
Efficient 6-DOF SLAM with Treemap as a Generic Backend

Udo Frese

SFB/TR 8 Spatial Cognition

Universität Bremen

D-28334 Bremen, Germany

ufrese@informatik.uni-bremen.de

Abstract— Treemap is a generic SLAM algorithm that has
been successfully used to estimate extremely large 2D maps
closing a loop over a million landmarks in 442ms. We are
currently working on an open-source implementation that can
handle most variants of SLAM. In this paper we discuss the
generic part of the algorithm constituting the treemap backend
and the variant specific parts acting as a driver. We present
their interplay from a software-engineering point of view and
show results for the case of 6-DOF feature based SLAM, closing
a simulated loop over 106657 3D features in 209ms.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) has been

a central topic in mobile robotics research for almost two

decades by now [1]. Most of the literature is concerned with

generating a 2D map with a sensor moving in the plane (3-

DOF). Only in the last few years the problem of generating

a 3-D map with a sensor moving in 3D space (6-DOF) has

received considerable attention [2]–[5]. Such a system has

important applications, for instance rescuing victims from

the remains of a collapsed building. So we expect that 6-

DOF SLAM will be a growing research area, in particular

with the recently emerging 3D cameras.

Many 2D SLAM articles address the problem of efficiency

in estimating large maps (see [6] for an overview). It be-

comes critical when the map is by orders of magnitude larger

than the sensor range because then issues such as closing

large loops come up. 3D maps always contain a lot of data,

so are large from a storage space perspective, but up to now

little attention has been paid to large loops and similar issues

that make 2D SLAM difficult. Rather, in 6-DOF SLAM the

efficiency discussion has mainly focused on the first stages

of processing in particular on 3D scan matching [7].

We contributed the treemap algorithm [8] to the efficiency

discussion in 2D SLAM. It is designed for computing

least square estimates for very large maps efficiently. Using

treemap we were able to demonstrate closing a simulated

loop with one million landmarks in 442ms [9]. On the

one hand, the treemap algorithm is sophisticated but also

complicated. On the other hand, it is fairly general mainly

estimating random variables of arbitrary meaning. Hence our

current project is to develop an open source implementation

that – as an implementation – can be used to perform most

variants of SLAM including 2D, 3D, features and/or poses,

Part of this article has appeared on the local workshop “Robotic 3D
Environment Cognition” in Bremen.

and visual SLAM. It consists of the generic treemap backend

that is used by all variants plus a variant specific driver that

implements the specific observation model.

First, the paper contributes this general approach for

facilitating software reuse in SLAM research covering both

algorithmic and software-engineering questions. Second, it

reports first results showing a simulated 6-DOF SLAM

experiment (3D features, no odometry) that uses the same

implementation as our previous million-landmarks (2D fea-

tures, odometry, marginalized poses) experiment. By building

on the efficiency of treemap as a backend, we where able to

close a loop over n = 106657 3D features in 209ms. To

our knowledge no comparable result has been reported in

6-DOF SLAM so far. As with the previous 2D experiment

we use simulations and concentrate on the least square esti-

mation algorithm because sensor preprocessing and feature

extraction depends much more on the specific sensor and

setting and will unlikely be reusable. Data association is

also not addressed here, i.e. the simulation provides the

correct identity of all features. We are confident though to

incorporate it in future, because treemap, as a direct equation

solver, can provide covariance information.

II. LOCAL AND GLOBAL CHALLENGES

Many challenges currently addressed in 6-DOF SLAM

concern the first stages of sensor processing: matching 3D

scans, finding reliable features, matching them, rejecting

outliers, filtering range images or handling bearing-only

initialization. These problems are local in the sense that they

affect only that part of the map that is currently observed

by the sensor. In contrast there is also the question how this

local information and its uncertainty affects the global map.

The most prominent situation is certainly closing a loop.

Then the local information that closes the loop leads to back-

propagation of the error along the loop. The key point, as

we have argued in [6, §12], is that the local uncertainty is

small but complex and depends on the actual sensor and

the detailed circumstances of observation, whereas the global

uncertainty is mostly the composition of local uncertainties.

In particular orientation error of the robot leads to correlated

position error of the robot and all features later on. This

error depends on the magnitude of the orientation error and

on the map’s geometry. It is mostly independent from local

details that lead to that orientation error. Hence the large

M M

M

Fig. 1. Data flow of the probabilistic computations performed by treemap.

scale map error is large, rather simple and dominated by the

map’s geometry.

This insight motivates our treemap approach. In the past

it has motivated the design of the treemap algorithm itself

that exploits this locality. And now it motivates our idea

that many different SLAM variants (2D / 3D, features and/or

poses, with/without odometry) can be solved by a specific

local preprocessing plus treemap as a global least-square

backend. From this motivation our goal is:

Whenever you can formulate your SLAM approach

in a least-square framework such that it works for

small maps, you can use treemap as a backend to

make it work for large maps.

The paper is organized as follows. Section III briefly

sketches the treemap algorithm. Section IV discusses the

different SLAM variants. Section V reports on the proposed

architecture for achieving re-usability on the software level,

section VI discusses the different levels of approximation

and finally section VII presents 6-DOF experiments closing

a 106657 feature loop in 209ms.

III. THE TREEMAP ALGORITHM

This section briefly sketches the treemap algorithm [8],

[9]. However, for the purpose of this paper treemap is just a

black box that incrementally receives a set of local Gaussians

and computes the mean of the product of these Gaussians1.

Treemap is related to TJTF [10] and in some aspects to

Dellaert’s multifrontal QR-approach [11] and Atlas [12].

Imagine the robot is in a building that is virtually divided

into two parts A and B. Consider: If the robot is in part

A, what is the information needed about B? Only few of

B’s features are involved in observations with the robot in

A. All other features are of no interest at the moment. So

intuitively, we need everything observations in B can tell on

features also observed from A. Or probabilistically speaking:

the marginal distribution of features observed from both A

1Thanks to the anonymous reviewers for noting this “modular” view.

and B conditioned on observations in B. This idea is applied

recursively dividing the map into a tree of subregions.

These marginal distributions are computed along the

tree (Fig. 1). The computation starts at the leaves which

store the local Gaussians input to treemap (black upwards

arrows). In each leaf features are marginalized out (M©) that

are not involved outside that leaf any more. Their information

is stored as a conditional at the leaf, the marginal is passed

to the parent. There it is multiplied (�), i.e. integrated, with

the corresponding marginal of the other child. Again features

only involved below this node are marginalized out (M©).

Their information is stored at the node as a conditional while

the marginal is again passed upwards.

To compute an estimate (grey downwards arrows) the

mean of the features marginalized out at the root is computed

and passed to the root’s children. There it is combined

with the stored conditional (�) to compute the mean of the

features marginalized out there and passed downwards again.

The key points for treemap’s efficiency are a) many small

matrices instead of one large; b) when a new local Gaussian,

i.e. a new leaf, is added, only the distributions from this

leaf up to the root need to be updated; c) the downward

propagation step is essentially a matrix vector product and

hence extremely fast. All this depends on the maps topology,

requiring that it can be recursively divided into halves with

little overlap. This is usually true for buildings, as in the

simulation conducted here, but not for a large open plane

(“mowing the lawn”). To find such a recursive subdivision

treemap executes an optimization algorithm in parallel that

tries to improve the tree by moving subtrees around.

IV. DIFFERENT SLAM VARIANTS

This section discusses different popular variants of SLAM,

the random variables involved, their degrees of freedom,

whether old robot poses are marginalized out (“forgotten”),

and special considerations necessary. An overview is shown

in table I. It can be seen that there are many different variants

making it very worthwhile to have a single backend imple-

mentation with as little variant specific code as possible.

The discussion also serves to point out which estimation

techniques a generic SLAM algorithm should support.

A. 2D SLAM

In 2D SLAM two variants are most popular [1]. The

first is consistent pose estimation where 3-DOF poses are

estimated from 3-DOF links derived from odometry and scan

matching [13]. This is the simplest variant, since no features

are needed and nothing is marginalized out. The second is

the classical variant with 2D point features and 3-DOF poses

where old poses are marginalized out [14]. Marginalization

is implicit in the traditional EKF but destroys sparsity in an

information matrix based approach. Hence, either poses must

be kept at regular intervals or sparsification is required as an

additional approximation (cf. section VI).

If line features, e.g. walls, are mapped instead of point

features, additionally the problem of how to parameterize

lines appears [15]. Some sensors provide no range but

features poses marginali- sparsification bearing parametri-
zation only zation

[13] Consistent pose estimation 3 DOF
[14] Point feature based 2D SLAM with odometry 2 DOF 3 DOF yes optional
[15] Horizontal line feature based 2D SLAM with odometry 2 DOF 3 DOF yes optional yes
[16] Vertical line feature based 2D visual SLAM 2 DOF 3 DOF yes optional yes

3D consistent pose estimation with inclinometer 4 DOF
Point feature based 3D SLAM with inclinometer 3 DOF 4 DOF yes optional

[2] 6-DOF consistent pose estimation 6 DOF yes
Point feature based 3D SLAM without odometry 3 DOF 6 DOF yes yes

+ inertial rotation 3 DOF 6 DOF yes optional yes
+ inertial translation 3 DOF 9 DOF yes optional yes

[4] Point feature Visual SLAM 3 DOF 6 DOF yes yes yes
+ inertial rotation 3 DOF 6 DOF yes optional yes yes

[17] + inertial translation 3 DOF 9 DOF yes optional yes yes

TABLE I

OVERVIEW OF DIFFERENT SLAM VARIANTS; NUMBER OF DEGREES OF FREEDOM NEEDED FOR FEATURES AND POSES; WHETHER MARGINALIZATION

OR SPARSIFICATION IS USED; WHETHER THE OBSERVATIONS LACK DISTANCE SUCH THAT BEARING ONLY INITIALIZATION IS NEEDED; WHETHER

GENERAL MANIFOLDS (ROTATIONS, LINES) NEED TO BE PARAMETERIZED.

bearing only. A notable example in 2D is a camera detecting

vertical lines. This leads to the additional problem of how to

initialize a feature with unknown distance [16].

B. 3D (4-DOF) SLAM

An intermediate variant between 2D and 3D consists of

3D point features but a robot still moving in 2D. The same

happens if the robot pose is 3D but the orientation with

respect to gravity is measured by inclinometers. In both cases

the robot’s orientation can still be represented by a single

angle making the pose 4-DOF altogether. This kind of SLAM

is basically 2D with an additional Z-coordinate.

C. 3D (6-DOF) SLAM

In full 6-DOF SLAM more variants are possible. Using

3D scan matching [2] one can do 6-DOF consistent pose

estimation. 6-DOF feature based SLAM can for instance be

conducted using a stereo-camera that measures the position

of point features relative to the camera. In contrast to 2D

SLAM usually no odometry is available. This gives rise to

a simple variant, where poses are marginalized out immedi-

ately. Since there is no odometry, sparsity is maintained and

no sparsification is needed. Essentially, this means, that each

set of observations is converted into relative information on

3D point features (cf. experiments in section VII).

This approach has a major limitation. Without odometry a

small sensor blackout or too little overlap between observa-

tions will disintegrate the map because no information links

the involved two poses anymore. Inertial sensors can help by

providing relative orientation (gyros) and absolute inclination

(accelerometers) [17]. This is the pendant of classic SLAM

with 3D point features and 6-DOF poses marginalized out

later. Again, either some poses must be kept or sparsification

is needed. Still, with orientation-odometry only, consecutive

observations must share one feature. Yet another variant

uses the accelerometers as translation-odometry. But when

acceleration is integrated the result is relative velocity not

relative position, so the poses must be augmented by 3D

velocity (9-DOF total) [17].

All 6-DOF SLAM variants share the problem of param-

eterizing 3D orientation because there is no singularity free

parameterization of orientation with 3 parameters.

With a monocular camera [4], no distance can be mea-

sured. So, while consistent pose estimation can use the 5-

DOF links arising from matching two images [18], additional

information is needed for the overall scale. In a feature based

approach this leads to the corresponding problem of bearing-

only initialization [19].

D. Nonlinearity

Nonlinearity is yet another question. It is rather orthogonal

to the different variants because all of them are nonlinear.

So it is a matter of sensor noise and map size how large

the linearization error is and whether efforts to reduce it

are needed. Possible options include repeatedly updating

the linearized Gaussians with the current estimate as new

linearization point and rotating Gaussians to specifically

compensate error in the orientation [20].

V. DRIVER - BACKEND ARCHITECTURE

Figure 2 shows the architecture we propose in this paper

consisting of a generic backend and a driver that depends on

the specific SLAM variant and eventually even on the appli-

cation. The driver mainly implements routines for computing

linearized Gaussians from the original measurements and an

approximation policy that sets appropriate control flags.

When a new observation arrives the driver first checks

whether it involves new features or robot poses. If this is the

case it allocates the appropriate number of 1-dimensional

random variables in the backend. It is important, that the

backend only handles plain 1-D Gaussian random variables

because in the different variants features and poses have

widely varying degrees of freedom. Any hard coded block

matrix layout could not handle this. After that, the driver

initializes these new random variables with a rough initial

estimate in a way that depends on the specific sensor.

The next step is to compute a Gaussian by linearizing

the measurement equations and to add it together with the

MM

M

M M M M

()

Treemap driver

Gaussians

observations

Treemap backend

control flags Gaussian mean

map estimate

Fig. 2. Data flow between treemap backend and driver. The driver adds
new leaves computed from new observations to the tree (here shown for the
leftmost leaf). It further sets flags invalid, integrable for leaves as well as
marginalizable, sparsifyable for random variables to control approximations
conducted by the backend. In turn it receives the Gaussians mean and
converts it into a map estimate.

original nonlinear measurements to the treemap. As long

as the leaf keeps the original measurements the linearized

Gaussian can be recomputed whenever desired by the driver’s

approximation policy to reduce linearization error.

A subtle issue is what linearization point to use when

integrating a measurement the first time. Especially when

closing a loop the prior estimate can be arbitrarily wrong due

to accumulated error and the measurement itself can often

provide a much better linearization point. Once the mea-

surement is integrated the estimate incorporates information

from the measurement itself and all other measurements so

the estimate provides a better linearization point.

After the Gaussian is passed to the treemap backend,

it updates its internal data-structures, i.e. the tree and the

distributions stored there. Then it computes the mean of

the overall Gaussian. The driver then converts the computed

mean into a map estimate. Usually this means just to copy

numbers. However if the driver uses more sophisticated

parameterizations, for instance for lines or rotations, it must

convert from these parameters to the representation passed

to the application.

The driver further implements a specific approximation

policy. It decides when the backend is allowed to integrate

two leaves, marginalize out a random variable, or sparsify

it out. The strategy involved depends on the variant and

eventually on the specific application. It interacts with the

treemap backend by setting flags in leaves and random

variables whereas the actual operations are performed in the

backend. So the driver defines whether an approximation is

allowed and the backend both decides when to do it and

actually conducts the approximation.

VI. DIFFERENT LEVELS OF APPROXIMATION

This section describes the different levels of approximation

the treemap backend offers (Fig. 3). Such a variety of ways

to trade computation time vs. accuracy greatly facilitates

e1

a

b

c

d

e2

Fig. 3. Different levels of approximation. a) original nonlinear observations
b) keep nonlinear observations c) linearize d) marginalize out old poses e)
sparsify out old poses by first sacrificing the equality constraint and then
marginalizing them out.

generic usage because different application may have differ-

ent restrictions in both. The original nonlinear observations

are illustrated in Fig. 3a. The circles depict robot poses and

the crosses depict features. The black lines depict odometry

and feature observations respectively.

A. Keep nonlinear observations

Treemap is a linear equation solver, so the original

nonlinear observations are assigned to leaves of the tree

(dashed oval) and converted into linearized Gaussians for

each leaf (Fig. 3b). Some features or robot poses are involved

in several leaves. The treemap bookkeeping knows these are

the same and takes care of this fact when computing the

mean. This is depicted by the ’=’ connections in the figure.

As long as the original nonlinear measurements are kept,

the driver can decide to update the linearization. It then

recomputes the linearized Gaussian and flags the leaf invalid

triggering necessary updates in the backend.

B. Linearize

Conversely if the driver decides it will not recompute a leaf

any more, it can flag the leaf integrable. As a consequence,

the treemap backend can integrate this leaf with another

leaf representing both together in a single Gaussian (such

as adding information matrices). Any nonlinear information

associated with one of the leaves is discarded, finally fixing

the linearization point (Fig. 3c). With this strategy observing

the same features repeatedly does not lead to a growing

representation. When the driver allows to linearize a leaf, the

backend checks whether computation time can be reduced by

integrating it with another leaf. This is part of the general

process that optimizes the tree representation.

C. Marginalize out old poses

Often the application is not interested in old robot poses.

The driver can then flag a random variable as marginal-

izable indicating that it is not needed any more. If the

random variable is only involved in one leaf it can be

marginalized (Fig. 3d) out with the result replacing the

original Gaussian. This certainly precludes that the driver can

relinerize the Gaussian so the leaf must be flagged integrable.

If a marginalizable random variable is involved in several

leaves the treemap backend actively tries to integrate those

leaves to be able to marginalize it out.

D. Sparsify out old poses

Not all old robot poses can be marginalized out this way

because then all leaves would be integrated into one leaf.

Instead, the optimization algorithm implicitly determines a

trade-off between getting too large leaves and keeping too

many old poses. The result has typically much fewer robot

poses than features posing no computational problem. Up

to this point the only approximation is linearization and

as Eustice et al. noted [21] the result is exactly sparse in

information form.

Still the driver can decide to trade in accuracy for effi-

ciency and flag a remaining robot pose sparsifyable. Fig-

ure 3e discusses the effect. Each occurrence of the robot

pose is marginalized out of its leaf independently which is

equivalent to treating them as two different poses. So the

information that both are the same is sacrificed for the sake

of keeping the tree sparse. This sparsification is the same

as used by TJTF [10] and related to ‘cutting the odometry

sequence’ [22] and ‘relocation’ [23]. Remarkably it does not

introduce overconfidence.

Since sparsification involves loss of information the op-

timization algorithm treats it as a last resort used only if

there is not other way to improve the tree. Even then, it asks

the driver that can implement a policy such as sparsifying

out only every n-th robot pose. Note, that sparsification is

the reason why we didn’t choose a large sparse matrix as

the interface to the treemap backend. Because once all local

Gaussians are added into one matrix, as with SEIF, it is

hard to consistently sparsify without inverting the whole

matrix [24].

We used sparsification in our 2D million-landmarks exper-

iment where we kept 48690 poses, sparsified out 285968 and

marginalized out 3373643. The experiments reported here do

not need sparsification since there is no odometry and hence

all robot poses can be marginalized out.

VII. 6-DOF SLAM EXPERIMENTS

The goal of our current project is to implement all the

different SLAM variants. The treemap backend is already

finished with the described generic interface so we were

able to implement a driver for feature based 2D SLAM [9]

in 690 lines of C++ code and a driver for feature based 6-

DOF SLAM without odometry in 410 lines of code. Actually

the 6-DOF implementation is shorter because no odometry

is involved and we needed some special implementation

effort to limit the memory consumption in our 2D million-

landmarks experiment. This section shows results for the 6-

DOF implementation.

A major point for 6-DOF SLAM is how to parameterize

rotations and how to compute an initial estimate for lineariza-

tion. We extend a technique by Castellanos [15] to 3D and

use the product

Q =Q0

(

cos γ − sin γ 0

sin γ cos γ 0

0 0 1

)(

cos β 0 sin β
0 1 0

− sin β 0 cos β

)(

1 0 0

0 cos α − sin α
0 sin α cos α

)

≈Q0

(

1 −γ β
γ 1 −α
−β α 1

)

(1)

of a fixed orientation Q0 and three Euler rotations the angles

of which are the random variables estimated. Q0 is initialized

with the initial estimate so the Euler angles only parameterize

the small perturbation of the orientation and are far from

singularity. Hence they are always linearized at α = β =

γ = 0 and with the linearization shown above.

This technique would in principle allows to reduce the lin-

earization error caused by error in the robot orientation [20].

The distributions passed from a node’s children can be

rotated according to the current estimate before multiplying

them (Fig. 1, �). We have used this technique for 2D SLAM

before [8] closing a loop with 135
◦ orientation error, however

have not implemented it in the 6-DOF version yet.

Since there is no odometry the initial estimate must be

computed from the observed features. We do so by least-

square matching all observations of features already in the

map using an SVD based closed solution [25]. Then we

initialize new features based on the resulting robot pose.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120

ti
m

e
[m

s]

n [10
3]

Fig. 5. Computation time. The top plot shows the overall computation
time per step over the number of features. The two bottom plots divide this
time, bottom to top, into downward estimation (mainly backsubstitution),
bookkeeping, and upward update (mainly QR-decomposition).

Fig. 4. 6-DOF SLAM map. before and after closing the large loop (between the two building on the ground level) over all n = 106657 features. The
black ellipses show the region where the loop is closed. The whole mapping process can be seen as 3D animation accompanying the article.

In our simulated experiment the robot moves through a

20 story building with features on the room’s walls (Fig. 4,

accompanying video). Then it crosses a bridge on the 19th

floor into another 20 story building and maps that building

too. Finally it returns to the starting position and closes a

loop over all features. The overall map has n = 106657

features and m = 5319956 observations from p = 488289

poses. Poses are not represented in the map. Computation

time was extremely fast with at most 209ms (Fig. 5).

The tree has 21743 nodes, i.e. 10871 leaves. Since initially

for each pose a new leaf is added, approximately 45 leaves

have been integrated into a single leaf by the treemap

backend, highlighting the importance of this mechanism.

VIII. CONCLUSION AND OUTLOOK

We have demonstrated that the treemap algorithm in the

same generic implementation can be used to solve both

2D and 3D feature based SLAM (without odometry) with

high efficiency. We have discussed the general algorithmic

approach and software architecture that allows to extend

this approach to the remaining SLAM variants. Future work

includes implementing those variants, integrating a solution

to the bearing-only initialization problem and implementing

a 3D variant of the rotation technique used to reduce lin-

earization error. We then plan to publish the implementation

as an open source library.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[2] H. Surmann, A. Nüchter, K. Lingemann, and J. Hertzberg, “6D
SLAM - preliminary report on closing the loop in six dimensions,” in
Proceedings of the 5th Symposium on Intelligent Autonomous Vehicles,

Lissabon, 2004.
[3] J. V. Miro, G. Dissanayake, and W. Zhou, “Vision-based SLAM

using natural features in indoor environments,” in Proceedings of the

2005 IEEE International Conference on Intelligent Networks, Sensor

Networks and Information Processing, 2005.
[4] A. Davison, Y. Cid, and N. Kita, “Real time SLAM with wide angle,”

in Proc. IFAC Symposium on Intelligent Autonomous Vehicles, Lisbon,
2004.

[5] K. Ohno and S. Tadokoro, “Dense 3D map building based on LRF
data and color image fusion,” in Proceedings of the International

Conference on Intelligent Robots and Systems, 2005, pp. 1774–1779.
[6] U. Frese, “A discussion of simultaneous localization and mapping,”

Autonomous Robots, vol. 20, no. 1, pp. 25–42, 2006.
[7] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algo-

rithm,” in Proceedings of the Third International Conference on 3-D

Digital Imaging and Modeling, Quebec City, 2001, pp. 145 – 152.

[8] U. Frese, “Treemap: An O(log n) algorithm for indoor simultaneous
localization and mapping,” Autonomous Robots, vol. 21, no. 2, pp.
103–122, 2006.

[9] U. Frese and L. Schröder, “Closing a million-landmarks loop,” in
Proceedings of the IEEE/RSJ Intern. Conf. on Intelligent Robots and

Systems, Beijing, 2006, pp. 5032–5039.
[10] M. Paskin, “Thin junction tree filters for simultaneous localization and

mapping,” in Proceedings of the 18th International Joint Conference

on Artificial Intelligence, San Francisco, 2003, pp. 1157–1164.
[11] F. Dellaert, A. Kipp, and P. Krauthausen, “A multifrontal QR fac-

torization approach to distributed inference applied to multi-robot
localization and mapping,” in Proceedings of the American Association

for Artificial Intelligence, 2005.
[12] M. Bosse, P. Newman, J. Leonard, and S. Teller, “SLAM in large-

scale cyclic environments using the Atlas framework,” International

Journal on Robotics Research, vol. 23, no. 12, pp. 1113–1140, 2004.
[13] F. Lu and E. Milios, “Globally consistent range scan alignment for

environment mapping,” Autonomous Robots, vol. 4, no. 4, pp. 333 –
349, 1997.

[14] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in robotics,” in Autonomous Robot Vehicles, I. Cox and
G. Wilfong, Eds. Springer Verlag, New York, 1988, pp. 167 – 193.

[15] J. Castellanos, J. Montiel, J. Neira, and J. Tardós, “The SPmap:
A probablistic framework for simultaneous localization and map
building,” IEEE Transactions on Robotics and Automation, vol. 15,
no. 5, pp. 948 – 952, Oct. 1999.

[16] M. Deans and M. Herbert, “Experimental comparison of techniques
for localization and mapping using a bearings only sensor,” in Proc.

of the ISER ’00 Seventh International Symposium on Experimental

Robotics, 2000.
[17] J. Kim and S. Sukkarieh, “Uav navigation: Airborne inertial SLAM,”

Tutorial at IROS 2005, 2005.
[18] R. Eustice, H. Singh, J. Leonard, M. Walter, and R. Ballard, “Visu-

ally navigating the RMS titanic with SLAM information filters,” in
Proceedings of Robotics Science and Systems, Boston, 2005.

[19] J. Montiel, J. Civera, and A. Davison, “Unified inverse depth
parametrization for monocular SLAM,” in Proceedings of Robotics:

Science and Systems, Pennsylvania, 2006.
[20] J. Folkesson, P. Jensfelt, and H. I. Christensen, “Vision SLAM in

the measurment subspace,” in Procedings of the IEEE International

Conference on Robotics and Automation, Barcelona, 2005.
[21] R. Eustice, H. Singh, and J. Leonard, “Exactly sparse delayed state

filters,” in Proceedings of the Internation Conference on Robotics and

Automation, Barcelona, 2005, pp. 2428–2435.
[22] U. Frese and G. Hirzinger, “Simultaneous localization and mapping

- a discussion,” in Proceedings of the IJCAI Workshop on Reasoning

with Uncertainty in Robotics, Seattle, Aug. 2001, pp. 17 – 26.
[23] M. Walter, R. Eustice, and J. Leonard, “A provably consistent method

for imposing exact sparsity in feature-based SLAM information fil-
ters,” in Proceedings of the 12th International Symposium of Robotics

Research, 2005.
[24] R. Eustice, M. Walter, and J. Leonard, “Sparse extended information

filters: Insights into sparsification,” in Proceedings of the International

Conference on Intelligent Robots and Systems, Edmonton, 2005.
[25] D. Eggert, A. Lorusso, and R. Fisher, “Estimating 3-d rigid body

transformations: A comparison of four major algorithms,” Machine

Vision and Applications, vol. 9, no. 5/6, pp. 272–290, 1997.

