
Exact distance computation for deformable objects

Marc Gissler
University of Freiburg, Germany

Udo Frese
University of Bremen, Germany

Matthias Teschner
University of Freiburg, Germany

Abstract
We present a novel approach for the com-
putation of the minimum distance between
arbitrarily shaped, triangulated objects. The
approach proceeds in two stages. In the first
stage, the Gilbert-Johnson-Keerthi algorithm
(GJK) is performed. We show how to employ
characteristics of the algorithm to efficiently
compute lower and upper bounds of the mini-
mum distance between non-convex objects. We
further show how to use these bounds to set up
a spatial subdivision scheme that computes the
exact minimum distance in the second stage of
the algorithm. The knowledge of a lower and
an upper bound allows for a twofold culling
in the second stage. First, only a small part
of the simulation domain is considered in the
spatial subdivision. Thus, large object parts
are culled. Second, the intrinsic properties of
the spatial subdivision scheme are employed
to further accelerate the computation of the
minimum distance for the remaining object
parts. The proposed algorithm does not rely
on precomputed data structures. Therefore,
it is particularly appropriate for deformable
objects. Experiments indicate the efficiency of
the approach compared to existing algorithms.

Keywords: physics based animation, prox-
imity queries

1 Introduction

Efficient proximity queries - in particular the
computation of exact distances - are a crucial
task in interactive simulation systems with a va-
riety of application areas such as computational
surgery, games, virtual reality, path planning,
robotics, and bioinformatics [1, 2, 3]. In gen-
eral, distances have to be computed for arbi-

trarily shaped, dynamically moving, rigid or de-
formable objects.

The distance computation between rigid bod-
ies is commonly accelerated by the precompu-
tation of auxiliary data structures, e. g. sur-
face decomposition [4]. In the context of de-
formable objects, however, these precomputa-
tions are rather difficult to incorporate or even
impossible to use.

Our contribution: We propose a novel ap-
proach to the computation of the minimum dis-
tance between arbitrarily shaped objects. Since
offline precomputations are avoided, the method
is particularly useful for dynamically deforming
objects. We show how to efficiently use GJK to
compute lower and upper bounds for the min-
imum distance between arbitrarily shaped ob-
jects. We further show how to employ these
bounds to efficiently set up a spatial subdivision
scheme that only considers a small part of the
simulation domain to determine the exact mini-
mum distance. We illustrate the performance of
the proposed algorithm and discuss benefits and
drawbacks compared to existing approaches.

2 Related work

A large variety of proximity query algorithms
has been proposed over the last decades. They
can be classified by the queries that can be per-
formed and by the prerequisites they pose on the
object representation. There exist algorithms for
collision detection, separation distance compu-
tation and penetration depth computation. Ex-
cellent surveys can be found in [5, 6, 7]. Since
the research on proximity queries is a huge area,
we focus our discussion of the related work on
approaches for the computation of separation
distances.

2.1 Convex objects

Many of the early algorithms exploit the prop-
erties of convex sets to be able to formulate a
linear programming problem. In [8], Gilbert et
al. propose an iterative method to compute the
minimum distance between two convex poly-
topes using Minkowski differences and a sup-
port mapping. Extensions of the algorithm han-
dle general convex objects [9] and return a pen-
etration distance [10]. A fast and robust imple-
mentation is given by [11] which is also incor-
porated in the Software Library for Interference
Detection (SOLID) 1. In [12], an algorithm that
employs local search over the Voronoi regions
of convex objects to descend to the closest point
pair is proposed. The approach is used at the
lowest level of collision detection in the soft-
ware package I-Collide 2 [13].

In dynamic environments, all of the ap-
proaches mentioned above exploit geometric
and time coherence to track the closest points.
It is assumed that the displacement of the ob-
jects between two time steps is not too large, if
the time step is small. In [12], hill climbing is
employed to search the neighboring Voronoi re-
gions and return the new closest pairs in nearly
constant time. Hill climbing is also used in [10]
to find new support vertices more efficiently.

2.2 Non-convex objects

The restriction to convex objects can be over-
come in several ways. A non-convex object can
be seen as the composition of several convex
subparts [8, 12]. The algorithms are then applied
to the convex pieces or subparts, respectively.
Similarly, a non-convex polyhedron could be de-
composed into convex subparts. In most cases, it
suffices to decompose the boundary of the poly-
hedron into convex patches [14]. Thus, surface
decomposition can be used to perform proxim-
ity queries on general, rigid bounded polyhe-
dra [4]. The surface is decomposed into con-
vex patches and the proximity query algorithms
for convex objects can be applied to the patches.
To accelerate the pairwise proximity query, the
patches can be stored in bounding volume hi-
erarchies. Different types of bounding volumes
have been investigated, such as spheres [15, 16],
axis-aligned bounding boxes [17], k-DOPs [18]
or oriented bounding boxes [19]. Further, vari-
ous hierarchy-updating methods have been pro-
posed [20], some of them employing the un-

1http://www.win.tue.nl/ gino/solid/
2http://www.cs.unc.edu/ geom/I COLLIDE/

derlying deformation model [21]. An algo-
rithm that employs surface decomposition to-
gether with bounding volume hierarchies is in-
tegrated in the software package SWIFT++ 3.

Surface decomposition is a nontrivial and
time consuming task. In rigid-body dynamics,
the objects fortunately have to be decomposed
only once. Therefore, surface decomposition
is made a preprocessing step. Unfortunately,
this is not the case in simulations of deformable
models.

2.3 GPU-based proximity queries

Graphics hardware can be used to accelerate
various geometric computations. Image-space
techniques are employed for detection of colli-
sions [22, 23, 24] as well as self-collisions [25].
Discrete Voronoi and distance fields can be ef-
ficiently computed on the GPU [26, 27] which
can be used to answer penetration and distance
queries [28]. Possible drawbacks of GPU-based
approaches are that their accuracy is limited
by image precision and depth buffer resolution.
In [28], this problem is avoided by using the dis-
crete Voronoi diagram computed in image space
only as input to accelerate the proximity com-
putation in object space. On the other hand,
the time for read-back of frame buffers takes
up considerable time, even on todays graphics
hardware. In [24], the amount of read-back is re-
duced with the introduction of occlusion queries
for collision detection.

In contrast to existing approaches, our algo-
rithm focuses on deformable objects with arbi-
trary shape. A combination of GJK and spatial
hashing is used to compute the exact distance
between objects. We show that GJK can be
used to efficiently compute distance bounds for
non-convex objects. We further show that these
distance bounds allow for an efficient setup of
a spatial hashing scheme for the computation
of the exact distance. Preprocessing steps are
avoided. Further, arbitrary shapes and arbitrary
object movements can be handled. Thus, the
proposed scheme is particularly appropriate for
the handling of dynamically deforming objects.

3 Algorithm overview

In this section, we give an overview of the al-
gorithm. It computes the minimum distance be-
tween two arbitrarily shaped objects. The ob-
jects are represented as closed non-convex poly-

3http://www.cs.unc.edu/ geom/SWIFT++/

hedra in three-dimensional space. The algo-
rithm consists of two stages.

In the first stage, we employ the Gilbert-
Johnson-Keerthi (GJK) algorithm [8]. The al-
gorithm efficiently computes the minimum dis-
tance between two convex objects. If they are
not convex, GJK returns the minimum distance
between their convex hulls. In this case, we use
the returned distance as a lower bound to the ex-
act minimum distance. Furthermore, the support
vectors returned by GJK are part of the surface
of the two objects. We use the minimum dis-
tance between them as an upper distance bound.

In the second stage, we employ the spatial
hashing algorithm of Teschner et al. [29] on
the transformed objects. Traditionally, spatial
hashing is used to efficiently detect collisions
between object primitives. Here, we use this
spatial subdivision scheme to efficiently dis-
card pairs of surface primitives with a separa-
tion distance outside the interval defined by the
lower and upper distance bounds. We compute
the minimum distance from the set of primitive
pairs within such a hash cell and the adjacent
cells. As a result, we get the exact minimum
distance between the two objects.

The remainder of this paper is structured as
follows: In Section 4, we summarize the most
important steps from the GJK algorithm and
evaluate its results. The application of spatial
hashing is described in Section 5. Results are
given in Section 6 to conclude the paper.

4 GJK

In this section we describe the main idea of the
Gilbert-Johnson-Keerthi algorithm and evaluate
the information that can be drawn from the out-
put of the algorithm. For a more detailed de-
scription, see [8].

4.1 Terminologies and definitions

First, we would like to introduce some terminol-
ogy and give definitions we use in the follow-
ing sections. We consider pairs of closed non-
convex polytopes P and Q in R3. The surface
of the polytope is divided into triangles. A point
position v is given by a three-dimensional vec-
tor v = (x, y, z)T . A convex combination is
the linear combination of points where all co-
efficients are non-negative and sum up to one.
The set of convex combinations of the points in
P gives the convex hull, denoted as conv(P).
In affine combinations, the coefficients sum up

to one, too, but they are not restricted to be non-
negative. Points are affinely independent, if none
is an affine combination of the others. Further-
more, a simplex in Rn denotes the convex hull
of a set of (n + 1) affinely independent points.
For example, a line is a simplex in R1, a trian-
gle in R2 and a tetrahedron in R3. For a vector
v ∈ R3, the length of v is given by the Euclidian
norm. The distance between P and Q is given
by:

dist(P,Q) := min{‖p− q‖ : p ∈ P,q ∈ Q},
(1)

with p and q being point positions. Two objects
intersect, iff dist(P,Q) = 0 ⇔ P ∩Q 6= ∅. We
now give a short description of the algorithm.

4.2 Simplex computation

For a pair of two convex objects P and Q, the
GJK algorithm iteratively computes the min-
imum distance between the two objects. In
each iteration step k, the algorithm constructs
for each object a simplex from a set of surface
points and computes the minimum distance be-
tween these two simplices SP

k and SQ
k . The al-

gorithm ensures that the minimum distance be-
tween the simplices in the current iteration step
is smaller than in the previous iteration step:
dist(SP

k , SQ
k)k < dist(SP

k−1, S
Q
k−1)k−1. If they

are equal or within a certain threshold, the al-
gorithm has converged to the minimum distance
between the two objects. For convex objects,
the simplices from the last iteration correspond
to a surface primitive of the respective objects.
For non-convex objects, GJK computes the min-
imum distance between the convex hulls of P
and Q and the simplices correspond to surface
primitives only in convex regions . We evaluate
this observation in the next section.

4.3 Lower and upper distance bound

In this section, we consider the case where GJK
returns the minimum distance between the con-
vex hulls of non-convex objects, not the mini-
mum distance between the objects themselves.
In this case, we derive a lower and upper dis-
tance bound for the minimum distance between
P and Q from the information returned by the
GJK algorithm, namely the closest pair of points
(p,q) on the convex hulls of P and Q and the
simplices SP and SQ. We denote the vector that
connects p and q by d := p − q. It is the
normal of the maximum-margin hyperplane h,
which maximally separates P and Q. Two paral-

lel hyperplanes can be constructed that separate
conv(P) and conv(Q), the margins (see Fig. 1).
The points in the SP and SQ lie on these mar-
gins. They are the support points and lie on the
boundaries of P and Q, respectively. Note that
d = 0, if the two convex hulls intersect, i. e.
conv(P) ∩ conv(Q) 6= ∅. In this case, the algo-
rithm cannot compute the minimum distance.

The space delimited by the two margins con-
tains no points from P and Q. We con-
clude, that GJK returns a lower distance bound
distlower(P,Q). If the simplices constructed by
the support vectors not only lie on the convex
hulls, but on the boundaries of the objects as
well, it is also the minimum distance between
the two objects. This can be verified quite easily
and is a termination criterion for our overall dis-
tance algorithm (see Fig. 1). Otherwise, at least
one of the simplices lies in a concave region of
P or Q.

Now, we search for an upper distance bound
distupper(P,Q). We consider the support points
in SP and SQ from the last iteration of the GJK
descend. Unlike the points of the closest point
pair, the support points are guaranteed to lie on
the object boundaries. Therefore, the distance
between any pair of support points is also a dis-
tance between P and Q. We take the pair of
support points with the smallest distance and set
it as the upper bound (see Fig. 2). Obviously,
distlower(P,Q) ≤ distupper(P,Q) holds.

Figure 1: GJK computes the minimum distance
(green arrow) between the convex
hulls (black) of two objects (grey
area). The support points (yellow
dots) are returned by GJK in the form
of two simplices. They lie both on
the margins (dashed blue lines) and
on the surfaces of the objects, re-
spectively. The margins are parallel
to the maximum-margin hyperplane
(blue line).

Figure 2: In comparison to Fig. 1, the sim-
plex returned for the left object (dot-
ted black line) does not lie on the
surface of the object. Thus, the re-
turned distance (green arrow) is a
lower bound of the exact minimum
distance. We compute an upper dis-
tance bound (dotted green arrow) as
the minimum distance between the
support points (yellow dots).

With the lower and upper distance bound es-
tablished, the goal is to efficiently cull away
primitive pairs with a distance outside those
bounds. Only the distances between the remain-
ing primitive pairs have to be computed to find
the minimum distance. We describe the culling
algorithm in the following section.

5 Spatial subdivision

In this section, we show how to use the lower
and upper distance bounds computed in stage
one to efficiently set up a spatial hashing scheme
that only considers a small part of the simu-
lation domain to determine the minimum dis-
tance. This small part denotes the region of in-
terest. We employ the spatial hashing algorithm
described in [29].

The spatial hashing algorithm subdivides our
simulation domain using a regular grid. A grid
cell is represented by an axis-aligned bounding
box (AABB). The size of the grid cell along
every direction of the coordinate frame is given
by the vector scell = (scell

x , scell
y , scell

z)T .
As we will detail in the following, scell is cho-

sen, such that the points of the closest point pair
lie in the same or adjacent grid cell. We uti-
lize the lower and upper distance bounds, the
support vectors and the maximum-margin hy-
perplane which have been derived from the re-
sult of the GJK algorithm. First, we transform
the objects into a new coordinate frame in or-
der to align the maximum-margin hyperplane

with the xy-plane and its normal with the z-
axis. Thus, the grid cells are in alignment with
the region of interest and every point in P has
a z-value greater than 1

2 · distlower(P,Q) and
every point in Q has a z-value smaller than
−1

2 · distlower(P,Q), or vice versa. This is
due to the margins that are now parallel to the
xy-plane. To determine scell

z , we consider the
point pair (p,q) with p ∈ P and q ∈ Q. If
|pz| > distupper(P,Q) − 1

2 · distlower(P,Q),
the distance between the points is greater than
the upper bound: ‖p− q‖ ≥ distupper(P,Q).
The same holds for |qz|. Thus, we set scell

z =
2 · distupper(P,Q) − distlower(P,Q). To de-
termine scell

x and scell
y , let t = (tx, ty, tz)T :=

r − s be the vector that connects the sup-
port points r ∈ P and s ∈ Q with ‖t‖ =
‖r− s‖ = distupper(P,Q). As r and s are
support points and lie on the margins, we know
that tz = distlower(P,Q). We now investigate
which point pairs(p,q) with p ∈ P , q ∈ Q
can be excluded from the exact distance com-
putation. As ‖t‖ = distupper(P,Q), (p,q) can
be discarded if ‖p− q‖ > ‖t‖. Since |tz| =
distlower(P,Q), we know that |pz − qz| ≥ |tz|
for every point pair (p,q). Thus, if we postulate√

(px − qx)2 + (py − qy)2 >
√

t2x + t2y, (2)

we get ‖p− q‖ > ‖t‖, and we can discard the
point pair (p,q). Therefore, we choose scell

x =
scell
y :=

√
t2x + t2y. As triangles are generally

not aligned to the hash cells, we always have to
consider a cell together with its eight neighbors
in x- and y-direction.

With the dimension of the cell computed
along every axis, we can discretize the AABBs
of the triangles of P and Q. In the first step, we
loop over the triangles of P . If none of the ex-
treme points of the AABB of the triangle has a
value smaller than 1

2 · s
cell
z , we discard the trian-

gle and no hash entry is generated (see Fig. 3).
Otherwise, we generate a hash cell entry for the
triangle in the hash table. In the second step,
we loop over the triangles of Q. We invert the
z-values of the extreme points of the AABB and
check, whether the z-value of one of the extreme
points is smaller than 1

2 · s
cell
z . If this is the case,

we compute the hash index of the triangle in the
hash table. For each triangle of P that has been
stored under the same index and its neighbors in
step one, we check for a new minimum distance
(see Fig. 3).

Figure 3: The lower and upper distance bounds
(green lines) determine the size of the
hash cells (black rectangles). Only
the pairs of primitives inside adjacent
cells are tested for the minimum dis-
tance (dashed green line).

5.1 Optimizations

The grid cell size determines the number of tri-
angles that are hashed to the same hash index. If
the cells are large, i. e. significantly larger than
the size of a triangle, along any coordinate axis,
possibly more triangles are hashed to the same
index. Conversely, if the cells are small, i. e.
significantly smaller than the size of a triangle,
along any coordinate axis, a triangle is hashed
to a large number of cells, producing many hash
entries.

We propose two improvements to adjust the
grid cell size along any coordinate axis without
the loss of triangle pairs that may support the
pair of closest points. The first addresses the
number of hash entries of a triangle. The aver-
age edge length leavg of all triangles in the scene
is the empirically optimal size to produce a min-
imal number of hash entries [29]. As such, we
do not allow the cell size to be smaller than a
certain threshold δ with δ = leavg along the x-
and y-axes. Thus, a triangle produces a number
of hash table entries within reasonable magni-
tude. On the other hand, the number of triangles
that are hashed to the same cell due to the in-
creased threshold increases only slightly, since
the hash cell size is still smaller than the average
edge length. For the second improvement, we
keep track of the current upper distance bound
while we compute distances between pairs of
hashed and queried triangles. As soon as we find
a new upper bound, we adjust the grid cell size
and hash the triangles of P again. The trian-
gles of Q that were not tested up to this point
are then queried using the new grid cell size.

Thus, the number of triangle pairs is constantly
reduced. This rehashing can be done very fast
(see Sec. 6).

6 Results

We have implemented a variety of scenarios to
evaluate and compare the performance of our
approach. We have integrated the algorithm
into a deformable modeling approach for tetra-
hedral meshes [30]. The distance queries are
performed on the surface faces of the tetrahedral
mesh. For comparison, we use the SWIFT++ 4

software package. All timings have been per-
formed on an Intel Core 2 PC, 2.13 GHz with 2
GB of memory. The code is not parallelized.

We highlight the performance of our algo-
rithm on various benchmarks with multiple ar-
bitrarily shaped objects, similar in the sense
of [28]. The set of benchmarks include: (1)
a pair of mushrooms (see Fig. 4), (2) a pair of
cows (see Fig. 5), (3) a pair of teddy bears and
(4) a set of four deforming teddies (see Fig. 6).
Our algorithm involves no offline preprocessing
and computes the minimum distance between all
object pairs. In scenes (1) - (3), each of the ob-
jects randomly rotates around its center of mass.
The objects vary in the number of surface trian-
gles. In scene (4), distances are computed for
the six object pairs. Table 1 provides the results
of the benchmarks. The average computation
time was taken from the distance computation
of 1000 consecutive frames.

Benchmark # of triangles avg. [ms]
(1) Mushroom 32000 90
(2) Cow 12000 29
(3) Teddy 4400 1.9
(4) Teddies 8800 7.5

Table 1: Timings of the benchmarks: The av-
erage distance computation time per
frame is given in milliseconds. The ob-
jects consist of up to 16000 surface tri-
angles.

The minimum computation time is governed
by the GJK algorithm. It varies between 0.08
and 0.6 milliseconds in the first three bench-
marks, depending on the number of surface tri-
angles. Thus, finding the lower and upper dis-
tance bounds (see Fig. 4) takes only a very small
portion of the computation time. Most of the

4http://www.cs.unc.edu/ geom/SWIFT++/

Figure 4: Lower and upper distance bound
(green lines) are computed between
the convex hulls and the support vec-
tors of the two mushrooms. The ex-
act minimum distance (black line) lies
within these bounds.

computation time is spent on the distance com-
putation between the triangle pairs. Therefore,
the upper distance bound specifies the overall
computation time, since it determines the grid
cell size and, thus, the culling of triangle pairs
that can be omitted. The triangle culling and the
insertion of the remaining triangle pairs into the
grid cells of interest is very efficient (see Fig. 5).
Thus, we constantly resize the grid cells and
rehash, after a new upper bound is found (see
Sec. 5.1).

Figure 5: A front and a side view of Bench-
mark (2). Upper row: Distance pairs
are computed between triangles pairs
that lie in the same grid cell (black
boxes) or one of its neighbors. Bottom
row: Visualization of the triangles that
have been hashed (blue) and queried
(green). One of the triangle pairs gives
the minimum distance (red line).

For comparison, we have executed Bench-
mark 2 in the software package SWIFT++.
The package decomposes the surface of a non-

convex object into convex parts and constructs a
bounding volume hierarchy (BVH) for this de-
composition. For the cow model, the decompo-
sition took 240 milliseconds and the construc-
tion of the BVH took 630 milliseconds. The
minimum distance computation took one mil-
lisecond. For deformable objects, all three steps
have to be performed in every simulation step,
which gives a total of 871 milliseconds. Please
note that the surface decomposition and the con-
struction of the BVH are preprocessing steps in
SWIFT++. Therefore, they are probably not
optimized. Nevertheless, the timings indicate
that the decomposition is less suitable for on-
line computations in the context of deformable
objects.

Since our algorithm is executed on the CPU,
potential bottlenecks of GPU-based approaches
are avoided. In e. g. [27], it is stated that the data
readback from the GPU can be 20-30 ms. Since
data readback is an issue in all GPU-based ap-
proaches, this indicates that our algorithm out-
performs GPU-based approaches for scenarios
with a geometric complexity of several thousand
triangles.

In Benchmark 4, we demonstrate the applica-
bility of our algorithm to deformable objects.
Four teddy bears are thrown into the scene and
the minimum distances are computed for the six
object pairs. The scene consists of a total of
8800 surface triangles and the average distance
computation time is 7.5 milliseconds. This indi-
cates that the algorithm is suitable for interactive
applications (see Fig. 6).

Figure 6: Minimum distances (black lines) are
computed between a set of deformable
teddy bears. The overall distance com-
putation time per frame is 7.5 millisec-
onds on average.

6.1 Limitations

As stated in Section 4.3, the algorithm does not
compute the exact minimum distance in the case
of overlapping convex hulls. This issue is ad-
dressed in our current research.

7 Conclusion

We have presented an approach for the mini-
mum distance computation between pairs of ob-
jects that proceeds in two stages. In the first
stage, we employ the results of the GJK algo-
rithm to compute lower and upper bounds for
the minimum distance. We use these bounds to
define the grid cell size for the spatial hashing
algorithm we employ in the second stage. This
enables the efficient culling of large parts of the
simulation domain. Thus, only a small portion
of triangle pairs has to be considered in the ac-
tual pairwise distance computation. We have
illustrated the efficiency of the proposed algo-
rithm in a set of benchmark scenarios.

8 Acknowledgments

This work has been supported by the Ger-
man Research Foundation (DFG) under contract
number SFB/TR-8.

References
[1] J.-C. Lombardo, M.-P. Cani, and F. Neyret.

Real-time collision detection for virtual
surgery. In Proc. of Computer Animation,
pages 82–90, 1999.

[2] J.-H Youn and K. Wohn. Realtime collision
detection for virtual reality applications. In
IEEE Virtual Reality Anual International Sym-
posium, pages 415–421, 1993.

[3] I. Lotan, F. Schwarzer, D. Halperin, and J.-
C. Latombe. Efficient maintenance and self-
collision testing for kinematic chains. In SCG
’02: Proceedings of the eighteenth annual sym-
posium on Computational geometry, pages 43–
52, New York, NY, USA, 2002. ACM Press.

[4] S.A. Ehmann and M.C. Lin. Accurate
and fast proximity queries between polyhe-
dra using surface decomposition. Computer
Graphics Forum (Proc. of Eurographics’2001),
20(3):500–510, 2001.

[5] M. C. Lin and D. Manocha. Handbook of
Discrete and Computational Geometry, chap-
ter 35, pages 787 – 806. CRC Press, 2004.

[6] C. Ericson. Real-Time Collision Detection.
Morgan Kaufmann (The Morgan Kaufmann
Series in Interactive 3-D Technology), 2004.

[7] M. Teschner, S. Kimmerle, B. Heidelberger,
G. Zachmann, L. Raghupathi, A. Fuhrmann,
M.-P. Cani, F. Faure, N. Magnenat-Thalmann,
W. Strasser, and P. Volino. Collision detection
for deformable objects. Computer Graphics
Forum, 24(1):61 – 81, 2005.

[8] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi.
A fast procedure for computing the distance
between complex objects in three-dimensional
space. IEEE Transactions on Robotics and Au-
tomation, 4(2):193–203, 1988.

[9] E.G. Gilbert and C.-P. Foo. Computing the dis-
tance between general convex objects in three-
dimensional space. Robotics and Automation,
IEEE Transactions on, 6(1):53–61, 1990.

[10] S. Cameron. Enhancing GJK: Computing mini-
mum and penetration distances between convex
polyhedra. IEEE International Conference on
Robotics and Automation, 4:3112–3117, 1997.

[11] G. van den Bergen. A fast and robust GJK im-
plementation for collision detection of convex
objects. J. Graphics Tools, 4(2):7–25, 1999.

[12] M.C. Lin and J.F. Canny. A fast algorithm
for incremental distance calculation. In IEEE
International Conference on Robotics and Au-
tomation, pages 1008–1014, 1991.

[13] J.D. Cohen, M.C. Lin, D. Manocha, and
M. Ponamgi. I-COLLIDE: An interactive and
exact collision detection system for large-scale
environments. In SI3D ’95: Proceedings of the
1995 symposium on Interactive 3D graphics,
pages 189–196, New York, NY, USA, 1995.
ACM Press.

[14] B. Chazelle, D.P. Dobkin, N. Shouraboura,
and A. Tal. Strategies for polyhedral surface
decomposition: An experimental study. In
SCG ’95: Proceedings of the eleventh annual
symposium on Computational geometry, pages
297–305, New York, NY, USA, 1995. ACM
Press.

[15] S. Quinlan. Efficient distance computation
between non-convex objects. IEEE Interna-
tional Conference on Robotics and Automation,
4:3324–3329, 1994.

[16] P.M. Hubbard. Approximating polyhedra with
spheres for time-critical collision detection.
ACM Transactions on Graphics, 15(3):179–
210, 1996.

[17] G. van den Bergen. Efficient collision detection
of complex deformable models using AABB
trees. J. Graphics Tools, 2(4):1–13, 1997.

[18] J.T. Klosowski, M. Held, J.S.B. Mitchell,
H. Sowizral, and K. Zikan. Efficient collision
detection using bounding volume hierarchies of
k-DOPs. IEEE Transactions on Visualization
and Computer Graphics, 4(1):21–36, 1998.

[19] S. Gottschalk, M.C. Lin, and D. Manocha.
OBB-Tree: a hierarchical structure for rapid
interference detection. In SIGGRAPH ’96:
Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques,
pages 171–180, New York, NY, USA, 1996.
ACM Press.

[20] T. Larsson and T. Akenine-Moeller. Collision
detection for continuously deforming bodies.
In Eurographics, pages 325 – 333, 2001.

[21] J. Spillmann, M. Becker, and M. Teschner. Ef-
ficient updates of bounding sphere hierarchies
for geometrically deformable models. J. Vi-
sual Communication and Image Representa-
tion, 18(2):101–108, 2007.

[22] Y.J. Kim, M.A. Otaduy, M.C. Lin, and
D. Manocha. Fast penetration depth com-
putation for physically-based animation. In
SCA ’02: Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Com-
puter animation, pages 23–31, New York, NY,
USA, 2002. ACM Press.

[23] D. Knott and D.K. Pai. CInDeR: Collision and
interference detection in real-time using graph-
ics hardware. In Proc. of Graphics Interface,
pages 73–80, 2003.

[24] N.K. Govindaraju, S. Redon, M.C. Lin, and
D. Manocha. CULLIDE: Interactive collision
detection between complex models in large en-
vironments using graphics hardware. In HWWS
’03: Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS conference on Graphics hard-
ware, pages 25–32, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association.

[25] B. Heidelberger, M. Teschner, and M. Gross.
Detection of collisions and self-collisions using
image-space techniques. In WSCG, pages 145–
152, 2004.

[26] K. Hoff, J. Keyser, M.C. Lin, and T. Manocha,
D. andCulver. Fast computation of gener-
alized voronoi diagrams using graphics hard-
ware. In SIGGRAPH ’99: Proceedings of the
26th annual conference on Computer graph-
ics and interactive techniques, pages 277–286,
New York, NY, USA, 1999. ACM Press.

[27] A. Sud, N. Govindaraju, R. Gayle, and
D. Manocha. Interactive 3d distance field com-
putation using linear factorization. In I3D ’06:
Proceedings of the 2006 symposium on Inter-
active 3D graphics and games, pages 117–124,
New York, NY, USA, 2006. ACM Press.

[28] A. Sud, N. Govindaraju, R. Gayle, I. Kabul,
and D. Manocha. Fast proximity compu-
tation among deformable models using dis-
crete Voronoi diagrams. ACM Trans. Graph.,
25(3):1144–1153, 2006.

[29] M. Teschner., B. Heidelberger, M. Mueller,
D. Pomeranets, and M. Gross. Optimized
spatial hashing for collision detection of de-
formable objects. In Vision, Modeling, Visual-
ization VMV’03, Munich, Germany, pages 47 –
54, 2003.

[30] M. Müller and M. Gross. Interactive virtual
materials. Proceedings of the 2004 conference
on Graphics interface, pages 239–246, 2004.

