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Abstract

This paper addresses the problem of simulta-
neous localisation and mapping (SLAM) by a
mobile robot. An incremental SLAM algo-
rithm is introduced that is derived from so-
called multigrid methods used for solving par-
tial differential equations. The approach over-
comes the relatively slow convergence of pre-
vious relaxation methods because it optimizes
the map at multiple levels of resolution. The
resulting algorithm has an update time that is
linear in the number of mapped features, even
when closing very large loops, and offers ad-
vantages in handling non-linearities compared
to previous approaches. Experimental com-
parisons with alternative algorithms using two
well-known data sets are also presented.

1 Introduction
To navigate in unknown environments, an autonomous
robot requires the ability to build its own map while
maintaining an estimate of its own position. The SLAM
problem is hard because the same sensor data must be
used for both mapping and localisation. We can sep-
arate two major sources of uncertainty in solving this
problem: (i.) the continuous uncertainty in the posi-
tions of the robot and observed environmental features,
and (ii.) the discrete uncertainty in the identification and
re-identification of environmental features (data associa-
tion). Any approach to the SLAM problem that consid-
ers both types of uncertainty must somehow search the
space of possible maps, since alternative assignments in
data association can produce very different maps.

Our approach belongs to a family of techniques where
the environments is represented by a graph of spatial re-
lations between reference frames that is obtained by scan
matching [Lu and Milios, 1997; Gutmann and Kono-
lige, 1999]. With this approach, it is natural to separate
the topological (discrete) and geometric (continuous) el-
ements of the representation, and to consider tracking the
M most likely topological hypotheses as a practical so-

lution to the SLAM problem. Alternative topological hy-
potheses generally correspond to decisions over whether
or not to “close a loop”, based on the uncertainty in the
re-identification of previously mapped features. The key
problem here is that to evaluate the likelihood of one sin-
gle hypothesis, a large linear equation system has to be
solved in order to infer the most likely geometric repre-
sentation given a particular topology.

A desirable property for any SLAM algorithm is that
the computation time for updates should be linear in
the number of features n stored in the map [Frese and
Hirzinger, 2001]. To achieve this objective, we have in-
vestigated so-called multigrid methods for solving par-
tial differential equations [Briggs, 1999], resulting in a
new SLAM algorithm for solving the equation system
of a single topological hypothesis called ‘Multilevel Re-
laxation’. Relaxation is an iterative method for solv-
ing equations, which is equivalent to Gauss-Seidel iter-
ation or Gibbs sampling at zero temperature. The new
approach improves on the previously introduced algo-
rithm [Duckett et al., 2002], which was significantly
slower when closing large loops, by carrying out the op-
timization process at multiple levels of resolution in the
underlying map.

In the following sections, we derive the basic algo-
rithm for single level relaxation (§2), followed by an
overview of multigrid methods (§3) and details of the
Multilevel Relaxation algorithm (§4). Results including
experimental comparisons with alternative algorithms
are presented in §5, and the conclusion in §6 discusses
how to embed the new algorithm within a framework for
tracking multiple topological hypotheses.

1.1 Related Work

Guivant and Nebot [2001] introduced an extended
Kalman filter (EKF) called Compressed SLAM
(CSLAM) for real-time mapping. By restricting the
Kalman update to a subset of landmarks in a local
area, updates can be performed at cost O(1) and then
transferred to the overall map in O(n2). With a further
approximation, that can be reduced to O(n), though the
problem of closing large loops is not yet solved.



Montemerlo et al. [2002] used a particle filter to track
the pose of the robot, where each particle also includes
a set of Kalman filters estimating the position for each
landmark. This approach is able to represent and search
between multiple hypotheses for the full map (i.e., robot
pose plus all landmark positions), but the particle set
must be large enough to contain a particle sufficiently
close to the true pose of the robot at all times. The algo-
rithm requires O(M log n) time for M particles, though
it is not clear how the number of particles scales with the
complexity of the environment.

Thrun et al. [2002] applied extended information fil-
ters utilizing the sparsity of the information matrices
in SLAM, as proposed by Frese and Hirzinger [2001].
The equation solving is performed iteratively by relax-
ation. The authors propose to relax only O(1) land-
marks at each step, which would result in a constant
time algorithm. However, in the numerical literature,
relaxation is reputed to need O(n2) time for reducing
the equation error by a constant factor [Briggs, 1999;
Press et al., 1992, §19.5]. For instance after observing
n landmarks each O(1) times, the algorithm will have
spent only O(n) time on equation solving, so it is doubt-
ful whether this approach will suffice in general.

2 Single Level Relaxation

The input to the algorithm is a set R of m = |R| relations
on n planar frames. Each relation r ∈ R describes the
likelihood distribution of frame ar relative to frame br.
It is modelled as a Gaussian with mean µr and covari-
ance Cr. The output is the maximum likelihood (ML)
estimation vector x̂ for the poses of all the frames.

In the context of SLAM, each frame corresponds to the
robot pose at a certain time. Each relation corresponds to
a measurement of the relative pose between two frames,
either by odometry for consecutive frames or as the re-
sult of matching the laser scans (or other sensor readings)
taken at the respective robot poses. As usual, the mean
µr of such a relation is the actual measurement and the
covariance Cr is taken from a suitable model of the mea-
surement uncertainty.

The algorithm proceeds in three steps [Press et al.,
1992, §15]:

1. Linearize the measurement functions.
2. Compute a quadratic error function χ2(x) and rep-

resent it by a matrix A and a vector b as χ2(x) =
xT Ax − 2xT b.

3. Find the minimum x̂ of χ2(x) by solving Ax = b.

The first two steps are the same used in most least square
nonlinear model fitting algorithms. Specific to relaxation
is the way of solving Ax = b. It is performed by going
through all block rows Ai and solving (Ax)i = bi for xi.
This process is repeated until convergence.

2.1 Derivation of the Linear Equation System
Maximizing likelihood is equivalent to minimizing neg-
ative log likelihood or χ2 error energy:

χ2(x) =
∑

r∈R

zrT (Cr)−1zr, (1)

with zr = f(xar , xbr ) − µr, (2)
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The measurement function f maps the two poses of the
two frames ar and br to the relative pose of ar with re-
spect to br. As usual, it is linearized at some lineariza-
tion point ăr, b̆r corresponding to some estimate for the
two frames. We use the most recent estimate for b̆r and
choose ăr so that f(ăr, b̆r) = µr. This means that the
linearization points chosen for a measurement are consis-
tent with the measurement itself. Compared to using the
most recent estimate for ăr this produces a much smaller
error when closing a loop.
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The linearized measurement function is substituted into
(2) yielding a quadratic approximation:

zr ≈ Jr
a

(
xar − ăr

)
+ Jr

b

(
xbr − b̆r

)
(3)

χ2(x) ≈ const
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a ăr + Jr
b b̆r
)











(4)

The terms involve x either quadratically (lines 1–4) or
linearly (lines 5–6). They can be sorted by rows of x
(either ar or br) and grouped into matrix A and vector b:

= xT
∑

r∈R
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··· ···

··· Jr
b

T (Cr)−1Jr
a ··· Jr

b
T (Cr)−1Jr

b ···

··· ···
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︸ ︷︷ ︸

A

x
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a ăr+Jr
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



︸ ︷︷ ︸

b

(5)

Each relation r contributes to block-rows ar and br of
b and the intersection of these rows and columns in A.



FOR Level h from fine to coarse
Relax equation on level h: Ahxh = bh

Restrict residual to next level H: bH = IH
h (bh − Ahxh)

Solve equation on coarsest level AHxH = bH

FOR Level H from coarse to fine
Interpolate solution to next level h: xh = xh + Ih

HxH

Relax equation on level h: Ahxh = bh

relax

relax

relax

solve

relax

level 0

level 1

fine

level 2
coarse

PSfrag replacements
IH
h

IH
h Ih

H

Ih
H

Figure 1: General multigrid algorithm (V-cycle), and example with 3 levels.

Since χ2 is invariant under movement of the whole map,
A is singular. To make it positive definite, a relation be-
tween frame 0 and a global frame is added (Jb = 0).

The matrix A is called the information matrix, and is
the inverse of the estimation covariance matrix. A block
Aab 6= 0 appears only between frames a, b with a com-
mon relation, which are normally only O(1) for a given
a. This sparsity is essential for the efficiency of relax-
ation. The ML estimate x̂ minimizes χ2(x) or equiva-
lently makes the gradient equal to 0:

0 =
∂
(
χ2(x)

)

2∂x
=

∂
(
xT Ax − 2xT b

)

2∂x
= Ax − b (6)

So with the definitions made above, the equation to be
solved is Ax = b for a sparse matrix A. The full poste-
rior distribution is in principle given by exp(− 1

2χ2(x)),
but this is of little practical value, since usually the pos-
terior for some selected frames is desired. This requires
computation of the covariance matrix A−1, which ap-
pears to be impossible in less than O(n2) time, so in this
paper we concentrate on computing the ML estimate x̂.

2.2 Iterative Solution by Relaxation
The basic idea of relaxation is to solve the equation sys-
tem Ax = b one (block-) row at a time. Relaxation of
(block-) variable xi consists of solving (block-) row i of
the equation for xi considering all other xj as fixed1:

x′
i = xi + A−1

ii (bi − Ai•x) (7)

From the perspective of minimizing xT Ax − 2xT b, this
means finding the minimum xi if all other xj remain un-
changed. In a single iteration, (7) is used to update all xi.
After xi is updated, the new value is used in the update
of all following xj , j > i (Gauss-Seidel relaxation).

Every iteration reduces xT Ax − 2xT b, so it will con-
verge to the unique minimum A−1b, thereby solving the
equation. Since A is sparse, evaluating (7) takes O(1)
and a single iteration O(n) time. For typical A, O(n)
iterations are needed to reduce the error by a constant
factor [Briggs, 1999; Press et al., 1992, §19.5]. However
local or oscillating parts of the error are reduced much
more effectively than smooth or global parts, so in prac-
tice, few (1− 3) iterations suffice, except when closing a
large loop [Duckett et al., 2002].

1Ai• denotes row i and A•i denotes column i of A.

3 Multigrid Linear Equation Solvers
Historically, relaxation has been widely used for the nu-
merical solution of partial differential equations (PDE).
These continuous equations appear, for instance, in the
simulation of heat flow, fluid dynamics or structural me-
chanics. As an example, the solution to a heat flow prob-
lem is a function R

3 → R assigning a temperature to
each point in 3-D space. Numerically they are solved by
discretizing the function onto a grid of sampling points.
Thereby the PDE is converted into an ordinary sparse
linear equation system. It is often solved using relax-
ation. The problem with this approach is that oscillating
parts of the error are reduced efficiently, but it takes much
longer to reduce the remaining smooth error.

A breakthrough was the development of so-called
multigrid methods in the 1970’s [Brandt, 1977; Briggs,
1999]. The idea is to discretize the PDE at different lev-
els of resolution. Relaxation on a fine level (high reso-
lution) effectively smooths the error. Then relaxation on
a coarser level is used to reduce that error, which on the
lower resolution is again more oscillatory.

3.1 Geometric Multigrid
To realize this idea, a single iteration of relaxation is first
performed at the finest level. The remaining residual
bh−Ahxh is then restricted to the next coarser level by a
restriction operator IH

h
2. On the coarsest level, the resid-

ual equation is solved directly (e.g., by Cholesky decom-
position [Press et al., 1992, §2.9]). Then the solution xH

is interpolated to the next finer level by an interpolation
operator Ih

H and used to update the solution xh there.
In the geometrical context underlying most PDEs, a

hierarchy of coarser levels is easily constructed by dis-
cretizing the PDE onto grids with increasing grid spac-
ing, i.e., onto fewer sampling points.

The propagation of the residual from fine to coarse and
then of the solution back from coarse to fine is called a
V-cycle (Fig. 1). It needs O(n) time, since the size of
the levels decreases exponentially. For suitable Ih

H , IH
h

and AH it reduces the error by a constant factor [Briggs,
1999].

2We follow the literature on multigrid methods in distin-
guishing different levels by superscript h. For the transition
between two levels h denotes the finer and H the coarser level.
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3.2 Galerkin Multigrid
For PDEs, AH can be naturally derived as the discretiza-
tion onto a smaller set of sampling points. Ih

H and IH
h are

usually chosen as linear interpolation and weighted aver-
aging respectively. If no “natural” choice for AH and IH

h
is available, the Galerkin operator defines them purely al-
gebraically for a given interpolator Ih

H . It is derived from
the equivalent minimization problem (which on the finest
level is just the original problem of minimizing χ2(x)):

g(x) = xhT
Ahxh − 2xhT

b (8)

Since the coarse xH corresponds to the fine Ih
HxH , the

coarse equation must minimize g(Ih
HxH):

0 =
1

2

∂
(
g(Ih

HxH)
)

∂xH
(9)

=
1

2

∂
(

xHT
Ih
H

T
AhIh

HxH − 2xHT
Ih
H

T
b
)

∂xH
(10)

=

AH

︷ ︸︸ ︷

Ih
H

T
AhIh

H xH −

IH
h

︷ ︸︸ ︷

Ih
H

T
b (11)

So by using the Galerkin operator IH
h = Ih

H

T
, AH =

Ih
H

T
AhIh

H , the coarse equation minimizes g(x) over the
range of the interpolator. Relaxation on any level thereby
reduces g(x), ensuring convergence to the unique so-
lution for any Ih

H . For fast convergence, however, the
choice of Ih

H is still crucial.
Another point to consider is that Ih

H has to be local
in some sense, otherwise coarser matrices will become
increasingly dense, taking more than O(n) time per iter-
ation.

3.3 Algebraic Multigrid
There exist so-called algebraic multigrid approaches that
define the interpolator in a purely algebraic form without
any reference to an underlying geometry or PDE [Stüben,
1999]. In principle these approaches appear advanta-
geous for a problem with an irregular geometry such as

SLAM. We implemented a variant of the so-called “di-
rect” interpolation [Stüben, 1999, §4.2]. It interpolates
a frame i so that the result satisfies (Ax)i = bi given
all coarse xj and given linear interpolates for the fine
xj , j 6= i. For our data, this approach led to unaccept-
ably dense matrices (§5). We therefore replaced it by a
problem specific interpolator described in §4.3.

4 Multilevel Relaxation
In this section we describe the Multilevel Relaxation al-
gorithm proposed in this paper.

Unlike many PDEs, in SLAM the problem is not dis-
cretized onto a regular grid, so the question is how to
define the hierarchy of coarser levels. The algorithm ex-
ploits the fact that the frames form a sequence, namely
the robot’s trajectory, so selecting every second frame is a
suitable way of generating a coarser level (Fig. 2). It uses
a multilevel representation for equation (6) with a sparse
matrix A. On this hierarchy it implements a Galerkin
based V-cycle. The algorithm is incremental, updating x̂
for each new frame. Such an update involves three tasks:
(i.) Extend Ah, bh on all levels necessary to represent
the new frame. (ii.) Update Ah, bh and Ih

H based on the
new relations. (iii.) Apply c V-cycles to update the ML
estimate x̂. The first two steps involve only few entries of
Ah and bh and take O(log n), the third step takes O(cn).

4.1 Data Structure
The algorithm maintains the graph of relations R in the
usual way, with linked lists that allows efficient traversal
of the set of edges incident upon a given node. Each
relation r stores the corresponding Gaussian µr, Cr and
linearization point ăr, b̆r (§2.1).

For the multilevel hierarchy, each level h contains
the sparse equation matrix Ah, vector bh, overall so-
lution x̂h, residual solution xh and the sparse inter-
polation matrix Ih

H . Ah is stored as a set of 3 × 3
blocks {(i, j, Aij)|Aij 6= 0}. Blocks of a given row are
linked for efficient traversal. This allows computation of
(Ax)i = Ai•x and relaxation by equation (7) in O(1).



Let Fh be the set of all frames involved in a new relation r ∈ R′

Extend x̂h, xh with initial estimates for new frames
Define linearization points ăr, b̆r for new relations r ∈ R′ (§2.1)
Recompute rows Fh of Ah, bh by (5) for finest level h
FOR Level h from fine to coarse

Recompute rows Fh of Ih
H by (19)

Let FH = C(Fh) be the set of affected coarse frames
Copy x̂H

f from corresponding fine frame x̂h
F (f) for all f ∈ FH

Recompute rows FH of AH = Ih
H

T
AhIh

H

Compute Cholesky decomposition AH = UT U for coarsest level H

Figure 3: Update of multigrid hierarchy after adding new relations R′.

The interpolator Ih
H is stored in an array, since each row

contains at most two blocks. We define C(f), the set of
coarse frames from which f is interpolated, and F (f),
the fine frame corresponding to f , as:

C(f) =







{ f
2 } f even

{ f+1
2 } f odd ∧ last

{ f−1
2 , f+1

2 } otherwise
, (12)

C(F) =
⋃

f∈F

C(f), F (f) =

{
2f − 1 last
2f else

(13)

4.2 Update
When new measurements arrive, a new frame is intro-
duced into Ah, bh and Ih

H , new relations are added and
the equation is updated on each level. Only O(1) frames
are involved, so the update is performed in O(1) per level
and O(log n) total.

Our approach is to always recompute a complete row
of Ah, bh, and Ih

H , keeping track of the changed rows
from fine to coarse level (Fig. 3). Since each row con-
tains only O(1) nonzero blocks, updating only the af-
fected blocks is little faster and more complicated. For a
new frame Ah, bh and IH

h are extended as necessary.
Let Fh be the set of frames adjacent to a new relation.

From the sparsity pattern in (5) it can be seen that only
Ah

ij , b
h
i for i, j ∈ Fh changes, so we recompute rows

Fh. For each f ∈ Fh the blocks generated by all rela-
tions incident to f are added to Ah

f• and bh
f .

Next the interpolator Ih
H is updated. From the

Galerkin principle we are free to choose the interpola-
tor, so we update rows Fh, to limit the resulting change
in AH . Equation (14) shows the structure of Ih

H :

Ih
H =








I
E−

1
E+

1

I
E−

3
E+

3

I

. . .








,
(Ih

H)ij 6= 0

⇔ j ∈ C(i)
(14)

Row (Ih
H)f• has blocks at columns C(f), so updating

rows F changes columns C(F). For a coarse f , row
(Ih

H)f• is a single identity block I . For a fine f , it is two

blocks E+
f and E−

f defined by (19). The last step is to up-

date AH = Ih
H

T
AhIh

H , resulting in a change to columns
C(F) of Ih

H and F of Ah. A change in Ah
ij changes

rows C(i) of AH , so that rows C(F) are recomputed.
When a level H has less than nmin frames (32 in our ex-
periments), the equation on that level is solved directly
using a Cholesky decomposition AH = UT U computed
during update.

4.3 Interpolation
There are several difficulties in devising a good interpo-
lator in the context of SLAM: (i.) The interpolator must
be based on the matrix Ah or estimate x̂h, not on the set
of relations, since the latter is only available at the finest
level. (ii.) It must be rotation invariant, since otherwise
it creates apparent orientation information in the coarse
equations, since for some orientations the interpolation
fits better than for others. Since orientation is usually
very uncertain [Frese and Hirzinger, 2001], this effect
distorts the coarse solution. (iii.) This may even happen
for rotation invariant interpolators due to linearization of
the rotation. To see this, we consider the following rela-
tion and substitute into (3):

µ =
(

1
0
0

)

, C =
(

1 0 0
0 1 0
0 0 1

)

, ă =
(

1
0
0

)

, b̆ =
(

0
0
0

)

(15)

χ2 ( a
b ) =

(ax − bx − 1)2 + (ay − by − bφ)2

+(aφ − bφ)2
(16)

If, for instance, the rotation invariant interpolator b = a
is chosen, χ2 simplifies to 1 + b2

φ, representing apparent
absolute orientation information. To reduce this prob-
lem, we use the following geometric formula for inter-
polating a fine frame b from coarse frames a and c:

b = a + α(c − a) + β(c − a)⊥, (17)

α ∈ [0 . . . 1], β ∈ [−1 . . . + 1], (18)
(

bx

by

bφ

)

= E−

b a + E+
b c, (19)

E−

b =

(
1−α β 0
−β 1−α 0

0 0 1
2

)

, E+
b =

(
α −β 0
β α 0

0 0 1
2

)

(20)



χ2
0 = χ2(x̂); ctr = 0; i = 0

WHILE ctr < 3
Update x̂ by 3 V-cycles, χ2

i = χ2(x̂); i = i + 1

γ = 0.1 n
m−n α = i

√

χ2
i /(γχ2

0) χ̂2
min = χ2

i−1 −
χ2

i−1−χ2
i

1−α

IF χ2
i ≥ χ2

i−1 ∨
(

χ2
i <

(
1 + γ

)
χ̂2

min

)

THEN Update ăr, b̆r for all r ∈ R; ctr = ctr + 1
ELSE ctr = 0

Figure 4: Computation of the approximate ML estimate x̂.

It defines the vector b − a as a linear combination of
c − a and the orthogonal vector (c − a)⊥. Therefore it
is rotation invariant. The constants α and β are chosen,
so that E−

b â + E+
b ĉ = b̂, but clipped to avoid extreme

cases. Thereby the position of b relative to a and c closely
matches the position used for linearization, and the above
mentioned problems are reduced.

4.4 Nonlinearity and Convergence
To obtain a consistent estimate incrementally, a single V-
cycle for each new frame appears to suffice (§5), even
when closing a loop. We update the linearization point
ăr, b̆r of a portion of the relations afterwards (5% in our
experiments), so that the map can converge to the non-
linear ML estimate while the robot continues moving.
This is a great advantage over EKF based implementa-
tions, which do not allow changing of the linearization
point after integration and can thus be subject to severe
linearization errors [Frese and Hirzinger, 2001].

For an immediate ML estimate x̂ML =
arg minx χ2(x), iteration with a termination crite-
rion is performed (Fig. 4). The idea is to stop when the
equation error x̂ − x̂ML is much smaller than the estima-
tion error x̂ML − xtrue. We estimate χ̂2

min ≈ minx χ2(x),
by assuming exponential convergence. The convergence
factor α is computed from the initial and last χ2 values3.

It is well known that the expected minimum
E
(
minx χ2(x)

)
is 3(m − n) and the expected

E
(
χ2(xtrue)

)
value is 3m [Press et al., 1992, §15.1]. So

n
m−n χ̂2

min is a rough estimate for χ2(xtrue)−minx χ2(x).
When χ2(x̂) < (1 + γ)χ̂2

min with γ = 0.1 n
m−n the lin-

earization points ăr, b̆r are updated, usually leading to
further reduction of χ2(x̂). If this happens three times in
a row, iteration is stopped.

5 Results
We have evaluated the performance of the proposed al-
gorithm on two well known datasets, one from the Uni-
versity of Freiburg [Gutmann and Konolige, 1999] and
a single loop taken from the Carnegie Mellon Wean

3The factor γ is a heuristic for the case that χ2

0 is already
very close to the minimum.

Hall [Thrun et al., 1998]. They are processed by the
software package ScanStudio4 which performs the scan-
matching. The resulting graph of relations is passed to
our implementation, computes the χ2 function and uses
either ‘Cholesky decomposition’ (CD)5, ‘Single level re-
laxation’ (SLR), ‘Multilevel relaxation’ (MLR) or ‘One
MLR iteration’ (1MLR) for minimization. All four al-
gorithms start with an initial estimate based on the first
relation involving a frame. The last two methods ‘Incre-
mental Multilevel Relaxation’ (IMLR) and ‘Incremental
Single Level Relaxation’ (ISLR) apply a single MLR and
SLR iteration for each new frame. Thereby they incre-
mentally maintain an estimate as our algorithm would
actually be used on a mobile robot. All experiments were
conducted on a Pentium IV, 1.7 GHz using LINUX/gcc
2.95.3 (Fig. 5, 6).

For both datasets, MLR is much more efficient than
CD and provides a better estimate. The latter point is true
because CD solves the linearized problem, while all oth-
ers perform nonlinear minimization. It is worth noting
that linearization effects can be seen in the χ2 value de-
spite the small orientation error. SLR is faster than MLR
on the Freiburg data, but much slower on the Wean Hall
data. The reason therefore lies in the difference between
the two datasets (Fig. 7a, c). The Wean Hall data is a long
loop with a large global error. MLR is more efficient in
reducing this type of error than SLR, which needs many
more iterations. The error in the Freiburg data is mainly
local, so both MLR and SLR need the same number of
iterations.

There is an inconsistency in the lower right two rooms
of the Freiburg CD estimate (Fig. 7a), which is also visi-
ble for the MLR, SLR and 1MLR estimates. The reason
is that scans from the lower room and scans from the
upper room overlap only slightly through the small door-
way, so ScanStudio did not match any of them, and this
inconsistency is not visible in the graph of relations.

IMLR and ISLR are much faster than CD, MLR and
SLR, if an incremental estimate is desired. For the
Freiburg data, both estimates are extremely good (Fig.

4We would like to thank Steffen Gutmann for the Freiburg
data and the permission to utilize ScanStudio, and Sebastian
Thrun for the Wean Hall data.

5a direct O(n3) equation solver [Press et al., 1992, §2.9]



Freiburg Wean Hall
iter. time χ2 iter. time χ2

Initial Estimate 16395061 1126227
Cholesky Decomposition (CD) 19.951 s 428397 1.268 s 6113
Single level relaxation (SLR) 12 0.437 s 431995 630 0.786 s 7122
Multilevel relaxation (MLR) 12 0.586 s 427178 12 0.059 s 5992
One MLR iteration (1MLR) 1 0.023 s 501273 1 0.003 s 40375

Exact Minimum 425639 5986
Incremental MLR (IMLR) 1 avg. 14.4 ms 426104 1 avg. 1.6 ms 6178
Incremental SLR (ISLR) 1 avg. 8.6 ms 425759 1 avg. 0.7 ms 91772

n, m 906 8081 346 932
Blocks 6= 0 in A0, A1, A2 15770 9824 4154 2054 848 414

Figure 5: Performance on Freiburg / Wean Hall data: CD, SLR, MLR, 1MLR all compute a batch estimate for the
whole data set. IMLR and ISLR incrementally process each new frame (the average time per frame is given). The
exact minimum was computed by iterating MLR to numerical convergence of the equation Ax = b.
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Figure 6: Performance on Freiburg data plotted over number of frames. Algorithm names are sorted from high to low
values. (b) is scaled to show χ2 values up to 2% above the minimum, which all correspond to excellent estimates.

6, 7b) and better than CD and MLR most of the time,
with the exception of two outliers occurring after inte-
grating two inconsistent relations. Surprisingly, the ISLR
estimate is even better than the IMLR estimate, which
has been found to be related to linearization effects. For
the Wean Hall data, the CD and MLR estimates are ini-
tially better than the IMLR estimate (Fig. 6, 7d-e), which
is in turn much better than the ISLR estimate. This is
because both perform only a single iteration after clos-
ing the loop. Here the advantage of IMLR can be seen,
since it closes the loop consistently (Fig. 7e), which is
not achieved by ISLR.

The interpolator leads to sufficiently sparse matrices
A0, A1, A2, with each coarser level having 40% to 60%
fewer nonzero blocks. When using a variant of direct
interpolation [Stüben, 1999], A1 has 29723 and A2 has
25347 nonzero blocks, which is unacceptably dense.

The minimum χ2
min is much larger (Freiburg: ×20,

Wean Hall: ×3.4) than the theoretically expected value

3(m − n). This shows that the scan matching covari-
ance is overconfident [Bengtsson and Baerveldt, 2001]
and stresses the importance of defining the termination
criterion relative to χ̂2

min in §4.4.

6 Conclusions and Future Work
This paper introduced a new SLAM algorithm, Multi-
level Relaxation, which is suitable for incremental, on-
line use on a mobile robot in O(n) time, including clos-
ing of large loops. This is possible because (i.) the algo-
rithm makes an iterative refinement to the existing solu-
tion at each step, rather than re-solving the equation sys-
tem from scratch, and (ii.) it exploits an important prop-
erty of multigrid methods, namely that the residual error
is geometrically smooth, i.e., it is distributed evenly over
the whole map. In the case of closing a very large loop,
as in the Wean Hall example presented, it can take sev-
eral further iterations to converge to the maximum like-
lihood solution. However, the map is already geometri-
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Figure 7: Computed maps for Freiburg (17m × 26m, a-b) and Wean Hall (36m × 74m, c-e).

cally consistent after a single iteration, that is, none of the
measured relations are strongly violated in the estimated
vector x̂, and the map should be useful for navigation
purposes. A further advantage of relaxation methods is
that non-linearities can be handled by recomputing the
linearization points if necessary. Remarkably, the result
from a few iterations is already better than the exact so-
lution of the linearized problem provided by Cholesky
decomposition.

Future work will include embedding the new algo-
rithm in a framework for handling both the continuous
and discrete uncertainty in the SLAM problem. This
would be achieved by multi-hypothesis tracking in the
space of possible maps, where one hypothesis corre-
sponds to one possible topology. In this paper, we have
only used the algorithm to solve the linear equation sys-
tem for a single topological hypothesis (i.e., we assumed
no data association errors), but it should also provide a
good core engine for multi-hypothesis SLAM, e.g., by
tracking the best M topological hypotheses, due to its
ability to close loops efficiently. While loops occur rel-
atively rarely in most indoor environments, alternative
topological interpretations of the same sensor data within
a multi-hypothesis framework will often correspond to
decisions on whether or not to close a loop – this is why
an efficient equation solver is highly desirable for solving
the SLAM problem in its most general form.
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