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Abstract. In many areas of experimental science ranging from robotics
to psychophysical research, to evaluation of spatial sensor-data and sur-
veying, model fitting is a ubiquitous subproblem. Often it is not the
actual scientific goal but rather the “necessary evil” of calibrating the
equipment. This tutorial introduces methodology and a library allowing
to solve model fitting problems easily without requiring the user to have
an in-depth understanding of this subject.
After a brief introduction to the theoretical background we guide the
reader through using all main features of the SLoM C++ framework
based on a stereo camera and inertial measurement unit (IMU) cali-
bration example which is solved with less than 70 lines of non-problem
specific code, and provide hints on applying SLoM to other classes of
problems.
The reader is only assumed to have a working knowledge of C++ and a
basic understanding of statistics and 3D geometry.

Keywords: Model Fitting, Tutorial, Least Squares, Optimization, Man-
ifolds, Calibration, SLAM

1 Least Squares Optimization in a Nutshell

Least squares optimization determines the most likely values of previously un-
known (or only vaguely known) model parameters or variables from noisy mea-
sured data. For this to work, the measured data and the variables need to be
linked in a way that can be expressed as a measurement function, a function
that predicts the measured data given certain values of one or more variables.
The error of the predicted data vs. the actually measured data can be used to
adjust the variables to minimize the error. If this is done for all variables and
all measurements simultaneously this optimization process yields a maximum
likelihood solution, i.e., a variable assignment that is most plausible given the
measured data as it minimizes the overall error.

As a concrete example, suppose we want to calibrate a digital camera. The
variables to be determined are its intrinsic parameters, i.e., a set of numbers
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describing its optics, e.g., the focal length. The measurement data consists of
pixel coordinates of some markers detected in an image. The marker positions in
the world are known. Then, the measurement function is simply a pinhole cam-
era model which calculates at which pixel coordinates in the image each marker
should be seen assuming the camera has certain intrinsic parameters and is lo-
cated at a certain position and orientation (collectively called pose and serving
as an auxiliary variable in this example). Now, to determine the maximum like-
lihood parameters all we need to do is plug an initial guess of all variables, the
measurement function and measurement data obtained from different viewpoints
into a least squares solver.

In mathematical terms, the above can be captured in a concise but self-
contained form (previously presented in [21]) as follows. The model parameters
(including auxiliary ones) that we want to fit to the measured data are the
random variables x1,...,n. Each of the measurements M1,...,m can be represented
as a tuple [21]

Mi = (zi, Σi, fi, Yi = {xj |dep(zi, xj)}). (1)

The two most important bits here are zi, the actually measured datum, and fi,
the so-called measurement function, which returns the expected datum ẑi, i.e.,
the datum we would expect to measure assuming a set of dependent variables Yi
have certain values. Comparing the two yields the error function to be minimized.

The covariance Σi describes the uncertainty of the measurement since, as
noted above, the measured data is noisy. More specifically, the measurement
errors are assumed to adhere to a normal distribution with mean 0 and covariance
Σi, i.e., [21]

fi(Yi) � zi ∼ N (0, Σi) . (2)

You will probably wonder what the curious � is all about and we will get to
that later in the tutorial. For now, it will suffice to think of it as the same as a
regular vector subtraction.

So far, we have only looked at individual measurements. We can now form the
combined problem as follows. We stack all random variables xi into the vector
X and all individual error functions fi(Yi) � zi into the “big” combined error
function F

X =
[ x1...
xn

]
F (X) =

[
f1(Y1)�z1

...
fm(Ym)�zm

]
, (3)

so that we can state the combined least squares problem as

X̂ = argmin
X

1
2 ‖F (X)‖2Σ . (4)

The curious Σ in (4) denotes the normalization of all measurement errors ac-
cording to their respective covariance, i.e., uncertainty. One can think of this as a
weighting of the errors depending on the measurement precision. The take-home
message here, however, is that in (4) we have brought a wide range of problems
into a form that a least squares optimizer will understand, i.e., if we can describe
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Fig. 1. Results from camera calibration. The left image shows checkerboard corners
projected into the image using the estimated parameters. The estimated poses of the
cameras w.r.t. the checkerboard are illustrated on the right. Note that for better pre-
sentation only the left cameras are displayed. Images are taken from [21].

a model fitting problem as in (1) there is a well-understood black box algorithm
that solves it for us. The only other things we need to worry about are that all
variables must be observable, i.e., changes of variables always lead to changes in
at least one predicted measurement, and that we provide sufficient measurement
data to constrain the variables to a unique solution.

Luckily, the above abstraction can be nicely implemented as a software library
interface and we will see this in action in the next section.

2 Tutorial

This section will show how to solve model fitting problems using the Sparse
Least squares on Manifolds (SLoM) C++-framework. We give actual C++-code,
first to be concrete and second because most practical problems are concep-
tually simple and with SLoM this simplicity carries over to the actual code.
SLoM is available as a sub-project of the Manifold ToolKit (MTK) from http:

//openslam.org/MTK.html. MTK uses the Eigen matrix library [9], allowing to
write textbook-style matrix expressions. As for the term manifold, for now it will
suffice to say that it refers to certain properties all variables have in MTK/SLoM.
We will get back to this in §4.

We use the calibration of a stereo camera system with an inertial measure-
ment unit (IMU) as a worked example. The calibration determines all parameters
needed to interpret images and inertial measurements spatially. This example is
manageable, it is a self-contained realistic application, and shows the main fea-
tures of SLoM. In particular, such calibration problems tend to have a heteroge-
neous structure where the SLoM library helps most to avoid complex bookkeep-
ing in the code. The program and an example data set are available from our web-
site http://www.informatik.uni-bremen.de/agebv/en/pub/hertzbergsc12.
In §3 we discuss the extension to other problems.

Camera calibration involves variables shared by all measurements, e.g., the
intrinsic camera parameters which are the same across all calibration images

http://openslam.org/MTK.html
http://openslam.org/MTK.html
http://www.informatik.uni-bremen.de/agebv/en/pub/hertzbergsc12
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assuming the camera hardware (its optics in particular) remains the same, and
variables that are specific to individual (sets of) measurements, e.g., each calibra-
tion image was taken from a different camera pose. Depending on the calibration
setup an arbitrary number of measurements can be involved. In this example,
the measurements are the coordinates of the checkerboard corners detected in
the image (Fig. 1) as well the gravity vector observed by the IMU. The checker-
board geometry is known, so the detected checkerboard corners determine all
variables involving the camera, i.e., the intrinsic parameters (optics) and each
camera pose. Also, the checkerboard is placed such that it is leveled horizontally,
so the cameras observe the direction of up and down from the image whereas the
IMU observes it from gravity. Several of these pairs determine the orientation of
the IMU relative to the cameras.

We will show how to define variables and measurements, then how to initialize
and start the optimization process using the SLoM framework.

2.1 Defining Variables

First of all, the variables which are to be optimized have to be defined. There are
some shared variables such as the parameters describing the camera optics, the
transformation between left and right camera as well as the 3D orientation be-
tween the IMU and the cameras. Another internal parameter is the accelerometer
bias of the IMU, which we will assume stays constant during the measurements.
Furthermore, we need to estimate the amount of gravity (which is different in
different geographical locations).

3D orientations are parameterized by the rotation group SO(3), transfor-
mations and poses by the Euclidean group SE(3), both of which are readily
implemented by MTK. We declare some typedefs for convenience:

1 typedef MTK::vect <2> vec2; // 2D vector
2 typedef MTK::vect <3> vec3; // 3D vector
3 typedef MTK::SO3 < > SO3; // 3D Orientation
4 typedef MTK::trafo <SO3 > SE3; // 3D Transform
5 typedef MTK::Scalar < > Scalar; // Scalar variable
6 typedef MTK::vect <9> CamIntrinsics; // Camera intrinsics

The camera intrinsics consist of a number of scalar values, such as the focal length
and lens distortion parameters. We will store them into a single vector (line 6).
As CamIntrinsincs is essentially a C++ class, we can inherit from it and add
member functions implementing, e.g., the camera’s measurement model:

7 struct Camera : public CamIntrinsics {
8 vec2 sensor2image(const vec3& point) const;
9 };

Next, we combine two Cameras and a transformation between them to a
single variable defining a stereo camera:

10 MTK_BUILD_MANIFOLD(StereoCamera ,
11 ((Camera , left))
12 ((Camera , right))
13 ((SE3 , left2right))
14 )



Tutorial on Quick and Easy Model Fitting Using the SLoM Framework 5

Here the macro MTK_BUILD_MANIFOLD constructs a new compound manifold,
named by the first macro parameter. The second parameter is a list containing
the sub-components of the manifold. Each of these is given as a pair specifying
the type and the name of the entry enclosed in double parentheses. The macro
hides all necessities for SLoM to work with the new manifold.

Again, we could inherit from this class to implement the measurement model
for the stereo camera. However, in this case we will do it outside this class later.

2.2 Defining Measurements

Our calibration process will involve two kinds of measurements. Visual measure-
ments of both cameras and accelerometer measurements of the IMU.

As we combined the intrinsics of both cameras to a single variable, we
do the same for the measurement. Thus each measurement will depend on a
StereoCamera as well as an SE3 describing the pose of the left camera. As mea-
surement data it includes the known position of the checkerboard corner on the
plate (considered world frame here) and the corner’s pixel coordinates in both
camera images. The measurement is declared using the following macro:

15 SLOM_BUILD_MEASUREMENT(StereoMeasurement , 4,
16 (( StereoCamera , cam))
17 ((SE3 , left2world))
18 ,
19 ((vec3 , cornerInWorld))
20 ((vec2 , leftMeas))
21 ((vec2 , rightMeas))
22 )

The first parameter is the name of the measurement, then follows its dimen-
sionality (in this case 4 as we measure two 2D feature positions). The third
parameter is a list of dependent variables, again in a double-parenthesized list of
types and names, and fourth a list of extra user data which is treated by SLoM
as arbitrary constant data that is made available to the measurement model (see
below) but not otherwise looked at. Note that the dependent variables need to
be manifolds, whereas the extra user data can be of arbitrary types.

Next, we implement the measurement model, i.e., a function that, in terms of
(1), computes fi(Yi)�zi. By line 23 SLoM automatically generates the necessary
function header, requiring the result to be stored in a real-valued vector ret

of the dimension passed as the second parameter to SLOM_BUILD_MEASUREMENT

above. It can easily be assigned using the = operator or Eigen’s comma initializer
as is done here.

23 SLOM_IMPLEMENT_MEASUREMENT(StereoMeasurement , ret){
24 vec3 cornerInLeft = left2world ->inverse () * cornerInWorld;
25 vec3 cornerInRight = cam ->left2right * cornerInLeft;
26 ret << cam ->left.sensor2image(cornerInLeft) - leftMeas ,
27 cam ->right.sensor2image(cornerInRight) - rightMeas;
28 }

In the implementation of the measurements, variables and user data members
can be accessed by name. Variables need to be dereferenced by the * or ->

operator. The measurement function transforms the checkerboard coordinates to
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the left (line 24) and right (line 25) camera’s coordinate system, then applies the
appropriate camera projections and subtracts the measured coordinates (lines
26 and 27).

Next, we define the gravitation measurement. This will depend on the ac-
celerometer’s bias, the orientation of the accelerometer with respect to the left
camera and the position of the left camera in the world. We also assume that
we do not know the exact amount of gravitational acceleration, so we add an-
other variable estimating g. Finally, we include the measured acceleration as
data member.

29 SLOM_BUILD_MEASUREMENT(Gravity , 3,
30 ((vec3 , acc_bias))
31 ((SE3 , left2world))
32 ((SO3 , left2imu))
33 ((Scalar , g))
34 ,
35 ((vec3 , acc))
36 )

Implementing the measurement requires transforming the local measurement to
world coordinates and subtracting the expected gravity:

37 SLOM_IMPLEMENT_MEASUREMENT(Gravity , ret){
38 vec3 acc_world = *left2world * left2imu ->inverse () * (acc - *acc_bias);
39 ret = (acc_world - *g * vec3::UnitZ ());
40 }

2.3 Insertion of Variables and Measurements

Once all variables and measurements have been defined, we can collect data and
insert it into an Estimator. For brevity, we omit the process of obtaining the
data and finding initial guesses for the camera poses. The templated VarID class
is a handle to the actual variable, required to declare measurements and needed
to obtain their content after optimization.

41 Estimator est; // Estimator , responsible for data management & optimization
42 std::vector <vec3 > calib_points; // Known calibration point positions
43
44 // Variables shared by multiple measurements :
45 VarID <StereoCamera > cam = est.insertRV(StereoCamera ());
46 VarID <SO3 > left2imu = est.insertRV(SO3());
47 VarID <vec3 > acc_bias = est.insertRV(vec3());
48 VarID <scalar > grav = est.insertRV(scalar (9.81));
49
50 for(int i=0; i<num_images; ++i){
51 SE3 pose;
52 std::vector <std::pair <vec2 , vec2 > > point_measurements;
53 // collect image points , get an initial guess for the left camera pose
54 /* LEFT OUT FOR BREVITY */
55
56 // left2world is only local , since we do not need its optimized value
57 VarID <SE3 > left2world = est.insertRV(pose);
58 for(int j=0; j<num_points; ++j){
59 est.insertMeasurement(StereoMeasurement(cam , left2world ,
60 calib_points[j],
61 point_measurements[j].first , point_measurements[j]. second));
62 }
63 vec3 acc; // insert gravitation measurement :
64 double acc_sigma = 1e-3;
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65 est.insertMeasurement(Gravity(acc_bias , left2world , left2imu , grav , acc),
66 SLOM:: StandardDeviation(acc_sigma));
67 }

When inserting measurement, the last parameter (line 66) describes the uncer-
tainty of the measurement. One can choose from multiple ways to represent
uncertainty: either as the covariance (SLOM::Covariance), as the standard de-
viation (SLOM::StandardDeviation), as the information matrix, i.e., the inverse
of the covariance (SLOM::InvCovariance) or as the inverse of the standard de-
viation (SLOM::InvStandardDeviation). Each method accepts either a single
scalar (as in the example) or a vector describing a diagonal matrix. Covari-
ances can also be passed as full (symmetric) matrix and standard deviations
as lower triangular matrix, being the Cholesky factor of the covariance. If the
uncertainty parameter is omitted, SLoM assumes the measurement has unit co-
variance (line 61).

2.4 Optimization and Obtaining the Results

Now that we have inserted all measurements, we can call the optimize function
of the Estimator and read out the optimized values by dereferencing the VarID

of each variable using the * or -> operator. Note that MTK manifolds overload
the streaming operators, so one can easily stream the result into files or to the
console.

68 for(int i=0; i <100; ++i){
69 est.optimizeStep ();
70 }
71 std::cout << "Camera intrinsics " << *cam << "\nleft2imu " << *left2imu
72 << "\nGravity " << *grav << "\nAccelerometer Bias " << *acc_bias << "\n";

3 Applying SLoM to Your Own Optimization Problems

Basic data types describing vectors, orientations and transformations are read-
ily implemented. Therefore, SLoM requires no definition of custom manifolds
to solve problems such as pose relation and landmark based simultaneous lo-
calization and mapping (SLAM). Furthermore, it is easy to combine multiple
basic manifolds to combined variables using the MTK_BUILD_MANIFOLD macro,
which covers more complex problems such as multi-camera bundle adjustment
or humanoid robot calibration [21].

With all variables defined, applying SLoM to arbitrary optimization problems
boils down to defining custom measurement functions. As shown in the tutorial
(e.g., lines 15 to 28) this only requires listing the involved variables and required
measurement data, and to implement the actual measurement function.

However, domain knowledge is crucial, i.e., you will first want to understand
your problem very well and then expose as much of its structure to SLoM as
possible. Usually, this means that whenever possible you want to operate on raw
measured data. E.g., if you work with visual markers detected by a camera you
want to pass each raw pixel coordinate to SLoM without any pre-processing. It
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is the job of the measurement function to predict these raw coordinates using
a model that is as accurate as possible, i.e., if you intend to correct for radial
distortion, you will want to add this as a parameter to the model and take it into
account in the measurement function. You do not want to adjust the measured
pixel coordinates by pre-processing. Similarly, you should always pass each indi-
vidual raw measurement to SLoM – do not combine several measurements into
one datum, i.e., use individual pixel coordinates as opposed to a some sort of
score value you have pre-computed for an entire image.

Afterwards, acquiring the data for measurements is usually more laborious
than feeding the data into SLoM and running the optimizer. The user does
not need to care about the tedious task of data management – each variable is
identified by a type-safe VarID, used to initialize measurements and to access
the optimized data.

Most calibration problems require an initial guess not too far from the opti-
mum, which if no explicit (approximating) formula exists must be obtained by
measuring by hand or preferably re-using a previous calibration.

Also, especially in calibration problems, care has to be taken that the overall
problem does not degenerate. This can happen if too few measurements are ac-
quired or if the system contains unapparent gauge freedoms, i.e., non-determined
degrees of freedom, such as a non-determined “free floating” start pose in SLAM.
In this case one calls the problem rank-deficient and the standard solver will
abort immediately. Another hint for a degenerating problem is if the residual
sum of squares (i.e., ‖F (X)‖2Σ from (4)) keeps growing during the optimization
process. This can be observed by looking at the results of est.getRSS() after
each call to optimizeStep().

Besides adding more measurements which constrain the variables better, a
possible solution is to fix some variables, e.g.,

VarID <vec3 > bias = est.insertRV(bias , false); // do not optimize bias

then use bias as shown in the tutorial and optionally, after optimization “un-fix”
it by

est.optimizeRV(bias , true); // "un -fix" bias
est.optimizeStep (); // call optimizer again

Another solution is to use a more robust optimization algorithm such as Leven-
berg-Marquardt [15] instead of the default Gauss-Newton:

est.changeAlgorithm(new SLOM:: LevenbergMarquardt ());

If for certain variables, there is no measurement depending on it, i.e., the
variable is not observable, SLoM automatically raises a warning. This will also
make the standard solver fail immediately. Again, this can be circumvented by
adding measurements depending on this variable or by fixing this variable (see
above).

By alternately inserting variables/measurements and running the optimizer,
SLoM is capable to perform online model fitting. In [10], we showed that using
this approach it is possible to run full bundle adjustment online for a certain
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time. However, with increasing number of variables and measurements, the opti-
mization time increases as well thus losing real-time capability, eventually. SLoM
allows to fix variables and remove measurements (e.g., following a sliding win-
dow approach) to reduce the computation time by reducing the problem size –
at the cost of a less optimal result.

4 What’s with those Manifolds?

Although surprising at first, you have already seen the most important property
of manifolds – you have hardly taken notice of them at all. This is because we
apply a little trick: Locally, a manifold behaves much like an Rn vector while
globally its (topological) structure can be more complex. We can define [11] two
encapsulation operators � (“boxplus”) and � (“boxminus”) for a manifold S:

� : S × Rn → S, � : S × S → Rn. (5)

Here, � adds a small perturbation vector to a manifold variable, while � is its
inverse, calculating the difference between two manifold variables (This is the
same � we left unexplained in §1). If the perturbations are small, the manifold
suddenly looks like Rn if you use �/� instead of the familiar vector +/−.

Why does this matter? In its original form, least squares optimization only
works with Rn variables. However, if we want to deal with real-world spatial data
this is insufficient since, most notably, there is no singularity-free representation
of 3D orientations with just three parameters – there are always some orienta-
tions where a small change in orientation requires a very large change in the
representation. Overparameterized (e.g., R4) representations are not a solution
either since the optimizer would try to make use of the extra degrees of freedom
which do not actually exist.

We overcome this dilemma by having the least squares optimizer only operate
on the local vectorized view established by the � and � operators. It does not
know about the global structure and still does the right thing as we show in [11]
which also gives mathematical details, proofs and experiments.

Although the interested reader is encouraged to read the referenced paper,
this is not absolutely necessary even though the above only provides a vague
idea of manifolds, � and �. This is due to another trick: It happens that the
Cartesian product of two (and by induction arbitrarily many) manifolds yields
another, compound manifold. More importantly, the �/� operators of that com-
pound manifold are simply the operators of its components (or sub-manifolds)
applied component-wise. This allows MTK_BUILD_MANIFOLD to generate com-
pound manifold classes automatically for you if you have implementations of
the sub-manifolds. Luckily, MTK comes with implementations of all practically
relevant manifold primitives: vectors (Rn), 2D orientations (SO(2)), 3D orien-
tations (SO(3)) and the (less commonly used) unit sphere (S2). Thus, based on
these, you can build virtually all specialized manifolds you will need without an
in-depth understanding of manifolds, � and �.
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5 Related Work

Least squares optimization for model fitting goes back to Gauss [5]. Thus, we
will focus on key ideas and readily available tools/libraries here.

The intuition that lead to the use of manifolds in the SLAM community
goes back to Triggs et al. [19, p. 6–7] who suggested handling non-vector space
states such as orientations by using a global over-representation R with local
perturbations δR using a minimal parameterization. The first to explicitly use
manifold properties were Ude [20] for least squares optimization and Kraft [13]
for Kalman filtering. The extension to arbitrary manifolds and the de-coupling
of the optimizer implementation from the variable representation was done in
earlier work by the authors [11].

5.1 Problem Specific Frameworks

There are many tools and libraries for specific problems such as camera calibra-
tion [2,4,18], bundle adjustment [16] or pose adjustment [17,8,7,6]. They have in
common that they are specialized to a specific task and are not easily extensi-
ble to more complex problems such as when the sensor setup is non-standard,
sensors are added or measurements need to be combined differently.

5.2 Generic Frameworks

Other than SLoM, to our knowledge, there are currently three C++-frameworks
aimed at solving arbitrary optimization problems. Namely g2o [14], optimized
for fast batch optimization and iSAM [12], focusing on online or incremental
optimization problems and the very recently released Ceres solver [3].

While g2o is slightly faster than SLoM, as it exploits the structure of the
problem better, iSAM turned out to be slower than SLoM in a recent contest.1

Very preliminary tests – re-implementing the examples of Ceres using SLoM –
showed that Ceres is about as fast as SLoM. Be aware though that, especially
for incremental/online optimization, a fair comparison of computation times is
difficult, e.g., due to the fact that there is always a trade-off between precision
and computation time. However, a more thorough comparison is beyond the
scope of this paper.

When handling manifolds, g2o adapts a similar concept as SLoM, whereas
iSAM directly maps its variables to vector spaces, thus causing problems when
singularities occur. Ceres adds the concept of “local parameterization” which
essentially does the same as SLoM’s � operator, however this is not bound to
types but has to be handled individually when registering variables.

Both g2o and iSAM provide basic variable-classes such as vectors, orienta-
tions and poses, as well as simple measurements, such as pose relations and basic

1 For comparisions of computation times see: http://slameval.willowgarage.com/
workshop/talks/2011-RSS-SLAM-Evaluation.pdf, pp. 17–20.

http://slameval.willowgarage.com/workshop/talks/2011-RSS-SLAM-Evaluation.pdf
http://slameval.willowgarage.com/workshop/talks/2011-RSS-SLAM-Evaluation.pdf
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landmark measurements. This makes them easy to adapt to SLAM problems re-
quiring just these types of measurements. However, if new measurements need
to be defined or if variables shall be combined from sub-variables, the user has
to implement this from scratch, conforming the internal requirements of the re-
spective framework. As of now, Ceres entirely works on pointers to scalars but
provides some convenience functions for often required operations. This requires
the user to manually keep track of variable indices. Previous generations of our
calibration tools relied on similar techniques and this turned out to be a frequent
source of errors which ultimately led to the development of SLoM.

We believe that SLoM’s library support for constructing arbitrary compound
variable types (manifolds) from primitives and the fact that measurement func-
tions can be directly implemented as C++ functions are the key distinguishing
features of SLoM. We try to elaborate this by giving a brief comparison of the
different APIs in the appendix.

Beyond the realm of C++, the MTKM framework [21] ports the idea of the
SLoM to Matlab and is as such able to solve the same problems. MTKM avoids
some syntactic noise which the C++ implementation of SLoM requires. How-
ever, due to the poor performance of Matlab’s object orientated programming
extensions MTKM runs slower by orders of magnitude. We believe that MTKM
provides a valuable alternative to users more accustomed to Matlab and not
requiring real-time performance (or when working with smaller problem sizes).

6 Conclusions and Future Work

We showed that using SLoM it is possible to solve calibration problems, requir-
ing only basic knowledge of statistics and 3D geometry. Using the same approach
most model fitting problems arising in practice can be optimized. By using the

�/� operators SLoM can solve optimization problems involving manifolds with-
out the user needing to bother about their internal structure.

In future work, we intend to simplify the way measurements are defined even
more. Using C++11 features, most importantly variadic templates [1, §14.5.3], it
will be possible to define measurements by only defining the actual measurement
function:

VectorNd measurement(const Var1& v1, const Var2& v2 , const Dat1& d1) {
// do some calculations using v1 , v2 , ...
return VectorNd (...);

}

and register them to the Estimator as such:

VarID <Var1 > v1 = est.registerRV(Var1()); // register variables
VarID <Var2 > v2 = est.registerRV(Var2()); // ...
est.registerMeasurement(measurement , v1, v2 , Dat1 (...));

Furthermore, there is a proof-of-concept implementation allowing the user to
easily supply symbolical derivations. By providing derivations of basic functions
this will become almost as simple as implementing the actual measurement.
Finally, there is on-going research improving SLoM’s performance, especially its
speed doing online optimization.
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Appendix: API-Comparison of SLoM with iSAM and g2o

We will give a short comparison of the user interfaces of SLoM vs. iSAM and g2o.
We compare the code required to implement and initialize constraints between
a 2D pose and a 2D landmark. We believe that for more complicated examples
(such as the calibration example described in this tutorial) the differences will be
the same or even more evident. For Ceres we did not find a readily implemented
2D SLAM example, from which we could excerpt code to make a fair comparison.

Note that the three libraries use different nomenclatures for the same con-
cepts. What is called “variables” and “measurements” in SLoM is called “nodes”
and “factors” in iSAM and “vertices” and “edges” in g2o.

We start looking at the definition of measurements. Listing 1 shows how a
factor is defined in iSAM. Compared to that Listing 5 does the same for SLoM,
but avoids much boiler-plate code by the use of macros. In g2o (Listing 3) some
initialization requirements are automatically done by the BaseBinaryEdge base
class, but most of the initialization is done manually when inserting the edge
(Listing 4). In contrast, iSAM (Listing 2) and SLoM (Listing 6) essentially pro-
vide initialization in a single statement. Uncertainty information must be pro-
vided as inverse covariance in g2o and inverse standard deviation (or “square
root information matrix” as they call it) in iSAM. SLoM is more flexible at this
point and even allows to omit passing uncertainty information if the measure-
ment already has unit-covariance. We give a more detailed discussion for each
code fragment in its caption.

Listing 1. Defining a 2D landmark measurement in iSAM. Notice line 9 requires man-
ually registering nodes to the factor, and lines 12 and 13 require manually converting
the generic nodes to the respective types. The implementation of the actual measure-
ment function starts at line 14. Code excerpted from https://svn.csail.mit.edu/

isam/include/isam/slam2d.h, LGPL v2.1.
1 class Pose2d_Point2d_Factor : public FactorT <Point2d > {
2 Pose2d_Node* _pose;
3 Point2d_Node* _point;
4 public:
5 Pose2d_Point2d_Factor(Pose2d_Node* pose , Point2d_Node* point ,
6 const Point2d& measure , const Noise& noise)
7 : FactorT <Point2d >("Pose2d_Point2d_Factor", 2, noise , measure),
8 _pose(pose), _point(point) {
9 _nodes.resize (2); _nodes [0] = pose; _nodes [1] = point;

10 }
11 Eigen:: VectorXd basic_error(Selector s = LINPOINT) const {
12 Pose2d po(_nodes[0]->vector(s));
13 Point2d pt(_nodes[1]->vector(s));
14 Point2d p = po.transform_to(pt);
15 Eigen:: VectorXd predicted = p.vector ();
16 return (predicted - _measure.vector ());
17 }
18 };

https://svn.csail.mit.edu/isam/include/isam/slam2d.h
https://svn.csail.mit.edu/isam/include/isam/slam2d.h
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Listing 2. Insert a 2D landmark observation using iSAM. Uncertainty information is
passed as square root information matrix noise2. Code excerpted from https://svn.

csail.mit.edu/isam/examples/example.cpp, LGPL v2.1.
19 Pose2d_Point2d_Factor* measurement =
20 new Pose2d_Point2d_Factor(pose_nodes [1], new_point_node , measure , noise2);
21 slam.add_factor(measurement);

Listing 3. Defining a 2D landmark measurement in g2o (excerpt from tutorial code
https://svn.openslam.org/data/svn/g2o/trunk/g2o/examples/tutorial_slam2d/

edge_se2_pointxy.h, LGPL v3). The BaseBinaryEdge class implements most boiler-plate
code required for implementing binary edges (i.e., between two vertices). Still lines 8
and 9 require manually converting the generic vertices to the respective types. Only
the last line defines the actual measurement function.

1 class EdgeSE2PointXY
2 : public BaseBinaryEdge <2, Vector2d , VertexSE2 , VertexPointXY >
3 {
4 public:
5 EdgeSE2PointXY () : BaseBinaryEdge <2,Vector2d ,VertexSE2 ,VertexPointXY >(){}
6 void computeError ()
7 {
8 const VertexSE2* v1 = static_cast <const VertexSE2*>(_vertices [0]);
9 const VertexPointXY* l2=static_cast <const VertexPointXY *>( _vertices [1]);

10 _error = (v1->estimate ().inverse () * l2 ->estimate ()) - _measurement;
11 }
12 };

Listing 4. Insert a 2D landmark observation using g2o. Note that optimizer.vertex

() does not do type checking, therefore possible errors are detected only at run-
time. The setMeasurement function is typesafe, however it allows to pass only a sin-
gle observation object, thus more complex observations need to be combined man-
ually. Code excerpted from https://svn.openslam.org/data/svn/g2o/trunk/g2o/

examples/tutorial_slam2d/tutorial_slam2d.cpp, LGPL v3.
13 EdgeSE2PointXY* landmarkObservation = new EdgeSE2PointXY;
14 landmarkObservation ->vertices ()[0] = optimizer.vertex(p.id);
15 landmarkObservation ->vertices ()[1] = optimizer.vertex(l->id);
16 landmarkObservation ->setMeasurement(observation);
17 landmarkObservation ->setInverseMeasurement (-1.* observation);
18 landmarkObservation ->setInformation(information);
19 optimizer.addEdge(landmarkObservation);

Listing 5. Declare and implement a 2D landmark observation using SLoM. Note that
all variables can be referenced by name and are strongly typed.

1 SLOM_BUILD_MEASUREMENT(LM_observation , 2, ((Pose , pose)) ((vec2 , landmark)),
2 ((vec2 , coords ))
3 )
4 SLOM_IMPLEMENT_MEASUREMENT(LM_observation , ret) {
5 ret = ( pose ->inverse () * (* landmark) ) - coords;
6 }

https://svn.csail.mit.edu/isam/examples/example.cpp
https://svn.csail.mit.edu/isam/examples/example.cpp
https://svn.openslam.org/data/svn/g2o/trunk/g2o/examples/tutorial_slam2d/edge_se2_pointxy.h
https://svn.openslam.org/data/svn/g2o/trunk/g2o/examples/tutorial_slam2d/edge_se2_pointxy.h
https://svn.openslam.org/data/svn/g2o/trunk/g2o/examples/tutorial_slam2d/tutorial_slam2d.cpp
https://svn.openslam.org/data/svn/g2o/trunk/g2o/examples/tutorial_slam2d/tutorial_slam2d.cpp
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Listing 6. Insert a 2D landmark observation using SLoM. The measurement is
constructed by an auto-generated constructor. All arguments of the constructor are
strongly typed, leading to compile-time errors if wrong types are passed. Passing co-
variance information is optional (by default unit-covariance is assumed).

7 est.insertMeasurement(
8 LM_observation( poseID , landmark[id], observation),
9 SLOM:: InvCovariance(information)

10 );
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