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Abstract:
In this paper we propose a physically motivated sensor model of Time-of-Flight cameras. We
provide methods to calibrate our proposed model and compensate all modeled effects. This enables
us to reliably detect and filter out inconsistent measurements and to record high dynamic range
(HDR) images. We believe that HDR images have a significant benefit especially for mapping
narrow-spaced environments as in urban search and rescue. We provide methods to invert our
model in real-time and gain significantly higher precision than using the vendor-provided sensor
driver. In contrast to previously published purely phenomenological calibration methods our model
is physically motivated and thus better captures the structure of the different effects involved.

1 INTRODUCTION

Time-of-Flight (ToF) cameras are compact sized
sensors which provide dense 3D images at high
frame rates. In principle, this makes them advan-
tageous for robot navigation (Weingarten et al.,
2004), iterative closest point (ICP)-based 3D si-
multaneous localization and mapping (SLAM)
(May et al., 2009) and as a supporting sensor for
monocular SLAM (Castaneda et al., 2011). The
advantages come at the cost of many systematic
errors, which, to our knowledge, have not been
systematically analyzed and modeled so far. Es-
pecially for ICP-based SLAM it is crucial to re-
move or reduce systematic errors.

With the recent introduction of low-cost struc-
tured light cameras (most famously the Microsoft
Kinect) and the KinectFusion algorithm (New-
combe et al., 2011) most research has shifted away
from ToF cameras. Despite the much more com-
plex systematic errors of ToF cameras, we still
think they have the important advantages of a
more compact size and the ability to detect finer
structures. This is because structured light sen-
sors cannot detect objects smaller than the sam-
pling density of the structured light pattern, while
ToF cameras can detect even objects of sub-pixel
dimension if their reflectance is high compared
to the background. Both are important, e.g.,
in narrow-spaced SLAM scenarios, where we be-

lieve ToF cameras have the potential to super-
sede structured light and stereo vision. In this
paper, we focus on the PMD CamBoard nano
(PMDtechnologies, 2012), but our results should
be transferable to similar sensors.

In the remainder of the introduction, we re-
capitulate an idealistic sensor model that is often
found in the literature and list phenomena where
the actual sensor differs from that model. After-
wards, we discuss related work in Sec. 2, followed
by Sections 3 to 6 describing the phenomena and
their calibration. We verify our results and show
the impact of the compensation by means of a
practical example in Sec. 7 before finishing with
an outlook in Sec. 8.

Figure 1: Idealistic Sensor Model. The LED emits
modulated light which is reflected by the scene on
the right (dashed red paths). From the phase-offset
of the received light the sensor can calculate distances
and these can be used to build a 3D model of the
scene (blue dots on the left). The wave length of the
modulation is ideally greater than the longest path
lengths expected in the application.



1.1 Idealistic Sensor Model

The general measurement principle of ToF cam-
eras is to send out a modulated light signal and
measure its amplitude and phase offset as it re-
turns to the camera (Lange, 2000, §1.3, §2.2), cf.
Fig. 1. In the simplest case, the generated sig-
nal is a sinusoidal wave with known amplitude a,
frequency1 ν and offset cO:

ψ(t) = a sin(2πνt) + cO (1)

As the signal is reflected back into the camera,
only a certain ratio α is returned, its phase is
shifted proportionally to the time it travelled ∆t,
and additional constant background light cB is
added to the signal:

z(t) = α · ψ(t−∆t) + cB (2)

To measure the amplitude and phase of the re-
turned signal, the ToF sensor integrates it over
half the phase starting at the kth quarter period,
resulting in four images:

s[k] =

∫ k+2
4ν

k
4ν

z(t) dt =
[
c1t− A

4 cos
(
2πν(t−∆t)

)] k+2
4ν

k
4ν

= c2 + A
2 cos

(
π
2 k − 2πν∆t

)
, (3)

with A = 2αa
πν . Actually, the signal is integrated

over multiple half-phases for a much longer expo-
sure time tI . Mathematically, this corresponds to
multiplying the emitted and received amplitude
of the signal (as well as all constants c•) by tI .

The values of the constants c• are not impor-
tant, because they will cancel out in the following
equations. From (3) the amplitude A and phase
offset ∆t of the received signal can be calculated
using the well-known formulae:

A =

√(
s[0] − s[2]

)2
+
(
s[1] − s[3]

)2 (4a)

∆t ≡ 1
2πν atan2(s[1]−s[3], s[0]−s[2]) mod 1

ν . (4b)

The phase offset can only be determined modulo
the length of the phase. Knowing ∆t it is possible
to calculate the travelled distance by multiplying
with the speed of light. Note that we can inter-
pret

(
s[0] − s[2], s[1] − s[3]

)
as a complex number

with magnitude A and phase 2πν ·∆t.

1.2 Suppression of Background
Illumination

When measuring the subimages directly as in (3),
the constant offset c2 can become much higher

1Our camera has a fixed frequency of ν = 30MHz
which results in a wavelength of λ = c/ν ≈ 10m.

than the usable amplitude A, especially if the
amount of cB is high. This reduces the signal-to-
noise ratio (SNR) of the differences s[k] − s[k+2]

and can even lead to saturation in the s[k].
To reduce this effect, the sensor integrates s[k]

and s[k+2] into two separate bins A and B al-
ternately and instantaneously compensates sat-
uration effects by simultaneously adding equal
charges to both bins (Möller et al., 2005, §4.2).
After integration, the difference between both
bins is determined inside the chip and read out.

This technique is called Suppression of Back-
ground Illumination (SBI) by the manufacturer.
While it significantly improves the SNR it also
makes modeling the sensor more complicated.

1.3 Diversions from the
Idealistic Model

We determined several phenomena which deviate
from the idealistic model. Here we list all phe-
nomena of which we are aware and reference to
future sections where they will be handled in de-
tail or we justify how and why we can neglect
them in the scope of this paper. In describing the
model we always follow the path of the light from
emission over scene interaction and optics to its
detection in the sensor.

Emission will describe all effects from wave gen-
eration until the light interacts with the scene.

Light Modulation of the LED is not a si-
nusoidal wave as in (1), but closer to a rect-
angular wave. We model this in Sec. 4.1.

Temperature of the LED has an influence
on the shape of the modulated light. In
this paper we will neglect this effect and
work around it by keeping the temperature
of the LED at a constant level of 50 ◦C, by
adjusting its activity.

Vignetting happens due to the non-uniform
light distribution of the lens in front of the
LED. We model this in Sec. 4.2.

Optical Effects happen before the light hits the
sensor array.

LED Position relative to the camera is of-
ten ignored. Especially, for narrow-spaced
environments its position has a measurable
effect. We model this and measure the po-
sition manually.

Multi-Path Reflections can happen when
light is reflected multiple times inside the
scene. Especially, in sharp corners this can



have a significant impact. In this paper, we
will only discuss it briefly in Sec. 8.3.

Flying Pixels occur at depth discontinuities
in the scene leading to “ghost pixels” and are
mentioned briefly in related work.

Lens Distortion is a well-understood prob-
lem of cameras and will be handled in Sec. 3.

Lens Scattering happens when light enter-
ing the lens is reflected inside the lens casing
and captured by neighboring pixels. We dis-
cuss and handle this phenomenon in Sec. 6.

Detection models everything happening after
the light passed through the optics.
Non-Linearities occur mostly during inte-

gration of the received light. We model this
by a non-linear photon response curve de-
scribed in Sec. 4.4.

Fixed Pattern Noise (FPN) occurs due to
chip-internal different signal propagation
times as well as slightly different gains for
each pixel. This is modeled in Sec. 4.5.

Background Illumination can have a sig-
nificant effect on the recorded signal. It will
be ignored in this paper as it is negligible
in our case, but we discuss it in Sec. 8.2.

2 RELATED WORK

Monocular camera calibration can be considered
a “solved problem” with ready-to-use calibration
routines, e.g., in the library (OpenCV, 2014).

All ToF calibration related papers we found,
have in common that they calculate an a-priori
offset using a formula such as (4b) and compen-
sate the deviation of this value towards a ground-
truth value using various methods. This means,
unlike us, they only use ∆t not A as input to
correct the measured distances.

(Kahlmann et al., 2006) used a grid of ac-
tive NIR LEDs for intrinsic camera calibration.
They then used a high accuracy distance mea-
surement track line to obtain ground-truth dis-
tances and median-filter these measurements to
generate a look-up table depending on integra-
tion time and distance to compensate deviations
from the ground-truth. They already observed
the influence of self-induced temperature changes
on the measured distances.

(Lindner and Kolb, 2006) fit the deviation to
a ground-truth distance using a global B-spline.
This was then refined using a linear per-pixel fit.

Both (Fuchs and May, 2008; Fuchs and

Hirzinger, 2008) attached their camera to an in-
dustrial robot to get ground-truth distances to-
wards a calibration plane. They fit the deviation
to the ground-truth using a set of splines depend-
ing on the distance with different splines for dif-
ferent amplitude ranges.

In our opinion, neither of the above methods is
capable of properly modeling non-linearities and
will suffer decreasing accuracy as soon as differ-
ent integration times or large variances in reflec-
tivity occur. Furthermore, they are not able to
automatically detect saturation effects (although
we assume they might detect them a-priori) or
calculate HDR images from a set of images with
different integration times.

In other related work, (Mure-Dubois and
Hügli, 2007) propose a way to compensate lens
scattering by modeling a point spread function
(PSF) as a sum of Gaussians. In general, we will
use a similar approach. However, we are capable
of making more precise calibration measurements
using HDR images and we use a combination of
many more Gaussian kernels, which we calibrate
exploiting the linearity of the scattering effect.

The flying pixel effect has often been ad-
dressed, e.g., (Sabov and Krüger, 2010) present
different approaches to identify and correct flying
pixels. Also, (Fuchs and May, 2008) give a simple
method to filter out “jump edges”.

Finally, multi-path reflections are handled by
(Jimenez et al., 2012). Their iterative compen-
sation method is very computationally expensive
and goes beyond the scope of this paper.

3 INTRINSIC AND EXTRINSIC
MONOCULAR CALIBRATION

In order to calibrate the actual sensor, we first
calibrated the camera intrinsics and obtained
ground truth positions of the camera relative to
a checkerboard target. All operations are solely
based on amplitude images obtained from the
camera as with an ordinary camera. Amplitudes
are calculated as magnitude from real and imag-
inary part according to the simple model (4a).

As monocular camera calibration is a mature
and reliable procedure we use the result a) for the
monocular intrinsic part of our model that maps
3D points to pixels b) to obtain distance values
for each pixel to calibrate the depth related part
of the model and c) as ground-truth for evaluat-
ing the results in Sec. 5. We believe that using
the same technique for b) and c) is valid since



Figure 2: Setup of checkerboard calibration. The
World coordinate system lies at the center of the
checkerboard with x and y axes pointing along the
grid and z pointing upwards. The PTU has two coor-
dinate systems which are rotated towards each other
by the current angles of the PTU. We define the coor-
dinate system attached to the tripod as Tripod with
x pointing forward, y pointing left and z pointing
upwards along the pan axis. The rotating system is
called PTU and actually shares the position of Tripod
but is panned and tilted. Finally, we have the cam-
era coordinate system Camera which is centered at the
camera’s optical centre with z pointing forward along
the optical axis and x and y pointing right and down
(thus matching pixel coordinates). Coordinate sys-
tems are overlayed using colors red, green, and blue
for x, y, and z-axis.

the technique is highly trustworthy and applied
to different images.

3.1 Experimental Setup

Determining intrinsic camera parameters can be
considered a standard problem. It is commonly
solved by checkerboard calibration, e.g., using the
routines provided by (OpenCV, 2014). Having a
wide-angle, low resolution camera requires an in-
creased number of corner measurements to get
an adequate precision. To achieve this with rea-
sonable effort, we attached the camera to a pan-
tilt-unit (PTU) mounted on a tripod (see Fig. 2).
We use a 1m × 1m checkerboard with 0.125m
grid distance, resulting in 8× 8 corner points per
image. Using the PTU helps to partially autom-
atize the calibration process, by providing lots of
corner measurements without having to manually
reposition the checkerboard or camera. Further-
more, it increases the accuracy of the calibration,
by having more measurements defining the pose
of the tripod (and thereby indirectly each camera
pose) relative to the checkerboard.

Before starting the calibration, we manually
adjusted the focal length of the camera, viewing
a Siemens star, optimizing focus at about 1m.

3.2 Measurement Equations

From here on, we will use the notation TA←B to
describe the transformation from coordinate sys-
tem B to A. We abbreviate the World, Tripod,
PTU and Camera systems introduced in Fig. 2 by
their first letters and append indices where re-
quired.

We have a sequence of tripod poses TW←Ti and
for each tripod pose we have a sequence of PTU
rotations TTi←Pij . Furthermore, there is a trans-
formation from the camera coordinate system to
the PTU TP←C (this is assumed to be the same
for all measurements). We have a set of corner
points with known world coordinates x[k]

W which
we transform to camera coordinates via

x
[k]
Cij

= (TW←Ti · TTi←Pij · TP←C)−1x
[k]
W . (5)

To map a point from 3D camera coordinates
to pixel coordinates, we use the OpenCV camera
model (OpenCV, 2014, “calib3d”) described by
this formula for [ u1

u2
] = ϕK([x1 x2 x3]>):

[w1
w2

] = 1
x3

[ x1
x2

] “Pinhole model” (6a)

[ v1v2 ] = κ · [w1
w2

] +
[

2p1w1w2+p2(r2+2w1
2)

p1(r2+2w2
2)+2p2w1w2

]
(6b)

with r2 = w2
1 + w2

2, κ = (1 + k1r
2 + k2r

4 + k3r
6)

[ u1
u2

] =
[ f1v1
f2v2

]
+ [ c1c2 ] =: ϕK(x), (6c)

where we join all intrinsic calibration parameters
into a vector K = [f1, f2, c1, c2, k1, k2, p1, p2, k3].

The transformations TP←C and each TW←Ti
are modeled as unconstrained 3D transforma-
tions, the PTU orientations TTi←Pij as 3D orienta-
tions which are initialized by and fitted to orien-
tations P̂ij measured by the PTU. The projected
corner positions are fitted to corner positions ẑ[k]

ij
extracted from the amplitude images.

As usual for model fitting, we solve a non-
linear least squares problem, minimizing the fol-
lowing functional:
F (K,TP←C , [TW←Ti ]i, [TTi←Pij ]ij) = (7)

1
2

∑
i,j,k

∥∥∥ẑ[k]
ij − ϕK(x

[k]
Cij

)
∥∥∥2

+ 1
2

∑
i,j

∥∥∥TTi←Pij− P̂ij∥∥∥2

with ϕK(x
[k]
Cij

) according to (5) and (6). We as-
sume that the PTU is accurate approximately to
its specified resolution 2π

7000 ≈ 0.05◦. This corre-
sponds to about 0.08 px and as this is about the
same magnitude as sub-pixel corner detection, we
cannot neglect it. Therefore, the second term is
scaled accordingly.

F is minimized using our general purpose least
squares solver SLoM (Hertzberg et al., 2013).



(a) Failed extraction

(c) Reprojected corners (b) Corners extracted in rectified image
Figure 3: Robustified corner extraction. Green circles show the initial guess and search window for corner
refinement, blue circles show the refined corner positions. (a) Failed corner extraction, because of unrelated
gradients in the search window. Note that for smaller search windows the extraction of the top-right corners
would lose precision. (b) Using an initial calibration and a guess of the camera pose the image is projected
to the checker-board plane. We also adjust the brightness based on the expected distance and normal vector
(cf. Sec. 4.3) Areas outside the original image are continued using the border pixels (cyan/black areas in this
figure). Note that even the bottom-left corners are robustly extracted. (c) The refined corner positions are
back-projected to the original image.

3.3 Robustified Corner Extraction

To extract corners we use the cornerSubPix
method from OpenCV. Applying the method di-
rectly to the amplitude image turned out to be
unstable if corners are close to each other or to
unrelated image gradients (Fig. 3a). The rea-
son is that gradients from neighboring edges are
wrongfully included into the refinement. We have
considered masking out invalid edges from the im-
age, but that would have required massive rewrit-
ing of the corner detection. Instead, we project
the image to the plane where the checkerboard
should be (adding some border pixels on each
side, Fig. 3b), extract the corners in that image
and back-project the found corners to the origi-
nal image (Fig. 3c). An advantage of this proce-
dure is that the corner extractor can always work
using the same search window. By taking the
back-projected corner positions as measurements
we automatically have their accuracies weighted
according to the amount of pixels involved in the
measurement.

This procedure requires an initial guess of the

camera intrinsics, which is taken from a previ-
ous calibration, and the pose of the camera rel-
ative to the checkerboard, which is determined
by calculating the relative pose from a previous
PTU state or by manually selecting four points in
the center of the checkerboard. To ensure robust-
ness we decided to not rely on automatic checker-
board detection if the camera pose is entirely un-
known. Still, the only case that requires user in-
teraction is whenever the pose of the tripod has
been changed.

3.4 Calibration Results

We recorded 90 frames from two tripod poses by
using 45 different PTU orientations each. For
each frame we recorded 8 images with 4096 µs ex-
posure time2 and calculated the amplitude of the
mean (complex) image.

Overall, we extracted more than 4500 corners
which means that about 50 of 64 corners were

2N.B.: Exposure times above 2000 µs require call-
ing an undocumented driver command



Figure 4: Lens Distortion. The arrows point from the
theoretical undistorted point to the distorted point.
Distortions below 1px are not shown. The image bor-
der is marked black. As common for wide-angle lenses
the distortion near the borders is very high.

visible on average. Optimization lead to a root-
mean-squares (RMS) error of about 0.13 px. The
estimated focal length was f1 ≈ f2 ≈ 89.5 px with
the camera center at c ≈

[ 79.5 px
60.5 px

]
. The resulting

distortion pattern is shown in Fig. 4.
The calibration was repeated with a different

set of poses and resulted in the same parameters
with less than 0.5% discrepancy. We considered
this accurate enough for our purpose.

4 PROPOSED PIXEL MODEL

In this section we propose a physically motivated
sensor model and fit it as well as possible to the
data recorded in the previous section. It is based
on (Lange, 2000; Möller et al., 2005) and some
educated guesses on the underlying mechanisms.

As in Sec. 1.3 we follow in the description the
path of light from the LED through the scene to
the sensor. We assume that the measurement of
each single pixel is solely caused by the reflection
of a surface patch with normal n and a position
xCam relative to the camera center. We also as-
sume that the surface patch is a perfect Lamber-
tian reflector with albedo α. Knowing the posi-
tion of the LED relative to the camera dLED, we
determine the position of the surface patch rela-
tive to the LED xLED := xCam − dLED. This is
visualized in Fig. 5.

4.1 Emitted Light Wave

First of all, the emitted light wave is not a si-
nusoidal. By design, it is closer to a rectangu-
lar wave, but due to hardware restrictions it is
smoothed near the switchover points and not nec-
essarily constant elsewhere. All we assume is that

Figure 5: Path of the light from the LED, reflected
by a white wall to the camera. The position of the
LED relative to the camera is dLED, and x• denotes
the coordinates of the wall patch in each coordinate
system. The normal vector of the surface is called n.

the emitted light can be described by a continu-
ous function ψ(t) with a periodicity 1

ν .
For simplicity we can assume that ν = 1

4 (by
arbitrarily choosing the unit of ν) and therefore
ψ(t) = ψ(t + 4). We will also not model ψ di-
rectly but its integral Ψ over half the phase. By
subtracting half the integral over the entire phase,
Ψ becomes anti-periodic with Ψ(t) = −Ψ(t+ 2):

Ψ(t) :=

∫ t+2

t

ψ(τ) dτ − 1

2

∫ 4

0

ψ(τ) dτ︸ ︷︷ ︸
=:Ψ0

. (8)

Because the scale and time offset of ψ and thus
Ψ are arbitrary, we choose them so that Ψ(0) = 0
and Ψ(1) = 1. We will then model Ψ using two
polynomials Ψs and Ψc of order 8 with:

Ψ(t) =


Ψs(t) |t| ≤ 1

2

Ψc(t− 1) |t− 1| ≤ 1
2

−Ψ(t− 2) t > 3
2

−Ψ(t+ 2) t < − 1
2 ,

(9)

where the transitions between Ψs and Ψc are mod-
eled to be twice continuously differentiable. The
resulting Ψ is later shown in Fig. 7.

4.2 Vignetting

The lens in front of the LED does not dis-
tribute the light uniformly which causes strong
vignetting. We model this effect depending on
the direction of the light exiting the LED by a
bi-polynomial ` depending on 1

xLED
3

[
xLED
1

xLED
2

]
, with

`([ u1
u2

]) =

3∑
i=0

i∑
j=0

lj,i−ju
j
1u
i−j
2 . (10)

We write `(x) := `( 1
x3

[ x1
x2

]) and collect the coef-
ficients into an upper-left matrix L = (lij)i+j≤3,
where we normalize l00 := 1.



4.3 Scene Interaction

If we assume perfect Lambertian reflection, the
amount of reflected light is proportional to the
albedo αi,p and the scalar product of the direction
of incoming light xLED

i,p /
∥∥xLED

i,p

∥∥ with the surface
normal ni (whenever a value depends on a cam-
era pose Ti or a pixel p, we will from now denote
this by indexes i,p). Also, it is reciprocally pro-
portional to the squared distance from the LED.

We combine this with the vignetting from the
previous section and the integration time tI to
calculate the expected effective amplitude

A
[tI ]
i,p = tI · αi,p · `(xLED

i,p )
〈xLED
i,p ,ni〉
‖xLED

i,p ‖3
. (11)

Note that αi,p will contain the normalization fac-
tors of the emitted light (Ψ(1) = 1) and the vi-
gnetting (`(0) = 1).

The phase offset is calculated by dividing the
distance travelled

∥∥xLED
i,p

∥∥+
∥∥xCam

i,p

∥∥ by the speed
of light. As the speed of light equals the product
of wavelength λ and frequency ν, and we chose
ν = 1

4 (cf. Sec. 4.1) this can be simplified to

∆ti,p = 4 · ‖x
LED
i,p ‖+‖xCam

i,p ‖
λ . (12)

4.4 Photon Response Curve

The actual pixel measurements are not linear in
the received light. As in (Lange, 2000) we assume
that each pixel consists of two “bins” A andB. We
assume that each bin has a response-curve gA,
gB and the pixel measurement is the difference
between those bins offset by γ. Bin A is assumed
to accumulate for 0 ≤ t < 2 and B for 2 ≤ t < 4

s
[k]
i,p = γp + gA

p

(∫ k+2

k

zi,p(t)

)
dt− gB

p

(∫ k+4

k+2

zi,p(t)

)
dt

= γp + gA
p

(
A

[tI ]
i,p (Ψ0 + Ψ(∆ti,p + k))

)
− gB

p

(
A

[tI ]
i,p (Ψ0 −Ψ(∆ti,p + k))

)
.

(13)

By design, gA and gB are almost identical and as
their values cannot be measured individually we
make a simplification by subtracting s[k]

i,p− s
[k+2]
i,p .

This cancels out the γp and gA
p and gB

p can be
joined to a single function gS

p(x) := gA
p (x)+gB

p (x):

s
[k]
i,p − s

[k+2]
i,p = gS

p

(
A

[tI ]
i,p (Ψ0 + Ψ(∆ti,p + k))

)
− gS

p

(
A

[tI ]
i,p (Ψ0 −Ψ(∆ti,p + k))

)
.
(14)

We model gS
p using a rational polynomial

gS
p(x) = x

x+ g0

x+ g1
, (15)

where we assume that the coefficients between
pixels are similar enough to be modeled by the
same coefficients G = [g0, g1]. Finally, we cap-
ture (14) into a helper function:

gD(A,Ψ0,Ψ) = gS(A(Ψ0 + Ψ))− gS(A(Ψ0 −Ψ))

= 2AΨ ·
(
1 + g1(g0−g1)

A2Ψ2−(AΨ0+g1)2

)
. (16)

4.5 Fixed Pattern Noise (FPN)

Due to different internal signal propagation times,
individual pixels have a time-offset δtp, which
must be added to the time offsets ∆ti,p before be-
ing inserted into (14). Furthermore, pixels have
a slightly different gain, which we model by mul-
tiplying each gp by a factor hp ≈ 1.

4.6 Complete Pixel Model

Summarizing the previous subsections, we model
each complex-valued pixel at p, with

I
[tI ]
i,p =

(
s

[0]
i,p − s

[2]
i,p, s

[1]
i,p − s

[3]
i,p

)
(17)

= hp ·
(
gD(A

[tI ]
i,p ,Ψ0,Ψ(∆ti,p + δtp)),

gD(A
[tI ]
i,p ,Ψ0,Ψ(∆ti,p + δtp + 1))

)
.
(18)

Overall, the sensor model depends on the coeffi-
cients of the emitted light wave Ψ

[k]
c , Ψ

[k]
s and Ψ0

which we collect into a vector Ψp, the parameters
L of the vignetting polynomial, the coefficients G
of the photon response curve, and the FPN im-
ages H = (hp)p and δT = (δtp)p.

5 PIXEL CALIBRATION

In this section we describe how we calibrate the
previously proposed model. We also show how
our model can be used to obtain high dynamic
range (HDR) images and propose a way to in-
vert our model, i.e., to actually compute distance
values using the measurements of the sensor.

5.1 White Wall Recordings

For calibration of each sensor pixel we need many
measurements of equal albedo αi,p = α and with a
known position and surface normal relative to the
camera and the LED. We chose to record an or-
dinary white-painted wall, to which we attached
markers as illustrated in Fig. 6a.

We measured the distances between the mark-
ers using a tape measure. We defined the wall



(a) Setup, Coordinate systems

(b) Corners

(c) White mask
Figure 6: White wall with markers. We covered the
floor with low-reflective textile to limit multi-path re-
flections.

coordinate system to originate from the first
marker, with the second marker in x-direction
and both others on the x-y-plane. Having four
markers and six distances between them, we have
an overdetermined system. Also, viewing the four
markers in a camera image is sufficient to deter-
mine the pose of the camera relative to the wall.

As in Sec. 3, we recorded the wall using the
same tripod position for various PTU orienta-
tions. This again increases the number of con-
straints defining the tripod pose relative to the
plane and also semi-automatizes the process of
obtaining calibration values. For each PTU ori-
entations we made recordings with various inte-
gration times, starting from 16 µs up to 4096 µs.

The camera poses where optimized using the
same functional (7) as in Sec. 3, but this time
fixing the camera intrinsics K and the transfor-
mation from camera to PTU coordinates TP←C .
The resulting camera poses will be considered as
groundtruth from now on and we will simply call
them Ti, ignoring the state and index of the PTU.

From the already known camera intrinsics K
we can calculate a direction vector vp for each
pixel p. Using the camera pose Ti we can calculate
the vector xCam

i,p going from the camera center to
the center of the corresponding patch at the wall.

Knowing also the displacement dLED of the
LED relative to the camera3, allows us to calcu-
late xLED

i,p = xCam
i,p − dLED (cf. Fig. 5).

The camera pose and intrinsics are also used
to project the positions of the markers into the
image in order to exclude these pixels from the
calibration by providing a mask Mi of pixels as-
sumed to be white (cf. Fig. 6c).

3This is only measured manually at the moment
but small inaccuracies have negligible influence here.

5.2 Optimization

For now, we assume that all pixel measurements
are independent, i.e., we neglect influence of lens
scattering and multi-path reflections.

We use the ground truth values from the pre-
vious subsection and the measured images for dif-
ferent poses Ti and different integration times tI ,
viewed as complex images

Îi,tI = (ŝ
[0]
i,tI
− ŝ[2]

i,tI
, ŝ

[1]
i,tI
− ŝ[3]

i,tI
), (19)

to assemble a functional

F (Ψp, G, L,H, δT ) =
∑
i,tI ,p

∣∣∣I(p)− Îi,tI (p)
∣∣∣2 (20)

We alternately optimize Ψp, G and L using
(Hertzberg et al., 2013) and the FPN parameters
H, δT using a linearized least squares procedure
per pixel.

5.3 Inverse Model

To invert the model we need to solve (18) for the
unknown amplitude A[tI ]

i,p and phase-shift ∆ti,p.
Since these calculations are independent for all
pixels and poses, we abbreviate A = A

[tI ]
i,p and

d0 = ŝ
[0]
i,tI
− ŝ[2]

i,tI
d1 = ŝ

[1]
i,tI
− ŝ[3]

i,tI
, (21)

Φ0 = AΨ(∆ti,p) Φ1 = AΨ(∆ti,p + 1). (22)

At first we ignore the fixed-pattern offset δti,p and
only solve for Φ0, and Φ1, using the fact that
|Φ0| + |Φ1| ≈ A. This is done using a fixpoint
iteration based on (16) starting with

Φ0 = d0 Φ1 = d1. (23)

The next step is to compute ∆tp from Φ0 and Φ1.
For that we need the pseudo-atan corresponding
to the pseudo-sine Ψs and pseudo-cosine Ψc. This
is obtained during the calibration by once fitting
an 8th order polynomial Ψa to Ψa(Ψs(t)/Ψc(t)) ≈ t
and then use it here in the inverse model.

5.4 High-Dynamic-Range

Capturing multiple recordings with different in-
tegration times of a static scene we can use our
model to produce high dynamic range (HDR) im-
ages. This is done using a similar fixpoint itera-
tion as in the previous subsection. Indeed the
previous method can be seen as a special case,
where only a single image is provided.



Figure 7: Integrated light wave Ψ modeled as pseudo
sine Ψs (red) and pseudo cosine Ψc (green). Ψ is
anti-periodic with Ψ(t) = −Ψ(t + 2). Ψs and Ψc are
modeled as polynomials with C2-transitions at k+ 1

2
,

for k ∈ Z. The blue graph is the ratio of sine over
cosine, and the black graph is the pseudo-atan cal-
culated from the ratio and shifted according to the
signs of Ψ. The turquoise line is the deviation of the
pseudo-atan from the actual inverse, scaled by 100.

5.5 Results

In Fig. 7 we show the graph of the calibrated
pseudo-sine, -cosine and -atan function. We see
that the function is closer to a triangular wave
than to a sine wave, indicating that the original
signal is close to a rectangular wave.

6 LENS SCATTERING

The lens that comes with the Camboard Nano can
be considered as rather low-cost and has signifi-
cant lens scattering and lens flare effects. What
happens is that light entering the lens is reflected
inside the lens casing and captured by neighbor-
ing pixels or entirely different pixel. For ToF
cameras this not only results in slight amplitude
changes, but more importantly in distortions of
the measured phases (and thus distances) towards
brighter light sources, because pixel phases are a
mixture of the actual phase and a halo created by
a strong light source with a phase corresponding
to the distance of the light source.

6.1 Measuring Scattering Effects

To measure the lens scattering, we set up an area
of highly non-reflective textile and placed a retro-
reflecting disc inside it. Then we made multiple
high-dynamic-range recordings of this area once
with the retro-reflecting disc and once without
it. We calculated the complex valued difference
image – which under ideal circumstances would
only show the disc. Fig. 8a shows an example.

In these difference images Di we declared ev-
ery pixel u ∈ Ω above a threshold Θ as being part

of the blob Bi causing the scattering. Images with
too few blob pixels are ignored.

Bi(u) =

{
Di(u) Di(u) > Θ

0 else.
(24)

Everything outside this blob and a safety radius
of 2 px is assumed to be caused by lens scattering.
For that we define a mask set Mi:

Mi =
{
u ∈ Ω; ∀v,‖v−u‖<2 : Di(v) ≤ Θ

}
. (25)

6.2 Scattering Model

In this paper we restrict to point symmetrical and
translation invariant scattering, leaving out non-
symmetries and lens flare effects.

This can be modeled as convolution with a
point spread function (PSF) Q for which

Di = Bi ∗Q, (26)

where ∗ expresses a convolution operation with
zero border condition:

(B ∗Q)(u) =

∫
v∈Ω

B(v) ·Q(u− v) dv. (27)

For brevity, we define a (semi) scalar product and
corresponding semi-norm4 over Mi as

〈f, g〉Mi
=
∑
u∈Mi

f(u)g(u), (28)

‖f‖Mi
=
√
〈f, f〉Mi

. (29)

We then try to find a PSF Q which minimizes

F (Q) = 1
2

∑
j

‖Di − (Bi ∗Q)‖2Mi
, (30)

where we model Q as a sum of Gaussian-shaped
functions Qj with a fixed set of σj

Q(u) =
∑
j

qjQj(u) =
∑
j

qj exp
(
− |u|

2

2σ2
j

)
. (31)

Inserting (31) into (30) and exploiting the linear-
ity of convolutions and the bilinearity of the scalar
product, we calculate

F (Q) = 1
2

∑
i

(
‖Di‖2Mi

− 2 〈Di, Bi ∗Q〉Mi

+ ‖Bi ∗Q‖2Mi

) (32)

= 1
2

∑
i ‖Di‖2Mi︸ ︷︷ ︸

=:c

−
∑
j

∑
i 〈Bi ∗Qj , Di〉Mi︸ ︷︷ ︸

=:bj

qj

+ 1
2

∑
j,k

∑
i 〈Bi ∗Qj , Bi ∗Qk〉Mi︸ ︷︷ ︸

=:Ajk

qjqk. (33)

4Because we are masking out pixels, we can have
non-zero images with zero norm.



(a) Original and De-
convoluted test image

(b) Magnitude of error in test images be-
fore and after deconvolution

(c) Distance difference to ground-truth be-
fore (red) and after (green) deconvolution

Figure 8: Figures (a) and (b) show the results of deconvoluting the training images. Figure (c) shows the
difference to a checkerboard ground-truth distance, before and after compensating the scattering effect dependent
on the magnitude of received light.

Collecting the coefficients qj into a vector q this
leads to a simple linear least squares problem:

F (Q) = min
Q

!⇔ 1
2q
>Aq − b>q + 1

2c = min
q

! (34)

⇔ Aq = b. (35)

6.3 Inverse Lens Scattering

The previous subsections described how we esti-
mated the point spread function, describing the
scattering. We will now show how this is compen-
sated using Fourier transformations. The mea-
sured image Ĩ can be computed from the un-
scattered image as Ĩ = I + (I ∗ Q). Using the
identity δ ∗ I = I and applying the convolution
theorem, we can write

Ĩ = (δ +Q) ∗ I = F−1
(
F(δ +Q) · F(I)

)
(36)

⇔ I = F−1
(
F(Ĩ)/F(δ +Q)

)
. (37)

As Fδ ≡ 1 and Q is small, we can safely divide
by F(δ + Q) in the Fourier space. Also, as Q is
fixed, we only need to compute 1/(F(δ+Q)) once
and can then compensate arbitrary images by
only calculating one forward Fourier transform, a
per-element multiplication of the Fourier images
and one backward Fourier transform. This can
be done directly using complex images, since we
always have two corresponding values per pixel.

6.4 Results

Fig. 8 summarizes the effect of compensating
scattering effects on different kind of images. The
resulting point spread function is shown in Fig. 9.

Figure 9: Point spread function Q as a function of
the radius.

(a) Mockup with markers (b) 3D view
Figure 10: Mockup with markers

7 RESULTS

To verify our combined calibration efforts, we set
up a Styrofoam mock-up (Fig. 10), motivated by
an urban search and rescue scenario. We marked
several spots inside the mock-up and measured



(a) White 205mm (b) Black 205mm

(c) White 750mm (d) Black 750mm

(e) Reflector 340mm (f) Reflector 1310mm
Figure 11: Distance measurements of pixels with
hand-measured groundtruth. Green crosses are our
inverse model applied to single measurements, blue
stars are HDR recordings accumulated starting from
4 µs. Red pluses mark the values obtained from the
manufacturer’s driver and the violet bar is the hand-
measured groundtruth for comparison.
On close ranges (a) or on highly reflective targets (e,
f) single measurements quickly saturate, while the
HDR model still works, ignoring saturated values.
The manufacturer seems to model saturated values
better, however the benefit of HDR recordings is ap-
parent. The black are of the marker in (d) is overlayed
by lens-scattering and multi path reflections.

the distance to the camera using a tape measure
which we used as ground-truth for comparison.

We then made 64 recordings of the scene with
different integration times from 8 to 8192 µs and
we calculated the mean difference and standard
deviation for several evaluation methods. The re-
sults are shown in Fig. 11

8 CONCLUSIONS AND
FUTURE WORK

The main contribution of this paper is to pro-
vide a ToF sensor model which handles different

integration times and thus is capable of produc-
ing HDR images. In contrast to previous cal-
ibration approaches we try to generate an ac-
curate model from the beginning instead of ad-
justing the simplistic model given in (4). Being
capable of recording HDR images we showed a
straight-forward method to calibrate and com-
pensate lens-scattering effects. We believe that
exact HDR images are also required to reliably
compensate effects of multi-path-reflections.

Furthermore, no extensive calibration equip-
ment is required. In principle, a checkerboard and
a white wall with self-printed markers is sufficient.
However, some kind of automatically moving de-
vice (such as a PTU or a robot arm) helps to sig-
nificantly reduce the manual work and increase
the accuracy. We conclude by listing some phe-
nomena left out in this paper, we esteem worth-
while investigating.

8.1 Temperature Compensation

It should be possible to take the temperature of
the sensor and LED into account in the sensor
model. As both temperatures are measured with
an unknown delay, this also requires modeling
how the actual sensor temperature changes given
certain integration or waiting times and ambient
temperature (which also usually is not known ex-
actly). Furthermore, the temperature may have
different effects on the generated light wave and
the photon response curve. This is hard to de-
termine since the temperature of both cannot be
varied independently.

8.2 Ambient Light Effects

Fig. 12 shows how strong ambient light can have
nontrivial effects on the generated signal. Par-
tially, this is compensated by SBI (Möller et al.,
2005, §4.2), but this compensation is not perfect.
We left this calibration out, since pure ambient
light is not directly measurable by our sensor and
has very different effects on different pixels. Also
our application will usually assume very little am-
bient light, which we assume to be negligible.

8.3 Multi-Path Reflections

Very complex problems arise if multi-path reflex-
ions are to be considered. We think, essentially
this can only be solved by applying an actual ray-
caster to a model of the scene and successively re-
fine this model (Jimenez et al., 2012). The prob-



Figure 12: Raw values of PMD sensor, showing non-
linearities and saturation effects. Each line are raw
values of a single pixel in each sub-image. The right
axis is the integration time in µs. Thick lines are with
high back-light illumination, thin lines with almost
no back-light. Notice that none of the thick curves is
monotonic and all have substantial bends at approx-
imately the same integration time. This behavior is
different for different pixels and also depends on the
temperature of the sensor.

lem gets arbitrary complex, if surfaces with non-
Lambertian reflection (such as mirrors or retro-
reflectors) or surfaces outside the camera’s field
of view have to be considered.
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