumulated comp. time [s]

landmarks n

st
or

ag
e

sp
ac

e
[K

B
]

tree height
(a) Storage space

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000 12000

EKF
p.alg. (global est.)

p.alg.

PSfrag replacements
robot pose p co

m
pu

ta
tio

n
tim

e
[m

s]
accumulated comp. time [s]

landmarks n
storage space [KB]

tree height
(b) Computation time per measurement.
Observe the local updates ≈ 0.02ms.

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000 12000

EKF
p.alg.

PSfrag replacements
robot pose p

computation time [ms]

ac
cu

m
ul

at
ed

co
m

p.
tim

e
[s

]

landmarks n
storage space [KB]

tree height
(c) Accumulated computation time

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000 12000

p.alg.

PSfrag replacements
robot pose p

computation time [ms]
accumulated comp. time [s]

landmarks n
storage space [KB]

tr
ee

he
ig

ht

(d) Tree height

Figure 5.6: Large scale simulation experiment: (a)-(c) Storage space and computation time over
number of landmarks n. Only minimal additional computation time is needed to compute a
global map instead of only a local one. (d) Tree height over number of landmarks.

Chapter 6

Real World Experiments

The real world experiments reported in this chapter are used to demonstrate how to apply the
algorithm proposed in practice by mapping the DLR Institute of Robotics and Mechatronics’
building (Fig. 6.1). It is used as an example for a typical office building and indeed “topologically
suitable” as defined in §3.5. The algorithm is generating a balanced and well partitioned tree
representation online.

In the first experiment the 60m× 45m building is mapped with three large circles. It is one
of the largest maps reported in literature. The second experiment is a U - shaped trajectory of
similar size being repeated 17 times to allow statistical evaluation of map quality. Finally, results
from autonomously navigating with a SLAM acquired map will be presented.

All simulations were conducted on an Intel Xeon, 2.67 GHz, 512 MB, LINUX, gcc
2.95.3, options -O3.

6.1 Scenario

Mobile Robot System

In the experiments a mobile robot (Fig. 6.2a) developed by Hanebeck et al. [HSFS00] in the
DIROKOL research project1 was used. The robot is equipped with four wheels, each with one
motor for steering and another one for moving. Since wheel axis and steering axis intersect, the
robot is able to move omni-directionally but is not holonomic. Internal robot control estimates
the robot’s velocity with corresponding covariance. The estimate is based on the wheels’ angular
velocities measured by incremental encoders and the nonholonomic constraint that the wheel

1“Dienstleistungsroboter in kostengünstiger Leichtbauweise” funded by “Bayerische Forschungsstiftung”

171

172 CHAPTER 6. REAL WORLD EXPERIMENTS

moves perpendicularly to its axis. From the estimated velocity, the robot’s odometric position
with covariance is integrated by equations (2.1) and (2.7).

The robot is equipped with a stereo camera system2 mounted on a pan-tilt unit3 at a height
of 1.55m. Both cameras have wide angle conversion lenses (×0.45) achieving a field of view of
±45◦. In the experiments, only one camera and a fixed pan / tilt position is used and the camera is
calibrated in that position with respect to the floor plane using a pinhole camera model with third
order radial distortion4. In order to avoid problems with interlacing while the robot is moving
only a single frame (every even line of the image) is processed.

Building

All experiments were conducted on data recorded in the DLR Institute of Robotics and Mecha-
tronics’ building, a typical office environment. Building and trajectory are shown in figure 6.1.
The size is 60m× 45m with 29 rooms included. The trajectory’s total length is 505.01m and
encompasses three large loops. For closing the largest loop the robot moved outdoor from one
part of the building to the other.

SLAM Algorithm

Since the accumulated orientation error in the real experiments is not too large, the algorithm is
used in linear mode. Like in the simulation experiments 5 HTP optimization steps (see §4.4) are
performed in each global update. The maximal diameter of a region is slightly larger (7m) than
in the simulation experiments because of the robot’s wider observation range.

6.2 Computer Vision for Landmark Detection

In literature a lot of different types of landmarks and methods for landmark detection are pro-
posed. They are distinguished as artificial landmarks, i.e. landmarks deployed for the purpose of
localization, and natural landmarks, i.e. landmarks already present in the environment5. Boren-
stein et al. [BEF96, §6] give an overview of different types of landmarks and summarize “Artifi-
cial landmark detection methods are well developed and reliable. By contrast, natural landmark
navigation is not sufficiently developed yet [...].”. In recent years, laserscanners became most

2A standard PAL cam corder zoom / iris / auto focus camera module: Sony EVI-371DG
3Directed Perception PTU-46-17.5
4Radial distortion model: r 7→ r + a2r

2+a3r
3

1+b1r+b2r2+b3r3

5By this definition, walls, edges, door, etc. are natural landmarks in an office environment.

6.2. COMPUTER VISION FOR LANDMARK DETECTION 173

Figure 6.1: DLR building (60m× 45m) used for real experiments with a sketch of the robot
trajectory (505.01m). Start and end of the trajectory are indicated by triangles in the small room
in the center of the building. The robot leaves the building at the right upper corner and re-enters
at the left upper corner. It was necessary to travel outdoors in order to close a large loop.

174 CHAPTER 6. REAL WORLD EXPERIMENTS

(a) View of robot and building with landmarks.

inverse perspective

perspective

(b) Landmark detection

Figure 6.2: (a) Artificial circular landmarks used in the experiments. (b) Landmark detection:
For each image pixel the perspective outline of two circles centered at the corresponding point
on the floor is computed and stored in a lookup table. Detected landmarks as shown by dark
crosses together with computed quality measure.

6.3. DETECTION OF CIRCULAR ARTIFICIAL LANDMARKS 175

popular type of sensor for SLAM and navigation. Commercially available scanners [SIC04] pro-
vide high quality distance measurements with an error of a few centimeters. So detection of walls
or edges as landmarks has become much easier. Often, explicit landmark detection can even be
completely avoided by comparing different scans with a scan matching algorithm [LM97] and
treating the whole scan as a single landmark.

Although laser scans are much easier to process, visual landmark detection is a most ac-
tive area of research because computer vision is a cheap multi-purpose sensor suitable for most
other tasks including obstacle detection, object recognition, scene analysis and human-robot in-
teraction. Different ways to detect landmarks have been proposed in literature: Kortenkamp and
Weymouth [KW94] use vertical lines found at wall edges, doors and cabinets. Basri and Rivlin
extract general lines and edges [BR95]. Zobel et al. [ZDH+01] as well as Bellini et al. [BPP02]
use ceiling lamps which have the particular advantage not to be subject to occlusion. A more gen-
eral approach is pursued by Winters et al. [WGLSV00] using eigenimages and Se et al. [SLL02]
using scale invariant features, both being able to detect a larger class of landmarks. Fraundorfer
employs Gabor wavelets [FDF02] to detect salient features as landmarks.

Summarizing, there are several approaches that can be used for computer vision based natu-
ral landmark detection. However, employing a reliable system is far from trivial because perfor-
mance of all detectors often depends on the actual environment being present.

6.3 Detection of Circular Artificial Landmarks

Throughout the building circular artificial landmarks (Fig. 6.2a) were set in order to simplify
conduction of the experiments. The detection algorithm is sketched in figure 6.2b. It is based on
Hough transform [Nie89, §3.4.2] and a gray-level variance criterion similar to Otsu automatic
thresholding [Ots79].

For a given image pixel it is necessary to determine, whether this pixel is the center of a
circular landmark: The key observation is that there is only a single possible circle with that
center, since the radius is known and circles are invariant under rotation in the circle’s plane.
Since the camera is calibrated with respect to robot coordinates and floor plane, the image outline
of this circle can be computed (Fig. 6.2b): The optical ray corresponding to the considered pixel
is computed in robot coordinates using camera calibration parameters. This ray is intersected
with the floor plane. The result defines the center for two circles, one with a radius slightly
smaller than the radius of the landmark and one with a radius which is slightly larger. Both
circles are mapped back into the image. If, in fact, there is a circular landmark located at the
pixel considered, the projection of the smaller circle will be inside the landmarks image and the

176 CHAPTER 6. REAL WORLD EXPERIMENTS

projection of the larger circle will be outside the landmarks image. Thus, along the circumference
of each circle the gray-level is basically constant, whereas it is different comparing both circles.

For checking, gray-level variance statistic is computed along the circumference of the smaller
and larger circle as well as along both circles together. The gray-level variance for both circles
is a sum differentiated into parts: The variance along the inner circle, the variance along the
outer circle (intra class variances) and a term proportional to the squared difference of both
means (inter class variance). For an ideal image the intra class variance should be zero and
the overall variance equal to inter class variance. Thus, according to Otsu [Ots79] inter class
variance divided by overall variance is a non dimensional quality measure ∈ [0 . . . 1], invariant
under affine illumination changes.

The projected circles’ outlines for each pixel being the hypothetical center of a landmark
are precomputed and stored. The radius of inner circle, landmarks and outer circle is 6cm,
10cm and 14cm respectively. Each outline is represented by 16 equally spaced samples to reduce
computation time. A pixel is accepted as a landmark if the quality exceeds a pre-defined threshold
(60% in the experiments) and is higher than the quality of all neighbor pixels. For each accepted
pixel the corresponding location relative to the robot is passed as a landmark to the landmark
identification algorithm. Computation time is 8ms for a 768× 288 image on a Intel Xeon, 2.67

GHz.

6.4 Landmark Identification

Overview

The task of the landmark identification algorithm is to recognize a detected landmark as a land-
mark already represented in the map. In other words, the algorithm matches landmark observa-
tions with landmarks in the map including the decision to define unmatched landmarks as new.
In general, not identifying a landmark observation is a harmless error only resulting in a duplicate
landmark being introduced in the map. This may possibly lead to some problems when using
the map but does not affect the map in general. In contrast false identification of a landmark, i.e.
confusing it with another landmark, often ruins the map completely because wrong information
like two different places being the same is integrated. This severely distorts map and robot pose
estimates, often making further landmark identification impossible.

Three types of information can be used by a landmark identification algorithm: Appearance
of observed landmarks, relative location of a group of landmarks and bounds on the error in
robot pose accumulated after the last observation of a landmark. It is obvious that the effort of
landmark identification strongly depends on landmarks, sensors and environment:

6.4. LANDMARK IDENTIFICATION 177

In many settings the distance between confusable landmarks is larger than the robot’s pose
uncertainty accumulated after last observation of the landmarks [GN01, CMNT99]. Then the
map only contains a single matching candidate for each landmark observation and identifica-
tion is easy. This situation is encountered in small maps with sparse landmarks or in case high
precision or long distance sensors are used. More efforts are necessary, if there are several pos-
sible matching candidates for each individual observation in the map. In this case a whole set
of observations is matched simultaneously by iterating through all matching combinations being
compatible with the bounds on the accumulated error in the robot’s pose. The plausibility of a
possible match can be evaluated by summing up the squared distance between matched observa-
tion and landmark to which the observation is matched. A much better approach is to use Ma-
halanobis distance based on the covariance matrix of the considered landmarks delivered by the
SLAM algorithm [NT00]. Again, sensor noise, map size and arrangement of landmarks decide,
whether observations in a single image can be uniquely matched to the map. If a single image is
not unique enough, as an alternative a local map patch around the robot can be matched with the
remaining map [GK99]. If even this approach does not suffice, multi hypothesis tracking must
be utilized to defer the decision about the identification of landmarks until further observations
provide enough evidence. This technique has proven to be a robust solution for localization in
an a-priori map [DN01], however, tracking many map hypotheses in real time is not yet possible
with currently available SLAM algorithms.

Although multi hypotheses tracking is beyond the scope of this thesis, the proposed algorithm
in general is well suited for this approach: Spawning a new hypothesis corresponds to closing a
loop, being performed by the algorithm with extreme efficiency. Furthermore, the tree data struc-
ture allows lazy-copying similar to fastSLAM [MTKW02]: When spawning a new hypothesis
only the part of the tree actually modified must be copied while storing a link to the unmodified
part.

Algorithm used for the experiments

The landmark identification algorithm used for the experiments employs two different strategies
the local identification of landmarks and the detection of loop closure. Local identification is
performed by simultaneously matching all observations from a single robot pose to the map.
Matching is based on a least square approach taking into account both error in each landmark
observation and error in the robot pose. This means, for a potential matching the most likely
robot pose is computed and the matching is accepted, if the resulting error both in robot pose and
in landmark observations is below a pre-specified threshold (0.3m, 7.5◦)6. Landmarks that could

61◦ if only a single landmark is observed to prevent false identification of that landmark.

178 CHAPTER 6. REAL WORLD EXPERIMENTS

Figure 6.3: Screen shot of the SLAM implementation mapping the DLR building.

not be matched in this approach are introduced as new landmarks into the map. Significantly
more robust results could be achieved by allowing errors both in observations and robot pose.
In order to avoid duplicate landmarks, a new landmark is not introduced, if the distance to an
existing landmark is below 0.5m.

Considerable difficulties were encountered in detecting closure of a loop: Before closing the
largest loop the accumulated robot pose error was 16.18m (Fig. 6.4, 6.5) and the average distance
between adjacent landmarks was ≈ 1m. Furthermore, the landmarks used were indistinguish-
able. So matching observations from a single image was not reliable enough.

Instead, the algorithm has been designed to match a map patch of radius 5m around the robot.
Since the patch is already part of the map it is necessary to change the identity of the landmarks
of the patch when a loop is closed. This is performed by formally changing the identification
in all BIBs and updating all nodes from these BIBs up to the root as described in §4.3. Since
arrangement of landmarks is comparatively similar throughout the building, even a whole map
patch can sometimes be ambiguous. Thus, the map patch is only accepted for closing a loop
when 90% of all landmarks of the patch have been successfully matched.

6.5 Large Map Experiment

In the large map experiment an operator navigates the robot through the building mentioned
above (Fig. 6.1, 60m× 45m, 29 rooms, 505.01m traveled, three large loops) and the robot maps

6.5. LARGE MAP EXPERIMENT 179

computation time storage space
local update global update global map
0.77µs · k2 0.02µs · k3 logn 0.04µs · kn 317B · kn

0.07ms 3.87ms 0.41ms 2686KB

Table 6.1: Average computation time, storage space and corresponding average prefactors for
asymptotical expressions (Intel Xeon, 2.67 GHz, k ≈ 16.39, n = 0 . . . 725).

the building while moving. The resulting map shows 725 landmarks, 29142 measurements and
3297 robot poses. The purpose of the experiment was to demonstrate that algorithm and overall
system work in a real world scenario of considerable size. Figure 6.3 shows a screen shot of
the program at work. Figure 6.4 shows the estimated map before closing the largest loop having
an error of 16.18m, while figure 6.5 shows the final map estimate. It can be observed that the
error in the loop mainly arises in the right upper corner of the map when the robot leaves the
building. Odometry is perturbed by a small door step and the vision system is affected by change
of illumination between indoors and outdoors. This highlights the advantage of using SLAM
because after closing the loop the map is much better and at visual inspection impressively good
for such a large building.

Figure 6.6a shows the internal tree representation used by the algorithm. On the average there
are k ≈ 16.39 landmarks represented in each BIB in contrast to k ≈ 5.55 in the simulation sce-
nario, because more landmarks were visible from a single robot position than in the simulation.
The tree is balanced and well partitioned, i.e. no node represents too many landmarks. It can be
concluded that the building is indeed topologically suitable in the sense discussed in §3.5. This
is confirmed by figure 6.6e plotting tree height w.r.t. n.

Storage space requirements are increasing linearly in the number of landmarks reaching
5369KB for all n = 725 landmarks (Fig. 6.6b). In contrast EKF storage space is super-linear,
progressively exceeding the proposed algorithm for n ' 200 landmarks. As in the simulation
experiments computation time is extremely low (0.07ms per measurement) if, only a local up-
date is performed as is the case most often. The average time for a global update is 3.87ms
(Fig. 6.6c) and for computing an additional global estimate 0.41ms. Accumulated computation
time is shown in figure 6.6d. It is clearly visible that the proposed algorithm is much faster than
EKF.

Table 6.1 lists average prefactors for the asymptotical expressions. The prefactors are con-
siderably smaller than in the simulation experiments (Tab. 5.2) due to k being much larger. For
instance, computation time needed for a global update consists of an asymptotically dominant
part proportional to k3 log n and further parts proportional to k2 logn, k logn and logn. As often

180 CHAPTER 6. REAL WORLD EXPERIMENTS

5m

Figure 6.4: Map estimate before closing the large loop having an accumulated error of 16.18m
mainly caused by the robot leaving the building in the right upper corner.

6.5. LARGE MAP EXPERIMENT 181

5m

Figure 6.5: Final map estimate.

182 CHAPTER 6. REAL WORLD EXPERIMENTS

v w v x v y
v z wa wb
wc wd we

wd we wf wg
wh wi wj wk
wl wm

v w v x v y wd
we wk wl

uq v a v b v c
v g v h v i v j
v k v l v m v n
v o v p v q v r
v s

v k v r v s
v t v u v v
v w v x v y

uq v a v b v c
v k v r v s v w
v x v y

uq v a v b
v c v w v x
v y wk wl

rk rl rm rn
ro rp rq rr
rs rt ru rv
rw

uo up ur us
ut uu uv uw
ux uy uz

rk rl rm rn
ro rr rs rt
ru rv rw uo
up ur

sb se si sk
sl sn so sp
sq sr ss st
su sv sw sx
sy sz ta

sm tc ti ts
tt tu tv tw
ty tz ua

sb se si sk
sl sm tc ti
ts tt tu tv
tw ty

te ti tn to
tx ub uc ud
uf ug uh ui
uj uk ul um
un uo up uq
ur v a v b v c
v d v e

rz sa sd sf
sg sh tb tc
td te tf tg
th ti tj tk
tl tm tn to
tp tq tr ts
tt tu tv tw
tx ty ub uc
ud ue uh ui
uk ul um un
v a v d v e

rz sa sd sf
sg sh tb tc
te ti tm tn
to tr ts tt
tu tv tw tx
ty ub uc ud
uh ui uk ul
um un uo up
uq ur v a v b
v c v d v e

rr rs rt ru
rv rw rx ry
rz sa sb sc
sd se sf sg
sh si sj sk
sl sm tb tc
tm tr ts tt
tu

rr rs rt ru
rv rw rz sa
sb sd se sf
sg sh si sk
sl sm tb tc
ti tm tr ts
tt tu tv tw
ty uo up uq
ur v a v b v c

rr rs rt ru
rv rw sb se
si sk sl sm
tc ti ts tt
tu tv tw ty
uo up uq ur
v a v b v c

rk rl rm rn
ro rr rs rt
ru rv rw uo
up uq ur v a
v b v c

rk rl rm rn
ro uq v a v b
v c wk wl

pt pv pw px
py pz qa qb
qd qj q l qu
qv v f

po pp pq pr
ps pt pu pv
pw px py pz
qa qb qc qd
qe qh qi q j
qu qv qw qx
qy

po pp pq pr
ps pt pv pw
px py pz qa
qb qc qd qe
qh qi q j q l
qu qv qw qx
qy v f

pv px py pz
qa qb qc qd
qe qf qg qh
qi q j qk q l
qm qn qo qp
qq qr qs qt
qu re rf rg
v f

qf qg qm re
rf rg rh ri
rj rk rl rm
rn ro

pv px py pz
qa qb qc qd
qe qf qg qh
qi q j q l qm
qu re rf rg
rk rl rm rn
ro v f

po pp pq pr
ps pv px py
pz qa qb qc
qd qe qh qi
q j q l qu qv
qw qx qy rk
rl rm rn ro
v f

ra rb rd po pp pr qv
qw qx qy qz
ra rb rc

po pp pr
qv qw qx
qy ra rb

po pp pq pr
ps qv qw qx
qy ra rb rk
rl rm rn ro

qw ra rb

pf ph pi p j
pk p l pm pn
po pp pq pr
ps

oz pa pb pc
pd pe pf pg
ph pi p j pk
p l pm

oz pa pb pf
ph pi p j pk
p l pm po pp
pq pr ps

oz pa pb po
pp pq pr ps
qw ra rb

oz pa pb po
pp pq pr ps
qw ra rb rk
rl rm rn ro

oz pa pb rk
rl rm rn ro
wk wl

aax aay aaz aba
abb abc abd abe
abf abg abh

r t u v
w lx abf abg
abh abj abn abr

r t u v
w lx aax aay
aaz abf abg abh
abr

o q r t
lx ly abr

o q r t
u v w lx
ly aax aay aaz
abr

wt wv ww wx
wy wz x a x b
x c x d x e x f

x d x e x f x g
x h x i x j x k
x l x m x n

wt wv ww
x d x e x f
x j x l x n

wk wl wn wo
wp wq wr ws
wt wu wv ww

wk wl wt wv
ww x j x l x n

o q r t
u v w lx
ly wk wl x j
x l x n aax aay
aaz abr

fh fi fw ga
gm ha hb hd
hf hg hj hq
hr zn aal

ha hb hd hf
hg hl hq zd
zi zk zm zn
zq zr zt zu
zv zw zx zy
zz

hd hf hg hl
yv yw yx yy
yz za zb zc
zd ze zf zg
zh zi zk zm
zn zq zr zx
zz aaa aab

ha hb hd hf
hg hl hq yv
yw yx yy yz
za zd zi zk
zm zn zq zr
zx zz

fh fi fw ga
gm ha hb hd
hf hg hj h l
hq hr yv yw
yx yy yz za
zn aal

yo yp yq yr
ys yt yu yv
yw yx yy yz
za

x y yd yf yg
yh ym yn yo
yp yq yr ys

x y yd yf yg
yh yo yp yq
yr ys yv yw
yx yy yz za

fh fi fw ga
gm ha hb hd
hf hg hj h l
hq hr x y yd
yf yg yh yv
yw yx yy yz
za aal

x j x l x n x o
x p x q x r x s
x t x u x v ya
ye yk yl

x r x t x v x w
x x x y x z ya
yb yc yd ye
yf yg yh yi
yj

x r x s x t x v
ya yb ye

x r x s x t x v
x y ya yb yd
ye yf yg yh

x j x l x n x r
x s x t x v x y
ya yd ye yf
yg yh

fh fi fw ga
gm ha hb hd
hf hg hj h l
hq hr x j x l
x n x y yd yf
yg yh aal

o q r t
u v w fh
fi fw ga gm
ha hb hd hf
hg hj h l hq
hr lx ly wk
wl x j x l x n
aal aax aay aaz
abr

fc fe fh fi
fw gg gh gj
gm gz ha hb
he hh hj hk
hm ho hq id
ie i f ig ih
i i aal

fh fw ga gd
ge gf g i gk
gm gz ha hb
hc hd he hf
hg hh hi h j
hk hl hm hn
ho hp hq hr
hs ht hu hv
id ie i f ig
ih

fc fe fh fi
fw ga gd ge
gf gg gh gi
g j gk gm gz
ha hb hc hd
he hf hg hh
hi h j hk hl
hm ho hq hr
hs ht hu id
ie i f ig ih
aal

hc hi hr hs
ht hu hw hx
hy hz ia ib
ic

fc fe fh fi
fw ga gd ge
gf gg gh gi
g j gk gm ha
hb hc hd hf
hg hi h j h l
hq hr hs ht
hu aal

ey fa fc fd
fe ff fg fh
fi fj fk fl
fm fn fo fp
ft fu fv

en eo ep eq
er es et eu
ev ew ex ey
ez fa fb fc
fd fe ff fg
fj fk fm fo
fq fr fs ft
gn gx gy i j
ik

ew ex ey fa
fc fd fe ff
fh fi fm ft
fu fv fw fx
fy fz ga gb
gc gd ge gf
gg gh gi g j
gk gl gm gn
go gp gq gx
gy i j

en eo ep eq
er es et ev
ew ex ey ez
fa fb fc fd
fe ff fg fh
fi fj fk fm
fo fs ft fu
fv fw ga gd
ge gf gg gh
gi g j gk gm
gn go gp gq
gx gy i j

en eo ep eq
er es et ev
ey ez fa fb
fc fd fe ff
fg fh fi fj
fk fm fo fp
fs ft fu fv
fw ga gd ge
gf gg gh gi
g j gk gm gn
go gp gq gx
gy

ey fa fm
fo fp

gn go gp gq
gr gs gt gu
gv gw gx gy

ey fa fm fo
fp gn go gp
gq gx gy

en eo ep eq
er es et ev
ey ez fa fb
fc fe fh fi
fm fo fp fs
fw ga gd ge
gf gg gh gi
g j gk gm gn
go gp gq gx
gy

en eo ep eq
er es et ev
ez fb fc fe
fh fi fs fw
ga gd ge gf
gg gh gi g j
gk gm ha hb
hd hf hg hj
h l hq hr aal

ez fb fs i l
im in io ip
iq i r is i t
iu iv iw ix
iy

i r is i t iu
iv iw ix iy
iz ja jb jc
jd je j f jg
jh j i j j j k
j l jm jn aam
aan aao aap

ez fb fs i l
im in io i r
is i t iu iv
iw ix iy j f
jg j i j j j l
jn aam aan aao
aap

iv j f aam aan
aao aap aaq aar
aas aat aau aav
aaw aax aay aaz

ez fb fs i l
im in io iv
j f jg j i j j
j l jn aam aan
aao aap aax aay
aaz

dq ds en eo
ep eq er es
et ev fb fs
i l im in io

dk dm do dq
ds en eo ep
eq er es et

dk dm do dq
ds en eo ep
eq er es et
ev fb fs i l
im in io

dk dm do dq
ds en eo ep
eq er es et
ev ez fb fs
i l im in io
jg j i j j j l
jn aax aay aaz

dk dm do dq
ds en eo ep
eq er es et
ev ez fb fh
fi fs fw ga
gm ha hb hd
hf hg hj h l
hq hr jg j i
j j j l jn aal
aax aay aaz

o q r t
u v w dk
dm do dq ds
fh fi fw ga
gm ha hb hd
hf hg hj h l
hq hr jg j i
j j j l jn lx
ly wk wl aal
aax aay aaz abr

o q r t
u v w dk
dm do dq ds
jg j i j j j l
jn lx ly oz
pa pb wk wl
abr

bs cf cm cf cg ch ci
ck cl cm

bs cf cg
ch ci cm

aq as at au
aw ay az ba
bb bc bd be
bf bg bh bi
b j bk bl bm
bn bo bp bq
br cb cq

bb bc bf b l
bm bp bq br
bs bt bu bv
bw bx ca cc
cd ce cf cg
ch ci cj cn
co cp

aq as at au
aw ay az bb
bc be bf b l
bm bp bq br
bs bu bw cf
cg ch ci

bu bw by bz

aq as at au
aw ay az be
bs bu bw cf
cg ch ci

aq as at au
aw ay az be
bs cf cg ch
ci

cr cs cu cv
df dg dh di
d j dk dl dm
dn dt

dh dj d l dm
dn do dp dq
dr ds dt du
dv dw dx dy
dz ea eb ec
ed ee ef eg
eh ei ej ek
el em

cr cs cu cv
df dh dj dk
dl dm dn do
dq ds dt

n o r s
t u v w
x y

n o r t
u v w x
y cr cs cu
cv df dk dm
do dq ds

v w x y
z aa ab ac
ad ae af ag
ah ai aj

ag ah ai aj
ak al am ao
ap cr cs cu
cv de df

af ag ah ai
aj ak al am
an ao ap aq
ar as at au
av aw ax ay
az be cr cs

af ag ah ai
aj ak al am
ao ap aq ar
as at au av
aw ax ay az
be cr cs cu
cv de df

v w x y
af ag ah ai
aj ak al am
ao ap aq ar
as at au av
aw ax ay az
be cr cs cu
cv de df

ak al am ao
ap ar av ax
cr cs ct cu
cv cw cx cy
cz dd de

am ax cx
cy cz da
db dc dd

ak al am ao
ap ar av ax
cr cs cu cv
cx cy cz dd
de

v w x y
ak al am ao
ap aq ar as
at au av aw
ax ay az be
cr cs cu cv
de df

n o r t
u v w x
y aq as at
au aw ay az
be cr cs cu
cv df dk dm
do dq ds

n o r t
u v w aq
as at au aw
ay az be dk
dm do dq ds

mx mz nu nw
ny ow ox oy
oz pa pb

mf mg mh mi
mj mk ml mm
mn mo mp mq
mr ms mt mu
mv

p lz ma mb
mc md me mf
mg mh mi mj

p lz ma mb
mf mg mh mi
mj mr ms mt
mu

p lz ma mb
mr ms mt mu
mx mz nu nw
ny oz pa pb

nk nl nm nn
no np nq nr
ns nt

mr ms mt mu
mw mx my mz
na nb nc nd
ne nf nh nu
nw nx ny nz
oa ob oc ov

nb nh nj nx
nz oa ob oc
od oe of og
oh oi o j ok
ol om on oo
op oq or os
ot ou

mr ms mt mu
mx my mz na
nb nc nd ne
nf nh nj nu
nw nx ny nz
oa ob oc

my mz na nb
nc nd ne nf
ng nh ni n j
nk n l nm nn
no np nu nv

mr ms mt mu
mx my mz na
nb nc nd ne
nf nh nj nk
nl nm nn no
np nu nw ny

mr ms mt mu
mx mz nk nl
nm nn no np
nu nw ny

p lz ma mb
mr ms mt mu
mx mz nu nw
ny oz pa pb

g i k l
m n o p
q lx ly lz
ma mb abr

l m n o
p q r

g i k l
m n o p
q r lx ly
lz ma mb abr

f jp j t jv
jy ky kz la
lb lc ld le
l f lg lh l i
lk l l lm ln
lo lp

c d e f
g h i k
l la lc ld
le lg lp abv
abw abx

c d e f
g h i k
l jp j t jv
jy ky la lc
ld le lg lp
abw abx

a b c
abw abx aby
abz aca acb

a b c d
e f g h
i j k l
m n q le
lg lp ma

a b c d
e f g h
i k l m
n q le lg
lp ma abw abx

c d e f
g h i k
l m n q
jp j t jv jy
ky le lg lp
ma abw abx

jg j i j j j l
jn jo jp jq
j r js j t ju
jv jw jx jy
jz ka kb kc
kd ke kf kg
kh ki ku kv
kw kx ky

jx jz kd ke
kf kg kh ki
kj kk kl km
kn ko kp kq
kr ks kt ku

jg j i j j j l
jn jp j t jv
jx jy jz kd
ke kf kg kh
ki kn ko kr
ku ky

kn ko kr

jg j i j j j l
jn jp j t jv
jy kn ko kr
ky

g i k l
m n q jg
j i j j j l jn
jp j t jv jy
ky ma

g i k l
m n o p
q r jg j i
j j j l jn lx
ly lz ma mb
abr

n o p q
r jg j i j j
j l jn lx ly
lz ma mb oz
pa pb abr

n o q r
t u v w
dk dm do dq
ds jg j i j j
j l jn lx ly
oz pa pb abr

o q r t
u v w dk
dm do dq ds
jg j i j j j l
jn lx ly oz
pa pb abr

PSfrag replacements

robot pose p

computation time [ms]

storage space [KB]

landmarks n

accumulated comp. time [s]

tree height

(a) Tree representation of the map. Size of the node ovals is proportional to number of represented landmarks.

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800

EKF
p.alg.

PSfrag replacements

robot pose p

computation time [ms]

st
or

ag
e

sp
ac

e
[K

B
]

landmarks n

accumulated comp. time [s]

tree height

(b) Storage space.

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800

EKF
p.alg.

PSfrag replacements

robot pose p

co
m

pu
ta

tio
n

tim
e

[m
s]

storage space [KB]

landmarks n

accumulated comp. time [s]

tree height

(c) Computation time per measurement.
Observe local updates≈ 0.07ms.

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800

EKF
p.alg.

PSfrag replacements

robot pose p

computation time [ms]

storage space [KB]

landmarks n

ac
cu

m
ul

at
ed

co
m

p.
tim

e
[s

]

tree height

(d) Accumulated computation time.

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700 800

p.alg.

PSfrag replacements

robot pose p

computation time [ms]

storage space [KB]

landmarks n

accumulated comp. time [s]

tr
ee

he
ig

ht

(e) Tree height.

Figure 6.6: Real experiment performance: (a) Internal tree representation, (b) storage space,
(c)-(d) computation time, (e) tree height

6.6. STATISTICAL EVALUATION EXPERIMENT 183

encountered for elaborate algorithms, the prefactor of k3 logn is much smaller7 than the prefactor
of k2 logn, k logn or log n. So for k as small as 16.39 or 5.81 the asymptotically dominant term
O(k3 log n) is not actually responsible for most of the computation time yet. When determining
prefactors by dividing computation time by asymptotical expression the result is k dependent for
small k and should converge to a constant for k →∞.

6.6 Statistical Evaluation Experiment

During the statistical evaluation experiment the same environment was mapped independently
17 times by repeatedly moving the robot along the same trajectory to allow statistical evaluation.
The trajectory was a large 50m× 40m “U” along the two long corridors and the connection
outside the building (Fig. 6.1). In order to compute a relative error spectrum (§2.13) like in
simulation (§5.2, 5.3) the true location of four landmarks in the corners of the trajectory was
measured manually by tape. Figure 6.7 shows the resulting estimates of the proposed algorithm,
whereas figure 6.8 shows the corresponding Maximum Likelihood results. Again, it is observable
that most error occurred in the right upper corner when passing the buildings entrance. At casual
inspection, the estimates of the proposed algorithm appear to be slight though not dramatically
worse than the ML estimates.

For all 17 maps figure 6.9a shows the mean absolute error over the four selected landmarks
i.e. the distance between estimated and true location. It is plotted both for the proposed algorithm
and for the maximum likelihood solution. The error of the proposed algorithm was varying more.
On the average it is 12.40m and a bit higher than the ML error of 11.43m (ratio: 108%).

The relative error spectrum is shown in figure 6.9b. The lowest relative error is only 50% and
the highest 876%, which is rather inconceivable. Any relative error below 1 means that the ML
estimate is not optimal. Certainly it can only be optimal for real world experiments to the extent
the statistical model defining likelihood is met in reality. But then the same model is employed
in the proposed algorithm, so in any case the lowest relative error should be ' 1. The highest
relative error is 876% and thus more than 2 times larger than the relative error encountered in the
small error simulation experiment. Furthermore, the plot does not show the shape encountered
in the simulation experiments with low average value and two outliers. Overall, the results are
not as expected from the simulation experiments.

The author conjectures that 17 runs are too few for estimating a 8 × 8 covariance matrix
distorting the relative error spectrum. Indeed, when using less than 8 runs the covariance matrices
are rank deficient resulting in the lowest relative error being 0 and the highest being ∞. In

7Inner loop of matrix multiplication and inversion. All other computations are atmostO(k3 +k2 logn), see §4.6.

184 CHAPTER 6. REAL WORLD EXPERIMENTS

Figure 6.7: Several map estimates performed by the proposed algorithm.

Figure 6.8: Corresponding Maximum Likelihood estimates.

6.7. NAVIGATION EXPERIMENT 185

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16

p.alg.
ML

PSfrag replacements

eigenvalue #

relative error [%]

map #

ab
so

lu
te

m
ea

n
er

ro
r[

m
]

(a) Error of estimates for different maps.

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7

error p.alg. vs. ML
simulated values

PSfrag replacements

eigenvalue #

re
la

tiv
e

er
ro

r[
%

]

map #

absolute mean error [m]

(b) Relative error spectrum (see comment).

Figure 6.9: Error of the proposed algorithm compared to ML estimate.

general, the error made by estimating the covariance matrix from too few samples decreases
the lower eigenvalues and increases the higher eigenvalues making the overall spectrum look
more extreme. For investigating the plausibility of this explanation, a simulation was performed
assuming both algorithms had identical error distributions. The result is also plotted in figure
6.9b, showing that the eigenvalues range from 38.4% to 290.1%, although the correct result
(achieved for infinite many samples) is 1. Even with 1000 samples as used in the simulation
experiments the eigenspectrum still ranges from 90.2% to 110.9%.

Two observations follow: Apparently, requirement (R1), i.e. relative error spectrum, is a
much stricter criterion for evaluating map quality because it reveals critical aspects of the map
estimate a simple absolute error criterion does not consider. Secondly, due to the large number
of runs needed, verifying requirement (R1) in real world experiments appears to be impossible,
highlighting once more the benefit of simulation experiments.

6.7 Navigation Experiment

Despite being far from precise in an absolute sense the last experiment demonstrates that an
estimated map can be used for autonomous navigation. Again, part of the building was mapped
and passed to an autonomous navigation system using the same landmark detector and employing
a multi hypothesis tracking approach to increase robustness. Figure 6.10 shows the map and
the trajectory (A-B-C-D-B) autonomously navigated at a length of 106.11m as logged by the
navigation system. Figure 6.2 is an image taken from the video reporting the experiment.

186 CHAPTER 6. REAL WORLD EXPERIMENTS

A

B

C

D

5m

Figure 6.10: Map used for navigation with corresponding trajectory A-B-C-D-B (106.11m). The
map has been rotated to be aligned with the floor plan in figure 6.1.

6.8 Discussion

The experiments reported in this chapter clearly show that the proposed algorithm works as re-
quired performing in real world environments with high efficiency. In particular, the experiment
of mapping the 60m× 45m DLR building with n = 725 landmarks is one of the largest maps
reported in literature. Computation time for integrating a measurement was ≤ 13.15ms and thus
by far no issue for overall performance.

The main challenge in conducting this experiment was not identified in the estimation algo-
rithm. Least square estimation is a very clearly defined mathematical problem. From the authors
perspective there was little doubt that the encouraging results found in simulation experiments
would be transferable to a real world scenario. It turned out that landmark identification was the
limiting factor for map size instead. A considerable amount of effort was needed to make the
landmark identification algorithm close the large loop in the first experiment. For future research
it appears worthwhile investigating multi hypothesis tracking to be tolerant to false identification
as well as investigating landmarks to be distinguished by appearance.

When comparing the last two chapters, it can be said that simulation and real world experi-
ments complement one another. Simulation experiments allowed to investigate map quality and
computation time in experiments larger than practical to be conducted in reality. Performance
of the algorithm with respect to the three proposed criteria could be evaluated thoroughly, but
only under the assumptions made in the simulation model. In contrast, real world experiments
allowed for validation that these assumptions are close enough to reality to be useful and to show
“that it is actually working”.

Chapter 7

Conclusion

7.1 Summary

This thesis provides two main contributions to the Simultaneous Localization and Mapping prob-
lem: A thorough theoretical analysis and an efficient O(logn) algorithm. The analysis focuses
on the structure of uncertainty inherent in a map estimate, being phrased as “certainty of relations
despite uncertainty of positions”. The argument is based both on informal reasoning and on for-
mally proving approximate sparsity of the information matrices occurring in SLAM. Moreover,
three requirements for a SLAM algorithm were proposed from an intuitive perspective: Bounded
uncertainty, linear storage space, and linear update cost. These conditions affect map quality,
storage space, and computation time, respectively, being the most important issues for a SLAM
algorithm.

The SLAM algorithm proposed in this thesis works by dividing the map into a hierarchy
of regions represented as a binary tree. With this data structure, the computations necessary
for integrating a measurement are limited essentially to updating a leaf of the tree and all its
ancestors up to the root. From a theoretical perspective the main advantage is that a local map
can be computed in O(k3 logn)1 time. Practically, it is equally important that a global map can
be computed inO(kn) additional time. With the prefactor involved being extremely low (0.15µs)
this allows computation of a map with n = 11300 landmarks in 12.37ms on a Intel Xeon, 2.67

GHz. Furthermore, the algorithm can handle much larger orientation errors than, for instance,
EKF because it can reduce linearization error by applying “nonlinear rotations” to parts of the
map. Thus even with errors as large as 140◦, excellent estimates can be provided.

With respect to the three proposed criteria the algorithm was verified theoretically, by simula-
tion experiments, and by experiments with a real robot. These experiments included challenging

1n landmarks, k local landmarks

187

188 CHAPTER 7. CONCLUSION

setups: The simulations comprise a map with n = 11300 landmarks and a map with 140◦ orien-
tation error. In real experiments a 60m× 45m building with n = 725 landmarks was mapped,
containing 3 large loops, now being one of the largest maps reported in literature. Overall, the
algorithm meets the requirements concerning map quality and storage space, and even needs less
than linear time for computing a local map surpassing requirement (R3).

A precondition of achieving these results is a topologically suitable building as explained in
§3.5. Indeed, typical buildings are topologically suitable. For the DLR Institute of Robotics and
Mechatronics’ building mapped in the experiments, in particular, the algorithm had no problems
to find a suitable partitioning.

7.2 Outlook

SLAM evolved over a decade of research and has reached a level of maturity by now that it
can be used in medium or even large environments. This development triggered an impressive
amount of publications on SLAM in all major robotics conferences [FLS+03, LY03] in the past
year. Undoubtedly, in the future the focus will shift towards applying SLAM as a component in
larger systems and handling the challenges of very large, dynamical, and outdoor environments.
This poses new problems, both concerning the core algorithm and possible applications.

Algorithms

For many applications it is more important to compute a global map in O(n) time with a small
prefactor than to asymptotically achieve O(logn) time. This opens up possibilities to simplify
the algorithm for easier implementation while preserving its outstanding performance when com-
puting a global map. For instance, most of the algorithms bookkeeping could be replaced by a
standard graph-partitioning algorithm like Kernighan-Lin [HL95] running in O(n) instead of
O(logn) time.

Apart from computation time, the most important challenge is landmark identification2. This
is critical, especially for detecting loop closure. Failure in landmark identification often com-
pletely ruins the map, so it would be worthwhile devising an algorithm able to handle uncertain
landmark identification. A promising approach is Multi-Hypothesis Tracking, that is allowing
for several plausible landmark identifications simultaneously and postponing the final decision
until sufficient evidence will be accumulated. By this approach, efficiency of the core algorithm
becomes even more crucial as it has to handle all hypotheses simultaneously, multiplying the

2more generally called data association

7.2. OUTLOOK 189

(a) (b)

Figure 7.1: Potential applications for an efficient SLAM algorithm: (a) ESA Mars rover
“Nanokhod”, (b) DIROKOL service robot consisting of mobile platform, lightweight robot arm,
and dextrous robot hand.

computation time needed.
Visual landmarks pose a hard problem when mapping large environments, especially in out-

door environments. Using cameras and computer vision, artificial landmarks like circular discs
or retroreflective stripes can be detected rather easily but setting them is time-consuming. Natural
landmarks like vertical lines or corners are also easy to detect but highly ambiguous, so identifi-
cation is nearly impossible. Thus, developing reliable visual landmark recognition for landmarks
of appearance significant enough to facilitate identification is a highly promising research topic.

Applications

A particularly interesting outdoor application for a SLAM algorithm is autonomous exploration
of Mars [SABL01] (Fig. 7.1a). With a round-trip time between 9 and 42 minutes depending on
celestial position of Earth and Mars, direct tele-operation of a vehicle from Earth is not possible,
but SLAM could provide the autonomous behavior required. Since space-qualified computers
are much slower and have much less memory than terrestrial ones, efficiency is of utmost im-
portance. The ultimate vision may be airdropping a large number of small mobile robots that
collectively explore parts of the planet’s surface, interchange gathered information, and finally
provide an overall map of the desired area.

190 CHAPTER 7. CONCLUSION

It is widely acknowledged that service robotics promises the largest number of useful ap-
plications for a mobile robot. Here mapping and navigation in large dynamical environments
certainly are essential skills, but the actual job the robot is supposed to do most often requires
more than just moving around. Generally, a service robot must open doors and manipulate ob-
jects requiring both a robot arm and a robot gripper. To date there are very few commercially
available robot arms that are small and light enough to be mounted on a mobile platform. This
observation lead Hirzinger et al. to developing several mechatronically integrated light-weight
robot arms [HASH+01]. These arms feature joint-torque sensors and Cartesian impedance con-
trol [GSASH03] for sensitive and safe interaction with the environment (compliant motion con-
trol), a prerequisite for operation outside a delimited working cell.

An example for development towards an integrated system is the service robot built in the
research project DIROKOL3 and further improved in the research project MORPHA4 (Fig. 7.1b).
This service robot is composed of a mobile platform (Hanebeck et al. [HSFS00]), a lightweight
robot arm (Hirzinger et al. [HASH+01]) and a dextrous robot hand (Hirzinger et al. [BGLH01]),
equipped with a visual object-recognition system (Niemann et al. [DMD02]), an a-priori map-
based navigation system (Hanebeck et al. [HS98]), and a precursor of the SLAM algorithm
proposed in this thesis (Frese et al. [FH01]). Recently, the system was extended to incorporate
object manipulation skills like pouring drinks and wiping tables [HBBH04].

In a long-term perspective the greatest challenge will undoubtly be intelligence and behavior.
To be a universal domestic aid service robots will need many more abilities than they have now:
They must understand the environment they work in, communicate with humans, and plan their
actions. The required techniques of 3D-scene analysis and object recognition [HN00, HK98],
human-machine interaction [FKL+03, MOR03], and action planning [MNPW98, BHG+02] have
been a subject of research for a long time. Once integrated into a comprehensive mechatronic
system, they could lead to functionality far beyond current state of the art.

With growing complexity of future service robots, the traditional approach to explicitly pro-
gram desired behaviors and skills will become more and more difficult. Similar in spirit to
SLAM, where an operator shows the environment to the robot and the robot “learns” the map,
the future service robot could learn behaviors and skills from human demonstration. This is
another area of intense research [Koe01, SA94] again drawing heavily on 3D scene analysis,
human-machine interaction and action planning.

Apparently service robotics is at the verge of being marketed. However, the vision of a
universal domestic robot helper will still require years of intense research and interdisciplinary
cooperation.

3“Dienstleistungsroboter in kostengünstiger Leichtbauweise” funded by “Bayerische Forschungsstiftung”
4“BMBF Leitprojekt Intelligente Antropomorphe Assistenzsysteme” (Intelligent Anthropomorphic Sys-

tems) [MOR03]

Appendix A

Positive Definite Matrices

A.1 Properties

This section list some properties of symmetric positive (semi-) definite matrices that are used
throughtout §2 and §3. An extensive discussion can be found in [HJ90]. Let A =

(
P RT
R S

)
,

A′ =
(
P ′ R′T
R′ S′

)
and A′′ be symmetric positive definite matrices, X and X ′ arbitrary matrices and

x and y vectors. Then the following holds:

A = AT , 0 < xTAx ∀ x (A.1)

all eigenvalues are > 0 (A.2)

all diagonal entries are > 0 (A.3)

P, S, A−1, A+ A′, λA ∀ λ > 0 are SPD (A.4)

P − RS−1RT , S −RTP−1R are SPD (Schur - complement) (A.5)

XTAX is SPSD and SPD if X if kernel(X) = {0} (A.6)

A = LLT for a lower triangular matrix L (Cholesky - decomposition) (A.7)

(xTAy)2 ≤ xTAx yTAy (Cauchy-Schwarz inequality) (A.8)

(A.9)

For symmetric positive semidefinite matrices similar properties hold:

A = AT , 0 <= xTAx ∀ x (A.10)

all eigenvalues are ≥ 0 (A.11)

all diagonal entries are ≥ 0 (A.12)

P, S, A+ A′, λA ∀ λ ≥ 0 are SPSD (A.13)

191

192 APPENDIX A. POSITIVE DEFINITE MATRICES

P − RS−1RT , S −RTP−1R are SPSD, if existing (A.14)

XTAX is SPSD (A.15)

A = LLT for a lower triangular matrix L with col(L) = rank(A) (A.16)

(xTAy)2 ≤ xTAx yTAy (Cauchy-Schwarz inequality) (A.17)

xxT is SPSD and has rank 1 (A.18)

Some inequalities on 2-norm of matrices:

‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖ (A.19)

‖XY ‖ ≤ ‖X‖‖Y ‖ (A.20)

‖A‖ = max
|x|=1

xTAx = max
|x|=1
|Ax| = λmaxA (A.21)

‖R‖2 ≤ ‖P‖ · ‖S‖ (A.22)

‖X‖2 ≤ ‖X‖E :=

√∑

i,j

X2
ij (Frobenius norm) (A.23)

‖X‖2 = ‖XXT‖ = ‖XTX‖ (A.24)

Symmetric matrices A,A′ not necessarily positive definite can be compared defining a rela-
tion ≤:

A′ ≤ A⇐⇒ xTA′x ≤ xTAx ∀x (Definition) (A.25)

A′ < A⇐⇒ A′ ≤ A and not A ≤ A′ (Definition) (A.26)

xTA′x < xTAx ∀x =⇒ A′ < A (not conversely) (A.27)

A′ ≤ A⇐⇒ A′ − A is SPSD (A.28)

A′ ≤ A ∧ A′′ ≤ A′ =⇒ A′′ ≤ A (A.29)

A′ ≤ A ∧ A ≤ A′ =⇒ A = A′ (A.30)

A′ ≤ A =⇒ λA′ ≤ λA ∀λ ≥ 0 (A.31)

A′ ≤ A =⇒ λA ≤ λA′ ∀λ ≤ 0 (A.32)

0 ≤ A′ ≤ A =⇒ 0 ≤ A′ + A′′ ≤ A + A′′ (A.33)

A′ ≤ A =⇒ A−1 ≤ A′−1 (A.34)

A′ ≤ A =⇒ XTA′X ≤ XTAX (A.35)

A′ ≤ A =⇒ P ′ ≤ P ∧ S ′ ≤ S (A.36)

0 ≤ A′ ≤ A =⇒ imageA′ ⊂ imageA (A.37)

A.2. BLOCK MATRIX FORMULAS 193

A.2 Block Matrix Formulas

Block Matrix Inversion Formula

The so called block matrix inversion formula [PTVF92, §2.7] gives the inverse of a 2× 2 block
matrix using expressions involving the matrix blocks.
(
P RT

R S

)−1

=

((
P − RTS−1R

)−1 −
(
P − RTS−1R

)−1 (
RTS−1

)

− (S−1R)
(
P − RTS−1R

)−1
S−1 + (S−1R)

(
P −RTS−1R

)−1 (
RTS−1

)
)

(A.38)

=

(
P−1 +

(
P−1RT

) (
S − RP−1RT

)
(RP−1) −

(
P−1RT

) (
S − RP−1RT

)

−
(
S −RP−1RT

)
(RP−1)

(
S − RP−1RT

)
)

(A.39)

Woodbury Formula

The Woodbury formula [PTVF92, §2.7][Hag89] allows to update the inverse of a matrix after
change of a small rank:

(
P +RTS−1R

)−1
=P−1 −

(
P−1RT

) (
S − RP−1RT

)−1 (
RP−1

)
(A.40)

(
P−1 − RTS−1R

)−1 (
RTS−1

)
=
(
P−1RT

) (
S −RP−1RT

)−1 (A.41)

Sherman-Morrison Formula

If S is a 1 × 1 matrix, i.e. a scalar σ and R = rT correspondingly a vector, the result is the
Sherman-Morrison fomula:

(
P + σrrT

)−1
=P−1 −

(
P−1r

) σ

1− σrTP−1r

(
rTP−1

)
(A.42)

194 APPENDIX A. POSITIVE DEFINITE MATRICES

Appendix B

Technical Proofs

Lemma 1 (Page 72). Let S be a block diagonal SPD matrix with block bandwidth w. Then the
norm ‖S‖ is at most 2w − 1 times the norm of any diagonal block (= maxi ‖Sii‖).

Proof. Let α := maxi ‖Sii‖. It has to be proven, that |Sv| ≤ (2m− 1)α|v| for all v:

|Sv|2 =
∑

i

|Siv|2 =
∑

i

∣∣∣∣∣
∑

j

Sijvj

∣∣∣∣∣

2

≤
∑

i

(∑

j

|Sijvj|
)2

(B.1)

Since S is a m block band matrix, Sij = 0 if |i− j| ≥ m

=
∑

i

(
i+m−1∑

j=i−m+1

|Sijvj|
)2

≤
∑

i

(
i+m−1∑

j=i−m+1

‖Sij‖ · |vj|
)2

(B.2)

By (A.23), ‖Sij‖2 ≤ ‖Sii‖‖Sjj| ≤ α2 for all i, j:

≤
∑

i

(
i+m−1∑

j=i−m+1

α|vj|
)2

= α2
∑

i

i+m−1∑

j=i−m+1

i+m∑

k=i−m
|vj| · |vk| (B.3)

≤1

2
α2
∑

i

i+m−1∑

j=i−m+1

i+m∑

k=i−m

(
|vj|2 + |vk|2

)
= α2(2m− 1)

∑

i

i+m−1∑

j=i−m+1

|vj|2 (B.4)

≤α2(2m− 1)2
∑

i

|vi|2 = α2(2m− 1)2|v|2 (B.5)

195

196 APPENDIX B. TECHNICAL PROOFS

Lemma 2 (Page 72). For all ω ≥ 0 the following inequality holds:
√

1 + 3
ω

+ 1
√

1 + 3
ω
− 1
≥ 1 +

4

3
ω (B.6)

Proof. It is easy to verify, that for all a, b
(√

a +
√
b
)2

= a + 2
√
ab + b ≥ 3 min{a, b} + max{a, b}. (B.7)

So it follows, that
√

1 + 3
ω

+ 1
√

1 + 3
ω
− 1

=

(√
1 + 3

ω
+ 1
)2

(√
1 + 3

ω
+ 1
)(√

1 + 3
ω
− 1
) =

(√
1 + 3

ω
+ 1
)2

1 + 3
ω
− 1

(B.8)

=

(√
1 +

3

ω
+ 1

)2
ω

3

(B.7)
≥
(

3 +

(
1 +

3

ω

))
ω

3
=

(
4 +

3

ω

)
ω

3
=

4

3
ω + 1.

(B.9)

Lemma 6 (Page 75). Let 0 ≤ γ < 1 and A,B ⊂ N be two sets of natural numbers with a
minimal distance d between elements ofA and B: d ≤ |i− j| ∀i ∈ A, j ∈ B. Then the following
inequality holds:

∑

i∈A, j∈B
γ|i−j| ≤ 2

γd

1− γ min{|A|, |B|} (B.10)

Proof. Let without loss of generality be |A| ≤ |B|. Then it follows

∑

i∈A, j∈B
γ|i−j| =

∑

i∈A

∑

j∈B
γ|i−j| =

∑

i∈A

(∑

j∈B, j≤i
γi−j +

∑

j∈B, j>i
γj−i

)
(B.11)

|i−j|≥d
=

∑

i∈A

(∑

j∈B, j≤i−d
γi−j +

∑

j∈B, j≥i+d
γj−i

)
(B.12)

≤
∑

i∈A

(∑

j≤i−d
γi−j +

∑

j≥i+d
γj−i

)
≤
∑

i∈A

(
i−d∑

j=−∞
γi−j +

∞∑

j=i+d

γj−i

)
(B.13)

=
∑

i∈A

(∞∑

k=d

γk +

∞∑

k=d

γk

)
=
∑

i∈A

(
2
γd

1− γ

)
= 2

γd

1− γ |A|. (B.14)

197

Lemma 9 (Page 102). Let A =
(
P RT
R S

)
be an SPD matrix and x = (yz) be decomposed ac-

cordingly, with z given. Then the minimum over y of xTA−1x is zTS−1z at y = RTS−1z or
x = A

(
0

S−1z

)
. The corresponding minimum over z with y given, is yTP−1y at z = RP−1y or

x = A
(
P−1y

0

)
.

Proof. Consider the information block χ2(x) := xTA−1x with A−1 =:
(
PI R

T
I

RI SI

)
. In this context

it is just a mathematical expression not actual information on landmarks. Application of Schur
complement (lemma 8) yields a decomposition as

χ2(x) = χ2
CIB(z) + χ2

SIB(Hz + h− y),

with χ2
CIB(z) = zT

(
SI − RIP

−1
I RT

I

)
z, χ2

SIB(w) = wTPIw, H = −P−1
I RT

I , h = 0.
(B.15)

xTA−1x = zT
(
SI − RIP

−1
I RT

I

)
z +

(
−P−1

I RT
I z − y

)T
PI
(
−P−1

I RT
I z − y

)
(B.16)

From block matrix inversion formula (App. A.2) applied to
(
PI R

T
I

RI SI

)
it can be seen, that

S−1 = SI −RIP
−1
I RT

I (B.17)

RTS−1 =
(
−S(RIP

−1
I)
)T
S−1 = −P−1

I RT
I (B.18)

xTA−1x = zTS−1z +
(
RTS−1z − y

)T
PI
(
RTS−1z − y

)
. (B.19)

The minimum over y of this expression is zTS−1z at y = RTS−1z or equivalently at

x =

(
RTS−1z

z

)
=

(
RTS−1z

SS−1z

)
=

(
P RT

R S

)(
0

S−1z

)
= A

(
0

S−1z

)
(B.20)

The corresponding expressions for the minimum over z with y given are derived by exchanging
the role of the first and second block (y ↔ z, P ↔ S, R↔ RT).

Lemma 10 (Page 102). Let A =
(
P RT
R S

)
be an SPSD 2 × 2 block matrix, with P being SPD.

Then the unique minimal elimination matrix for block row and column 1 is B := (PR)P−1(PR)
T .

In the case of the first block being one-dimensional, B = uuT with u = 1√
P

(PR).

Proof. Similar to (B.16), χ2(x) := xTAx is decomposed using lemma 8 as

xTAx = χ2

(
y

z

)
= zT

(
S − RP−1RT

)
z +

(
−P−1RT z − y

)T
P
(
−P−1RT z − y

)
. (B.21)

198 APPENDIX B. TECHNICAL PROOFS

Terms involving y and z are expressed using x

−P−1RT z − y =
(
−I −P−1RT

)
x,

(
0 I

)
x = z (B.22)

thereby yielding a matrix decomposition for A as

xTAx =xT

(
0 0

0 S −RP−1RT

)
x + xT

(
−I −P−1RT

)T
P
(
−I −P−1RT

)
x (B.23)

=xT

(

0 0

0 S − RP−1RT

)
+

(
I

RP−1

)
P

(
I

RP−1

)T

x (B.24)

=xT

(

0 0

0 S − RP−1RT

)
+

(
P

R

)
P−1

(
P

R

)T

 x (B.25)

=⇒ A =

(
P RT

R S

)
=

(
0 0

0 S −RP−1RT

)
+

(
P

R

)
P−1

(
P

R

)T

︸ ︷︷ ︸
B

. (B.26)

Since S −RP−1RT ≥ 0, it follows that B ≤ A and B is indeed an elimination matrix for block
row / column 1 of A. If P is one-dimensional, P−1 = 1√

P
· 1√

P
and

B =

(
1√
P

(
P

R

))

︸ ︷︷ ︸
u

(
1√
P

(
P

R

))T

. (B.27)

That B is minimal can be seen by the following argument: Another elimination matrix B ′

must be of the formB ′ =
(
P RT

R S′
)
. Applying this lemma toB ′ yields the same elimination matrix

B as applying it to A, since the definition of B in (B.26) is independent from S. So B is not only
an elimination matrix for A but also for B ′ and thus B ≤ B ′.

A minimal elimination matrix is always unique, since if B and B ′ are two minimal elimina-
tion matrices, B ≤ B ′ and B′ ≤ B implies B = B ′.

Lemma 18 (Page 117). The minimum for the expression
(

λ
λ−1r

)T (ψ rT

r S

)−1(λ
λ−1r

)
is λ =

4
√
ψ(rTS−1r).

Proof. First
(
ψ rT

r S

)−1
is computed using block matrix inversion formula (A.2):

α := rTS−1r, β := (ψ − α)−1 (B.28)

199

(
λ

λ−1r

)T(
ψ rT

r S

)−1(
λ

λ−1r

)
(B.29)

=

(
λ

λ−1r

)T(
β −β(rTS−1)

−(S−1r)β S−1 + (S−1r)β(rTS−1)

)(
λ

λ−1r

)
(B.30)

= λ2β − 2(rTS−1r)β + λ−2
(
rTS−1r + (rTS−1r)β(rTS−1r)

)
(B.31)

= λ2β − 2αβ + λ−2
(
α + α2β

)
(B.32)

To find the minimum, the derivative with respect to λ must be

0 = 2λβ − 2λ−3
(
α + α2β

)
(B.33)

λ4 =
α + α2β

β
=
α

β
+ α2 = α (ψ − α) + α2 = ψα = ψ rTS−1r. (B.34)

Lemma 19 (Page 127). Let x0 and x̂ be two vectors of landmark positions and w a correspond-
ing weight vector. Let

eα,d(x̂) :=

k∑

i=1

wi(x
′0
i − x̂i)T (x′0i − x̂i), with x′0 := Rotα x

0 + Transd (B.35)

be the weighted squared distance between x̂ and x0 rotated by α and moved by d. Then the α, d
combination, that minimizes eα,d(x̂) is

¯̂x :=

∑k
i=1 wix̂i∑k
i=1 wi

, x̄0 :=

∑k
i=1 wix

0
i∑k

i=1 wi
, α = arctan2

(
−¯̂xxx̄0

x − ¯̂xyx̄0
y

−¯̂xyx̄0
x + ¯̂xxx̄0

y

)
, d = ¯̂x− Rotα x̄0.

(B.36)

Proof.

e′(x̂) =
k∑

i=1

wi
(
(Rotα x

0 + Transd)i − x̂i
)T (

(Rotα x
0 + Transd)i − x̂i

)
(B.37)

=
k∑

i=1

wi
(
Rotα x

0
i + d− x̂i

)T (
Rotα x

0
i + d− x̂i

)
(B.38)

=
k∑

i=1

wi

(
x0
i
T
x0
i + 2(d− x̂i)T Rotα x

0
i + (d− x̂i)T (d− x̂i)

)
. (B.39)

200 APPENDIX B. TECHNICAL PROOFS

The minimum for a given α is found by taking the derivative with respect to d:

0 =
∂e′(x̂)

∂d
= 2

k∑

i=1

wi
(
Rotα x

0
i + (d− x̂i)

)
= 2

k∑

i=1

wi
(
Rotα x

0
i − x̂i

)
+ 2

(
k∑

i=1

wi

)
d

(B.40)

arg min
d
e′(x̂) = −

∑k
i=1 wi (Rotα x

0
i − x̂i)∑k

i=1 wi
=

∑k
i=1 wix̂i∑k
i=1 wi︸ ︷︷ ︸

¯̂x

−Rotα

∑k
i=1 wix

0
i∑k

i=1 wi︸ ︷︷ ︸
x̄0

(B.41)

min
d
e′(x̂) =

k∑

i=1

wix
0
i
T
x0
i −

(
k∑

i=1

wi

)
(
¯̂x− Rotα x̄0

)T (¯̂x− Rotα x̄0
)
. (B.42)

The remaining task is to minimize (B.42) with respect to α. Therefore the expression is expanded
omitting terms independent from α and resulting in

= const +2

(
k∑

i=1

wi

)
¯̂xT Rotα x̄0 = const + const ·

(
¯̂xT Rotα x̄0

)
. (B.43)

Decomposing Rotα, ¯̂x and x̄0 into x- and y- components yields an expression linear in cosα,
sinα:

¯̂xT Rotα x̄0 =

(
¯̂xx
¯̂xy

)T(
cosα − sinα

sinα cosα

)(
x̄0

x

x̄0
y

)
(B.44)

= cosα
(
¯̂xxx̄0

x + ¯̂xyx̄0
y

)
+ sinα

(
¯̂xyx̄0

x − ¯̂xxx̄0
y

)
. (B.45)

The expression (B.45) is a scalar product and becomes minimal when both vectors are antiparallel
(

cosα

sinα

) www −
(

¯̂xxx̄0
x + ¯̂xyx̄0

y

¯̂xyx̄0
x − ¯̂xxx̄0

y

)
(B.46)

⇒ α = arctan2

(
−¯̂xxx̄0

x − ¯̂xyx̄0
y

−¯̂xyx̄0
x + ¯̂xxx̄0

y

)
, d = ¯̂x− Rotα x̄0. (B.47)

Appendix C

Implementation

C.1 Implementation of the Linear Algebra Part

Throughout this thesis the algorithm is presented using textual explanation and structure charts
to provide a medium level of abstraction. To implement the algorithm some details have to be
considered that have not been made explicit up to now:

The matrices and vectors involved in the computation are small (< 30 × 30) and dense, so
a dense column major implementation (compatible to LAPACK) has been used. Since the EKF
equations are numerically difficult, real values are stored as double. Most matrices and vectors
are annotated by an identification for the random variables they represent (for the landmarks: x, y
coordinate; for the robots: x, y, φ coordinate). Each row / column corresponds to one random
variable. The landmarks are identified by consecutive indices. It is probably advantageous to
assign two indices for each landmark: one for the x and one for the y coordinate and similar
reserve 3 special indices for the robots x, y, φ coordinates. This would allow to assign an index to
each individual row / column treating the different coordinates of the same landmark essentially
as different random variables. The advantage of such an implementation is, that it is possible
to treat matrices with and without robot pose by the same routines. The implementation used
for this thesis proceedes differently, annotating each matrix by a list of landmarks, each one
corresponding to two columns / rows. This has the disadvantage of generating a lot of special
cases when treating matrices with robot poses.

When combining two matrices, usually the resulting matrix has to represent the union of the
landmarks / random variables represented by both matrices. Therefore index tables mapping
from rows / columns of the original matrices to rows / column of the resulting matrix have to be
computed. All this computation can be performed in O(k), if the landmarks / random variables
are stored by ascending indices. Then it is possible to operate on the landmarks of the union in an

201

202 APPENDIX C. IMPLEMENTATION

ascending order by simultaneously stepping through all involved lists. The technique is similar
to the merge operation in merge sort [Sed92, §12].

It is advantageous if the matrix / vector implementation is capable of handling 0-dimensional
matrices and vectors. For instance during computeEstimate applied to the root node, the 0-
dimensional estimate ẑ taken from the not existing parent node is multiplied by a n × 0 matrix
H , yielding an n-dimensional vector ~0 as result. If the implementation does not support such
matrices, additional special cases have to be considered when implementing the subalgorithms.

For bookkeeping reasons, there exists IBs that represent a certain set of landmarks but do
not (yet) contain information about these landmarks (χ2 = 0). These IBs have an undefined lin-
earization point x0 with 0 weight vector w = 0, which can in turn lead to some landmarks having
zero weight and undefined linearization point in derived CIBs. Sometimes the corresponding ro-
tation angle α is undefined and must be set to zero. The implementation of computeCIBandSIB
must be able to cope with these special cases.

C.2 Implementation of BIB Changing Control

The purpose of this subalgorithm is to find the optimal BIB to integrate a set of landmark mea-
surements (see §4.2 for the definition of the optimization criteria (I) – (V)). It proceeds as follows
(Fig. 4.3, findOrCreateBIB): First all BIBs sharing a landmark with the actual BIB are com-
puted, then those BIBs are tested against criterion (I) – (III) and then the one which has to be
extended by the smallest number of landmarks is chosen:

To find all BIBs representing a landmark, one starts at the landmarks elimination node stored
as an array in the treemap and recursively scans each child that represents the landmarks (Fig.
C.3, recursiveCheck). Checking, whether a node represents a landmark takes O(k). If a node
represents the landmark, there is indeed a BIB below that node that represents the landmark.
So the number of nodes checked is at most O(logn) for each BIB that actually represents the
landmarks. Finding all these nodes takes O(k log n) and all nodes for all landmarks O(k2 log n).

Then each BIB found is tested against criterion (I) – (III) taking O(k2) per BIB and O(k3) in
toto. So the overall computation time for finding the best node is O(k3 + k2 logn).

To check criterion (III) the distance between any landmark in the BIB and any measured
landmark must be computed, where the location of the measured landmark is derived from the
robot pose estimate and the measurement. When the current robot pose estimate (as reported by
the EKF) is used, an up to date estimate for the BIB must be computed, because two different
estimates can in general be inconsistent. This requires updating the tree from the root down to the
BIB under consideration and is thus much too expensive. The solution is to use the last estimate

C.3. INSERTION 203

Figure C.1: isTooLarge
(
x̂, z
)

x̂ last estimate from a considered BIB, z measurements, global: x̂EKF EKF estimate
Compute transform T from x̂EKF to x̂ based on the landmarks in L(x̂) ∩ L(x̂EKF)

z′ := Transform z to global coordinates using robot pose from x̂EKF and T
FOR All landmarks l1 ∈ L(z)

FOR All landmarks l2 ∈ L(x̂)

Compute distance d from l1 in z′ to l2 in x̂
IF d > maxDistance

THEN return true
return false

Figure C.2: allBIBsRepresenting
(
M
)

M set of landmarks, the BIBs representing which are to be found
bib := ()
FOR All landmarks l ∈M

n := eN [l]

IF n is no leaf

THEN bib := bib ∪ recursiveCheck (n↙, l)
bib := bib ∪ recursiveCheck (n↘, l)

ELSE bib := bib ∪ {n}
return bib

computed for that BIB. To derive a robot pose estimate consistent with that estimate, a translation
and rotation is applied to the robot pose estimate from the EKF, that aligns the landmark estimate
from the EKF with the landmark estimate from the BIB (Fig. C.1, isTooLarge).

C.3 Insertion

When inserting a new BIB, the algorithm tries to find an optimal insertion point. This is done
by moving down from the root and deciding at each node n whether to insert the BIB here, or to
go to n↙ or n↘. The decision is based on the cost function cf (n) after insertion of the BIB. By
definition cf (n) = |L(n↙)| + |L(n↘)|. So the task is to compute the number of landmarks that
would be represented in n↙ and n↘, when the new BIB was inserted at the different positions
(↙,↘, ↑). It is much too inefficient to really insert the BIB and perform all updates necessary
just to decide whether to go to n↙ or n↘, so the number of landmarks must be computed directly.

The approach taken is to compute the information, which landmark is represented in BIBs
below n↙ (A0), below n↘ (A1) or outside the subtree of n (B). (See figure C.4a). This informa-

204 APPENDIX C. IMPLEMENTATION

Figure C.3: recursiveCheck
(
n, l
)

l landmark, the BIBs containing which are to be found, n node below which to search
IF n is no leaf

THEN IF n↙ represents l

THEN bibL := recursiveCheck (n↙, l)
ELSE bibL := ()
IF n↘ represents l

THEN bibR := recursiveCheck (n↘, l)
ELSE bibR := ()
return bibL ∪ bibR

ELSE return {n}

tion can be updated when n moves down. Additionally the set of landmarksM of the BIB to be
inserted is needed. From these sets, the effect of inserting the BIB in the different positions can
be computed as shown in the following table:

L(n↙) L(n↘)

before insertion A0 ∩ (A1 ∪ B) A1 ∩ (A0 ∪ B)

insert BIB↙ (A0 ∪M) ∩ (A1 ∪ B) A1 ∩ (A0 ∪M∪ B)

insert BIB↘ A0 ∩ (A1 ∪M∪ B) (A1 ∪M) ∩ (A0 ∪ B)

insert BIB ↑ A0 ∩ (A1 ∪M∪ B) A1 ∩ (A0 ∪M∪ B)

Some sets are quite large, since the union A0 ∪ A1 ∪ B contains all landmarks. So it is not
possible to compute the complete sets efficiently. However, it can be seen from the formulas that
only landmarks are relevant that are contained in at least two of the sets A0,A1,B,M, thus all
landmarks contained only in one set can be omitted completely.

Computing and maintaining such reduced sets can be done efficiently but is by no way a
straightforward task. The same information is also needed in two circumstances for the hierar-
chical tree partitioning algorithm. Thus it is expressed as a subalgorithm (section C.5) clearly
separating the task of maintaining the information from using it. Computing the sets for a new
node n takes O(k2 log n) (initLandmarkState), whereas updating the sets when n moves to a
child of n can be done in O(k) (updateLandmarkState).

Apart from this, the algorithm needs the size (=number of BIBs below) of all nodes readily
available to evaluate the balancing constraint (III). It is stored in the nodes (nsize) and updated
whenever the tree changes. The subalgorithms for inserting an empty BIB is shown as a structure
chart in (Fig. C.6, createEmptyBIB) and (Fig. C.5, findBestInsertionPoint).

C.3. INSERTION 205

PSfrag replacements

n

r

A0 A1 B
C
D

(a) parts relative to n

PSfrag replacements

n

r

A0 A1 B C D

(b) parts relative to n, r

set landmarks of BIBs
A0 . . . below n↙
A1 . . . below n↘
B . . . below r↓n and

not below n

C . . . below r↓n
D . . . not below r

(c) Definitions

Figure C.4: a) A fixed node n divides the tree into three parts A0,A1,B. Knowledge, which
landmark is represented in which part, allows to compute the effect of inserting a BIB / subtree
on n.
b) Two fixed nodes n, r divide the tree into five parts A0,A1,B, C,D. Knowledge of the repre-
sented landmarks allows to compute the effect on r of moving n to the other side of r.
c) Definition of the different parts.

Figure C.5: findBestInsertionPoint
(
(n,A0,A1,B,M), size

)

WHILE n is no leaf

γ↙ := |(A0 ∪M) ∩ (A1 ∪ B)|+ |A1 ∩ (A0 ∪M∪ B)|
γ↘ := |A0 ∩ (A1 ∪M∪ B)|+ |(A1 ∪M) ∩ (A0 ∪ B)|
IF size ≥ 1

2 nsize

THEN γ↑ := |A0 ∩ (A1 ∪M∪B)|+ |A1 ∩ (A0 ∪M∪ B)|
ELSE γ↑ :=∞
IF γ↑ ≤ γ↘ ∧ γ↑ ≤ γ↙
THEN return n
ELSE IF γ↙ ≤ γ↘

THEN (n,A0,A1,B,M) :=

updateLandmarkState (n,A0,A1,B,M,↙)

ELSE (n,A0,A1,B,M) :=

updateLandmarkState (n,A0,A1,B,M,↘)

return n

206 APPENDIX C. IMPLEMENTATION

Figure C.6: createEmptyBIB
(
M
)

(n,A0,A1,B,M) := initLandmarkState (root, (),M)

a := findBestInsertionPoint ((n,A0,A1,B,M), 1)

b := new empty leaf
ap := new node with a and b as children
Make ap child of a↑ replacing a
Update nsize for n from b up to the root
Mark b and all ancestors to be optimized

C.4 Determination of a Transfer Step

This section explains how to efficiently determine a suitable transfer step based on the criteria
discussed in §4.4. The subalgorithm employs the three step strategy described there:

1. Find the node to be optimized

2. Find the subtree to be transfered

3. Find the insertion point for the subtree.

The algorithmic approach is similar to the one used in the preceding section:

Step 1: Find node to be optimized

As first step, a node r to be optimized is determined. The policy which nodes are marked to be
optimized (setBIB, transferSubtree, createEmptyBIB) has the property that whenever a node
is marked, all its ancestors are marked too. So a maximally low node to be optimized can be
found by a greedy approach: Start at the root and move downward in the tree; as long as a
child of the node under consideration is marked, proceed to the child. An important heuristic is
employed, when the node under consideration is ancestor of the actual BIB and both children are
marked. Then the algorithm chooses the child, that is not ancestor of the actual BIB. The reason
therefor is, that the part of the tree containing the actual BIB can be expected to change soon, so
time used to optimize this part is probably wasted (Fig. C.7, findNodeToBeOptimized).

Step 2: Find subtree to be transfered

Step 2 is to find the optimal subtree below r to move from r↙ to r↘ or vice versa. This is
performed by recursively scanning through all possible candidates (O(k logn)) for the subtree
root n. For each n the effect of moving the subtree of n to the other child of r is evaluated.

C.4. DETERMINATION OF A TRANSFER STEP 207

Figure C.7: findNodeToBeOptimized
()

r := root; p := path from root to actBIB
IF r is marked to be optimized

THEN WHILE r↙ or r↘ are marked to be optimized

Remove first element from p
IF r↙ and r↘ are marked to be optimized

THEN IF r↙ = p [0]

THEN r := r↘
ELSE r := r↙

ELSE IF r↙ is marked to be optimized

THEN r := r↙
ELSE r := r↘

return r
ELSE return ()

To make the evaluation efficient, a similar approach as in the previous section is taken. (figure
C.4b) The algorithm computes five sets of landmarks: Landmarks represented in BIBs below n↙
(A0), below n↘ (A1), not below n but below r↓n (B), below r↓n (C) and not below r (D). The
situation is more complicated, since the position relative to both nodes n and r is important not
only relative to n as in the previous section. With these sets the landmarks represented in r↙ and
r↘ and the cost function can be expressed as

L(r↓n) =
(
A0 ∪ A1 ∪ B

)
∩
(
C ∪ D

)
; L(r↓n) = C ∩

(
A0 ∪ A1 ∪ B ∪ D

)
(C.1)

cf (r) =
∣∣∣
(
A0 ∪ A1 ∪ B

)
∩
(
C ∪ D

)∣∣∣+
∣∣∣C ∩

(
A0 ∪ A1 ∪ B ∪ D

)∣∣∣. (C.2)

After n has been transfered from below r↓n to below r↓n the situation is

L′(r↓n) = B ∩
(
A0 ∪ A1 ∪ C ∪ D

)
; L′(r↓n) =

(
A0 ∪ A1 ∪ C

)
∩
(
B ∪ D

)
(C.3)

cf ′(r) =
∣∣∣B ∩

(
A0 ∪ A1 ∪ C ∪ D

)∣∣∣ +
∣∣∣
(
A0 ∪ A1 ∪ C

)
∩
(
B ∪ D

)∣∣∣. (C.4)

As in the previous section, only landmarks are relevant that are contained at least in two of the
setsA0,A1,B, C,D, so all other landmarks can be omitted when computing the sets.

The value of (C.4) is compared for the different feasible nodes n and the lowest one is chosen.
Feasible means, that transferring the subtree below n will not violate the balancing constraint
(III). The allowed sizes for the subtree to be transfered are computed depending on the balancing
condition bal(r) and Bal(r) and stored in [slow . . . shigh].

As discussed in section 4.4 the search for the optimal subtree can be limited to O(k log n)

candidates. This limitation is realized by using the following two bounding conditions to termi-
nate recursion:

208 APPENDIX C. IMPLEMENTATION

1. If nsize is smaller than slow , recursive search can be terminated, since all lower nodes have
even smaller sizes and are thus infeasible. As discussed in section 4.4, if r is not balanced,
the choice of [slow . . . shigh] guarantees, there are at mostO(logn) subtrees larger than slow .
So this bounding condition ensures that no more thanO(logn) nodes have to be processed.

2. The following expression is a lower bound for (C.4) that holds for all nodes below n, since
it assumesA0 = A1 = ∅:

cf ′(r) ≥
∣∣∣B ∩

(
C ∪ D

)∣∣∣+
∣∣∣C ∩

(
B ∪ D

)∣∣∣ (C.5)

If this value is greater or equal than the current best cost function value, no node below
n will be a better choice and recursive search can be terminated. Especially if L(n) ∩
L(r↓n) = ∅ it follows that:

(A0 ∪ A1) ∩ (C ∪ D) = ∅ (C.6)

A0 ∩ C = A1 ∩ C = A0 ∩ D = A1 ∩ D = ∅. (C.7)

So the bound (C.5) equals (C.2) and transferring any subtree below n will not improve
cf (r). If r is balanced, (C.2) corresponds to the feasible solution of doing nothing, so
recursive search can be terminated. As discussed in section 4.4 there are only O(k log n)

nodes, that share a represented landmark with r, so by using (C.5) as bound no more than
O(k logn) nodes have to be processed.

The recursive subalgorithm is shown as a structure chart in (Fig. C.8, findBestTransfer)
and (Fig. C.9, recursiveBest).

Step 3: Find insertion point for subtree

The third step consists of finding the optimal point below r↓n to insert the subtree n. This can
be achieved by the same subalgorithm used to insert a new BIB (findBestInsertionPoint). The
subalgorithm is required to find a insertion point below r↓n and it uses nsize instead of 1 as size
of the node to be inserted when evaluating the balancing condition. The subalgorithm uses the
sets A′0,A′1,B′ to evaluate optimization criterion (II) for the different possible insertion points.
These sets must be computed as they were, if n had already been removed from below r↓n:

A′0 = B; A′1 = C; B′ = D if r↙ is ancestor of n (C.8)

A′0 = C; A′1 = B; B′ = D else (C.9)

After the best insertion point has been determined, the subtree is actually transfered as described
in section 4.5. The to be optimized flag on node r is not removed, since there may be another

C.4. DETERMINATION OF A TRANSFER STEP 209

Figure C.8: findBestTransfer
(
r
)

(n,A0,A1,B, C,D) := initLandmarkState (r, r, ∅)
IF 1

3 rsize ≤ r↙size ≤ 2
3 rsize

THEN slow := dr↙size − 2
3 rsizee; shigh := br↙size − 1

3 rsizec

best := (); bestValue := |L(r↙)|+ |L(r↘)|

ELSE slow := dr↙size − 3
5 rsizee; shigh := br↙size − 2

5 rsizec

bestValue :=∞
IF shigh > 0

THEN recursiveBest ((n,A0,A1,B, C,D),↙, [slow . . . shigh] , best, bestValue)

IF slow < 0

THEN recursiveBest ((n,A0,A1,B, C,D),↘, [−shigh · · · − slow] , best, bestValue)

return best

Figure C.9: recursiveBest
(
(n,A0,A1,B, C,D), child, [slow . . . shigh] , besta, bVala

)

(n,A0,A1,B, C,D) :=

updateLandmarkState (n,A0,A1,B, C,D, child)

IF nsize < slow

THEN return

lowerlimit :=
∣∣∣B ∩

(
C ∪ D

)∣∣∣+
∣∣∣C ∩

(
B ∪ D

)∣∣∣

IF lowerlimit ≥ bVal

THEN return

val :=
∣∣∣B ∩

(
A0 ∪ A1 ∪ C ∪ D

)∣∣∣+
∣∣∣
(
A0 ∪A1 ∪ C

)
∩
(
B ∪ D

)∣∣∣

IF nsize ∈ [slow . . . shigh] ∧ val < bVal

THEN best := (n,A0,A1,B, C,D); bVal := val

IF n is no leaf

THEN recursiveBest ((n,A0,A1,B, C,D),↙, [slow . . . shigh] , best, bVal)

recursiveBest ((n,A0,A1,B, C,D),↘, [slow . . . shigh] , best, bVal)

a best and bVal are passed by reference. The best result is returned in these parameter.

210 APPENDIX C. IMPLEMENTATION

Figure C.10: optimizeHTP
()

r := findNodeToBeOptimized ()

IF r = ()
THEN return
(s,A0,A1,B, C,D) := findBestTransfer (r)

IF s = ()
THEN Mark r as not to be optimized

return
IF s is descendant of r↙
THEN (n, A0, A1, B,M) :=

updateLandmarkState (r,B, C,D,A0 ∪ A1,↙)

ELSE (n, A0, A1, B,M) :=
updateLandmarkState (r, C,B,D,A0 ∪ A1,↘)

a := findBestInsertionPoint ((n,A0,A1,B,M), nsize)

transferSubtree (,a)

transfer step further improving cf (r). Only if the search for the best subtree to be transfered
reveals, that it is best to do nothing, the flag on r is removed. (Fig. C.10, optimizeHTP)

C.5 Tracking the State of Landmarks

The subalgorithms for hierarchical tree partitioning described in the previous sections all have
to evaluate the effect of inserting a BIB or transferring a subtree on the cost function of a node.
Based on this criterion they choose the best subtree or insertion point. To perform the evaluation
they need information about each landmark, where it is represented relative to the node (n) or
nodes (r, n) under consideration (figure C.4). The subalgorithm for landmark tracking described
in this section efficiently provides this information (initLandmarkState). It further updates the
information when n is replaced by n↙ or n↘ (updateLandmarkState).

Specifically the subalgorithm provides five sets of landmarks A0,A1,B, C,D, that indicate,
which landmarks are represented in BIBs at certain positions relative to n and r. The union of
all five contains every landmark represented in the whole map, so it is clearly impossible to effi-
ciently compute the whole sets. Fortunately for the hierarchical tree partitioning subalgorithms
only those landmarks are relevant, that are contained in at least two of those sets. So the land-
mark tracking subalgorithm omits all landmarks completely that are only contained in one of the
sets. An external set of landmarksM which are never omitted can be specified.

The set M is used when inserting a new BIB. In this case it is necessary to always know
the state of landmarks represented in the new BIB. ThusM is defined as the set of landmarks

C.5. TRACKING THE STATE OF LANDMARKS 211

represented in the BIB. When searching for the optimal transfer step for a subtree,M is empty.

Initial computation

For the initial computation it can be assumed that r is either not considered r = ()
(createEmptyBIB) or equal to n (findBestTransfer). The case r = () will be assumed now,
so only the relation of the different landmarks to n has to be evaluated and C = D = ∅:

By definition the landmarks represented by a node are those represented in some BIB below
that node and in some BIB not below that node. So it can be assigned:

A0 := L(n↙); A1 := L(n↘); B := L(n) (C.10)

A landmark from L(n↙) is represented by some BIB below n↙ and thus must be element of
A0. However, not all landmarks with this property are contained in L(n↙). Landmarks that are
represented in BIBs below n↙ and only in those BIBs are not represented by n↙ since there
elimination node is below n↙. As discussed before, these landmarks can be safely omitted as
they would only be contained in one of the five sets. The same holds for A1 compared to L(n↘)

and B compared to L(n).
An exception are the landmarks specified inM. They are not allowed to be omitted, even if

only contained in one of the five sets. So for each landmark l ∈ M it is explicitly determined
in which of the sets it must be contained. This is done by looking at the landmarks elimination
node eN [l] and its relation to n. Four cases arise:

1. eN [l] = ():
Landmark l is represented nowhere.

2. eN [l] = n:
Landmark l is represented both below n↙ and n↘ and already correctly treated by (C.10).

3. eN [l] is a descendant of n↙ (n↘ resp.):
Landmark l is represented below and only below n↙ (n↘ resp.) and must be added to A0

(A1 resp.). The path from n down to the elimination node is stored (as p [l]) since it is
needed when the sets must be updated after n has changed. (updateLandmarkState).

4. eN [l] is ancestor or unrelated to n:
There exists a BIB representing landmark l not below n, so l must be added to B. It might
be, that l is also represented somewhere below n↙ or n↘. In such a case it would be
contained in two different sets and thus already be correctly treated by (C.10), so it is not
necessary to determine, whether this is the case or not.

212 APPENDIX C. IMPLEMENTATION

Figure C.11: initLandmarkState
(
n, r a,M

)

D := C := ∅; p := ()
IF n is no leaf

THEN A0 := L(n↙); A1 := L(n↘); B := L(n)

ELSE A0 := A1 := L(nBIB); B := L(n)

FOR All landmarks l ∈M with eN [l] 6= ()
IF eN [l] is descendant of n
THEN p [l] := path from n to eN [l]

Remove first element from p [l]

IF p [l] is not empty

THEN IF p [l] [0] = n↙
THEN A0 := A0 ∪ {l}
ELSE A1 := A1 ∪ {l}

ELSE B := B ∪ {l}
IF r = n
THEN D := B; B := ∅
return (n, r,A0,A1,B, C,D,M, p)

a Node r must be either = n or = ().

If r = n instead of (), the only difference is, that D replaces B. In this case B and C are not well
defined, since n is not on one side of r, so it is advantageous to define both to be ∅ and the three
nonempty sets as A0,A1 and D.

The whole operation takes O(k + |M| logn). Stepping through L(n),L(n↙),L(n↘) takes
O(k), since all sets have O(k) elements. The additional computation forM takes O(logn) per
element with the dominant part being the computation of a path from eN [l] to n. In the overall
algorithm the subalgorithm is used with |M| = O(k), so the computation time is O(k log n).

The subalgorithm is shown as a structure chart in (Fig. C.11, initLandmarkState).

Update

The hierarchical tree partitioning algorithm scans through several nodes evaluating optimization
criterion (II) and choosing the one with the best result. To do that, the five sets (A0,A1,B, C,D)
have to be computed efficiently for each node. It processes O(k log n) different nodes, so per-
forming the computation described above for each node would take O(k2 log2 n) overall which
is too long. Fortunately the algorithm does not process arbitrary nodes, but recursively scans part
of the tree. So it first processes a node and than (possibly) the nodes children. This provides the
opportunity to use an updating subalgorithm. It takes the five sets computed for (r, n) as input

C.5. TRACKING THE STATE OF LANDMARKS 213

Figure C.12: Example for tracking the state of landmarks: The algorithm tries to improve r by
moving a subtree from the left side of r to the right side. To find the best subtree, it scans the
nodes below r↙ recursively evaluating all possible subtree roots n. In this example only the first
three choices for n, are shown. (cont.)

a b c b c d

b c d

d e g c d e f

c d e g

c d e g e g h i

e g g

g

a b c b c d

b c d

d e g c d e f

c d e g

c d e g e g h i

e g g

g

a b c b c d

b c d

d e g c d e f

c d e g

c d e g e g h i

e g g

g

a b c b c d

b c d

d e g c d e f

c d e g

c d e g e g h i

e g g

g

?
?

?PSfrag replacements
n

n

n

n

rr r r

and returns the corresponding sets for (r, nchild), where child is ↙ or ↘. The subalgorithm
works quite similar to the previous one:

In general, when n is replaced by n′ := n↙ (n↘ resp.), A1 (A0 resp.) must be added to B
andA0 andA1 recomputed as L(n′↙) and L(n′↘). A special case is the first update, when n = r.
Then A1 (A0 resp.) is added to C instead B. Similar to the situation before, all landmarks, that
are contained in at least 2 of the sets are already correct and all other landmarks can be omitted,
if they are not ∈ M. So as before, the next step is for all landmarks l ∈ M to look at the path
from n′ to the elimination node eN [l].

The path for landmark l has been saved as p [l], so it is not necessary to compute it. (Which
would be too time consuming) If the path is already removed or n′ does not lie on the path
anymore, the landmark does not affect the situation for n′ or any of its descendant, so the whole
path is removed. If n′ lies on the path, the path is shortened by one node. If it is empty now,
n′ is the elimination node eN [l], so l is already contained in A0,A1 and nothing has to be done
anymore. Otherwise the next step in the path is either n′↙ or n′↘. Depending on which, landmark
l is either represented below n′↙ or n′↘ resp. and added toA0 or A1 resp.

Finally landmarks from B that are not contained in A0,A1, C,D or M are removed. This
is necessary, since otherwise |B| may grow to O(k log n) making processing too slow. Since all
involved sets are O(k) and the operations performed are O(1) for each landmark, the overall
computation time is O(k). This is very important for the performance of findBestTransfer that
processes O(k logn) nodes, thus taking only O(k2 logn) time.

Figure C.12 shows an example of the landmark state operations involved in finding the
best tree to be transfered. The subalgorithm is shown as a structure chart in (Fig. C.13,

214 APPENDIX C. IMPLEMENTATION

Figure C.12 cont.: Parts of the tree, corresponding sets of landmarks and cost function cf (r):
The state is initialized with n = r = root↙,M = {b, f, g, h}. Landmarks a, c, d, i are omitted,
since they are only contained in one part. Normally when searching for a subtree to be transfered,
M = ∅ and landmarks b, f, h would have been omitted too. In this exampleM = {b, f, g, h}.
So to add the members ofM to the appropriate parts, the paths from n to their elimination nodes
are computed. For all elimination nodes below n the path is saved (dashed edges).
The original tree (a) and (b) both violate the balancing constraint, so (c) is chosen as best.

a b c b c d

b c d

d e g c d e f

c d e g

c d e g e g h i

e g g

g

PSfrag replacements n r

A∗

A0

A1

B
C

D

(a) Initialization n = r = root↙, M =

{b, f, g, h}: A0 = {b, e, f, g}, A1 = {e, g, h},
D = {g}. cf (r) = 4

a b c b c d

b c d

d e g c d e f

c d e g

c d e g e g h i

e g g

g

PSfrag replacements

n

r

A∗

A0 A1

B

C

D

(b) update n = n↙: A1 becomes C. Path to
eN [h] is not needed anymore: A0 = {b, c, d},
A1 = {c, d, e, f, g}, C = {e, g, h}, cf ′(r) =

1.

a b c b c d

b c d

d e g c d e f

c d e g

c d e g e g h i

e g g

g

PSfrag replacements

n

r

A∗

A0 A1B

C

D

(c) update n = n↘: A0 becomes B. Path to
eN [b] is not needed any more: A0 = {d, e, g},
A1 = {c, d, e, f}, B = {b, c, d}, cf ′(r) = 5

a b c b c d

b c d

d e g c d e f

c d e g

c d e g e g h i

e g g

g

PSfrag replacements

n

r

A∗

A0

A1

B

C

D

(d) update n = n↘: A0 is added to B. A∗ =

A0 = A1 = {c, d, e, f}, B = {b, c, d, e, g},
cf ′(r) = 8

C.6. IMPLEMENTATION OF THE BOOKKEEPING PART 215

Figure C.13: updateLandmarkState
(
(n, r,A0,A1,B, C,D,M, p), child

)

IF n = r
THEN IF child =↙

THEN n := n↙; C := A1

ELSE n := n↘; C := A0

ELSE IF child =↙
THEN n := n↙; B := B ∪ A1

ELSE n := n↘; B := B ∪ A0

IF n is no leaf

THEN A0 := L(n↙); A1 := L(n↘)

FOR All landmarks l ∈ M
IF p [l] exists

THEN IF p [l] [0] = n
THEN Remove first element of p [l]

IF p [l] is not empty

THEN IF p [l] [0] = n↙
THEN A0 := A0 ∪ {l}
ELSE A1 := A1 ∪ {l}

ELSE Remove p [l]

ELSE A0 := A1 := L(nBIB)

B := B ∩ (A0 ∪ A1 ∪ C ∪ D ∪M)

return (n, r,A0,A1,B, C,D,M, p)

updateLandmarkState). An analysis of the runtime complexity of (Fig. C.10, optimizeHTP) is
given in table C.1.

C.6 Implementation of the Bookkeeping Part

There are some details to consider when implementing the bookkeeping part of the algorithm
presented in §4 and this appendix:

The tree map as main data structure is implemented by a pointer linked binary tree as usual
with dynamically allocated node objects. To be able to build external references, it is useful to
assign ids to the nodes and use an index map (for instance STL::map<>) to quickly access a
node with a given index. The elimination nodes can be stored in a plain array given that the
landmarks are numbered consecutively.

The algorithm often has to manipulate sets of landmarks. These sets should be implemented
as an ascending array of indices to be compatible to the matrix row / column description dis-

216 APPENDIX C. IMPLEMENTATION

optimizeHTP O(k3 log n)

findNodeToBeOptimized O(logn)

findBestTransfer O(k2 log n)

initLandmarkState O(k logn)

O(k log n) times O(k2 log n)

· · · O(k)

updateLandmarkState O(k)

updateLandmarkState O(k)

findBestInsertionPoint O(k logn)

O(logn) times O(k logn)

· · · O(k)

updateLandmarkState O(k)

transferSubtree O(k3 log n)

· · · O(k logn)

O(logn) times O(k3 log n)

update O(k3)

computeCIBandSIB O(k3)

Table C.1: Calling hierarchy of optimizeHTP

cussed in section C.1. All set operations (∪,∩,−, etc.) can be performed by simultaneously
iterating through all involved arrays using one iterator / index for each and processing all ele-
ments in ascending order. (Like the merge operation in merge sort [Sed92, chapter 12])

The only exception are the setsA0,A1,B, C,D describing the state of landmarks with respect
to some nodes (section C.5). Here it is probably advantageous to use a single record (struct)
with boolean flags for each landmark and maintain the whole state as an array of records for the
different landmarks sorted by ascending index. This way the rather complex operations (like for
instance equation C.4) can be implemented by simple boolean operators.

It is worth noting, that the whole bookkeeping part except section 4.2 and
relinearizeInTree work independent from the actual data stored in the map. So it is pos-
sible to implement the bookkeeping part alone, without any actual measurements. Conversely
the linear algebra part presented in chapter 3 can be implemented and tested without the book-
keeping part by manually specifying the sequence of operations the bookkeeping part would
apply in a specific example.

Bibliography

[BCF+99] W. Burgard, A. Cremers, D. Fox, D. Hahnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun,
Experiences with an interactive museum tour-guide robot, Artificial Intelligence 114 (1999), no. 1
– 2, 3 – 55.

[BEF96] J. Borenstein, B. Everett, and L. Feng, Navigating mobile robots: Systems and techniques, A. K.
Peters, Ltd., Wellesley, 1996.

[BFJ+99] W. Burgard, D. Fox, H. Jans, C. Matenar, and S. Thrun, Sonar-based mapping with mobile robots
using EM, Proceedings of the 16th International Conference on Machine Learning, San Francisco,
1999, pp. 67 – 76.

[BGLH01] J. Butterfass, M. Grebenstein, H. Liu, and G. Hirzinger, DLR-Hand II: Next generation of dextrous
robot hand., In Proceedings of the IEEE Conf. on Robotics and Automation, Seoul, 2001, pp. 109
– 114.

[BHG+02] M. Beetz, J. Hertzberg, L. Guibas, M. Ghallab, and M.E. Pollack (eds.), Advances in plan-based
control of robotic agents, lecture notes in artificial intelligence 2466, Springer, 2002.

[BPP02] C. Bellini, S. Panzieri, and F. Pascucci, A real-time architecture for low-cost vision based robots
navigation, Proceedings of the 15th IFAC World Congress, Barcelona, 2002.

[BR95] R. Basri and E. Rivlin, Localization and homing using combinatins of model view, Artificial Intel-
ligence 78 (1995), no. 1-2.

[Bri99] W.L. Briggs, A multigrid tutorial, Ninth Copper Mountain Conference On Multigrid Methods, April
1999, (http://www.llnl.gov/CASC/people/henson/mgtut/ps/mgtut.pdf).

[Bro85] R.A. Brooks, Visual map making for a mobile robot, Proceedings of the IEEE International Confer-
ence on Robotics and Automation, St. Louis, 1985, pp. 824 – 829.

[CL85] R. Chatila and J.P. Laumond, Position referencing and consistent world modeling for mobile robots,
Proceedings of the IEEE International Conference on Robotics and Automation, St. Louis, 1985,
pp. 138 – 145.

[CMNT99] J.A. Castellanos, J. Montiel, J. Neira, and J.D. Tardos, The SPmap: A probablistic framework for
simultaneous localization and map building, IEEE Transactions on Robotics and Automation 15
(1999), no. 5, 948 – 952.

[CS86] R. Cheeseman and P. Smith, On the representation and estimation of spatial uncertainty, Interna-
tional Journal of Robotics 5 (1986), 56 – 68.

217

218 BIBLIOGRAPHY

[CT00] Jose A. Castellanos and J.D. Tardos, Mobile robot localization and map building: A multisensor
fusion approach, Kluwer Academic Publishers, Boston/ Dorfdrecht/ London, 2000.

[CTS97] J.A. Castellanos, J.D. Tardos, and G. Schmidt, Building a global map of the environment of a
mobile robot: The importance of correlation, Proceedings of the IEEE International Conference on
Robotics and Automation, Albuquerque, 1997, pp. 1053 – 1059.

[CW90] I. J. Cox and G. T. Wilfong (eds.), Autonomous robot vehicles, Springer Verlag, New York, 1990.

[DdFG01] A. Doucet, J.F.G de Freitas, and N.J. Gordon, Sequential monte carlo methods in practice, Springer
Verlag, New York, 2001.

[DMD02] C. Drexler, F. Mattern, and J. Denzler, Generic hierarchic object models and classification based
on probabilistic pca, Proceedings of Machine Vision Applications 2002, Nara, 2002, pp. 435–438.

[DMS84] S. Demko, W.F. Moss, and P.W. Smith, Deacy rates for inverses of band matrices, Mathematics of
Computation 43 (1984), no. 168, 491 – 499.

[DMS00] T. Duckett, S. Marsland, and J. Shapiro, Learning globally consistent maps by relaxation, Pro-
ceedings of the IEEE International Conference on Robotics and Automation, San Francisco, 2000,
pp. 3841–3846.

[DMS02] T. Duckett, S. Marsland, and J. Shapiro, Fast, on-line learning of globally consistent maps, Au-
tonomous Robots 12 (2002), no. 3, 287 – 300.

[DN00] T. Duckett and U. Nehmzow, Performance comparison of landmark recognition systems for nav-
igating mobile robots, Proceedings of the AAAI National Conference on Artificial Intelligence,
Austin, 2000, pp. 826–831.

[DN01] T. Duckett and U. Nehmzow, Mobile robot self-localisation using occupancy histograms and a
mixture of gaussian location hypotheses, Robotics and Autonomous Systems 34 (2001), no. 2 – 3,
119 – 130.

[DNC+01] M.W.M.G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and M. Csorba, A solution to
the simultaneous localization and map building (SLAM) problem, IEEE Transactions on Robotics
and Automation 17 (2001), no. 3, 229 – 241.

[DNDW+99] M.W.M.G. Dissanayake, P. Newman, H.F. Durrant-Whyte, S. Clark, and M. Csobra, An experimen-
tal and theoretical investigation into simultaneous localisation and map building, Proceedings of
the 6.th International Symposium on Experimantal Robotics, Sydney, 1999, pp. 265–274.

[DW88] H.F. Durrant-Whyte, Uncertain geometry in robotics, IEEE Transactions on Robotics and Automa-
tion 4 (1988), no. 1, 23 – 31.

[DWMdB+01] H.F. Durrant-Whyte, S. Majumder, M. de Battista, S. Thrun, and S. Scheding, A bayesian algorithm
for simultaneous localisation and map building, Proceedings of the International Symposium of
Robotics Research, Lorne Victoria, 2001.

[DWRN95] H.F. Durrant-Whyte, D. Rye, and E. Nebot, Localization of autonomous guided vehicles, Proceed-
ings of the 8th International Symposium on Robotics Research (G. Hirzinger and G. Giralt, eds.),
Springer Verlag, New York, 1995, pp. 613 – 625.

BIBLIOGRAPHY 219

[Elf89] A. Elfes, Occupancy grids: A probabilistic framework for robot perception and navigation, Ph.D.
thesis, Department of Eletrical Engineering, Carnegie Mellon Univrsity, 1989.

[Eur02] European Network for Climbing and Walking Robots, Clawar home page, October 2002,
(http://www.uwe.ac.uk/clawar/).

[Fau89] O. Faugeras, Maintaining representations of the environment of a mobile robot, IEEE Transactions
on Robotics and Automation (1989), 804.

[FC03] J. Folkesson and H. Christensen, Outdoor exploration and SLAM using a compressed filter, Pro-
ceedings of the IEEE International Conference on Robotics and Automation, Taipei, 2003, pp. 419–
426.

[FD03] U. Frese and T. Duckett, A multigrid approach for accelerating relaxation-based SLAM, Proceed-
ings of the IJCAI Workshop Reasoning with Uncertainty in Robotics, Acapulco, 2003, pp. 39–46.

[FDF02] E. Frazzoli, M. Dahleb, and E. Feron, Real time motion planning for agile autonomous vehicles,
AIAA Journal on Guidance, Control and Dynamics (2002).

[Fed99] H.J. Feder, Simultaneous stochastic mapping and localization, Ph.D. thesis, MIT, Cambridge, 1999.

[FH01] U. Frese and G. Hirzinger, Simultaneous localization and mapping - a discussion, Proceedings of
the IJCAI Workshop on Reasoning with Uncertainty in Robotics, Seattle, August 2001, pp. 17 –
26.

[FHBH00] U. Frese, M. Hörmann, B. Bäuml, and G. Hirzinger, Globally consistent visual localization without
a-priori map (german), automatisierungstechnik 3 (2000), 273 – 280.

[FKL+03] J. Fritsch, M. Kleinehagenbrock, S. Lang, T. Plötz, G.A. Fink, and G. Sagerer, Multi-modal an-
choring for human-robot-interaction, Journal of Robotics and Autonomous Systems, Special issue
on Anchoring Symbols to Sensor Data in Single and Multiple Robot Systems 43 (2003), no. 2,
133–147.

[FLD04] U. Frese, Per Larsson, and T. Duckett, A multigrid algorithm for simultaneous localization and
mapping, IEEE Transactions on Robotics (2004), (to appear).

[FLS+03] Li-Chen Fu, C.S.G. Lee, B. Siciliano, B. Lee, and S. Hirose (eds.), Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, Taipei, IEEE, 2003.

[FM82] C.M. Fiduccia and R.M. Mattheyses, A linear-time heuristic for improving network partitions, Pro-
ceedings of the 19th ACM/IEEE Design Automation Conference, Las Vegas, June 1982, pp. 175–
181.

[Gau21] C.F. Gauss, Theoria combinationis observationum erroribus minimis obnoxiae, Commentationes
societatis regiae scientiarum Gottingensis recentiores 5 (1821), 6–93.

[Gel74] A. Gelb (ed.), Applied optimal estimation, MIT Press, Cambridge, 1974.

[GFS03] J.S. Gutmann, M. Fukuchi, and K. Sabe, Environment identification by comparing maps of land-
marks, Proceedings of the IEEE International Conference on Robotics and Automation, Taipei,
2003, pp. 662 – 667.

220 BIBLIOGRAPHY

[GJ79] M.R. Garey and D.S. Johnson, Computers and intractability: Guide to the theory of NP-
completeness, C. Freeman, San Francisco, 1979.

[GK99] J.S. Gutmann and K. Konolige, Incremental mapping of large cyclic environments, Proceedings
of the IEEE International Symposium on Computational Intelligence in Robotics and Automation,
Monterey, 1999.

[GN01] J.E. Guivant and E.M. Nebot, Optimization of the simultaneous localization and map-building al-
gorithm for real-time implementation, IEEE Transactions on Robotics and Automation 17 (2001),
no. 3, 242 – 257.

[GN02] J.E. Guivant and E.M. Nebot, Solving computational and memory requirements of feature based
simultaneous localization and map building algorithms, Tech. report, Australian Centre for Field
Robotics, University of Sydney, Sydney, 2002.

[GOR94] J. González, A. Ollero, and A. Reina, Map building for a mobile robot equipped with a 2D laser
rangefinder, Proceedings of the IEEE International Conference on Robotics and Automation, San
Diego, 1994, pp. 1904 – 1909.

[GSASH03] G. Grunwald, G. Schreiber, A. Albu-Schäffer, and G. Hirzinger, Programming by touch: The dif-
ferent way of human-robot interaction, IEEE Transaction on industrial electronics 50 (2003), no. 4.

[Hag89] W.W. Hager, Updating the inverse of a matrix, SIAM Review 31 (1989), no. 2, 221 – 239.

[HASH+01] G. Hirzinger, A. Albu-Schäffer, M. Hähnle, I. Schaefer, and N. Sporer, On a new generation
of torque controlled light-weight robots, Proceedings of the IEEE International Conference on
Robotics and Automation, Seoul, 2001, pp. 3356–3363.

[HBBC95] P. Hebert, S. Betge-Brezetz, and R. Chatila, Probabilistic map learning, necessity and difficulty,
Proceedings of the International Workshop Reasoning with Uncertainty in Robotics, 1995, pp. 307
– 320.

[HBBH04] U. Hillenbrand, B. Brunner, C. Borst, and G. Hirzinger, Towards service robots for the human
environment: the robutler, Proceedings of the IEEE International Conference on Robotics and Au-
tomation, New Orleans, 2004.

[HJ90] R.A. Horn and C.R. Johnson, Matrix analysis, 2 ed., Cambridge University Press, Cambridge, 1990.

[HK98] Mei Han and Takeo Kanade, Homography-based 3d scene analysis of video sequences, Proceedings
of the DARPA Image Understanding Workshop, 1998.

[HL95] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, Proceedings of the
ACM International Conference on Supercomputing, Sorrento, 1995, pp. 626–657.

[HN00] J. Hornegger and H. Niemann, Probabilistic modeling and recognition of 3-d objects, International
Journal of Computer Vision 39 (2000), no. 3, 229–251.

[Hon90] J. Honerkamp, Stochastische Dynamische Systeme, VCH Verlagsgesellschaft, Weinheim, 1990.

[HS98] U.D. Hanebeck and G. Schmidt, Mobile robot localization based on efficient processing of sen-
sor data and set-theoretic state estimation, The Fifth International Symposium on Experimental
Robotics, Barcelona, 1998, pp. 385–396.

BIBLIOGRAPHY 221

[HSFS00] U. D. Hanebeck, N. Saldic, F. Freyberger, and G. Schmidt, Modulare Radsatzsysteme für omni-
direktionale mobile Roboter, Robotik 2000 Tagung (VDI/VDE-Gesellschaft Mess- und Automa-
tisierungstechnik), VDI Berichte 1552, Berlin, 2000, pp. 39–44.

[Jen01] P. Jensfelt, Approaches to mobile robot localization in indoor environments, Ph.D. thesis, Royal
Institute of Technology, Stockholm, 2001.

[JU96] S.J. Julier and J. Uhlmann, A general method for approximating nonlinear transformations of prob-
ability distributions, Tech. report, Dept. of Engineering Science, University of Oxford, Oxford,
1996.

[Koe01] R.H. Koeppe, Robot compliant motion based on human skill, Ph.D. thesis, Swiss Federal Institute
of Technology ETH Zürich, 2001.

[KS03] J.H. Kin and S. Sukkarieh, Airborne simultaneous localisation and map building, Proceedings of
the IEEE International Conference on Robotics and Automation, Taipei, 2003, pp. 406–411.

[KW94] D. Kortenkamp and T. Weymouth, Topological mapping for mobile robtos using a combination of
sonar and vision sensing, Proceedings of the National Conference on Artificial Intelligence, Seattle,
1994.

[LDW92] J.J. Leonard and H.F. Durrant-Whyte, Directed sonar sensing for mobile robot navigation, Kluwer
Academic Publishers, Boston, 1992.

[LF99] J.J. Leonard and H.J.S. Feder, Decoupled stochastic mapping, Tech. report, MIT, Cambridge, De-
cember 1999.

[LM97] F. Lu and E. Milios, Globally consistent range scan alignment for environment mapping, Au-
tonomous Robots 4 (1997), 333 – 349.

[LY03] C.S.G. Lee and J. Yuh (eds.), Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, Las Vegas, IEEE, 2003.

[ME85] H.P. Moravec and A. Elfes, High resolution maps from wide angle sonar, Proceedings of the IEEE
International Conference Robotics and Automation, St. Louis, 1985, pp. 116 – 121.

[ME88] L. Matthies and A. Elfes, Integration of sonar and stereo range data using a grid-based representa-
tion, Proceedings of the IEEE International Conference on Robotics and Automation, Philadelphia,
1988, pp. 727 – 733.

[Min88] C. Ming Wang, Location estimation and uncertainty analysis for mobile robots, Proceedings of the
IEEE International Conference on Robotics and Automation, Philadelphia, 1988, pp. 1230 – 1235.

[MNPW98] Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian C. Williams, Remote agent: To
boldly go where no AI system has gone before, Artificial Intelligence 103 (1998), no. 1-2, 5–47.

[MOR03] MORPHA, Morpha home page, 2003, (http://www.morpha.de/).

[MTKW02] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, FastSLAM: A factored solution to the si-
multaneous localization and mapping problem, Proceedings of the AAAI National Conference on
Artificial Intelligence, Edmonton, 2002, pp. 593–598.

222 BIBLIOGRAPHY

[New99] P.M. Newman, On the structure and solution of the simultaneous localisation and map building
problem, Ph.D. thesis, Deptartment of Mechanical and Mechatronic Engineering, Sydney, 1999.

[Nie89] H. Niemann, Pattern analysis and image understanding, Springer-Verlag, Berlin, 1989.

[NT00] J. Neira and J.D. Tardos, Robust and feasible data asssociation for simultaneous localization and
map building, ICRA Workshop SLAM, San Francisco, 2000.

[NT01] J. Neira and J. Tardós, Data association in stochastic mapping using the joint compatibility test,
IEEE Transactions on Robotics and Automation 6 (2001), no. 17, 890 – 897.

[Ots79] N. Otsu, A threshold selection method from gray-level histograms, IEEE Transactions on Systems,
Man and Cybernetics 9 (1979), no. 1, 62 – 66.

[PNDW96] D. Pagac, E.M. Nebot, and H.F. Durrant-Whyte, An evidential approach to probabilistic map-
building, Proceedings of the IEEE International Conference on Robotics and Automation, Min-
neapolis, 1996, pp. 745 – 750.

[PTVF92] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical recipes, second edition,
Cambridge University Press, Cambridge, 1992.

[Ren93] W.D. Rencken, Concurrent localization and map building for mobile robots using ultrasonic sen-
sors, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
Yokohama, 1993.

[SA94] S. Schaal and C. Atkeson, Memory-based robot learning, Proceedings of the IEEE International
Conference on Robotics and Automation, San Diego, 1994, pp. 2928 – 2933.

[SABL01] B.M. Steinmetz, K. Arbter, B. Brunner, and K. Landzettel, Autonomous vision-based navigation
of the nanokhod rover, Proceedings of the 6th International Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS), Montreal, 2001.

[SC94] B. Schiele and J. Crowley, A comparison of position estimation techniques using occupancy grids,
Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, 1994,
pp. 1628 – 1634.

[Sed92] R. Sedgewick, Algorithms in C++, Addison Wesley Publishing Company, Reading, 1992.

[SIC04] SICK AG, Sick homepage, 2004, (http://www.sick.de/).

[SK02] C. Schlegel and T. Kämpke, Filter design for simultaneous localization and mapping (SLAM),
Proceedings of the IEEE International Conference on Robotics and Automation, Washington D.C.,
2002, pp. 2737 – 2742.

[SLL02] S. Se, D. Lowe, and J. Little, Mobile robot localization and mapping with uncertainty using scale-
invariant visual landmarks, International Journal of Robotics Research 21 (2002), no. 8, 735–758.

[SSC88] R. Smith, M. Self, and P. Cheeseman, Estimating uncertain spatial relationships in robotics, Au-
tonomous Robot Vehicles (I.J. Cox and G.T. Wilfong, eds.), Springer Verlag, New York, 1988,
pp. 167 – 193.

BIBLIOGRAPHY 223

[Tar92] J.D. Tardos, Representing partial and uncertain sensorial information using the theory of symme-
tries, Proceedings of the IEEE International Conference on Robotics and Automation, Nice, 1992,
pp. 1799 – 1804.

[TBF98] S. Thrun, W. Burgard, and D. Fox, A probabilistic approach to concurrent mapping and localization
for mobile robot, Machine Learning 31 (1998), no. 5, 1 – 25.

[TDH03] S. Thrun, M. Diel, and D. Hähnel, Scan alignment and 3D surface modeling with a helicopter plat-
form, Proceedings of the International Conference on Field and Service Robotics, Lake Yamanaka,
2003.

[Tee00] G.J. Tee, Bounds for eigenvalues of positive-definite band matrices, Australian Mathematical Soci-
ety Gazette 27 (2000), 155 – 157.

[THF+03] S. Thrun, D. Hähnel, D. Ferguson, M. Montemerlo, R. Triebel, W. Burgard, C. Baker, Z. Omo-
hundro, S. Thayer, and W. Whittaker, A system for volumetric robotic mapping of abandoned
mines, Proceedings of the IEEE International Conference on Robotics and Automation, Taipei,
2003, pp. 4270–4275.

[Thr02] S. Thrun, Robotics mapping: A survey, Tech. report, School of Computer Science, Carnegie Mellon
University, February 2002.

[TKG+02] S. Thrun, D. Koller, Z. Ghahramani, H. Durrant-Whyte, and Ng. A.Y., Simultaneous mapping and
localization with sparse extended information filters: Theory and initial results, Proceedings of the
Fifth International Workshop on Algorithmic Foundations of Robotics, Nice, 2002.

[TKGDW02] S. Thrun, D. Koller, Z. Ghahmarani, and H. Durrant-Whyte, SLAM updates require constant time,
Tech. report, School of Computer Science, Carnegie Mellon University, Pittsburgh, 2002.

[UJC97] J.K. Uhlmann, S.J. Julier, and M. Csorba, Nondivergent simultaneous map building and localization
using covariance intersection, Proceedings of the SPIE Conference on Navigation and Control
Technologies for Unmanned Systems II, vol. 3087, 1997, pp. 2 – 11.

[VBX96] J. Vandorpe, H. Van Brussel, and H. Xu, Exact dynamic map building for a mobile robot using
geometrical primitives produced by a 2D range finder, Proceedings of the IEEE International Con-
ference on Robotics and Automation, Minneapolis, 1996, pp. 901 – 908.

[Vij91] G. Vijayan, Generalization of min-cut partitioning to tree structures and its applications, IEEE
Transactions on Computers 40 (1991), no. 3, 307 – 314.

[WDDW02] S.B. Williams, G. Dissanayake, and H.F. Durrant-Whyte, Field deployment of the simultaneous
localisation and mapping algorithm, 15th IFAC World Congress on Automatic Control, Barcelona,
June 2002.

[WGLSV00] N. Winters, J. Gaspar, G. Lacey, and J. Santos-Victor, Omni-directional vision for robot navigation,
Proceedings of the IEEE Workshop on Omni-directional Vision, Hilton Head Island, 2000.

[YL97] B. Yamauchi and P. Langley, Place recognition in dynamic environments, Journal of Robotic Sys-
tems, Special Issue on Mobile Robots 14 (1997), no. 2, 107–120.

224 BIBLIOGRAPHY

[ZDH+01] M. Zobel, J. Denzler, B. Heigl, E. Nöth, D. Paulus, J. Schmidt, and G. Stemmer, Mobsy: Integration
of vision and dialogue in service robots, Proceedings Second International Workshop on Computer
Vision Systems, Vancouver, 2001, pp. 50 – 62.

[Zel91] A. Zelinski, Mobile robot map making using sonar, Journal of Robotic Systems 8 (1991), no. 5,
557 – 577.

Index

actual BIB, 88, 129
artifical landmarks, 169
aspect, see map aspect

balancing, 139
band matrix, 66
basic information block, see BIB
bias, 154
BIB, 88, 88, 106, 129

changing, 129, 196
bisection, see HTP
block matrix, 57, 92

inversion, 187

CEKF, 80, 86, 102, 148
certainty of relations, 48
chi-square, 51
child, 126
CIB, 88, 91
closing loop, see loop
compass, 57
compilation of an estimate, 90, 97, 134, 163
Compressed EKF, see CEKF
computational efficiency, 101, 148, 151, 159, 173
condensed information, 86
condensed information block, see CIB
consistency, 50
consistent pose estimation, 78
counter example, 101
covariance, 54, 57, 90

decay, 65

EKF, 54, 56, 78
elimination, 86, 107, 111
elimination matrix, 96, 108
elimination node, 88

error accumulation, 47, 56, 174
example building, 42
Extended Kalman Filter, see EKF

fastSLAM, 81

Gaussian, 51
global update, 80, 132
graph partitioning, 139

heuristical control, 129
hierarchical tree partitioning, see HTP
hierarchy, 86, 137
HTP, 137, 200

IB, 86, 90
implementation, 195
information block, see IB
information matrix, 52, 57, 59
insertion, 142
integration, 92

Jacobian, 47, 55, 117

Kalman Filter, see EKF
kinematic equation, 43

landmark
elimination, 91
identification, 50, 170
measurement equation, 47
observation, 54
vision, 166

least squares, see LLS
Levenberg-Marquardt, 51
likelihood, see maximum likelihood
linearization, 52–54, 55, 117, 119, 158
linearization error, 159

225

226 INDEX

LLS, 52
loop, 49, 129, 131, 174

Mahalanobis distance, 50, 170
main algorithm, 128
maintenance, 125
map

aspect, 75
quality, 73, 155
size, 77, 158

maximum likelihood, 51
measurement

equation, 42
integration, 89

ML, see maximum likelihood
mobile robot, 165
multi level relaxation, 80
multi level tree partitioning, 138

navigation, 179
node, 126
noise model, 154
nonlinear rotation, 57, 117, 136

oblivious, 152
odometry, 42, 47

covariance, 44
dynamic equation, 45, 54
integration, 103
measurement equation, 46
step, 45

orientation error, 55
outdoor, 101, 174

parent, 126
particle filter, see fastSLAM
partitioning, see HTP
prefactor, 163, 173
processor speed, 153

real world experiments, 165
relative error, 75, 155
relaxation, 80
relinearization, 117, 131, 136
representation of relativity, 48, 50

requirements, 73, 116, 151, 153
robot pose, 43, 103
robot velocity, 43, 165
root, 126

Schur complement, 57, 59, 64, 92
SEIF, 81
Sherman-Morrison formula, 187
SIB, 88, 91
simulation experiments, 153
simultaneous localization and mapping, see SLAM
SLAM, 23, 78
sparse, 52, 57, 59, 59
sparse extended information filter, see SEIF
state of the art, 34, 77
stochastic map, 78
Substitution Information Block, see SIB

topologically suitable, 99, 148, 173
transfer

node, 138, 143
robot pose, 103

tree map, 87
balanced, 137
data flow, 98
well partitioned, 137

uncertainty structure, 41, 59, 71

Woodbury formula, 55, 57, 187

y-node, 132

Curriculum Vitae

Udo Frese was born in Minden, Germany in 1972. He received the Diploma
degree in computer science from the University of Paderborn in 1997. From 1998
to 2003 he was a Ph.D. student at the German Aerospace Center (DLR) in Oberp-
faffenhofen. In 2004 he joined the Bremen Institute of Safe Systems at university
of Bremen. His research interests are mobile robotic, simultaneous localization and
mapping and semantic interpretation of maps.

227

