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Abstract— For the Simultaneous Localization and Mapping
problem several efficient algorithms have been proposed that
make use of a sparse information matrix representation (e.g.
SEIF, TJTF, treemap). Since the exact SLAM information
matrix is dense, these algorithm have to approximate it
(sparsification). It has been empirically observed that this
approximation is adequate because entries in the matrix
corresponding to distant landmarks are extremely small.

This paper provides a theoretical proof for this observation,
specifically showing that the off-diagonal entries correspond-
ing to two landmarks decay exponentially with the distance
traveled between observation of first and second landmark.

Index Terms— SLAM, Information Matrix, Sparsification,
SEIF, TJTF, treemap

I. INTRODUCTION

Several efficient SLAM algorithms utilize a sparse infor-
mation matrix representation. To the author’s knowledge
the first one was Consistent Pose Estimation by Lu &
Milios [1]. Their approach directly builds a sparse linear
equation system from measured metric relations between
adjacent robot poses. More generally for Linearized Least
Square (LLS) it is well known that if measurements involve
only “local” variables the resulting information matrix A is
sparse [2, §15.5] whereas the resulting covariance matrix
A−1 not necessarily is. Lu & Milios did not exploit sparsity
which was later achieved by Duckett et al. [3], [4]. One
drawback of Lu & Milios approach is that all old robot
poses need to be represented as variables making the
representation size grow even when moving through an area
already mapped. While removing old poses from represen-
tation is trivial in a covariance representation, removing
them from an information matrix requires computing the
so called Schur complement that destroys sparsity. So
while the original matrix A is sparse, the result P ′ after
eliminating old robot poses theoretically is dense (Fig. 1).

It has been conjectured by the author [5] and empirically
observed by Thrun et al. [6] that the SLAM information
matrix P ′ is approximately sparse, i.e. entries of distant
landmarks are very small and thus can be replaced by a
sparse approximation. They utilize this observation in their
Sparse Extended Information Filter (SEIF). Later Paskin
[7] proposed the Thin Junction Tree Filter (TJTF) and Frese
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Fig. 1. Relation between the least squares information matrix A =“
P RT

R S

”
(lower left) which represents all robot poses and the covariance

matrix CEKF (upper right) used by EKF only representing the current
robot pose. A−1 is the covariance matrix corresponding to A representing
all robot poses (lower right). C is derived from A−1 as a submatrix.
Accordingly C−1

EKF (upper left) is the information matrix corresponding to
CEKF representing only the current robot pose. It is derived from A via
Schur complement. So overall, taking a submatrix of a covariance matrix
is equivalent to applying Schur complement to an information matrix.

the treemap algorithm [8] that are both based on the same
observation.

The goal of this paper is to provide a theoretical foun-
dation for these approaches by proofing that

in the SLAM information matrix P ′ off-diagonal
entries corresponding to two landmarks decay
exponentially with the distance traveled between
observation of first and second landmark.

This result is important both for computation and analy-
sis. First, the approach of saving space and computation
time by making the information matrix sparse is being
confirmed. Second the result implies that the large scale
uncertainty structure of a map estimate is generated by
local uncertainties composed along the path the robot has
been traveling. Thus, in contrast to the local uncertainty
structure, it is rather simple and dominated by the map’s
geometry [9].



The outline of the paper is as follows: Section II
compares the information matrix representation with the
covariance representation used in the popular Extended
Kalman Filter (EKF) [10]. Section III outlines the overall
proof which is described in detail in sections IV to VI.
Implications of the result are discussed in section VII.

II. COVARIANCE VS. INFORMATION MATRICES

Covariance and information matrices are complementary
representations of uncertainty, since one is the inverse
of the other. This duality extends to the operation of
taking a submatrix, which is equivalent to applying Schur
- complement in the inverse (Woodbury formula, [2][§2.7],
[11]). Certainly this holds for any decomposition of A
into 2 × 2 blocks

(
P RT

R S

)
. Of particular interest is the

decomposition with rows and columns of the first block
corresponding to landmarks (maybe including the current
robot pose) and rows and columns of the second block
corresponding to (old) robot poses (Fig. 1). In this case
P ′−1 =

(
P −RTS−1R

)−1 is the covariance matrix of all
landmarks (and the current robot pose) as used by the EKF.

The Schur complement P ′ = P − RTS−1R equals
the corresponding submatrix P minus a correction term
RTS−1R. This term can be thought of as somehow “trans-
ferring” the effect of S into the realm of P via a mapping
provided by the off-diagonal block RT .

Taking a submatrix of the information matrix or applying
Schur - complement to the covariance matrix corresponds
to random variables (landmark positions, robot poses) in
the removed rows and columns being exactly known.
Conversely taking a submatrix of the covariance matrix
or applying Schur - complement to the information matrix
corresponds to random variables in the removed rows and
columns being unknown, i.e. all information about them is
discarded.

The main difference between information and covariance
matrix lies in the representation of indirect relations. As-
sume the robot is at pose P1 observing landmark L1 and
moves to P2 observing L2. The measurements directly de-
fine relations P1-L1, P1-P2, P2-L2, indirectly constituting
a relation L1-L2. The covariance matrix explicitly stores
this relation in the off-diagonal entries corresponding to
L1-L2, whereas the information matrix does not.

Thus the information matrix A =
(
P RT

R S

)
used by LLS

is sparse, having non-zero off-diagonal entries only for
those pairs of random variables which are involved in a
common measurement (Fig. 1). The inverse A−1 is the
covariance matrix for the landmarks and all robot poses.
A−1 represents all indirect relations explicitly and thus is
not sparse. Removing the rows and columns corresponding
to old robot poses yields the covariance matrix C of the
EKF. Its inverse C−1 = P ′ is the information matrix of all
landmarks and the current robot pose. However, the inverse
is not the corresponding submatrix of A, as eliminating all
old robot poses from A requires computing their implicit
effect on relations between the other random variables by
Schur complement (P ′ = P −RTS−1R).

Although A is sparse the Schur complement P −
RTS−1R is dense, because S−1 is dense1. What is turning
out is that it is approximately sparse with an off-diagonal
entry (P −RTS−1R)l1l2 corresponding to two landmarks
l1, l2 decaying exponentially with the distance traveled
between observation of l1 and l2. This is the central result
of this paper and will be shown in the following:

III. PROOF OUTLINE

The proof is essentially an analysis of information matrix
A. It is a block matrix A =

(
P RT

R S

)
with the first block row

/ column corresponding to the landmarks and the second
corresponding to the different robot poses2.

As discussed in the previous section, the diagonal blocks
P and S are information matrices of two related sub-
problems: P is the information matrix of the mapping
subproblem, describing the uncertainty of the landmarks,
if the robot poses were known. Conversely, S is the infor-
mation matrix of the localization subproblem, describing
the uncertainty of the robot poses, if the landmarks were
known. Both matrices are extremely sparse: P is block
diagonal and S is block tridiagonal.

The matrix P ′ under investigation will be the informa-
tion matrix of the landmarks only, i.e. without robot poses.
It is P−RTS−1R by Schur - complement. The role of RT

in this formula is to provide a mapping from robot poses
to landmarks. It creates an off-diagonal entry between
two landmarks, whose magnitude depends on the entry in
S−1 corresponding to the two robot poses these landmarks
have been observed from. S−1 is the covariance of all
robot poses given the position of all landmarks. Hence the
magnitude of an off-diagonal entry corresponding to two
landmarks depends on the covariance the robot poses had
if all landmark positions were known.

This covariance decays exponentially with the distance
traveled. Intuitively the reason therefore is that in each lo-
calization step the pose estimate is replaced by a weighted
sum of the old estimate and the measurements of observed
landmarks. The covariance with a fixed old robot pose is
reduced by a constant factor. Formally, this result is derived
by bounding the eigenvalues of S (lemma 1 [12]) and
applying a theorem on the decay of off-diagonal entries
in the inverse of band matrices (theorem 1 [13]).

The proof is based on a close inspection of different parts
of A affected by different measurements, being formally
defined in the following subsection. Keeping in mind the
structure of A as shown in Fig. 2 and the summary of
definitions in table I will be sufficient to understand the
argument of the proof.

IV. SPARSITY PATTERN OF THE INFORMATION MATRIX

Each landmark is represented by 2 coordinates and each
robot pose by 3. Thus P consists of 2×2 - blocks for each

1It is interesting to note, that if odometry is neglected, S and S−1

both become block diagonal and P − RT S−1R is exactly sparse. All
discussed algorithms could be used without sparsification in this case.

2To simplify the proof technically the current robot pose is included in
S not P .
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Fig. 2. Sparsity pattern of A =
“
P RT

R S

”
: (a) Jacobian Joi for an odometry measurement; Non-zero blocks generated in S thereby (b) Jacobian

Jli for a landmark measurement; Non-zero blocks generated in P , R and S thereby (c) example for a complete matrix.

landmark, S of 3× 3 - blocks for each robot pose, and R
of 3× 2 - blocks coupling landmarks and robot poses. So
with n landmarks, m measurements, and p robot poses,
P is a 2n × 2n, R a 3p × 2n, and S a 3p × 3p matrix.
Throughout the whole paper subscripts Pll, Rli, and Sij
refer to the block corresponding to landmark l and robot
pose i or j respectively. The matrix A has a very specific
sparsity pattern being analyzed in the following (Fig. 2):

Therefore denote by subscript oi the i-th odometry
measurement measuring robot pose i+ 1 relative to robot
pose i with Coi measurement covariance and Joi measure-
ment Jacobian. Further let Li denote the set of landmark
measurements taken from robot pose i and conversely Ol
the set of robot poses from which landmark l has been
observed. Clearly l ∈ Li holds if and only if i ∈ Ol.
For a landmark l ∈ Li let Cli be the covariance of the
measurement of landmark l from robot pose i and Jli the
measurement Jacobian. The information matrix A of all
landmarks and all robot poses is the sum of JTj C

−1
j Jj

over all measurements with Jj Jacobian and Cj covariance.
With the definitions made above, these measurements can
be grouped by the robot pose and separated into odometry
and landmark measurements as

A =
m∑

j=1

JTj C
−1
j Jj =

p∑

i=1

(
JToiC

−1
oi Joi +

∑

l∈Li
JTliC

−1
li Jli

)
.

(1)

The Jacobian Joi is sparse having a 3×3 nonzero block Joi3
at the columns corresponding to robot pose i and another
block Joi4 at the columns corresponding to robot pose i+
1. Similarly, Jli has a 2 × 3 nonzero block Jli5 at the
columns corresponding to robot pose i and a 2× 2 block
Jli6 at the columns corresponding to landmark l (Fig. 2a,
b). Expressions for Joi3, Joi4, Jli5, Jli6 can be derived from
a concrete measurement model but do not matter here.

The structure of the Jacobians can be formally expressed
using projection matrices. Let therefore Ii denote the block
row of the identity matrix corresponding to robot pose i and

Il the block row corresponding to landmark l:

Joi = Joi3Ii + Joi4Ii+1, Jli = Jli5Ii + Jli6Il (2)

A =

p∑

i=1

(Joi3Ii + Joi4Ii+1)TC−1
oi (Joi3Ii + Joi4Ii+1)

+

p∑

i=1

∑

l∈Li
(Jli5Ii + Jli6Il)

TC−1
li (Jli5Ii + Jli6Il)

=

p∑

i=1

ITi (JToi3C
−1
oi Joi3)Ii + ITi+1(JToi4C

−1
oi Joi3)Ii

+

p∑

i=1

ITi (JToi3C
−1
oi Joi4)Ii+1 + ITi+1(JToi4C

−1
oi Joi4)Ii+1

+

p∑

i=1

∑

l∈Li
ITi (JTli5C

−1
li Jli5)Ii + ITl (JTli6C

−1
li Jli5)Ii

+

p∑

i=1

∑

l∈Li
ITi (JTli5C

−1
li Jli6)Il + ITl (JTli6C

−1
li Jli6)Il.

(3)

An expression like ITi (. . . )Il places the 3 × 2 matrix in
parentheses at the row and column corresponding to robot
pose i and landmark l. The other combination ITi (. . . )Ij ,
ITl (. . . )Ii and ITl (. . . )Il act similar. From (3) it can
be seen that each odometry measurement generates four
small blocks at the intersections of the rows and columns
corresponding to two successive robot poses (Fig. 2a).
Correspondingly, each landmark measurement is generat-
ing four small blocks at the intersections of the rows and
columns corresponding to the robot pose and the landmark
(Fig. 2b).

The terms in expression (3) can be separated into those
that belong to P , R and S. From the result it can be seen,
that P is block diagonal, S is block tridiagonal, and R
is sparse with a block being non-zero, if the landmark
corresponding to that column has been observed from the



robot pose corresponding to that row (Fig. 2c):

P =

p∑

i=1, l∈Li
ITl (JTli6C

−1
li Jli6)︸ ︷︷ ︸

P ill:=

Il, (4)

R =

p∑

i=1, l∈Li
ITi (JTli5C

−1
li Jli6)Il, (5)

S =

p∑

i=1, l∈Li
ITi (JTli5C

−1
li Jli5︸ ︷︷ ︸
Slii

)Ii+

p∑

i=1

(
ITi (JToi3C

−1
oi Joi3)Ii + ITi+1(JToi4C

−1
oi Joi3)Ii

+ITi (JToi3C
−1
oi Joi4)Ii+1 + ITi+1(JToi4C

−1
oi Joi4)Ii+1

)(6)

In the following discussion the block diagonals of P and S
will be of great importance, so an explicit formula for the
diagonal block Sii corresponding to robot pose i and Pll
corresponding to landmark l is derived. This is performed
by grouping (4) and (6) by values of l and i respectively.
The result for Pll is a sum over Ol, the set of robot poses
from which landmark l has been observed. Similarly, the
result for Sii is a term from odometry plus a sum over Li
the set of landmarks observed from robot pose i:

Pll = IlPI
T
l =

∑

i∈Ol
(JTli6C

−1
li Jli6) =

∑

i∈Ol
P ill (7)

Sii = IiSI
T
i = JToi3C

−1
oi Joi3 + JTo(i−1)2C

−1
o(i−1)Jo(i−1)2

+
∑

l∈Li
JTli5C

−1
li Jli5

= JToi3C
−1
oi Joi3 + JTo(i−1)2C

−1
o(i−1)Jo(i−1)2︸ ︷︷ ︸

SOii :=

+
∑

l∈Li
Slii

︸ ︷︷ ︸
SLii:=

.
(8)

It can be observed that one part (SOii ) of Sii originates from
odometry measurements and another part (SLii) originates
from landmark observations. In the latter part matrices S lii
from all landmark observations made from that robot pose
accumulate. Nevertheless, Sii and SLii are bounded, since
the number of landmark observations from a certain robot
pose depends on the sensor / landmark trait and will not
grow when the map gets larger. As for the diagonal block
Pll corresponding to landmark l this is different. Here
matrices from all observations of this landmark accumulate.
Since the same landmark may be observed over and over
again, Pll will usually grow linear with time. Each block
Ril of R is affected only by a single measurement of
landmark l from robot pose i. So it is bounded and 0,
if the landmark has not been observed from there. Table I
gives an overview of the different parts defined above.

V. SCHUR COMPLEMENT

After eliminating (old) robot poses by Schur complement
the resulting information matrix for the landmarks alone is
P ′ = P −RTS−1R. and the inverse of the corresponding
covariance matrix maintained by EKF. It is not sparse, since
S−1 is dense. This section will prove that that an entry

P ′l1l2 decays exponentially with the distance dl1l2 between
observation of landmarks l1 and l2. It is defined as

dl1l2 := min
{
|i− j|

∣∣ i ∈ Ol1 , j ∈ Ol2
}
, (9)

the number of robot movements3 between observation of
l1 and l2. Let l1 6= l2 and consider the corresponding block

P ′l1l2 = −
∑

i∈Ol1

∑

j∈Ol2

RTil1(S−1)ijRjl2 . (10)

This equation is of high importance, because since Ril1 and
Rjl2 are bounded, asymptotically P ′l1l2 behaves like block
(S−1)ij of S−1 corresponding to the robot from where l1
and l2 have been observed.

VI. EXPONENTIAL DECAY OF OFF-DIAGONAL ENTRIES

This subsection proves that an off-diagonal entry
(S−1)ij decays exponentially with the distance |i−j| to the
diagonal. The result is then used to derive that P ′l1l2 decays
exponentially with the distance dl1l2 between observation
of l1 and l2. Thereby the approximate sparsity of the SLAM
information matrix P ′ is proven. The rate of decay depends
on the ratio between SOii and SLii , i.e. between the infor-
mation gained from odometry and landmark observations:

Definition 1: For a sequence of odometry and landmark
observations the characteristic parameters are:

ω := max
{
ω|SLii ≥ ωSOii ∀i

}
(11)

η := max
i,l
‖P ill‖ (12)

ρ := min
i, l∈Li

‖P ill −RTil(SLii)−1Ril‖ (13)

Intuitively, this definition means: a) In each robot pose
the information gained from landmarks is at least ω times
the information transported from the last pose by odometry.
b) The information gained from a single landmark mea-
surement assumed the robot pose was known is at most
η. c) The information gained about a landmark from all
observations from a certain unknown robot pose assumed
that all other landmarks were known is a least ρ.

Nevertheless, b) and c) need some explanation: P ill is a
submatrix of the information matrix for a single landmark
observation of l from pose i (Fig. 2b). Thus, as discussed
before, it represents the information known about landmark
l from that measurement if all other random variables, in
this case the robot pose, were known. Similarly,

(
P ill Ril

RTil S
L
ii

)

is a submatrix of the information matrix of all landmark
observations from pose i. Therefore it represents the in-
formation that were known about landmark l and robot
pose i if all other random variables, in this case the other
landmarks, were known. Thus, the Schur complement

P ill −RTil(SLii )−1Ril ≥ 0 (14)

represents the same information without information about
the robot pose. So in the end the term describes the

3We assume that the robot observes a landmark at regular intervals.
Indeed, if the robot moves blindly between two landmarks of arbitrary
long distance the coupling entry decays only reciprocal not exponentially.



TABLE I
SYMBOLS USED IN THE PROOF OF THEOREM 2.

Symbol Equation Format Definition
Pll (7) 2× 2 Diagonal block of A corresponding to landmark l
P ill (4) 2× 2 Contribution of the observation of landmark l from pose i to Pll
Ril (4) 3× 2 Block of R corresponding to landmark l and robot pose i defined from the

observation of landmark l from pose i
Sii (8) 3× 3 Diagonal block of S corresponding to robot pose i
Slii (6) 3× 3 Contribution of the observation of landmark l from pose i to Sii
SLii (8) 3× 3 Contribution of all landmark observations from pose i to Sii
SOii (8) 3× 3 Contribution of both odometry observations from pose i and i− 1 to Sii
P ′l1l2 (10) 2× 2 Block corresponding to landmark l1 and l2 of the information matrix P ′ of all

landmarks without robot poses.
Li Landmarks observed from robot pose i
Ol Robot poses from which landmark l has been observed
dl1l2 (9) Number of movements between observation of landmarks l1 and l2

information, if all other landmarks were known but the
robot pose was unknown. The parameter ρ gives a lower
bound on this information.

All three parameters ω, η, ρ depend on the sensor /
landmark / environment characteristic and do not change
when the map size grows. So they may be considered as
being constant ω = O(1), η = O(1), ρ = O(1).

The central argument of the overall proof uses a theorem
by Demko, Moss and Smith [13, theorem 2.4] that provides
an exponentially decaying bound for the entries of the
inverse of a symmetric positive definite (SPD) band matrix
S. The bounds refer to a single entry of S denoted by
S#ij ∈ R to avoid confusion with the 3× 3 matrix block
Sij ∈ R3×3 corresponding to robot pose i and j. The bound
depends on the norm ‖S‖ and condition number cond(S)
of S. The matrix norms refer to the usual spectral or 2-norm
‖S‖ := max|v|=1 |Sv| being equal to the largest eigenvalue
of S (largest singular value for a non-symmetric matrix).
The derived condition number is equal to the ratio between
largest and smallest eigenvalue.

Theorem 1 (Demko, Moth, Smith [13]): Let S be an
SPD w-banded matrix. Then for entry (S−1)#ij of S−1

|(S−1)#ij | ≤ αλ|i−j|, with (15)

λ :=

(√
cond(S)− 1√
cond(S) + 1

) 2
w

and α ≤ 2‖S−1‖. (16)

Some technical lemmas are needed. Due to lack of space,
their proof is omitted referring the reader to [8].

Lemma 1: Let S be a block diagonal SPD matrix with
block bandwidth w. Then the norm ‖S‖ is at most 2w− 1
times the norm of any diagonal block (= maxi ‖Sii‖).

Lemma 2: For all ω ≥ 0 the following inequality holds:
(√

1 + 3/ω + 1
) (√

1 + 3/ω − 1
)−1

≥ 1 + 4
3ω (17)

From theorem 1, lemma 1, and 2 follows:

Lemma 3: Let S be a block tridiagonal SPD matrix with
3 × 3 blocks, smallest eigenvalue λmin ≥ 1 and largest
eigenvalue λmax ≤ 1 + 3

ω . Then for i 6= j the norm
of block (S−1)ij of the inverse is at most ‖(S−1)ij‖ ≤
6
(
1 + 4

3ω
)1−|i−j|

.

The next step is to derive an exponentially decaying
bound for the off-diagonal entries of S−1. For technical
reasons in the proof of theorem 2 the matrix to be consid-
ered is RTS−1R not S−1. So instead of deriving a bound
for (S−1)ij , directly a bound for RTil1(S−1)ijRjl2 is given.

Lemma 4: For a sequence of odometry and landmark
observations with parameter ω, η, ρ, and all robot poses
i, j and all landmarks l1 6= l2 the following bound holds:

‖RTl1i(S−1)ijRjl2‖ ≤ 6η

(
1 +

4

3
ω

)1−|i−j|
. (18)

Proof: Let SL := diagi(S
L
ii) be the part of S that

originates from the landmark measurements and SO :=
S − SL be the remaining part originating from odometry.
The block diagonal of SO is diagi(S

O
ii ), but SO itself is

block tridiagonal (compare Fig. 2).
The first step is to scale SO, so matrices of comparable

norm appear on the block diagonal. Let therefore LiLTi =
SLii be a Cholesky decomposition of SLii and define the
inverse of L := diagi(Li) as scale matrix. This way the
scaled matrix L−1SLL−1T is the identity matrix and the
scaled matrix L−1SOL−1T is normalized relative to SL.
So it is possible to bound it by ω:

Matrix SO is block tridiagonal and L is block diagonal.
Thus, L−1SOL−1T is block tridiagonal, too. Further SLii ≥
ωSOii by definition 1. So for each diagonal block it follows

(L−1SOL−1T )ii = L−1
i SOii L

−1T
i

definition 1
≤ (19)

1

ω
L−1
i SLiiL

−1T
i =

1

ω
L−1
i LiL

T
i L
−1T
i =

1

ω
I.



The matrix L−1SOL−1T is tridiagonal, so lemma 1
can be applied with w = 2 and the eigenvalue
λmax

(
L−1SOL−1T

)
is at most 3

ω . By construction
L−1SLL−1T = I , so the eigenvalues of L−1SL−1T =
L−1(SL + SO)L−1T lie in the interval

[
1 . . . 1 + 3

ω

]
. It

follows from lemma 3 that

‖LTi (S−1)ijLj‖ = ‖((L−1SL−1T )−1)ij‖
lemma 3
≤ 6

(
1 + 4

3ω
)1−|i−j| (20)

‖RTil1(S−1)ijRjl2‖ = ‖RTil1L−1T
i LTi (S−1)ijLjL

−1
j Rjl2‖

≤ ‖RTil1L−1T
i ‖ ‖LTi (S−1)ijLj‖ ‖L−1

j Rjl2‖
≤ ‖RTil1L−1T

i ‖ 6
(
1 + 4

3ω
)1−|i−j| ‖L−1

j Rjl2‖. (21)

The next step is a bound for ‖L−1
j Rjl2‖ and ‖RTil1L

−1T
i ‖:

‖L−1
j Rjl2‖2 = ‖(L−1

j Rjl2)T (L−1
j Rjl2)‖

= ‖RTjl2L−1T
j L−1

j Rjl2‖

= ‖RTjl2(SLjj)
−1Rjl2‖

(14)
≤ ‖P jl2l2‖

definition 1
≤ η. (22)

It follows ‖L−1
j Rjl2‖ ≤

√
η, which is substituted into (21):

‖RTil1(S−1)ijRjl2‖ ≤ 6η
(
1 + 4

3ω
)1−|i−j| (23)

To prove approximate sparsity of P ′, the norm of its
off-diagonal blocks P ′l1l2 must be bounded relative to
the corresponding diagonal blocks ‖P ′l1l1‖ and ‖P ′l2l2‖.
Therefore, a lower bound for a diagonal block ‖P ′ll‖ is
derived in the following lemma:

Lemma 5: For a sequence of observations with parame-
ter ω, η, ρ, and all landmarks l it holds that ‖P ′ll‖ ≥ ρ |Ol|.

Proof: Since S ≥ SL it follows S−1 ≤ (SL)−1 and

P ′ =P −RTS−1R ≥ P −RT (SL)−1R (24)

⇒ P ′ll ≥Pll −
∑

i,j∈Ol
RTil((S

L)−1)ijRjl. (25)

SL is block diagonal, so (SL)−1 = diagi((S
L
ii )
−1) and

((SL)−1)ij = 0 for i 6= j

P ′ll =Pll −
∑

i∈Ol
RTil(S

L
ii)
−1Ril (26)

=
∑

i∈Ol
P ill −RTil(SLii)−1Ril

definition 1
≥ ρ |Ol|. (27)

The final step is to substitute the bound of lemma 4
into (10) to derive an overall bound. A sum of different
powers of (1+ 4

3ω)−1 appears. The exact exponents depend
on the robot poses the landmark has been observed from,
so it is difficult to find a closed expression. However, all
exponents are at least dl1l2 . Using this property the sum
can be bounded by the following lemma (proof in [8]):

Lemma 6: Let 0 ≤ γ < 1 and A,B ⊂ N with a minimal
distance d between elements of A and B: d ≤ |i− j| ∀i ∈
A, j ∈ B. Then the following inequality holds:

∑

i∈A, j∈B
γ|i−j| ≤ 2

γd

1− γ min{|A|, |B|} (28)

Theorem 2 (Information Matrix Sparsity): Consider a
sequence of odometry and landmark observations with
parameter ω, η, ρ. Then the resulting SLAM information
matrix of all landmarks P ′ is approximately sparse. The
off-diagonal block P ′l1l2 corresponding to two landmarks
l1 6= l2 decays exponentially with the smallest number of
steps dl1l2 traveled between observation of l1 and l2.

‖P ′l1l2‖
min

{
‖P ′l1l1‖, ‖P ′l2l2‖

} = O

((
1 +

4

3
ω

)−dl1l2)

Proof: By equation (10) P ′l1l2 is a sum over different
robot poses i, j. Each term can be bounded by lemma 4:

‖P ′l1l2‖
(10)
=

∥∥∥∥∥∥
−
∑

i∈Ol1

∑

j∈Ol2

RTil1(S−1)ijRjl2

∥∥∥∥∥∥
(29)

≤
∑

i∈Ol1

∑

j∈Ol2

∥∥RTil1(S−1)ijRjl2
∥∥

lemma 4
≤ 6η

∑

i∈Ol1

∑

j∈Ol2

(
1 +

4

3
ω

)1−|i−j|

= 6η

(
1 +

4

3
ω

) ∑

i∈Ol1

∑

j∈Ol2

(
1 +

4

3
ω

)−|i−j|
.

The sum can be bounded by lemma 6 with A := Ol1 ,B :=

Ol2 , γ :=
(
1 + 4

3ω
)−1 and d := dl1l2 :

‖P ′l1l2‖ ≤ 6η

(
1 +

4

3
ω

)(
2 min{|Ol1 |, |Ol2 |}

1− γ γdl1l2

)

= 12η

(
1 +

4

3
ω

)(
1 +

3

4ω

)
min{|Ol1 |, |Ol2 |}γdl1l2

= ηmin{|Ol1 |, |Ol2 |}
(

24 + 16ω +
9

ω

)
γdl1l2 (30)

By lemma 5 it holds that

min
{
‖P ′l1l1‖, ‖P ′l1l1‖

}
≥ ρmin{|Ol1 |, |Ol2 |} (31)

⇒ ‖P ′l1l2‖
min

{
‖P ′l1l1‖, ‖P ′l1l1‖

} ≤ η

ρ

(
24 + 16ω +

9

ω

)
γdl1l2

Even with an asymptotically increasing map size, ω, η and
ρ remain constant, since they depend on the quality of
the measurements such as sensor noise, typical distance
to landmarks, typical number of landmarks. They do not
depend on how many measurements were made. So the
final asymptotic formula is

‖P ′l1l2‖
min

{
‖P ′l1l1‖, ‖P ′l1l1‖

} ≤ O
((

1 +
4

3
ω

)−dl1l2)
. (32)



VII. LOCAL VS. GLOBAL UNCERTAINTY

Apart from providing foundation for sparse information
matrix based algorithms the theorem also allows char-
acterization of SLAM uncertainty structure. It can be
observed that there is a qualitative difference between local
and global structures of SLAM, i.e. between relations of
neighboring and of distant landmarks. Roughly speaking,
the local uncertainty is small but complex and depends
on actual observations, whereas the global uncertainty is
large, rather simple and dominated by the map’s geometry
(“certainty of relations despite uncertainty of positions”
[5], [9]). This is a consequence of theorem 2 and will be
clarified in the following:

The measurements themselves define independent rela-
tions between landmarks and robot poses. For most sensors
the uncertainty depends on the distance (laser scanner,
stereo vision) or is even infinite in one dimension (mono
vision). The information provided by the set of landmark
observations from a single robot pose contains a highly
coupled uncertainty originating from the uncertainty of the
robot pose. From successive robot poses usually similar
but different sets of landmarks are observed. So the parts
of the information corresponding to different robot poses
are highly coupled, but are always coupling different sets
of landmarks. As a result the overall information on a
local scale is also highly coupled and very complex. This
corresponds to the coupling entries P ′l1l2 in the information
matrix being high for landmarks l1, l2 that are near to each
other.

On a global scale the structure of the information is
governed by theorem 2. The coupling entry P ′l1l2 between
distant landmarks is very low. So the uncertainty of the
relation between them is approximately the composition of
local uncertainties along the path from l1 to l2:

Consider the information matrix resulting from the inte-
gration of several local bits of information, for instance, the
distance of each landmark to any other landmark nearby.
This matrix is the sum of the information matrices for each
bit of information. Each of them has non-zero coupling
entries only for the landmarks involved. So the overall
information matrix is sparse with all coupling entries being
zero, except those of adjacent landmarks.

Thus, as local information corresponds to a sparse
information matrix, an approximately sparse information
matrix corresponds to information that can approximately
be viewed as being the integration of local information.

If all measurements are uncertain, the global effect is
approximately the sum of an uncertain rotation for each
local region. The resulting uncertainty structure can best
be described as an uncertain bending of the map [9], [5].
Compared to local uncertainty it is much larger, but simpler
because the maps geometry is dominating it’s structure.

The main target of SLAM is modeling global uncer-
tainty. But often representation of local uncertainty is
necessary to support landmark identification or allow task
planning based on objects represented in the map. The
approach of using sparse information matrices ideally suits
the SLAM uncertainty structure: Local uncertainty is pre-
cisely captured in the small matrix representing a local
region, whereas the global uncertainty structure does not
need to be represented explicitly, since it is in very good
approximation nothing more than the composition of local
uncertainties.

VIII. CONCLUSION

In this paper it has been proven that the SLAM informa-
tion matrix is approximately sparse, i.e. that an off-diagonal
entry corresponding to two landmarks decays exponentially
with the distance traveled between observation of those
two landmarks. The theorem ensures that it is possible to
approximate the SLAM information matrix by a sparse
matrix by neglecting or conservatively eliminating off-
diagonal entries of distant landmarks. It also indicates
that if odometry becomes more imprecise compared to
landmark observation the approximation error will become
smaller and more aggressive sparsification is possible.

Apart from it’s algorithmic implications the theorem
also highlights the structure of SLAM uncertainty verifying
from a formal perspective the intuitive characterization as
“certainty of relations despite uncertainty of positions”.
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ERRATA

In figure 2 Jli5 should be Jli6 and vice versa. In
(8) Jo(i−1)2 should be Jo(i−1)4. Thanks to S. Huang for
pointing out, that the proof does not include information
on the initial robot pose appearing on the left-upper 3× 3
block of S. The corresponding term as well as any other
global position information can be included in SLii with the
arguments of the proof carrying over. Note, that theorem
1, lemma 1 and lemma 3 are applied to L−1SL−1T not S
in (20) and the eigenvalues of that matrix lie in the interval[
1 . . . 1 + 3

ω

]
.


