
Using Treemap as a Generic Least Square

Backend for 6-DOF SLAM

Udo Frese

FB 3 Mathematik und Informatik, SFB/TR 8 Spatial Cognition,
Universität Bremen,

Abstract. Treemap is a generic SLAM algorithm that has been suc-
cessfully used to estimate extremely large 2D maps closing a loop over a
million landmarks in 442ms. We are currently working on an open-source
implementation that can handle most variants of SLAM. In this paper
we show initial results demonstrating 6-DOF feature based SLAM and
closing a simulated loop over 106657 3D features in 209ms.

1 Introduction

Simultaneous Localization and Mapping (SLAM) has been a central topic in
mobile robotics research for almost two decades by now [1]. Most of the literature
is concerned with generating a 2D map with a sensor moving in the plane (3-
DOF). Only in the last few years the problem of generating a 3-D map with a
sensor moving in 3D space (6-DOF) has received considerable attention [2–5].
Such a system has important applications, for instance rescuing victims from
the remains of a collapsed building. So we expect that 6-DOF SLAM will be a
growing research area, in particular with the recently emerging 3D cameras.

Many 2D SLAM articles have been concerned with efficiency in estimating
large maps ([6] for an overview). In 6-DOF SLAM the efficiency discussion has
mainly focused on the first stages of processing in particular on 3D scan match-
ing [7]. 3D maps always contain a lot of data but up to now little attention has
been paid to 3D maps, that are by magnitudes larger than the sensor range.

We contributed the treemap algorithm [8] to this discussion in 2D SLAM. It
is designed for computing least square estimates for very large maps efficiently.
Using treemap we were able to demonstrate closing a simulated loop with one
million landmarks in 442ms [9]. On the one hand, the treemap algorithm is
sophisticated but also complicated. On the other hand, it is fairly general mainly
estimating random varianbles of arbitrary meaning. Hence our current project is
to develop an open source implementation that – as an implementation – can be
used to perform most variants of SLAM including 2D, 3D, features and/or poses,
and visual SLAM. This workshop paper reports intermediate results showing a
simulated 6-DOF SLAM experiment (3D features, no odometry) that uses the
same implementation as our previous million-landmarks (2D features, odometry,
marginalized poses) experiment. By building on the efficiency of treemap as a
backend, we where able to close a loop over n = 106657 3D features in 209ms.

2 Local and Global Challenges for 6-DOF SLAM

Many challenges currently addressed in 6-DOF SLAM concern the first stages of
sensor processing: matching 3D scans, finding reliable features, matching them,
rejecting outliers, filtering range images or handling bearing-only initialization.
These problems are local in the sense that they affect only that part of the map
that is currently observed by the sensor. In contrast there is also the question
how this local information and its uncertainty affects the global map. The most
prominent situation is certainly closing a loop when the local information that
closes the loop leads to back-propagation of the error along the loop. The key
point, as we have argued in [6, §12], is that the local uncertainty is small but
complex and depends on the actual sensor and the detailed circumstances of
observation, whereas the global uncertainty is mostly the composition of local
uncertainties, i.e. it is large, rather simple and dominated by the map’s geometry.

This insight motivates our treemap approach. In the past it has motivated
the design of the treemap algorithm itself that exploits this locality. And now it
motivates our idea that many different SLAM variants (2D / 3D, features and/or
poses, with/without odometry) can be solved by a specific local preprocessing
plus treemap as a global least-square backend. From this perspective a large map
is mainly a matter of computation time and hence our goal is:

Whenever you can formulate your SLAM approach in a least-square
framework such that it works for small maps, you can use treemap as a
backend to make it work for large maps.

The following section gives the overall idea of the treemap algorithm from a
general probabilistic perspective. A more extensive presentation as well as the
concrete Gaussian implementation can be found in [9, 8].

3 The Treemap Algorithm

Imagine the robot is in a building that is virtually divided into two parts A and
B. Now consider: If the robot is in part A, what is the information needed about

B? Only few of B’s features are involved in observations with the robot in A. All
other features are not needed to integrate these observations. So probabilistically
speaking, the information needed about B is only the marginal distribution of
features of B also observed from A conditioned on observations in B.

The idea can be applied recursively by dividing the building into a binary
tree of regions and passing probability distributions along the tree (Fig. 1).
The input to treemap are observations assigned to leaves of the tree. They are
modeled as distributions p(X |zi) of the state vector X , i.e. of feature positions
and robot poses, given some measurement zi. With respect to the motivating
idea, nodes define local regions and super-regions. Formally, however, a node n

just represents the set of observations assigned to leaves below n without any
explicit geometric definition. During the computation, intermediate distributions
pM
n

and pC
n

are passed through the tree and stored at the nodes, respectively.

M M

M
n1

pM
n1

pC
n1

pn1

n2

pI
n2

pM
n2

pC
n2

pn2

n3

pI
n3

pM
n3

pC
n3

pn3

x̂n2
x̂n3

Fig. 1. Data flow view of the prob-
abilistic computations performed by
treemap. The leaves store the input
pI
n
. During updates (black arrows), a

node n integrates (�) the distribu-
tions pM

n$
and pM

n%
passed by its chil-

dren. The result is factorized (M©) into
a marginal pM

n
passed up and a con-

ditional pC
n

stored at n. To compute
an estimate (gray arrows), each node
n receives a distribution pn↑

from its
parent, integrates (�) it with the con-
ditional pC

n
, and passes the result pn

down. In the end, estimates x̂n are
available at the leaves.

A feature is passed in distributions pM
n

from the leaves where it is involved,
up to the least common ancestor of all these leaves. There it is marginalized
out and finally stored in pC

n
. So the distribution pM

n
passed by a node contains

those features involved in leaves below n but also involved above n. An estimate
is computed recursively down the tree. A node receives an estimate for the
features in pM

n
and combines it with the conditional PC

n
stored at n to compute

an estimate for the features marginalized out there which is in turn passed down.
Figure 2 shows the Bayesian justification for this approach: For each node n

the features X [n:X ↓↑] and measurements z[n:X ↓↑] only above n are conditionally
independent from the features X [n: ↓X ↑] and measurements z[n: ↓X ↑] only below
n given the features X [n: ↓↑] involved at the same time above and below n.

It should be noted, that the process of passing distributions along the tree is
exact. The only approximations are linearization when computing the input pI

n

and sparsification needed when old robot poses are marginalized out.

4 Different Variants that could be Supported

In 2D SLAM there are mostly two variants used. The first is consistent pose

estimation where 3-DOF poses are estimated from 3-DOF links derived from
odometry and scan matching. The second is the classical variant with 2D point
features (sometimes also 2-DOF lines) and 3-DOF poses where old poses are
marginalized out. This requires sparsification, an additional approximation to
preserve locality during marginalization. We used this variant in our million-
landmarks experiment.

In 6-DOF SLAM more variants are possible. Using 3D scan matching [2]
one can perform 6-DOF consistent pose estimation. In contrast to 2D SLAM
usually no odometry is available. This gives rise to a very simple variant, where
poses are marginalized out immediately. Since there is not odometry, sparsity is

b c d e fa

1 2 3 4 5 6 7z

X

n

| {z }

X[n:$]

| {z }

X[n:%] | {z }

X[n:↑]

z[n: $] z[n: %] z[n: ↑]

Fig. 2. Bayesian View. In this example, observations z1...7 provide information about
the features Xa...f. The arrows and circles show this probabilistic input as a Bayes
net with observed nodes in gray. The dashed outlines illustrate the view of a single
node n. It divides the tree into three parts, left-below $, right-below % and above ↑.
Hence the observations z are disjointly divided into z[n: $] = z1...2, z[n: %] = z3...4

and z[n: ↑] = z5...7. The corresponding features x[n: $] = Xa...b, x[n: %] = Xb...d and
x[n: ↑] = Xd...f however overlap (X[n: $%] = Xb, X[n: ↑%] = Xd). The key insight is
that X[n: ↓↑] = X[n: $↑ ∨ %↑] = Xd separates the observations z[n: ↓] and features
X[n: ↓X ↑] below n from the observations z[n: ↑] and features X[n:X ↓↑] above n, so both
are conditionally independent given X[n: ↓↑]. The notation follows [8].

maintained and no sparsification is needed. Essentially, this means, that each set
of observations is converted into relative information on the involved 3D point
features. This variant is presented in the experiments here.

It has a major limiation. Without odometry a small sensor blackout or too
little overlap between observations will disintegrate the map because no informa-
tion links the involved two poses anymore. Inertial sensors can help by providing
relative orientation (gyros) and absolute inclination (accelerometers). This is the
pendant of classic SLAM with 3D point features and 6-DOF poses marginalized
out later. Still, with orientation-odometry only, consecutive observations must
share one feature. Yet another variant uses the accelerometers as translation-
odometry. But when acceleration is integrated the result is relative velocity not
relative position, so the poses must be augmented by 3D velocity (9-DOF total).

With a monocular camera [4], no distance can be measured. So, while con-
sistent pose estimation can use the 5-DOF links arising from matching two im-
ages [10], additional information is needed for the overall scale. In a feature based
approach this leads to the corresponding problem of bearing-only initialization.

5 Towards an Open Source Implementation

We believe that these different variants can all be based on treemap as the
same least square backend. The main difference lies in the size of the vectors
representing features and poses, in different Jacobians for linearization, and in
the way an initial estimate can be computed for linearization. Another difference

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120

ti
m

e
[m

s]

n [103]
Fig. 3. Computation time. Time per step over number of landmarks. The final
increase in computation time happens after closing the loop.

is the control policy: Which observations are combined in one leaf? Are old poses
marginalized out? When is sparsification used for the sake of efficiency? When
are Jacobians recomputed from the original nonlinear observations?

All 6-DOF SLAM variants share the problem of parameterizing 3D orienta-
tion. We extend a technique by Castellanos [11] to 3D and use the product

Q = Q0

(

cos γ − sin γ 0

sin γ cos γ 0

0 0 1

)(

cos β 0 sin β
0 1 0

− sin β 0 cos β

)(

1 0 0
0 cos α − sin α
0 sin α cos α

)

≈ Q0

(

1 −γ β
γ 1 −α
−β α 1

)

of a fixed orientation Q0 and three Euler rotations the angles of which are the
random variables estimated. Q0 is initialized with the current estimate so the
Euler angles only parameterize the small perturbation of the orientation and are
far from singularity. Hence they are always linearized at α = β = γ = 0 and the
linearization has the simple form shown above.

This technique also allows to reduce the linearization error caused by error in
the robot orientation. The distributions passed from a nodes children are rotated
according to the current estimate before multiplying them (Fig. 1, �) [8].

The goal of our current project is to implement all the different SLAM vari-
ants. The treemap backend is already finished with a sufficiently generic interface
so we were able to implement a driver for feature based 2D SLAM [9] in 2100 lines
of C++ code and a driver for feature based 6-DOF SLAM without odometry in
1200 lines of code. The following section shows results for the latter.

6 Experimental Results

In our simulated experiment the robot moves through a 20 story building with
features on the rooms walls (Fig. 4). Then it crosses a bridge on the 19th floor
into another 20 story building and maps that building too. Finally it returns
to the starting position and closes a loop over all feature. The overall map has
n = 106657 features and m = 5319956 observations from p = 488289 poses. Poses
are not represented in the map. Computation time was at most 209ms (Fig. 3).

7 Conclusion and Outlook

We have demonstrated that that the treemap algorithm in the same generic
implementation can be used to solve both 2D and 3D feature based SLAM

Fig. 4. 6-DOF SLAM map. before and after closing the large loop (between the two
building on the ground level) over all n = 106657 features. A 3D animations of the
growing 3D map and the previous 2D million-landmarks simulation can be downloaded
from our web site www.informatik.uni-bremen.de/~ufrese/.

(without odometry) with high efficiency. Future work includes implementing the
remaining SLAM variants, integrating a solution to the bearing-only initializa-
tion problem and implementing a 3D variant of the rotation technique used to
reduce linearization error.

We then plan to publish the implementation as an open source library.

References

1. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005)
2. Surmann, H., Nüchter, A., Lingemann, K., Hertzberg, J.: 6D SLAM - preliminary

report on closing the loop in six dimensions. In: Proceedings of the 5th Symposium
on Intelligent Autonomous Vehicles, Lissabon. (2004)

3. Miro, J.V., Dissanayake, G., Zhou, W.: Vision-based SLAM using natural features
in indoor environments. In: Proceedings of the 2005 IEEE International Conference
on Intelligent Networks, Sensor Networks and Information Processing. (2005)

4. Davison, A., Cid, Y., Kita, N.: Real time SLAM with wide angle. In: Proc. IFAC
Symposium on Intelligent Autonomous Vehicles, Lisbon. (2004)

5. Ohno, K., Tadokoro, S.: Dense 3D map building based on LRF data and color image
fusion. In: Proceedings of the International Conference on Intelligent Robots and
Systems. (2005) 1774–1779

6. Frese, U.: A discussion of simultaneous localization and mapping. Autonomous
Robots 20(1) (2006) 25–42

7. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceed-
ings of the Third International Conference on 3-D Digital Imaging and Modeling,
Quebec City. (2001) 145 – 152

8. Frese, U.: Treemap: An O(log n) algorithm for indoor simultaneous localization
and mapping. Autonomous Robots (2006) to appear.

9. Frese, U., Schröder, L.: Closing a million-landmarks loop. In: Proceedings of the
IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems, Beijing. (2006)

10. Eustice, R., Singh, H., Leonard, J., Walter, M., Ballard, R.: Visually navigating
the rms titanic with slam information filters. In: Proceedings of Robotics Science
and Systems, Boston. (2005)

11. Castellanos, J., Montiel, J., Neira, J., Tardós, J.: The SPmap: A probablistic
framework for simultaneous localization and map building. IEEE Transactions on
Robotics and Automation 15(5) (1999) 948 – 952

