
Closing a Million-Landmarks Loop

Udo Frese

Universität Bremen, Fachbereich Mathematik und Informatik

SFB/TR 8 Spatial Cognition

email: ufrese@informatik.uni-bremen.de

Lutz Schröder

Universität Bremen, Fachbereich Mathematik und Informatik

email: lschrode@informatik.uni-bremen.de

Abstract— We present an improved version of the treemap
SLAM algorithm which uses Cholesky factors for representing
Gaussians and a Hierarchical Tree Partitioning algorithm de-
rived from the established Kernighan-Lin heuristic for graph
bisection. We demonstrate the algorithm’s efficiency by mapping
a simulated building with 1032271 landmarks. In the end, we
close a million-landmarks loop in 21ms, providing an estimate

for ≈10000 selected landmarks close to the robot, or in 442ms
for computing a full estimate.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) has been

a topic of research for almost two decades by now after

Smith, Self and Cheeseman first formulated it as an estimation

problem [1] for a state vector of landmark positions. While

Smith et al. used a full n × n covariance matrix for n
landmarks, many approaches tried to avoid the resulting O(n2)
update time by maintaining only individual covariances for

each landmark. Julier and Uhlmann followed this idea with

a particularly impressive result. Their algorithm maintains

statistically consistent bounds and is so efficient they were

able to estimate a ‘million beacon map’ in real time [2].

Later it has been realized that correlations, i.e. uncertainty

information not only for each landmark alone but also for their

relative position, are crucial [3]. We have earlier paraphrased

this phenomenon as ‘certainty of relations despite uncertainty

of positions’ [4], [5]. It becomes most visible in closing a

loop, because the precisely known relative position of adjacent

landmarks forces the SLAM algorithm to distribute the error

along the loop without introducing a break anywhere.

In the last five years, many researchers have aimed at de-

vising efficient approaches that maintain correlations. Several

successful algorithms emerged, among them Relaxation [6],

CEKF [7], SEIF [8], FastSLAM [9], Atlas [10], MLR [11],

TJTF [12], Olson’s stochastic descent algorithm [13], Del-

laert’s multifrontal-QR approach [14], and treemap [15], [16].

Our contribution was the latter; we feel that it is now time

to pick up where Julier and Uhlmann left off and — with

the help of algorithmic progress and Moore’s law — close a

million-landmarks loop.

The material is organized as follows. To make the paper self-

contained, we give a brief description of the overall approach

of the treemap algorithm, i.e. the geometric and probabilistic

meaning of a node and how distributions are passed along

the tree, in Sect. II (a broader discussion can be found in

[15], [16]). Section III introduces a new Cholesky factor

based representation for Gaussians which greatly simplifies

the matrix-computation part of treemap and makes it numeri-

cally more stable. Section IV presents the new Hierarchical

Tree Partitioning (HTP) subalgorithm which optimizes the

tree while the robot is moving, in order to reduce future

computation time. Compared to the original approach [15],

it is simpler and more rigorous. We believe that it is also

more dependable, because we derived it from the established

Kernighan-Lin (KL) graph partitioning heuristic [17], [18].

We conclude in Sect. VI with the experiment that mo-

tivated this article. A simulated robot moves through four

100 story buildings with altogether n=1032271 landmarks,

m=14463587 measurements, and p=3708301 robot poses.

Treemap processes this data and in the end closes a loop over

all four buildings in 442ms (or 21ms for a one-story estimate).

II. TREEMAP’S OVERALL CONCEPT

A. Geometric View

Imagine the robot is in a building that is virtually divided

into two parts A and B. Now consider: If the robot is in

part A, what is the information needed about B? Only few

of B’s features are involved in observations while the robot is

in A. All other features of B are not needed to integrate these

observations. So probabilistically speaking, the information

needed about B is only the marginal distribution of features

of B also observed from A conditioned on observations in B.

The idea can be applied recursively by dividing the building

into a binary tree of regions. The marginal distribution for a

region can be computed recursively. The marginals for the two

subregions are multiplied and features are marginalized out

that are not observed from the outside of that larger region

anymore. This core computation is the same as employed

by TJTF [12]. The key benefit of this approach is that for

integrating a measurement, only the region containing the

robot and its super-regions need to be updated. All other

regions remain unaffected.

B. Bayesian View

The input to treemap are observations assigned to leaves

of the tree. They are modeled as distributions p(X |zi) of the

state vector of features X , i.e. of landmark positions and robot

poses, given some measurement zi. At the moment, let us

take an abstract probabilistic perspective as to how treemap

computes an estimate x̂ = E(X |z) from these observations.

We will subsequently describe the Gaussian implementation.

b c d e fa

1 2 3 4 5 6 7z

X

n

︸ ︷︷ ︸

X[n:$]

︸ ︷︷ ︸

X[n:%] ︸ ︷︷ ︸

X[n:↑]

z[n: $] z[n: %] z[n: ↑]

Fig. 1. Bayesian View. In this example, observations z1...7 provide
information about the features Xa...f. The arrows and circles show this
probabilistic input as a Bayes net with observed nodes in gray. The dashed
outlines illustrate the view of a single node n. It divides the tree into three
parts, left-below $, right-below % and above ↑. Hence the observations z are
disjointly divided into z[n: $] = z1...2, z[n:%] = z3...4 and z[n: ↑] = z5...7.
The corresponding features x[n:$] = Xa...b, x[n:%] = Xb...d and x[n: ↑] =
Xd...f however overlap (X[n: $%] = Xb, X[n: ↑%] = Xd). The key insight
is that X[n: ↓↑] = X[n: $↑ ∨ %↑] = Xd separates the observations z[n: ↓]
and features X[n: ↓X ↑] below n from the observations z[n: ↑] and features
X[n:X ↓↑] above n, so both are conditionally independent given X[n: ↓↑].

With respect to the motivating idea, nodes define local

regions and super-regions. Formally, however, a node n just

represents the set of observations assigned to leaves below n

without any explicit geometric definition.

For a node n, the left and right child and the parent are

denoted by n$, n% and n↑, respectively. We often have to

deal with subsets of observations or features according to

where they are represented within the tree relative to the node

n (Fig. 1). Thus, let z[n: ↓], z[n: $], z[n:%], and z[n: ↑] denote

the observations assigned to leaves below (↓), left-below ($),

right-below (%), and above (↑) node n, respectively. The term

above n refers to all regions outside the subtree below n (!).

Analogous expressions X [n: . . .] denote the features involved

in the corresponding observations z[n: . . .]. Note that, while

observation sets for different directions {$, %, ↑} are disjoint,

the corresponding feature sets may overlap because different

observations may share a feature. In particular, X [n: $%X ↑]
denotes all features for which n is the least common ancestor.

They play an important role for n because they are marginal-

ized out and finally stored there. As a special case, for a leaf n,

let X [n:$%X ↑] denote the features only involved at n.

As input, treemap receives the distributions pI
n =

p
(
X [n: ↓]

∣
∣z[n: ↓]

)
where n ranges over all leaves. It is

computed from the probabilistic model for the observations

z[n: ↓] assigned to n. The output are the distributions pn =
p
(
X [n: ↓]

∣
∣z

)
. During the computation, intermediate distribu-

tions pM
n and pC

n are passed through the tree and stored at the

nodes, respectively. In general, pI
n, pM

n , pC
n , and pn refer to

distributions actually computed by treemap, whereas distribu-

tions p
(
X [. . .]

∣
∣z[. . .]

)
refer to the abstract probabilistic input

model shown in Fig. 1.

C. Data Flow View (Upwards: Integration)

Figure 2 depicts the data flow that consists of integration (�)

and marginalization (M©), i.e. multiplying and factorizing prob-

M M

M
n1

pM
n1

pC
n1

pn1

n2

pI
n2

pM
n2

pC
n2

pn2

n3

pI
n3

pM
n3

pC
n3

pn3

x̂n2
x̂n3

Fig. 2. Data flow view of the probabilistic computations performed.
The leaves store the input pI

n . During updates (black arrows), a node n

integrates (�) the distributions pM
n$

and pM
n%

passed by its children. The result

is factorized (M©) into a marginal pM
n passed up and a conditional pC

n stored at
n. To compute an estimate (gray arrows), each node n receives a distribution
pn↑ from its parent, integrates (�) it with the conditional pC

n , and passes the
result pn down. In the end, estimates x̂n are available at the leaves.

ability distributions. Let us follow the probability distributions

on their way up through the treemap (Fig. 2, upwards arrows).

The data flow starts at a leaf n with an input distribution

pI
n = p

(
X [n: ↓]

∣
∣z[n: ↓]

)
, (1)

i.e. the distribution of the involved features conditioned on the

observations assigned to the leaf n. Then features not involved

above n are marginalized out and the result

pM
n = p

(
X [n: ↓↑]

∣
∣z[n: ↓]

)
(2)

is passed to the parent node. This marginalization is performed

in every node, so we will proceed to the discussion of an inner

node and explain the details there.

A parent node n receives the marginals from both children

and multiplies them, resulting in

pM
n$

pM
n%

= p
(
X [n$: ↓↑]

∣
∣z[n$: ↓]

)
p
(
X [n%: ↓↑]

∣
∣z[n%: ↓]

)
(3)

= p
(
X [n: $↑ ∨ $%X ↑]

∣
∣z[n: $]

)
p
(
X [n: %↑ ∨ $%X ↑]

∣
∣z[n: %]

)

= p
(
X [n: ↓↑ ∨ $%X ↑]

∣
∣z[n: ↓]

)
. (4)

Let Y = X [n: ↓↑ ∨ $%X ↑] be the vector of features involved.

We divide Y = (U
V) into the features U = X [n: $%X ↑] only

involved below n, for which n is the least common ancestor,

and those V = X [n: ↓↑] also involved above n. Next U is

marginalized out (M©) by factorizing pM
n$

pM
n%

into the marginal

pM
n and the corresponding conditional pC

n , with

pM
n$

(y) · pM
n%

(y) = pM
n (v) · pC

n (u|v), y = (u
v) (5)

pM
n = p

(
X [n: ↓↑]

∣
∣z[n↓]

)
(6)

pC
n = p

(
X [n: $%X ↑]

∣
∣x[n: ↓↑], z[n↓]

)
(7)

= p
(
X [n: $%X ↑]

∣
∣x[n: ↓↑], z

)
. (8)

Equation (8) is the formal key point of the overall approach.

In Bayes net terminology, X [n: ↓↑] separates the observations

Z[n: ↓] and landmarks X [n: ↓X ↑] below n from the observations

Z[n: ↑] and landmarks X [n:X ↓↑] above n, as shown in Fig. 1.

So X [n: $%X ↑], which is part of X [n: ↓X ↑], is conditionally in-

dependent from the other observations Z[n: ↑] given X [n: ↓↑].
The conditional pC

n is not needed above n and thus stored

at n. The marginal in turn is passed to the parent n↑ and

further processed there. Overall a feature is passed in pM
n from

the leaves where it is involved in pI
n up to the least common

ancestor of all these leaves, where it is part of X [n: $%X ↑].
There it is marginalized out and finally stored in pC

n .

For the efficiency of upward integration, the key point is

that the pM
n and pC

n depend only on the input distributions pI
n

below n. So when adding a new leaf, one essentially needs to

update only the nodes from that leaf up.

D. Data Flow View (Downwards: State Recovery)

After the information is integrated into the pC
n , an estimate

x̂ = E
(
X

∣
∣z

)
is computed by recursively passing distributions

downwards (Fig. 2, downward arrows). A node n receives pn↑

from its parent n↑. It computes the marginal p
(
X [n: ↓↑]

∣
∣z

)
,

an implicit step in our Gaussian implementation. The result is

then multiplied with the conditional pC
n stored at n:

pn = pC
n pn↑

= p
(
X [n: $%X ↑]

∣
∣x[n: ↓↑], z

)
p
(
X [n: ↓↑]

∣
∣z

)
(9)

= p
(
X [n: ↓↑ ∨ $%X ↑]

∣
∣z

)
. (10)

The product pn is passed to both children. At the leaves it

could be used to compute the estimate as E
(
x[n: ↓]

∣
∣z

)
. For

Gaussians however we can even pass the mean E
(
X [n: ↓↑]

∣
∣z

)

directly instead of the whole distribution p(X [n: ↓↑]
∣
∣z

)
.

III. CHOLESKY FACTOR REPRESENTATION OF GAUSSIANS

Treemap represents probability distributions as Gaussians,

being essentially a least square estimation algorithm. In the

original version [15], [16] we used the information form

p
(
y
∣
∣...

)
∝ exp− 1

2

(
yT Ay + yT b + γ

)
(11)

= exp− 1
2

(

(y
1)

T
(

A b/2

bT /2 γ

)

(y
1)

)

, (12)

where we have combined A, b, and γ in a single matrix using

homogeneous coordinates.

As a further improvement, we maintain the Cholesky factor

R, with RT R =
(

A b/2

bT /2 γ

)

, instead of the matrix itself:

. . . = exp− 1
2

(
(R(y

1))T (R(y
1))

)
= exp− 1

2 |R(y
1)|

2
. (13)

This representation is easier to implement and numerically

more stable since cond(RRT)=cond(R)2>cond(R). Tradi-

tionally, Cholesky decomposition is defined as LLT . We write

RT R instead, since we compute R=LT by QR-decomposition.

A. Linearization

In each step incoming observations are linearized in the

usual way and stacked. Each component zi of the observation

contributes one row of R. The result is added as a new leaf.

QR
BS

pM
n$

pM
n% pM

n

pC
n

n

x̂n

x̂n↑

Rn$

Rn%

RnR′

Fig. 3. Gaussian view. In the Gaussian implementation, Cholesky factors are
passed upwards and means downwards. For upward integration, the passed
factors Rn$

and Rn%
are stacked, implementing �, and then QR-decomposed

(QR) as R′, implementing M©. For downward state recovery, back-substitution
(BS) solves the triangular equations defined by R′

1•
, implementing �.

B. Upwards: Integration

Figure 3 shows how the probabilistic operations at a node

n are realized. The Cholesky factors Rn$
and Rn%

passed by

the children are stacked, implementing the multiplication (�):

exp− 1
2

∣
∣Rn$

(y
1)

∣
∣
2
exp− 1

2

∣
∣Rn%

(y
1)

∣
∣
2

= exp− 1
2

∣
∣
∣

(
Rn$

Rn%

)

(y
1)

∣
∣
∣

2

.

While stacking R$ and R%, their columns are permuted

according to the features they represent and grouped such

that X [n: $%X ↑] corresponds to the first block of columns and

X [n: ↓↑] to the second. Next, the result is QR-decomposed

as
(

R$

R%

)

= QR′, replacing it by an equivalent triangular (or

trapezoidal) matrix R′. The orthonormal Q is discarded, since

. . . = exp− 1
2 |QR′(y

1)|
2

= exp− 1
2 |R

′(y
1)|

2
. (14)

Covariance matrices allow marginalization by taking a subma-

trix whereas information matrices allow conditioning thereby.

Notably Cholesky factors allow both at the same time but not

for arbitrary submatrices. With y decomposed as (u
v) and R′

accordingly as
(

R′
11

R′
12

0 R′
22

)

, the marginal is easily calculated as

p(v) =

∫

u

exp− 1
2

∣
∣
∣

(
R′

11
R′

12

0 R′
22

)(
u

(v
1)

)∣
∣
∣

2

∝ exp− 1
2 |R

′
22(

v
1)|

2

by substituting u′=u + R′−1
11 R′

12v. The related conditional is

p(u|v) = p(u,v)
p(v) = exp− 1

2

∣
∣
∣(R′

11
R′

12)
(

u

(v
1)

)∣
∣
∣

2

. (15)

So for upward integration, we simply store R at n and pass

its right-lower block R′
22 to the parent as the marginal Rn,

implementing M©.

C. Downwards: State Recovery

For state recovery, we pass the estimate x̂n = E
(
X [n: ↓↑∨

$%X ↑
∣
∣z

)
recursively downwards through the tree. For an esti-

mate, no covariance is required. A node receives v̂ = E(V |z)
from its parent, where the easiest implementation is to pick it

out of a global array of estimates. It then computes

û = E(U |V = E(V |z), z) (16)

= argmin
u

∣
∣
∣R

(
u
v
1

)∣
∣
∣

2

= arg min
u

∑

i

(

Ri•

(
u
v
1

))2

. (17)

b d c

1

a d

4

a) b)

1

a c d

4

1b

21

a c2b d

43

c) d)

Fig. 4. Bayesian View. a) In the example in Fig. 1, feature a and c could
be marginalized out without sacrificing further information. b) If b should be
marginalized out exactly, both leaves would have to be integrated before. c)
Instead, b is marginalized out of both leaves separately. d) This is equivalent
to sacrificing the information that the b’s in both leaves are the same feature
before marginalizing them out. Thus it is a consistent sparsification.

This minimum is obtained one row at a time by back-

substitution, since R is triangular (or trapezoidal), thereby

implementing �. We initialize y with
(

0
v
1

)

and apply

yi = −
1

Rii

dim y
∑

j=i+1

Rijyj for i = dimu down to 1. (18)

This is the minimum, since Ry = R
(

u
v
1

)

=
(

0
R22(v

1)

)

and the second block-row does not depend on u anyway. The

result y is passed to the children, or in practice stored in the

global estimate array. To compute a full estimate x̂, this is

done recursively down the tree. Equation (18) is the key to

treemap’s efficiency in the downward state recovery phase.

For every feature estimated, only a small scalar product is

computed.

D. Integration, Marginalization and Sparsification

Initially for each step, one leaf is added to the tree involving

the landmarks observed and the current and previous robot

pose. This leads to many leaves and old robot poses we are not

interested in. Treemap addresses this issue with an operation

where two leaves are integrated into one leaf. Again, the input

distributions of both leaves are stacked and QR-decomposed.

Then features can be marginalized out, and the marginal is the

input distribution of the new leaf. The conditional is discarded.

Figure 4 discusses the effect. If a feature is only involved in

one leaf, the result is exact marginalization; otherwise informa-

tion is sacrificed for the sake of keeping the tree sparse. This

sparsification is the same as used by TJTF [12] and related

to ‘cutting the odometry sequence’ [4] and ‘relocation’ [19].

Remarkably it does not introduce overconfidence.

Surprisingly, the matrix arithmetic part of treemap is limited

to three simple operations: permuting matrices, QR decompo-

sition (LAPACK’s GEQR2 routine [20]), and back-substitution.

The propagation of Gaussians along the tree is exact. The

only approximations are linearization, i.e. computing input

Gaussians from nonlinear observations, and sparsification.

IV. HIERARCHICAL TREE PARTITIONING (HTP)

The treemap is built while the robot moves, inserting a new

leaf into the tree at every step. The bookkeeping part updates

nodes as necessary and computes the estimate using the

operations described so far. The efficiency crucially depends

on the tree being well balanced and no leaf involving too many

features. Thus, a hierarchical tree optimization algorithm runs

in parallel and tries to reduce treemap’s update cost by moving

parts of the tree and by integrating leaves. As discussed in

[5], [15], there is no formal guarantee on the tree quality

achieved. Outdoor environments often even do not have an

efficient tree representation. While in our experience most

indoor environments do have one, it is a heuristic assumption

that the algorithm finds it. For the discussion here, we formally

assume that the HTP algorithm maintains a tree of O(log n)
depth, where a node shares features only with O(1) leaves,

and where each node involves O(k) features, where k is the

number of features observable from one robot pose. Under

this assumption, computation time for upward integration is

O(k3 log n), and for downward state recovery, O(kn). HTP

optimization will then turn out to need time O(k log2 n).

A. Bookkeeping

The Gaussians pn passed along the treemap are accom-

panied by the information which column of their Cholesky

factor corresponds to which feature. It is stored in a sorted

array of feature indices and counters. Counters are initialized

with 1 at the leaves. When two Gaussians are multiplied

(�), their arrays are merged, adding corresponding counters

(O(k)). Treemap maintains the total count for each feature in

a global array. When at a node n a feature’s counter reaches

its total count, n is the least common ancestor of all leaves

involving that feature, so it is marginalized out at n. A pointer

to the node where this happens is also stored in the global

array.

A node has two flags indicating whether the Gaussian and

the feature array, respectively, are valid. Whenever we change

something somewhere in the tree, we reset these flags from

there up to the root. Whenever the HTP algorithm needs

information on which feature is involved at some node, it

recursively updates the invalidated feature arrays. The invali-

dated Gaussians, however, are recomputed only after the HTP

algorithm is finished.

B. Cost function

HTP aims at maintaining a tree that can be updated effi-

ciently. So the most natural cost function to be minimized is

the maximal time it can take to recompute the Gaussians from

one leaf up to the root. The main computation at node n is

QR-decomposing a k × k matrix, where k = |n: ↓↑ ∨ $%X ↑|
is the number of features involved at n. QR-decomposition is

O(k3), so we calibrated the computation time using a third

lca

o

as

lca

so a

Fig. 5. Moving a subtree. In each move, the Kernighan-Lin heuristic greedily
moves the subtree below s from one side of lca to above a on the other side
of lca. The goal is to reduce the worst case cost of lca. The sibling of s is
stored as o so the move can be undone by moving s back to above o.

order polynomial cost(k). Hence a node’s cost function is

n.cost = cost(|n: ↓↑ ∨ $%X ↑|), (19)

m.worstCost = max
leaf n below m

m∑

n′=n

n.cost, (20)

and the overall cost function is root.worstCost. We feel that

this criterion is more elegant than the one in [15], because

it directly reflects the goal of reducing computation time, and

provides a sound trade-off between balancing, partitioning, and

leaf integration.

Since root.worstCost is defined by the worst path to the

root, moves in the tree that do not involve this path often

do not change root.worstCost. Thus for optimization steps

in a specific subtree below lca, the least common ancestor

lca.worstCost allows a finer comparison of different moves

than root.worstCost.

Both n.cost and n.worstCost are updated together with the

feature array of n.

C. The Kernighan-Lin Heuristic

HTP is a critical part of the treemap algorithm, actually the

only one that could fail. It is also NP-complete, so we decided

to adapt the established Kernighan-Lin (KL) heuristic [17] for

graph bisection. It is reported to work especially well when

applied in a multilevel scheme [18], which we can easily do

since we start every step with an existing tree to be improved.

Here are the key ideas of KL in treemap terminology (Fig. 5).

1) Consider a single node lca to minimize lca.worstCost

(one bisection problem at a time).

2) Greedily move that subtree s from one side of lca to the

other that minimizes lca.worstCost in the next step. (Do

this even if lca.worstCost increases, since later steps in

the run may succeed in reducing the cost.)

3) After a number of unsuccessful moves undo the run.

4) Consider moving s to above a only if s and a share a

feature.

5) Move every subtree at most once in a run.

D. Overall optimization

Figure 6 shows treemap’s activity in each step. A new

leaf is added, moved to the optimal place (see below), some

Fig. 6. treemapOneStep
`´

Insert new leaf s (odometry / landmark observ.) below root.

Invalidate s and marginalization nodes of involved features.

move = optDescend
(
s, true

)

Execute move permanently; add ancestors to optimiz. queue.

WHILE Update cost for Gaussians < 3 root.worstCost.

optimizeByKLRun ()

Recursively update Gaussians (Sec. III-B).

Recursively compute estimate (Sec. III-C).

Fig. 7. optimizeByKLRun
`´

Fetch node n from optimization queue.

lca = n; startCost = lca.worstCost; moves = ()
WHILE |moves| < maxMoves

move1 = optKLMove
(
lca, lca$, $

)

move2 = optKLMove
(
lca, lca%, %

)

move = best of {move1, move2}
IF move.s↑ = lca 6= move.a↑ THEN lca = move.o

IF move.cost ≥ startCost

THEN Execute move preliminarily.

Add move to moves.

Reset movable flag at move.s.

ELSE Undo preliminary moves and set movable flag.

Do moves permanently.

Add nodes on path to optimization queue.

Add n to end of optimization queue.

return.

Undo preliminary moves and set movable flag.

Set optimal flag for n.

Try to sparsify out robot poses in X [n: $%↑].

optimization runs are performed, and the estimate is computed.

HTP can have rather irregular computation time. To reduce

this effect, we watch the total update cost for Gaussians that

became invalid after moving subtrees. When it exceeds 3 times

the worst case update cost, we stop HTP.

For a single run (Fig. 7), we fetch a node lca from a queue

of nodes to optimize. When a new leaf is inserted, all ancestors

are added to this queue, and when a node is moved, all nodes

on the unique path are also added. We maintain an optimal

flag that is reset to avoid adding a node twice.

Then we repeatedly find and execute the best move fol-

lowing 2) until lca.worstCost is reduced or maxMoves have

been reached. All moves are preliminary at first, i.e. we do

not invalidate the Gaussians, to avoid recomputing them if

everything is undone later. A special case is moving a child

of lca (Fig. 5). Then lca is moved along with the child, and

the child’s sibling takes lca’s role as least common ancestor.

E. Search for the optimal move

The optimal move for a given lca is found by two nested

recursions. The outer one recursively traverses all possible

Fig. 8. optKLMove
`

lca, s, side
´

IF s.features ∩ lca¬side.features = ∅ THEN return.

IF s is flagged movable

THEN move.s = s; move.o = sibling of s

IF s↑ 6= lca

THEN Move s preliminarily to above lca¬side.

move1 = optDescend
(
s, true

)

move1.cost =
max(move1.cost, lcaside.worstCost)+ lca.cost

Move s back to above move1.o.

ELSE move1 = optDescend
(
s, false

)

Recursively update feature array for lca.

IF s is no leaf

THEN move2 = optKLMove
(
lca, s$, side

)

move3 = optKLMove
(
lca, s%, side

)

Return best of {move1, move2, move3}.

candidates for s. This subalgorithm optKLMove (Fig. 8)

considers only one side of lca (side=$ or %). According to

4), the search is restricted to nodes that share a feature with

the other side. Such a node also shares a feature with lca¬side,

i.e. lca’s child on the other side. So we stop the recursion

if this is not the case. This greatly reduces the search space,

because under the assumptions discussed, only O(1) leaves

and O(log n) nodes share a feature with a fixed node.

As a strategy to simplify the implementation, we do not

compute what would happen if we moved a subtree — instead

we move it, see what happens, and move it back. Hence every

s considered in the outer recursion is moved to above lca¬side

on the other side, and the inner recursion finds the best place

to put it by recursively moving s through the tree.

Figure 9 illustrates the inner recursion performed by the

subalgorithm in Fig. 10. It starts in the situation where s is

already moved to directly above a node a, and returns the best

place to put s — there or below — minimizing the worst case

cost of s↑=a↑. It considers three options: Let s stay where it

is, move it to somewhere below a$, or move it to somewhere

below a%. The last two are checked by moving s to above a$

(or a%, resp.), recursion, and adding a.cost, the cost of a itself.

The algorithm shown in Fig. 10 solves two subtle problems:

First, when s is moved to below a, a takes over s↑ = a↑’s role

as minimization target. Second, if the place where s is finally

moved to does not affect lca’s worst case path, it may actually

not change s.worstCost. For two different options where to

move s, the algorithm implicitly considers the worst case cost

at the least common ancestor of both. So even if both lead to

the same lca.worstCost because both do not affect lca’s worst

case path, the algorithm chooses the one that leads to a smaller

cost somewhere below lca.

Additionally, we use a branch-and-bound optimization not

shown in the pseudocode: Throughout the recursion, we main-

tain the largest s↑.worstCost that would lead to a better move

than the best found so far. We stop the recursion if this quantity

s a

Fig. 9. Optimal Descend. The subalgorithm in Fig. 10 searches for the
optimal place to move s. It considers the initial place directly above a, moves
s to above a$ (gray arrow) and performs recursion (dashed), moves s to above
a% and performs recursion, and finally moves s back to where it started.

Fig. 10. optDescend
`

s, mayStayHere
´

a = sibling of s; move1,2,3,4.s = s

Update feature array of s↑.

IF s.features ∩ a.features = ∅ THEN return

IF mayStayHere

THEN move1.a = a; move1.cost = s↑.worstCost

IF s 6= root ∧ s is leaf ∧ a is leaf

THEN move2.cost = 3
2 cost after joining s and a

IF move2.cost leads to < startCost at lca

THEN move2.a = a; move2.integrate = true.
IF a is leaf THEN return best of {move1, move2}
Move s to above a$ preliminarily; update a’s feature array.

move3 = optDescend
(
s, true

)

move3.cost = max{move3.cost, a%.worstCost} + a.cost

Move s to above a% preliminarily; update a’s feature array.

move4 = optDescend
(
s, true

)

move4.cost = max{move4.cost, a$.worstCost} + a.cost

Move s to above a preliminarily; update a’s feature array.

return best of {move1, move2, move3, move4}

exceeds s.worstCost + cost(|s: ↓↑|).
Under the assumptions discussed, there are O(log n) can-

didates for s and O(log n) for a, and the inner recursion

recomputes the feature array of one node (O(k)) in each step.

So finding the optimal move for lca takes time O(k log2 n).

F. Integration, Marginalization, and Sparsification

Apart from moving subtrees, leaves must be integrated in or-

der to make the tree more compact and to marginalize out old

robot poses. This task is part of the inner recursion (Fig. 10,

line 5). When considering moving s to above a and both are

leaves, it is also considered to integrate them into one leaf.

Moving s and integrating it with a are treated as one step

together. Otherwise, a higher cost before joining s and a may

prevent s from moving there. Integration cannot be undone,

so we only integrate if this leads to a successful KL-run and,

as a heuristic, only if the cost is reduced by 1
3 .

Whenever two leaves are joined, old robot poses that are

only involved in the resulting leaf are marginalized out.

Sparsification is performed in the same way, by marginal-

izing an old robot pose out of a leaf even if it is still involved

in another leaf. However since information is lost thereby, we

treat sparsification as a ‘last resort’. Hence we sparsify out

an old robot pose only if the least common ancestor of all

occurrences of that pose is flagged optimal (Fig. 7, last line),

because then we do not expect any more to marginalize it out

without information loss. In any case, a pose is only sparsified

out if the involved leaves share at least two landmarks, because

otherwise the map may disintegrate into unconnected pieces.

V. COMPARISON WITH RELATED ALGORITHMS

We now briefly compare treemap to some related algo-

rithms; for a general overview and discussion, cf. [5], [21].

Treemap is closely related to the Thin Junction Tree Filter

(TJTF) by Paskin [12], as both pass distributions along a

tree. However, treemap stores the input distributions at leaves

only and thus can optimize how the leaves are combined into

a tree, whereas TJTF stores input distributions at all nodes.

Further, treemap uses different representations for passing up

and down, thus reducing computation time in the recursive

downward pass, whereas TJTF uses the information form for

both.

The Sparse Extended Information Filter (SEIF) [8] and

treemap both exploit sparsity in the information form, since

the product of all pI
n is a sparse Gaussian. However, the tree on

top allows treemap to exactly recover the mean, where SEIF

must rely on slowly converging relaxation. On the other hand,

treemap’s topological restrictions are more severe than SEIF’s.

Dellaert et al. propose using a sparse-QR factorization [14].

This is related to treemap, since all Rn together form a

sparse QR factorization. However, treemap can incrementally

update the factorization, whereas Dellaert’s approach always

recomputes from scratch. Further, treemap’s tree is more than

a sparse matrix. Since each leaf is a probability distribution

on its own, treemap can consistently sparsify.

VI. EXPERIMENTS

A. Simulated Setting

We simulate the robot moving through four 100-story

skyscrapers (Fig. 11a,b), where the identical stories are taken

from our university building (Universität Bremen, MZH, level

3). The robot uses elevators, modeled as pure vertical motion,

to go from story to story. Still the mapping is 2D, the stories

are simply counted. The robot starts in the middle of the map

and consecutively maps the left-upper, right-upper, right-lower

and left-lower building, connected on the ground level by

corridors. Then it closes a huge loop through all four buildings.

The simulator provides a landmarks’ identity, so we do not

address data-association in this work. The simulated robot has

an odometry error of 5 mm√
m

, with 0.3m radius, a 180◦ field of

view, 3m sensor range, 1◦ angular error and 1% distance error.

All experiments use an AMD Athlon 64 2.2Ghz.

B. Optimized Implementation

A million landmarks make an extremely large map, so we

optimized the implementation to an extent not necessary for

normal-sized maps. After computing the QR-decomposition

in double-precision, we store the upper triangle bottom to top,

 0

 5

 10

 15

 20

0.0 0.2 0.4 0.6 0.8 1.0

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

ti
m

e
[m

s]

ti
m

e
[m

s]

n [106]

Fig. 12. Computation time. Time per step (top plot, red) for a 1-story
estimate, bookkeeping time (bottom plot, green), and additional time for a
full estimate of all stories (straight plot, blue, right y-axis).

right to left in single-precision. This improves storage space

and cache performance for back-substitution.

Still, computing an estimate for a million landmarks needs

442ms time, and with 3.5 million steps the whole experiment

would take ≈ 9 days. To reduce time we normally compute

only an estimate for the landmarks in the current story, so

each step needs < 21ms, and the whole experiment takes ≈
10h. With the given map scale this corresponds to real time

mapping with 10m/s and observations every 25cm.

C. Results

Overall, the map encompasses n = 1032271 landmarks,

m=14463587 measurements, and p=3708301 robot poses.

This highlights the importance of marginalizing out old robot

poses, since otherwise the estimation problem would have 2n+
3p=13189445 dimensions instead of 2n=2064542. Treemap

succeeded in marginalizing out 3373643 poses without loss of

information and sparsified out another 285968 poses. It kept

48690 poses, which is a negligible overhead compared to the

landmarks. The worst case cost of the root node grew from

1.415ms for n=10000 to 5.55ms in the end. This shows that

the HTP subalgorithm succeeded in maintaining a suitable tree.

Figure 11c shows the ground floor of the estimated map

immediately before closing the huge loop over all four build-

ings. When the loop is closed all four buildings move in the

map and most landmarks significantly change their estimate.

Thereafter, the robot closes two further loops connecting the

center to the top and bottom corridor (Fig. 11d).

The figure shows the ground-level estimate. Note that the re-

sult is the same regardless whether all estimates are computed

or just one story. This is in contrast to SEIF, relaxation, and

multilevel relaxation, where updating only one story would

implicitly condition on all other stories. This would fix the

ground story and hence obstruct the closing of the loop.

Figure 12 shows the computation time needed. Computation

time for a one-story estimate is always below 21ms, and

(a) (b) (c) (d)

Fig. 11. Maps. a) True map (350m × 350m) used by the simulation with 99 stories on top, which are identical except for the connecting corridors. b)
Closeup. The red line shows the robot’s trajectory, small blue dots are landmarks. c) Map estimate before finally closing the loop. d) Map estimate after
closing the loop. A 3D animation of the growing map can be downloaded from the authors’ web site www.informatik.uni-bremen.de/˜ufrese/.

usually even smaller. About half of the time is spent in HTP

bookkeeping, the rest is for updating Gaussians and state

recovery. The additional time for an estimate of all landmarks

rises linearly to 421ms, which is still close to realtime for

practical experiments. Since the tree needed 1.04GB storage

space the limiting factor was memory bandwidth (2.1GB/s).

VII. CONCLUSION

We have presented an improved treemap algorithm that

can update a map with n=1032271 landmarks in real time.

It closes a million-landmarks loop in 21ms, providing an

estimate for 10000 landmarks, or in 442ms for a full estimate.

In a scenario like in our experiment, this means that the

SLAM algorithm is no longer a limiting factor for map size —

likely, a physical robot would fail before actually mapping the

entire path. We thus have an algorithm that not only performs

well with map sizes typical for present-day applications, but is

also well-prepared to cope with future increases in map size.

Treemap is very general since it manipulates plain Gaus-

sians. So our next goal is an open source implementation

where the application programmer can choose the model (2D

or 3D; landmarks and / or poses) and define the linearization

and sparsification policy. We also want to compare the map

precision depending on this policy with other algorithms.

REFERENCES

[1] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in robotics,” in Autonomous Robot Vehicles, I. Cox and
G. Wilfong, Eds. Springer Verlag, New York, 1988, pp. 167 – 193.

[2] S. Julier and J. Uhlmann, “Building a million beacon map,” Proceedings

of SPIE: Sensor Fusion and Decentralized Control in Robotic Systems
IV, vol. 4571, 2001.

[3] J. Castellanos, J. Tardós, and G. Schmidt, “Building a global map of
the environment of a mobile robot: The importance of correlation,”
in Proceedings of the IEEE International Conference on Robotics and

Automation, Albuquerque, 1997, pp. 1053 – 1059.
[4] U. Frese and G. Hirzinger, “Simultaneous localization and mapping - a

discussion,” in Proceedings of the IJCAI Workshop on Reasoning with
Uncertainty in Robotics, Seattle, Aug. 2001, pp. 17 – 26.

[5] U. Frese, “A discussion of simultaneous localization and mapping,”
Autonomous Robots, vol. 20, no. 1, pp. 25–42, 2006.

[6] T. Duckett, S. Marsland, and J. Shapiro, “Learning globally consistent
maps by relaxation,” in Proceedings of the IEEE International Confer-

ence on Robotics and Automation, San Francisco, 2000, pp. 3841–3846.

[7] J. Guivant and E. Nebot, “Solving computational and memory re-
quirements of feature-based simultaneous localization and mapping
algorithms,” IEEE Transactions on Robotics and Automation, vol. 19,
no. 4, pp. 749–755, 2003.

[8] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” International Journal of Robotics Research, vol. 23,
no. 7–8, pp. 613–716, 2004.

[9] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM:
A factored solution to the simultaneous localization and mapping
problem,” in Proceedings of the AAAI National Conference on Artificial

Intelligence, Edmonton, 2002, pp. 593–598.
[10] M. Bosse, P. Newman, J. Leonard, and S. Teller, “SLAM in large-scale

cyclic environments using the Atlas framework,” International Journal

on Robotics Research, vol. 23, no. 12, pp. 1113–1140, 2004.
[11] U. Frese, P. Larsson, and T. Duckett, “A multigrid algorithm for

simultaneous localization and mapping,” IEEE Transactions on Robotics,
vol. 21, no. 2, pp. 1–12, 2004.

[12] M. Paskin, “Thin junction tree filters for simultaneous localization and
mapping,” in Proceedings of the 18th International Joint Conference on
Artificial Intelligence, San Francisco, 2003, pp. 1157–1164.

[13] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of pose
graphs with poor initial estimates,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, 2006, to appear.

[14] F. Dellaert, A. Kipp, and P. Krauthausen, “A multifrontal qr factorization
approach to distributed inference applied to multi-robot localization and
mapping,” in Proceedings of the American Association for Artificial
Intelligence, 2005.

[15] U. Frese, “An O(log n) algorithm for simulateneous localization and
mapping of mobile robots in indoor environments,” Ph.D. dissertation,
University of Erlangen-Nürnberg, 2004.

[16] ——, “Treemap: An O(log n) algorithm for indoor simultaneous local-
ization and mapping,” Autonomous Robots, 2006, to appear.

[17] C. Fiduccia and R. Mattheyses, “A linear-time heuristic for improving
network partitions,” in Proceedings of the 19th ACM/IEEE Design

Automation Conference, Las Vegas, June 1982, pp. 175–181.
[18] B. Hendrickson and R. Leland, “A multilevel algorithm for partition-

ing graphs,” in Proceedings of the ACM International Conference on
Supercomputing, Sorrento, 1995, pp. 626–657.

[19] M. Walter, R. Eustice, and J. Leonard, “A provably consistent method
for imposing exact sparsity in feature-based slam information filters,” in
Proceedings of the 12th International Symposium of Robotics Research,
2005.

[20] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ Guide, 3rd ed. Society for Industrial and
Applied Mathematics, 1999.

[21] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

