
Noname manuscript No.
(will be inserted by the editor)

Iterated D-SLAM Map Joining
Evaluating its performance in terms of consistency, accuracy and efficiency

Shoudong Huang · Zhan Wang · Gamini Dissanayake · Udo Frese

Received: date / Accepted: date

Abstract This paper presents a new map joining al-
gorithm and a set of metrics for evaluating the perfor-
mance of mapping techniques.

The input to the new map joining algorithm is a
sequence of local maps containing the feature positions
and the final robot pose in a local frame of reference.
The output is a global map containing the global po-
sitions of all the features but without any robot poses.
The algorithm builds on the D-SLAM mapping algo-
rithm [1] and uses iterations to improve the estimates in
the map joining step. So it is called Iterated D-SLAM
Map Joining (I-DMJ). When joining maps I-DMJ ig-
nores the odometry information connecting successive
maps. This is the key to I-DMJ efficiency, because it
makes both the information matrix exactly sparse and
the size of the state vector bounded by the number of
features.

The paper proposes metrics for quantifying the per-
formance of different mapping algorithms focusing on
evaluating their consistency, accuracy and efficiency.
The I-DMJ algorithm and a number of existing SLAM
algorithms are evaluated using the proposed metrics.
The simulation data sets and a preprocessed Victoria
Park data set used in this paper are made available to
enable interested researchers to compare their mapping
algorithms with I-DMJ.

S. Huang, Z. Wang, G. Dissanayake
Faculty of Engineering and Information Technology, ARC Centre
of Excellence for Autonomous Systems, The University of Tech-
nology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
Tel.: +61-2-95142964
Fax: +61-2-95142655
E-mail: {sdhuang,zhwang,gdissa}@eng.uts.edu.au

U. Frese
University of Bremen, Germany
E-mail: ufrese@informatik.uni-bremen.de

Keywords SLAM · Consistency · Sparse matrix

1 Introduction

Recently, many SLAM algorithms that can efficiently
solve large-scale SLAM problems have become available
(e.g. see [2] and the references therein). Especially, dif-
ferent techniques exploiting the sparseness of the infor-
mation matrix of the SLAM problem have been shown
to significantly reduce the computational cost. One way
to achieve sparseness is to keep all or part of the robot
poses in the state vector. This, however, results in an
increase in the size of the state vector even when the
robot is revisiting the previously observed places, which
seems to be unnecessary in an ideal SLAM algorithm
[3]. Apart from the computational issue, another even
more important issue that is receiving attention in the
SLAM community is consistency [4][5]. Recently it has
become clear that the major cause of SLAM inconsis-
tency is due to the fact that the Jacobian of observation
functions with respect to a feature gets evaluated at dif-
ferent feature location estimates, resulting in the flow
of incorrect information to the estimation process [6][7].

This paper makes two main contributions. The first
is a new SLAM algorithm for the mapping of large-
scale environments by combining local maps – Iterated
D-SLAM Map Joining (I-DMJ). The local maps can
be generated by any reliable SLAM algorithm (such as
Maximum Likelihood (ML)1 approach). Relationships
between the locations of the features in the local map
are then extracted and used to build a global map.
There are three important features of this algorithm:
(1) The global map state vector only contains the fea-
ture positions but no robot pose, thus the size of the

1 also called Smoothing and Mapping (SAM)



2

state vector does not increase when the robot revisits
previously observed places. (2) When joining maps I-
DMJ ignores the odometry information connecting suc-
cessive maps. This makes the information matrix for the
global map exactly sparse, leading to significant compu-
tational advantages. (3) In the global map building pro-
cess, the Jacobians with respect to the same feature are
evaluated at the same feature location estimate, which
improves the consistency of the global map estimate.

The second contribution is on quantitatively evalu-
ating the consistency, accuracy and efficiency of map-
ping algorithms. Although many SLAM algorithms have
been published in the literature, currently there is no
systematic way to evaluate their performance. In this
paper a number of metrics are proposed and the perfor-
mance of some existing SLAM algorithms and I-DMJ
are evaluated using these metrics.

The paper is organized as follows. Section 2 de-
scribes the key features of the I-DMJ algorithm. The
details of the I-DMJ algorithm is given in Section 3.
In Section 4, some metrics used to compare different
mapping algorithms are proposed and discussed. Sec-
tion 5 uses a number of simulation and experimental
examples to compare I-DMJ with some other mapping
algorithms. Section 6 concludes the paper.

2 Some key features of I-DMJ algorithm

The I-DMJ algorithm combines the ideas of D-SLAM
[1] and Iterated Sparse Local Submap Joining Filter (I-
SLSJF) [29] for building feature-only global map. This
section lists the key features of the I-DMJ algorithm.

2.1 Obtaining relative information from the local map

The local map provides the position of the local fea-
tures and the final robot pose in a coordinate frame
located at the robot start pose when building the local
map. This information is first converted into the relative
information among the features, such as the distances
and angles among the features. Fig. 1 illustrates the
physical meaning of the relative information.

Use of relative information among features makes it
possible to formulate the map joining problem where
the only variables are the feature positions. Thus robot
poses are no longer needed in the global state vector.

2.2 Use of two common features to link the local maps
together

As shown in Fig. 2, with at least two common features,
the relative information gathered from the local maps

Fig. 1 Relative location information among features f1, f2, f3 –
distances d12, d13 and angle α312

can be fused together to build a single global map in a
common coordinate frame.

Fig. 2 Use common features to link the local maps together

When two consecutive local maps do not contain
at least two common features, “admissible local maps”
can be constructed from a set of local maps to satisfy
this condition. The details of the process required are
given in Section 3.3.

2.3 Formulating map joining as an optimization
problem

Since the local map information has been transferred
into relative information among features, the map join-
ing problem can be formulated as a least squares prob-
lem. The variables to be estimated are the global posi-
tion of all the features.

An accurate solution to the optimization problem
is obtained by combining Extended Information Filter



3

(EIF) with smoothing. Since the Jacobians with respect
to the same feature are evaluated at the same feature
location estimate, the consistency of the global map
estimate is improved.

2.4 Sparse information matrix

Since the map joining problem is a large-scale least
squares optimization problem where the information is
the relationships among nearby features within a small
local map, the information matrix is naturally sparse.
Fig. 3 illustrates this.

Fig. 3 Each feature is only linked to the features that share the
same local map with it.

3 The I-DMJ algorithm

This section provides the details of the I-DMJ algo-
rithm.

3.1 The input and output

The input to the I-DMJ is a sequence of local maps con-
structed by some SLAM algorithm, which is the same
as that of Sparse Local Submap Joining Filter (SLSJF)
[27] and I-SLSJF [29]. A local map is denoted by

(X̂L, PL) (1)

where X̂L (the superscript ‘L’ stands for the local map)
is an estimate of the state vector

XL = (XL
r , XL

1 , · · · , XL
n )

= (xL
r , yL

r , φL
r , xL

1 , yL
1 , · · · , xL

n , yL
n )

(2)

and PL is the associated covariance matrix. The state
vector XL contains the robot final pose XL

r (the sub-
script ‘r’ stands for the robot) and all the local feature
positions XL

1 , · · · , XL
n , as typically generated by con-

ventional EKF SLAM. The coordinate system of a lo-
cal map is defined by the robot pose when the building
of the local map is started, i.e. the robot starts at the
coordinate origin of the local map.

It is assumed that the robot starts to build local
map k + 1 as soon as it finishes local map k. Therefore
the robot end pose of local map k is the same as the
robot start pose of local map k + 1.

The output of I-DMJ is a global map. The global
map state vector contains all the feature positions (all
the shaded features in Fig. 3). The global map result is
given in the form of a global state estimate, an infor-
mation vector and an information matrix.

3.2 The overall structure of I-DMJ

The overall structure of I-DMJ is presented in Algo-
rithm 1.

Algorithm 1 Overall structure of I-DMJ
1: Combine local maps into “admissible” local maps
2: Set local map 1 as the global map
3: For k = 1 : s − 1 (s is the total number of admissible local

maps),
fuse local map k + 1 into the global map

4: End

3.3 Combining local maps into “admissible” local
maps

The objective of building “admissible” local maps is to
make sure there are at least two common features be-
tween two consecutive local maps. We therefore check,
whether this is already the case. If not, some local maps
are combined together (e.g. using I-SLSJF [29]) to con-
struct one new “admissible” local map.

Fig. 4 shows an example of this process. There are
less than two common features between local map 1
and local map 2 as well as between local map 2 and
local map 3, but there are two common features be-
tween local map 3 and local map 4, so local maps 1-3
are combined as a new “admissible” local map 1. The
new local map contains all the features involved in local
maps 1-3 as well as the final robot pose in local map
3. The coordinate frame of the new local map 1 is the
same as that of the old local map 1.



4

Fig. 4 Local maps 1-3 are combined to form a new “admissible”
local map 1.

3.4 The steps required for fusing local map into global
map

The steps used in fusing admissible local map k+1 into
the global map are listed in Algorithm 2.

Algorithm 2 Fuse local map k + 1 into global map
1: Convert the local map into relative position information

among features
2: Data association
3: Initialization new features using EIF
4: Update using EIF
5: Use least squares to do smoothing when necessary

3.5 Obtaining relative information from the local map

Suppose features 1 and 2 in the local map are present
in the existing global map. The relative distances and
angles from other features with respect to features 1
and 2 can be computed by:

zL
rel =




d12

α312

d13

...
αn12

d1n




=




√
(x̂L

2 − x̂L
1 )2 + (ŷL

2 − ŷL
1 )2

atan2
(

ŷL
3 −ŷL

1
x̂L
3 −x̂L

1

)
− atan2

(
ŷL
2 −ŷL

1
x̂L
2 −x̂L

1

)
√

(x̂L
3 − x̂L

1 )2 + (ŷL
3 − ŷL

1 )2
...

atan2
(

ŷL
n−ŷL

1
x̂L

n−x̂L
1

)
− atan2

(
ŷL
2 −ŷL

1
x̂L
2 −x̂L

1

)
√

(x̂L
n − x̂L

1 )2 + (ŷL
n − ŷL

1 )2




(3)

The physical meaning of the distances and angles is
shown in Fig. 1.

The corresponding covariance matrix of the noise
on these relative information, PL

rel, can be computed

by the Jacobian of the relationship between the local
map and the relative information (3), together with the
covariance matrix of the local map (PL in (1)). The
process is the same as that of D-SLAM Map Joining
(DMJ) [18].

3.6 Data association

Data association here refers to finding those features
present in local map k + 1 that are already included in
the global map and their corresponding indices in the
global state vector.

Due to the admissibility condition for local maps,
there are at least two features in the local map that are
already included in the global map. Hence, the local
map and the global map can be transferred into the
same coordinate system and the data association can
be performed in a way similar to the data association in
SLSJF [27]. Note that one of the key steps is to recover
the covariance sub-matrix corresponding to the possibly
matched features.

When the estimation error is too large (e.g. just be-
fore closing a large loop), some global localization tech-
nique (such as [28]) is necessary for finding the match
between the local map and the global map.

3.7 Local map fusion as a least squares problem

The relative information (zL
rel, P

L
rel) can be treated as a

measurement of the true relative positions among the
features with a zero-mean Gaussian noise whose covari-
ance matrix is PL

rel. Computing a global map from this
information is just a standard non-linear least square
problem. It is linearized and converted into a (sparse)
linear equation system and then solved with (sparse)
Cholesky decomposition [26, §2.7].

To state it clearly, suppose the features involved in
the local map are XG

1 = (xG
1 , yG

1 ), · · · , XG
n = (xG

n , yG
n ),

then the relative information of the local map zL
rel can

be regarded as a measurement of the true relative po-
sitions among the features XG

1 , · · · , XG
n . That is,

zL
rel = H(XG(k)) + wmap (4)

where XG(k) is the global state vector after fusing local
map k, and H(XG(k)) is the vector of relative positions



5

given by

H(XG) =




√
(xG

2 − xG
1 )2 + (yG

2 − yG
1 )2

atan2
(

yG
3 −yG

1
xG
3 −xG

1

)
− atan2

(
yG
2 −yG

1
xG
2 −xG

1

)
√

(xG
3 − xG

1 )2 + (yG
3 − yG

1 )2
...

atan2
(

yG
n−yG

1
xG

n−xG
1

)
− atan2

(
yG
2 −yG

1
xG
2 −xG

1

)
√

(xG
n − xG

1 )2 + (yG
n − yG

1 )2




(5)

and wmap is the zero-mean measurement noise whose
covariance matrix is PL

rel.
So the problem of fusing the admissible local maps

1 to k is to estimate the global state XG(k) using all
the local map information (4) for j = 1, · · · , k. This
problem can be formulated as a least squares problem:

min
XG(k)

k∑

j=1

(zLj
rel −Hj(XG(k)))T (PLj

rel)
−1

(zLj
rel −Hj(XG(k))),

(6)

where (zLj
rel, P

Lj
rel) is the relative information computed

from local map j, and Hj is the function in (5) applied
to local map j.

The least squares problem can be solved iteratively.
In fact, the following linear equation can be used to
compute the new estimate X̂G

new(k) when the previous
estimate X̂G

old(k) is available:




k∑

j=1

∇HT
j (PLj

rel)
−1∇Hj


 X̂G

new(k)

=
k∑

j=1

∇HT
j (PLj

rel)
−1[zLj

rel −Hj(X̂G
old(k)) +∇HjX̂

G
old(k)]

(7)

where ∇Hj is the Jacobian of the function Hj with
respect to XG(k) evaluated at X̂G

old(k).
In (7), the matrix

I(k) =
k∑

j=1

∇HT
j (PLj

rel)
−1∇Hj (8)

is called information matrix. The vector

i(k) =
k∑

j=1

∇HT
j (PLj

rel)
−1[zLj

rel −Hj(X̂G
old(k))

+∇HjX̂
G
old(k)]

(9)

is called information vector. Note that the information
matrix is an exactly sparse matrix, so the state esti-
mate X̂G

new(k) can be obtained by solving a sparse lin-
ear equation, which can be done efficiently by sparse
Cholesky decomposition.

3.8 Initialize the unmatched features

The initial values of the global positions of all unmatched
features in local map k + 1 are computed (using zL

rel

and the estimate of the global position of the two com-
mon features) and inserted to X̂G(k). The dimensions
of i(k), I(k) are increased by adding zeros correspond-
ing to the new added features.

3.9 Update the global map using EIF

The process of updating the global map using EIF is
stated in Algorithm 3. The details is similar to those of
SLSJF [27] and I-SLSJF [29] and is omitted here.

Algorithm 3 Update using EIF
1: Compute the information matrix and information vector us-

ing EIF
2: Reorder the global map state vector when necessary
3: Compute the Cholesky Factorization of I(k + 1)
4: Recover the global map state estimate X̂G(k + 1)

3.10 Smoothing by iteration using least squares

Whenever the change of state estimate computed by the
EIF is larger than a predefined threshold, a smoothing
step is performed. The steps for smoothing using the
least squares method are listed in Algorithm 4.

Algorithm 4 Smoothing using least squares
1: Recompute the information matrix I(k +1) and the informa-

tion vector i(k + 1)
2: Compute the Cholesky Factorization of I(k + 1)
3: Recover the global map state estimate X̂G(k + 1)
4: Repeat the above process until X̂G(k + 1) converges.

When recomputing the information matrix I(k +1)
and the information vector i(k + 1), the most recent
global state estimate is used.

3.11 Pros and cons of I-DMJ

As compared with ML, the dimension of the state vec-
tor in I-DMJ only depends on the number of features
and thus is significantly lower. Moreover, the number
of global map update operations in I-DMJ is equal to
the number of local maps which is only a small frac-
tion of the total number of time steps. In addition, the



6

exact sparseness of the information matrix is still main-
tained, so the I-DMJ algorithm is computationally very
efficient. An obvious question to pose is “what is sacri-
ficed in the proposed I-DMJ algorithm”?

In I-DMJ, the local maps are first transferred into
the relative positions information among the local map
features, then the relative information is treated as an
integrated measurement in the global map building. By
doing so, all the features within the same local map
have links with each other in the information matrix,
where as these feature-to-feature links do not exist in
the ML information matrix. That is, while still sparse,
the information matrix in I-DMJ is “denser” than that
in ML.

More importantly, I-DMJ is actually solving a slightly
different optimization problem as compared with the
optimization problem solved by ML. When the Gaus-
sian relative information (zL

rel, P
L
rel) consistently repre-

sent the local map feature relationships, it can be ar-
gued that the new optimization problem formulated in
I-DMJ is a simplified version of the original ML opti-
mization problem. However, both the local map build-
ing process and coordinate transformation process in-
volve linearization. Because of the linearization, it may
be inaccurate to use Gaussian distribution (zL

rel, P
L
rel)

to represent the relative information of the local map.
Furthermore, in the I-DMJ algorithm, even though

the Jacobians are re-evaluated in computing the global
map, the Jacobians used to compute PL

rel are never re-
evaluated. Although it can be argued that the effect of
this source of linearization error should be minor be-
cause the local maps are all with small sizes, the poten-
tially inconsistency due to this still exists.

Since no robot pose is present in the state vector of
I-DMJ, the odometry information corresponding to the
robot’s pose change between consecutive local maps is
not used in the map joining. This information loss may
result in less accurate estimate as compared with ML.
Because most of the odometry information has already
been exploited in the local map building process, this
information loss is relatively small compared to all the
information available, especially when the observation
sensor is of good quality and with a high sensing rate.

Overall, there will be some difference between the I-
DMJ solution and the ML map solution. How large the
difference is mainly depends on the quality of the local
maps. To improve the quality of the local maps, we rec-
ommend to use ML to build them (and then marginalize
out the previous robot poses).

In I-DMJ, the robot poses in the global coordinate
frame are not estimated. If it is necessary to estimate
the global robot trajectory, the localization process in
D-SLAM [1] can be used to obtain an estimate of the co-

ordinate frames of the local maps. Combining the coor-
dinate frames with the local robot trajectory (e.g. from
the ML local map), an estimate of the global robot tra-
jectory can be obtained. Alternatively, an estimate of
the robot trajectory can be computed by solving a least
squares problem with all the feature positions fixed at
the I-DMJ estimate 2.

As compared to DMJ [18], I-DMJ performs some
extra smoothing steps aiming to produce more consis-
tent estimates. So the computational cost of I-DMJ is
higher than that of DMJ.

In summary, like many other SLAM algorithms, there
are some tradeoffs among consistency, accuracy and ef-
ficiency in the proposed I-DMJ algorithm. In the next
section, we will propose some metrics for quantifying
the consistency, accuracy and efficiency of SLAM algo-
rithms such that the tradeoffs of different SLAM algo-
rithms can be compared.

4 Metrics for quantifying the performance of
mapping algorithms

Quantitatively comparing the performance of different
mapping algorithms is extremely important for future
deployment of mapping in real applications. The perfor-
mance of an algorithm covers a broad range of aspects.
In this paper, we only focus on the performance in terms
of consistency, accuracy and efficiency for point feature
based SLAM algorithms.

4.1 Consistency

For SLAM algorithms, estimate consistency is arguably
more important than the computational efficiency of
the algorithm. A good SLAM algorithm should always
provide some sort of confidence level (such as the covari-
ance) on the estimate computed so that the outcomes
can be used effectively in making decisions while giv-
ing due consideration to the errors these contain. An
inconsistent result can be either overconfident or con-
servative in terms of the confidence level. It could be
argued that overconfident estimates are more harmful
than conservative estimates as the resulting decisions
based on an overconfident result may lead to mission
failure.

4.1.1 A fundamental cause of SLAM inconsistency

Recently, the SLAM consistency issue has been revis-
ited by a number of researchers. It has become clear

2 This problem is solved in Section 4.2.2 to compare the accu-
racy of the experimental results of different mapping algorithms.



7

that the most significant cause of overconfident esti-
mate for a SLAM algorithm is due to the fact that
the Jacobian of observation/odometry functions with
respect to the same feature/pose gets evaluated at dif-
ferent feature/pose location estimates, resulting in the
flow of incorrect information to the estimation process
[6][7]. Some examples are given in the following to ex-
plain this.

Sequential update vs batch update of the EKF SLAM.
Assume that the robot can observe more than one fea-
tures at some observation points and the sequential up-
date uses the observations one by one to update the
state estimate. Instead, the batch update strategy uses
all the observations made at the same observation point
as an integrated observation and updates the state only
once. During sequential updates, the estimate of the
current robot pose (the observation point) is changed
slightly after each update step, so the Jacobian with re-
spect to the current robot pose is evaluated at slightly
different values at each update step. This makes the
EKF with sequential update overconfident. Fig. 6(a)
and Fig. 6(b) show that the behaviour of the two algo-
rithms is significantly different.

This is remarkable, since with sequential EKF Ja-
cobians are evaluated with a later, i.e. more precise es-
timate as linearization point. The implication is that
evaluating the Jacobian at the same linearization point
is more important than evaluating it at a good lineariza-
tion point [7].

EKF SLAM vs ML. In the EKF algorithm (using batch
update), when the observations made from different
poses to the same feature are used to update the es-
timate, the Jacobians with respect to the same feature
are evaluated at different estimate values. Since the pre-
vious poses are not included in the traditional SLAM
state vector, this issue cannot be avoided and thus EKF
performs worse than ML, in which all the robot poses
are included in the state vector and the Jacobians can
be re-evaluated at any time step. Fig. 7(a) and Fig.
7(b) show the large difference between the performance
of the two algorithms.

SLSJF vs I-SLSJF. In SLSJF [27], a single EIF is used
for the global map estimation and the Jacobians are
never recomputed, so the same issue arises. I-SLSJF [29]
overcomes this issue by recomputing the Jacobians and
information matrices whenever it is found necessary.
The examples in [29] show the improvement of I-SLSJF
over SLSJF.

DMJ[18] vs I-DMJ. Similar to the above, I-DMJ does
smoothing and iterations by recomputing the Jacobians
whenever necessary and thus performs better than the
DMJ algorithm. Fig. 8(b) and Fig. 8(d) show that the
behaviour of the two algorithms is different.

4.1.2 Quantification of estimation consistency in
simulation

The consistency of an algorithm can be examined in
simulation by performing Monte Carlo runs. For exam-
ple, it is possible to perform a large number of simu-
lations with independent sensor noises and use the re-
sulting state estimates as samples to generate the error
covariance. Comparing this covariance with the one ob-
tained from the mapping algorithm will give us a quan-
titative measure of the consistency of the mapping algo-
rithm. The comparison between the two covariances can
be performed by calculating the generalized eigenvalue
spectrum of one covariance matrix relative to the other
[3]. Another way to quantify the consistency is to com-
pute the average normalised estimation error squared
(NEES) of different runs [4], and then perform a χ2 (chi-
square) test. More discussion on these two approaches
are given in the following sections. In Section 5, we use
a small simulation data set to demonstrate the two ap-
proaches.

For large-scale problems where performing Monte
Carlo simulations is very time consuming, a simpler
(but inadequate because the error sequence is correlated
[4]) consistency check can be performed by examining
the sequence of NEES over a single simulation run. Al-
though this is not adequate for consistency check of
a particular algorithm, it may still be used to compare
the consistency of different algorithms. In Section 5, the
consistency of different algorithms are compared using
this strategy with some larger simulation data sets.

4.1.3 Comparison of covariances using generalized
eigenvalues

The NEES is a single number which should have a
χ2(2N) distribution (where N is the number of features
in the map) and allows us to assess the consistency of
a 2N -dimensional map estimate. However, it combines
the error in all 2N dimensions into one number. Thus
NEES is not able to adequately deal with the scenario
where some aspect of the estimate was overconfident
and some aspect was conservative.

Is there a way to assess the consistency in all aspects
of the map? There is [3], but more data is needed to
do so. The algorithm must be run many times with
independent measurement noise, so the error covariance



8

of the algorithm’s estimate can be estimated by Monte
Carlo simulation as

PMC =
1
r

r∑

l=1

(x̂l − x)(x̂l − x)T (10)

where r is the number of Monte Carlo runs, x̂l is the
estimate from the l-th run and x is the ground truth.
Ideally, x̂l and x should be the estimate and the ground
truth of the whole map XG but then too many Monte
Carlo runs are necessary to approximate the error co-
variance of the estimate of the 2N -dimensional map.
So in the simulation example in Section 5.1.1, x only
represents the positions of 3 selected features.

Let P be the average of the algorithm’s own covari-
ance given by

P̄ =
1
r

r∑

l=1

Pl (11)

where Pl is the covariance of the l-th run.
Now for every direction g in state space, i.e. every

aspect of the map, we are interested in the actual error√
gT PMCg of the algorithm as compared to the esti-

mated error
√

gT P̄ g. If the ratio

ruc(g) =

√
gT PMCg

gT P̄ g
(12)

is > 1, then the algorithm is overconfident in direction
g; if the ratio is < 1, then the algorithm is conser-
vative in direction g. Now, the key point is, that the
value ruc(g) for different g can be characterized by the
so-called generalized eigenvalues λi and eigenvectors vi

(1 ≤ i ≤ 2N), defined by

PMCvi = λiP̄ vi. (13)

These have the following properties

vT
i PMCvi = λi, vT

i P̄ vi = 1, ∀i, (14)

vT
i PMCvj = 0, vT

i P̄ vj = 0, ∀i 6= j. (15)

This means, the vi are uncorrelated directions both in
PMC and P̄ and have ruc(vi) =

√
λi as error ratio.

Hence the spectrum of generalized eigenvalues λi char-
acterizes the consistency in every aspect of the map in
a very concise way.

With the same method one can also compare the
error of one algorithm relative to another algorithm in
all aspects of the map, simply by considering the co-
variances obtained by (10) for both algorithms.

4.1.4 Relation between NEES and generalized
eigenvalues

The question arises, whether there is a relation between
NEES as a one-number indicator of consistency and the
λi. Indeed, roughly the sum

∑2N
i=1 λi equals the average

NEES. The term “roughly” corresponds to the follow-
ing: Normally, if one conducts r Monte-Carlo runs of
an algorithm one would compute the average NEES as

NEES =
1
r

r∑

l=1

(x̂l − x)T P−1
l (x̂l − x), (16)

i.e. would use the l-th estimate (x̂l) and l-th covariance
(Pl) to compute the l-th NEES. However, while the
estimation errors are completely different each run, Pl

should be roughly the same, since it would be exactly
the same in the linear case. So (16) is approximately

NEES ≈ 1
r

r∑

l=1

(x̂l − x)T P̄−1(x̂l − x), (17)

with P̄ given by (11).
Now we prove that this approximate of NEES is

equal to the sum of the generalized eigenvalues, that is

1
r

r∑

l=1

(x̂l − x)T P̄−1(x̂l − x) =
2N∑

i=1

λi. (18)

Let LLT = P̄ be the Cholesky-decomposition of P̄ .
Then LT vi are eigenvectors of L−1PMCL−T , since

(L−1PMCL−T )(LT vi) = L−1PMCvi

= λiL
−1P̄ vi

= λiL
−1LLT vi

= λi(LT vi).

(19)

So,
∑2N

i=1 λi = tr(L−1PMCL−T ). With this we can con-
clude, that

1
r

∑r
l=1(x̂l − x)T P̄−1(x̂l − x)

= 1
r

∑r
l=1(x̂l − x)T L−T L−1(x̂l − x)

= 1
r

∑r
l=1

(
L−1(x̂l − x)

)T (
L−1(x̂l − x)

)

= 1
r tr

(∑r
l=1

(
L−1(x̂l − x)

) (
L−1(x̂l − x)

)T
)

= 1
r tr

(
L−1

(∑r
l=1(x̂l − x)(x̂l − x)T

)
L−T

)
= tr

(
L−1PMCL−T

)

=
∑2N

i=1 λi.

(20)

In Tables 2, both the average NEES and the sum
of the eigenvalues are presented to show that they are
“roughly” equal.



9

4.1.5 Quantification of estimation consistency in
experimental results

Evaluating the consistency of an estimator on an ex-
perimental data set is almost impossible. One reason
is that ground truth is normally not available. Another
reason is that it is almost impossible to repeat the same
experiment (with the same trajectory but different in-
dependent noise) many times.

Although a proper quantification of algorithm con-
sistency using a single experimental data is unlikely to
be available, it is possible to perform some checks on the
estimation results to provide some indication of whether
the estimate might be consistent or not. These are dis-
cussed in the following.

If the ground truth of the feature positions is avail-
able, then the sequence of NEES over the different steps
can be used to perform a consistency check. When the
ground truth of the feature positions is not available but
some other ground truth information related to the true
feature positions is available, some consistency checks
are possible. Two examples are given below.

Case 1: the relative information among a few
features (together with the associated uncertain-
ties) is available. This information can be obtained
by, for example, measuring the distances between these
features by hand.

The relative information Z is a function of the state
vector X (the state vector X of a mapping algorithm
may also contain some robot poses but it should contain
all the feature positions). We use F (X) to express this
function. Denote the relative information available as
Ẑ with a covariance matrix PZ representing its uncer-
tainty. Then the information available can be expressed
as

F (X) ∼ N(Ẑ, PZ). (21)

From the estimation result of the algorithm, the
state estimate X̂ and the corresponding covariance ma-
trix PX , we can get an estimate of F (X), F (X̂), to-
gether with a covariance matrix PZX . One simple way
to compute PZX is using PZX = FXPXFT

X where FX

is the Jacobian of the function F with respect to X

evaluated at X̂.
Suppose the mapping algorithm is consistent, then

X ∼ N(X̂, PX) (22)

and

F (X) ∼ N(F (X̂), PZX) (23)

provided that X̂ is close enough to X and the lineariza-
tion is applicable.

From (23) and (21), we can perform a χ2 (chi-square)
test by computing

(Z − F (X̂))T (PZ + PZX)−1(Z − F (X̂)) (24)

and comparing it with the 99% (or 95%) probability
concentration region of a χ2 distribution with dim(F (X))
degrees of freedom.

Case 2: true data associations between some
measurements are available. In this case, the cor-
rect data association information can be used for a con-
sistency check.

Suppose the correct data association tells that f1

and f2 are the same feature. We can first implement a
mapping algorithm assuming f1 and f2 are two differ-
ent features and obtain the state estimate X̂ and the
corresponding covariance matrix PX . The difference be-
tween the two feature positions can be expressed as a
function of the state vector,

d = G(X) = Xf1 −Xf2 ,

where Xf1 and Xf1 denote the positions of features f1

and f2, respectively. So an estimate of d and the asso-
ciated covariance matrix can be obtained by

d̂ = X̂f1 − X̂f2 , Pd = GXPXGT
X , (25)

where GX is the Jacobian of G evaluated at X̂.
Suppose the mapping algorithm is consistent, then

because the true value of d is 0, then

d̂P−1
d d̂T = (X̂f1 − X̂f2)

T P−1
d (X̂f1 − X̂f2) (26)

should pass the χ2 test with 2 degrees of freedom (for
2D feature mapping).

This approach can be generalized to using the true
data association of a few pairs of features for a consis-
tency check.

In summary, any ground truth information related
to the state vector can be used to perform a check on
the algorithm consistency. Obviously, passing the check
does not mean the algorithm is absolutely consistent.

Please note that for both the above two cases, the
whole covariance PX is not necessary for the consis-
tency check. It is only required that covariance sub-
matrix corresponding to the related features is avail-
able. Thus the approaches can be applied to informa-
tion filter based algorithms where the whole covari-
ance matrix is not maintained (efficient covariance sub-
matrix recovery techniques are available in [16] [27], for
example).



10

4.2 Accuracy

4.2.1 Quantification of estimation accuracy in
simulation

If both algorithms are consistent, then the accuracy
comparison can be done by comparing the covariance
matrices produced by the two algorithms. In simula-
tion, the best way is to perform Monte Carlo runs and
compare the PMC in (10) from the two algorithms. The
two covariance matrices can be properly compared by
computing the generalized eigenvalues. As “the minimal
uncertainty that could be theoretically derived from the
information available” is from the optimal ML estimate,
it is reasonable to treat the ML covariance matrix as a
benchmark [3].

4.2.2 Quantification of estimation accuracy in
experiments

The accuracy comparison of different algorithms using
only one experimental data is extremely difficult (and
even impossible) when the ground truth of the feature
positions is not available, mainly because that the con-
sistency can not be checked properly.

When the ground truth of data association and the
statistical properties of the sensor noises on odometry
and observations are available, it can be argued that
the best solution one can achieve is the ML solution
that minimizes the χ2 error defined by

χ2 (X) = χ2

(
Xf

Xr

)

=
m∑

i=1

(Zi −HZi(X))T P−1
Zi (Zi −HZi(X))

+
p∑

j=1

(Oj −HOj(X))T P−1
Oj (Oj −HOj(X))

(27)

where Xf denotes all the feature positions and Xr de-
notes all the robot poses, Zi (1 ≤ i ≤ m) are obser-
vations and Oj (1 ≤ j ≤ p) are odometries. PZi and
POj are the corresponding covariance matrices; HZi and
HOj are the corresponding functions relating them to
the state X.

Since on the one hand this minimum, i.e. the ML
solution is on average the best estimate and on the other
hand, any other estimate X̂ has by definition a higher
χ2 error, one could view the difference

∆χ2(X̂) = χ2(X̂)−min
X

χ2(X) (28)

as an indicator of how much worse X̂ is compared to
the ML solution.

According to [26, §15.6, Theorem C], ∆χ2(X̂) is dis-
tributed as a chi-square distribution with dim(X) de-
gree of freedom. So the ratio

ratio =
∆χ2(X̂)
dim(X)

(29)

is a rough indicator of the error of X̂ relative to ML,
given that the assumptions underlying ML hold.

The discussion so far covers estimates such as ML,
that include all features and robot poses. Often we have
an estimate X̂f without robot poses. Then the robot
poses Xr have to be estimated by minimizing the χ2

error and dim(X) is replaced by dim(Xf ) [26, §15.6,
Theorem D]. The relevant ratio to be used in that case
is

error ratio =
minXr

χ2

(
X̂f

Xr

)
−minX χ2(X)

dim(Xf )
. (30)

4.3 Efficiency

Currently many efficient SLAM algorithms are based
on exploiting the sparseness of the information matrix.
Some common techniques proposed include factoriza-
tion (either QR or Cholesky) [8], incrementally con-
struction of factorization [16][27], reordering of state
vector [8][27], divided and conquer [15] or tree repre-
sentation [21][30], etc.

Although some algorithm claims O(n) or O(log n)
computational cost, the meaning of n varies from algo-
rithm to algorithm and the constant involved might be
extremely large for some algorithms. Moreover, it can
be argued that it is impossible to achieve O(n) compu-
tational cost in some worse case scenarios (e.g. “mowing
the lawn” case) due to the general O(n1.5) cost of pla-
nar grids [20].

Since the actual computational time also depends
on how the algorithm is implemented and optimized,
sometimes it does not make too much sense to simply
compare the execution time of different algorithms.

For SLAM algorithms that exploit sparse informa-
tion matrices, both the computational cost and storage
requirement highly depends on the number of non-zero
elements in the information matrix and the times these
non-zero elements are accessed in the algorithm. So in
this paper, it is proposed that (i) the number of non-
zero elements in the final information matrix, and (ii)
the total times of access to the non-zero elements of the
information matrices, be used as two indicators of the
efficiency of an algorithm.

Table 1 summarizes some key factors that affect the
number of non-zero elements in the information matrix



11

and the number of times the non-zero elements are ac-
cessed by various SLAM algorithms. It should be noted
that by incrementally constructing the information ma-
trix (or its factorization), the total number of times the
non-zero elements are accessed is significantly reduced.
However, this is also one of the major causes of the
inconsistency as pointed out in Section 4.1.1.

5 Simulation and experiment results

In this section, simulation and experiment results are
provided to compare a number of SLAM algorithms
including I-DMJ in terms of consistency, accuracy and
efficiency using the metrics proposed in the previous
section.

5.1 Simulation results

Although experimental implementation and evaluation
is an essential element of any practical robotic algo-
rithm, simulation is arguably more suitable for eval-
uating the consistency of different SLAM algorithms
because of the availability of the ground truth and the
feasibility of repeating the simulation as many times as
required. 3

5.1.1 Simulation with 535 time steps

This small data set is used to perform a comparison of
the consistency and accuracy of different algorithms.

The small simulation environment contains 196 nearly
uniformly distributed features. The robot starts from
the bottom-left corner of the square and finishes at the
top-right corner (no loop closure) as shown in Fig. 5.
The range-bearing sensor is assumed to have a field of
view of 180 degrees.

A sensor range of 3 meters was first used. Five thou-
sand simulation data sets were generated (each with
the same parameters but different random seeds for the
noises). Five different algorithms (EKF with sequential
update, EKF with batch update, I-DMJ, I-SLSJF, and
ML) were applied to the 5000 data sets and 5000 es-
timates were generated by each algorithm. For I-DMJ
and I-SLSJF, five local maps were first built by EKF
and then fused together.

For each algorithm, the 5000 estimates were used
to compute the PMC in (10). This value of PMC was

3 For the simulation data sets mentioned in this paper, the
odometry and observation data, the robot motion model, and the
parameters used in our algorithms are all available on the website:
http://services.eng.uts.edu.au/˜sdhuang/research.htm. We hope
these data sets can be used by many researchers to evaluate their
mapping algorithms before experimental implementations.

−10 −5 0 5 10 15 20 25 30 35
−10

−5

0

5

10

15

20

25

30

35

Y
(m

)

X(m)

Fig. 5 EKF result of one of the 5000 runs – 535 step simulation
data set

Table 2 The consistency check for different algorithms using the
535 step simulation data. EKF(S) stands for EKF with sequential
update; EKF(B) stands for EKF with batch update. λi is the
generalized eigenvalue of PMC relative to P̄ (of the 3 selected
features, one near the robot start point, one near the middle, one
near the end point). The upper half table is the results when
sensor range is 3m while the lower half table is the results when
sensor range is 3.5m.

3m EKF(S) EKF(B) I-DMJ I-SLSJF ML

max λi 122.9897 3.2304 1.3301 1.2916 1.0417
min λi 1.0098 0.9998 0.9640 0.9592 0.8657∑

λi 150.7355 9.5862 6.4683 6.4195 5.8759

NEES 238.2530 12.0948 9.2466 9.1547 8.1803

3.5m

max λi 1.5697 1.3891 1.0611 1.0612 1.0471
min λi 1.0008 0.9883 0.9504 0.9507 0.9410∑

λi 6.7442 6.5083 6.0558 6.0793 5.9825

NEES 7.0599 6.6494 6.2194 6.2426 6.1168

compared with the average covariance matrix P̄ in (11)
generated from the same algorithm for evaluating the
consistency. The first half of Table 2 shows the results
of the comparison using generalized eigenvalues. It can
be seen that EKF with sequential update is obviously
inconsistent with the maximal eigenvalue 122.9897 À
1. EKF with batch update is also over confident with
maximal eigenvalue 3.2304 > 1. While I-DMJ, I-SLSJF
and ML are much better in terms of consistency.

For the accuracy comparison, the PMC from each
algorithm is compared to the PMC of ML using the
generalized eigenvalue approach. First half of Table 3
shows the results. It is clear that the accuracy of both
I-DMJ and I-SLSJF is acceptable because the minimal
eigenvalues and the maximal eigenvalues are all close
to 1.



12

Table 1 Summary of the key factors influencing the number of nonzero elements in the information matrix and the number of times
the non-zero elements are accessed for various SLAM algorithms: (N : number of features, p – number of poses, s – number of local
maps)

Algorithms state dimension key factors influencing the number of non-zeros key factors influencing the times of access

ML[8] 2N + 3p p, number of observations number of iterations
iSAM [16], 2N + 3p p, number of observations incrementally build up factorization
I-SLSJF [29] 2N + 3s s, number of features in the local maps number of smoothing steps
SLSJF [27] 2N + 3s s, number of features in the local maps incrementally build up information matrix
I-DMJ 2N number of features in the local maps number of smoothing steps
DMJ [18] 2N number of features in the local maps incrementally build up information matrix
D-SLAM [1] 2N number of features observed at the same pose incrementally build up information matrix
ESEIF [9] 2N + 3 number of features observed at the same pose, incrementally build up information matrix

limit on the number of “active features” ([9])

Table 3 The accuracy check for different algorithms using the
535 step simulation data. λi is the generalized eigenvalue of
P ML

MC relative to P algorithm
MC (of the 3 selected features). The up-

per/lower half of the table is the result when sensor range is
3m/3.5m.

3m EKF(S) EKF(B) I-DMJ I-SLSJF ML

max λi 1.0000 1.0028 1.0079 1.0073 1
min λi 0.0437 0.6142 0.8105 0.8459 1∑

λi 3.6492 5.1891 5.6283 5.7056 6

3.5m

max λi 1.0030 1.0022 1.0019 1.0263 1
min λi 0.7522 0.8409 0.8933 0.9348 1∑

λi 5.6431 5.7791 5.7901 5.9384 6

Second half of Table 2 and Table 3 show the cor-
responding results when the sensor range is increased
to 3.5m with all the other parameters kept the same.
In this case, most of the algorithms provide reasonable
results. The consistency of the EKF with sequential up-
date is much better because the maximal λi is 1.5697.
Comparing the PMC obtained from different algorithms
with that from ML, we can see that the accuracy of dif-
ferent algorithms are also acceptable.

The reason why this small increase in sensor range
improves the performance significantly is due to the fact
that: (1) the turn rate error is relatively large, with vari-
ance of 4 degrees per second, (2) the feature density
is around 3m each feature. For EKF with 3m sensor
range, the robot can only observe one feature in many
of the steps (850 feature observations in 535 steps),
thus the accumulated process noise is not able to be
reduced by observations. But when the sensor range is
3.5m, the robot can observe at least two features at each
step (1130 feature observations in 535 steps), which is
very helpful in locating the robot. For map joining al-
gorithms, the accumulated process noises in the local
maps is limited and the smoothing and iteration fur-
ther reduce the effects of noisy controls.

5.1.2 More simulation results

More simulations were conducted to evaluate the per-
formance of different SLAM algorithms. Table 4 sum-
marizes the different data sets used for the simulations.

Table 5 shows the results of the consistency evalu-
ation for different algorithms using the different data
sets by examining the sequence of NEES over the simu-
lation run. Here a pass/fail means the NEES of the final
estimate is smaller/larger than the corresponding (one-
sided) 99% confidence gate. The total number of passes
and the total number of evaluations (one evaluation per
step) are shown in the parentheses.

The 3433 time steps data set shows that EKF using
batch update performs better than sequential update in
terms of consistency. Fig. 6(a) shows the map generated
by EKF with sequential update while Fig. 6(b) shows
the map generated by EKF with batch update.

The 8240 time steps data set shows that EKF using
batch update may fail but map joining algorithms I-
DMJ and I-SLSJF perform adequately. Fig. 7(a) and
Fig. 7(b) show the maps generated by EKF with batch
update and ML, respectively. The results of I-DMJ and
I-SLSJF are similar to that of ML and are not shown.

The 35187 time steps data set shows that the I-DMJ
and I-SLSJF can efficiently produce consistent and ac-
curate maps for very large-scale SLAM problems. How-
ever, without smoothing and iteration, both the DMJ
and SLSJF algorithms fail for this data set. Fig. 8(a)
shows the map generated by DMJ while Fig. 8(c) shows
the map generated by I-DMJ. Close examination of the
maps show that DMJ estimates are over confident.

Table 8 compares the non-zero elements in the final
information matrix and the total times the non-zero el-
ements have been accessed in different algorithms using
the different data sets. This gives an indication of the
efficiency of different algorithms.



13

Table 4 The large simulation data sets and the algorithms implemented

Data set environment observations features Algorithms implemented
3433 time steps 120× 120m2 21677 461 EKF sequential, EKF batch, DMJ, I-DMJ, SJSJF, I-SLSJF, ML
8240 time steps 150× 150m2 40524 612 EKF batch, DMJ, I-DMJ, SJSJF, I-SLSJF, ML
35187 time steps 300× 300m2 219332 4202 I-DMJ, DMJ, I-SLSJF, SLSJF

Table 5 Consistency evaluations using NEES for different algorithms using the large simulation data sets: P — final estimate pass
the χ2 test, F - final estimate fail the χ2 test, NI — algorithm not implemented, in the parentheses — total number of passes/total
number of evaluations

Time steps EKF sequential EKF batch DMJ SLSJF I-DMJ I-SLSJF ML
3433 F (3341/3433) P (3433/3433) P (100/100) P (100/100) P (100/100) P (100/100) P (3433/3433)
8240 NI F (2757/8240) F (45/50) F (45/50) P (50/50) P (50/50) P (8240/8240)
35187 NI NI F (305/700) P (628/700) P (700/700) P (636/700) NI

−20 0 20 40 60 80 100 120
−20

0

20

40

60

80

100

120

Y
(m

)

X(m)

(a) Map obtained by EKF with sequential update

−20 0 20 40 60 80 100 120
−20

0

20

40

60

80

100

120

Y
(m

)

X(m)

(b) The map obtained by EKF with batch update

Fig. 6 Simulation results for 3433 loops data – EKF with sequential update fails

5.2 Experimental results using DLR-Spatial-Cognition
data set

The DLR-Spatial-Cognition data set 4 is collected us-
ing a robot equipped with a camera. The robot was
moved around in the building with artificial landmarks
(white/black circles) placed on the ground. The image
data has been preprocessed and the relative position
of the observed landmarks with respect to the obser-
vation point are provided. The odometry information
is also available from the data set in the form of rel-
ative poses between every two consecutive poses. The
correct data association is given in the data set and it
is not performed here in this paper. In this data set,
there are p = 3298 robot poses, n = 576 landmarks and
m = 14309 measurements.

Fig. 9(a) shows the map generated by ML. The data
is separated into 200 parts and each part of the data
is used to build a small local map by ML. Fig. 9(b)

4 The data set is available at http://www.sfbtr8.spatial-
cognition.de/insidedataassociation/data.html

shows the global map obtained by joining the 200 lo-
cal maps using I-DMJ (189 admissible local maps were
constructed from the 200 local maps using the process
described in Section 3.3).

5.2.1 Consistency comparison

EKF and I-SLSJF are also implemented using this data
set. By overlapping the EKF map, I-DMJ map and I-
SLSJF map with the ML map, the differences between
the estimated feature positions become clear (see Fig.
9(c) to Fig. 9(h)).

For the consistency comparison, we follow the idea
presented in Section 4.1.5.

For this data set, the relative position among four
features (basically in the 4 corners of the building, see
Fig. 10) are measured by hand. The position is given
in a coordinate system aligned with the building walls
with the outdoor section on the right side. Hence the
positions are not given in the SLAM coordinate system,
which has the not precisely known starting pose as the
origin.



14

0 50 100 150
−20

0

20

40

60

80

100

120

140

160

Y
(m

)

X(m)

(a) Map obtained by EKF (red: 2σ covariance ellipses of the
features estimate, blue: the true robot trajectory)

0 50 100 150

0

20

40

60

80

100

120

140

160

X(m)

Y
(m

)

(b) The map obtained by ML

Fig. 7 Simulation results of 8240 loops data – EKF SLAM fails

−50 −40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

20

30

X(m)

Y
(m

)

463

517
40

282
463

517
40

282

Fig. 10 Four features with relative coordinates hand measured
in the DLR-Spatial-Cognition data set. Feature with ID 40: (0±
0, 0 ± 0); Feature 282: (−0.10 ± 0.1,−34.27 ± 0.1); Feature 463:
(48.68±0.1,−34.65±0.1); Feature 517: (49.86±0.1,−0.05±0.1).

Now the approach described in Case 1 in Section
4.1.5 is used to evaluate the consistency of the different
algorithms. The first row of Table 6 shows the χ2 test
of the four algorithms. It can be seen that all the al-
gorithms fail the test. This may mean that none of the
mapping results is of good quality as compared with
the ground truth.

We also did a consistency check using the ground
truth data association following the process described
in Case 2 in Section 4.1.5. For this data set, the largest
loop is closed at step 2398 when feature with ID 174 is
re-observed. To compare the consistency of the differ-
ent algorithms, we deliberately change the observation
made at step 2398 (the feature ID 174 is changed to
999) such that the algorithms will treat this feature as

a new feature and the loop will not be closed. Using the
data up to 2398 steps (with the last step data changed),
the estimation results from different algorithms are ob-
tained.

Fig. 11(a) to Fig. 11(d) show the maps and the 2σ

covariance ellipses of the two features (actually they are
the same feature). The second row of Table 6 shows the
χ2 tests of the null hypothesis that the two features
are the same. It can be seen that the EKF result fails
the test but the other three solutions appears to be
reasonable.

This explains the loop closing χ2 tests in Table 6
but not the large inconsistency with ground truth. Fur-
ther investigations revealed as scaling error in feature
distances [31, §6.2.5] which can indeed cause inconsis-
tency with ground truth but not with loop-closure.

5.2.2 Accuracy comparison

For accuracy comparison, we use the approach as dis-
cussed in Section 4.2.2.

Table 7 shows the χ2 errors from different algo-
rithms. In theory, the exact minimum of the χ2 er-
ror should be 2nM − 2nX = 27466 (the dimension of
the measurements minus the dimension of the state) on
average. This indicates that the measurement covari-
ances in the data set are overconfident by a factor of
56871/27466 = 2.07. Table 7 also shows the error ra-
tio relative to ML as defined by (30). It can be seen
that the additional error introduced by I-DMJ is signif-
icantly larger than that of I-SLSJF and EKF.



15

0 50 100 150 200 250
0

50

100

150

200

250

X(m)

Y
(m

)

(a) The map obtained by fusing 700 local maps by DMJ

52 54 56 58 60

46

48

50

52

54

56

58

60

62

64

X(m)

Y
(m

)

(b) A close look of the map by DMJ: dots are true feature
positions, 2σ covariance ellipses are from DMJ

0 50 100 150 200 250
0

50

100

150

200

250

X(m)

Y
(m

)

(c) The map obtained by fusing 700 local maps by I-DMJ

52 54 56 58 60

46

48

50

52

54

56

58

60

62

64

66

X(m)

Y
(m

)

(d) A close look of the map by I-DMJ: dots are true feature
positions, 2σ covariance ellipses are from I-DMJ

Fig. 8 Simulation results using 35187 step data set - map fusion without smoothing fails

Table 6 The χ2 tests for consistency check — DLR-Spatial-Cognition data set

method 99% confidence gate EKF (batch) I-DMJ I-SLSJF ML

relative position among the four features 15.0863 1511.2 2379.0 1552.6 1557.5
true data association 9.2103 39.8163 6.6268 10.8553 9.9742

5.2.3 Efficiency comparison

Table 8 compares the number of non-zero elements and
the times of access to the non-zeros for each algorithms.
For this data set, the number of non-zeros for I-DMJ
(I-SLSJF) is around 1/6 (1/3) of the non-zeros for ML.
The times of access to the non-zeros for I-DMJ (I-
SLSJF) is around 1/70 (1/35) of that of ML.

5.3 Experimental results using Victoria Park data set

The I-DMJ, I-SLSJF, ML and EKF algorithms were
also applied to the popular Victoria Park data set which

was first used in [17]. Neither ground truth nor noise
parameters are available for this data set. Published
results for the vehicle trajectory and uncertainty esti-
mates vary [1][9][16][17], presumably due to different
parameters used by various researchers.

Due to the presence of “moving” features, different
SLAM algorithms obtain slightly different data associ-
ation results and it is impossible to be certain as to the
correct data associations in this data set. In this paper,
the odometry information and the observations made
from the 6898 poses to 299 good quality features are
used (the others are treated as outliers) and the same



16

Table 7 Non-linear χ2 error of the different estimates. The χ2 errors for EKF, I-DMJ, and I-SLSJF were obtained by running
Gauss-Newton on the full non-linear SLAM problem while fixing the feature positions to the respective estimate.

data set ML EKF I-DMJ I-SLSJF

minXr χ2

(
X̂f

Xr

)
DLR-Spatial-Cognition 56871 57159 63839 56898

error ratio relative to ML defined by (30) DLR-Spatial-Cognition 0 0.25 6.05 0.02

minXr χ2

(
X̂f

Xr

)
Victoria Park 45008 45184 45063 45041

error ratio relative to ML defined by (30) Victoria Park 0 0.29 0.09 0.06

data association result is used in different algorithms in
order to compare their performance 5.

Fig. 12(a) presents the vehicle poses and the fea-
ture position estimates using ML. Two hundred local
maps are built by ML. Fig. 12(b) shows the global map
obtained by joining the 200 local maps using I-DMJ.

5.3.1 Consistency comparison

EKF and I-SLSJF are also implemented using this data
set. The EKF map, I-DMJ map, and I-SLSJF map are
overlapped with the ML map in Fig. 12(c), Fig. 12(e),
and Fig. 12(g), respectively. It can be seen that the esti-
mates of different algorithms are almost identical. Close
look at the maps show that the covariance ellipses ob-
tained by EKF, I-DMJ and I-SLSJF are slightly smaller
than that from ML, meaning that the three algorithms
are slightly over confident on their estimates.

5.3.2 Accuracy comparison

The second row of Table 7 shows the χ2 errors and
error ratios relative to ML from different algorithms.
Their difference from the ML χ2 error are all very small.
This may be due to the clean sensor data used and the
accuracy of the laser sensors.

5.3.3 Efficiency comparison

Table 8 compares the size of the state vector, the num-
ber of non-zeros in the sparse information matrix, and
the total times the non-zeros have been accessed. It
is clear that the computational cost of I-DMJ and I-
SLSJF are significantly less than that of EKF and ML.

5 For Victoria Park data set, we have made
the preprocessed sensor data and the parameters
we used in this paper available on the website:
http://services.eng.uts.edu.au/˜sdhuang/research.htm. We
hope this is useful for people to get a quick start in implementing
their SLAM algorithm to this data set, although there is no
guarantee that the data and parameters are 100% accurate.

6 Conclusion

This paper first introduced a new local map joining al-
gorithm – I-DMJ, then the metrics for comparing the
consistency, accuracy and efficiency of different map-
ping algorithms are proposed. These metrics are applied
to compare the I-DMJ algorithm with some existing
SLAM algorithms.

Simulation results show that both the generalized
eigenvalue approach and the NEES approach are capa-
ble of providing a good indication of the consistency
of different algorithms. However, comparing the con-
sistency of algorithms using experimental data is ex-
tremely difficult. Only some necessary conditions for al-
gorithm consistency can be evaluated unless the ground
truths of data association, feature positions and robot
trajectory are all available. The total times the non-
zero elements in the information matrices are accessed
appears to be a good metric for computational cost.

In comparison to many other mapping algorithms,
it appears that I-DMJ provides a good balance in the
tradeoffs among consistency, accuracy and efficiency. In
most of the simulation and experimental scenarios, I-
DMJ can efficiently produce estimates with acceptable
consistency and accuracy.

Many improvements can be made to the I-DMJ al-
gorithm to reduce the computational cost further, for
example, by exploiting the idea of divide and conquer
[15] [23] or treemap representation [21] for the map join-
ing instead of the sequential map joining approach used
now. However, how to solve the data association prob-
lem when using these strategies is a research issue. That
needs to be addressed in the future.

It should be noted that this paper focuses only on
point feature based SLAM algorithms. Also, it is mainly
concerned with theoretical evaluation of different algo-
rithms instead of their practical applications. Further
work is necessary to analyze the performance metrics of
the SLAM algorithms in real applications using more
experimental data.

Acknowledgements This work is supported by the ARC Cen-
tre of Excellence programme, funded by the Australian Research



17

Table 8 Compare the dimension of the state vector, the number of non-zero elements in the final information matrix, and the total
number of access to the non-zero elements in the information matrix (covariance matrix)

Data set Algorithm dim of state (num of poses, num of features) num of non-zeros num of access

Simulation 3433 steps EKF Sequential 925 (1 pose, 461 features) 855625 7618648976
EKF Batch 925 (1 pose, 461 features) 855625 1232733824
ML 11221 (3433 poses, 461 features) 354557 4989335096
I-SLSJF 1222 (100 poses, 461 features) 53786 16295082
SLSJF 1222 (100 poses, 461 features) 53786 5729047
I-DMJ 922 (0 pose, 461 features) 32964 10433606
DMJ 922 (0 pose, 461 features) 32964 4008856

Simulation 8240 steps EKF (Batch) 1227 (1 pose, 612 features) 1505529 2798910271
ML 25944 (8240 poses, 612 features) 711150 78220927724
I-SLSJF 1374 (50 poses, 612 features) 88032 11089000
SLSJF 1374 (50 poses, 612 features) 88032 3170896
I-DMJ 1224 (0 pose, 612 features) 68936 6513798
DMJ 1224 (0 pose, 612 features) 68936 2363358

Simulation 35187 steps I-SLSJF 10504 (700 poses, 4202 features) 583798 1418540749
SLSJF 10504 (700 poses, 4202 features) 583798 510892091
I-DMJ 8404 (0 pose, 4202 features) 387472 1607152858
DMJ 8404 (0 pose, 4202 features) 387472 971918144

Victoria Park EKF (Batch) 601 (1 pose, 299 features) 361201 1202307021
ML 21292 (6898 poses, 299 features) 732704 8319832357
I-SLSJF 1198 (200 poses, 299 features) 137416 105919488
I-DMJ 598 (0 pose, 299 features) 62604 68685002

DLR-Spatial-Cognition EKF (Batch) 1155 (1 pose, 576 features) 1334025 1691188295
ML 11043 (3297 poses, 576 features) 263013 3330175088
I-SLSJF 1752 (200 poses, 576 features) 86881 89455649
I-DMJ 1152 (0 pose, 576 features) 42368 47206954

Council (ARC) and the New South Wales State Government.
This work has also been supported by DFG grant SFB/TR 8
Spatial Cognition.

References

1. Z. Wang, S. Huang and G. Dissanayake, “D-SLAM: A decou-
pled solution to simultaneous localization and mapping”, Inter-
national Journal of Robotics Research, vol. 26, no. 2, February
2007, pp. 187-204.

2. T. Bailey and H. Durrant-Whyte, “Simultanouse localization
and mapping (SLAM): Part II”. IEEE Robotics & Automation
Magazine, vol. 13, Issue 3, Sept. 2006, pp. 108-117.

3. U. Frese. “A discussion of simultaneous localization and map-
ping”. Autonomous Robots, Volume 20, Issue 1, (January 2006),
Pages: 25-42.

4. T. Bailey, J. Nieto, J. Guivant, M. Stevens and E. Nebot.
“Consistency of the EKF-SLAM algorithm”. In Proceedings of
the 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3562-3568, Beijing, China,
October 9-15, 2006.

5. J. A. Castellanos, R. Martinez-Cantin, J. D. Tardos and J.
Neira. “Robocentric map joining: Improving the consistency of
EKF-SLAM”. Robotics and Autonomous Systems, 2007, vol.
55, 21-29.

6. S. Huang and G. Dissanayake, “Convergence and consistency
analysis for Extended Kalman Filter based SLAM”. IEEE
Transactions on Robotics, 2007, vol. 23, no. 5, 1036-1049.

7. G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Analy-
sis and improvement of the consistency of Extended Kalman

Filter-based SLAM”, In Proc. IEEE International Conference
on Robotics and Automation (ICRA’08), Pasadena, CA, May
19-23 2008, pp. 473-479.

8. F. Dellaert and M. Kaess, “Square root SAM: Simultaneous
localization and mapping via square root information smooth-
ing”. International Journal of Robotics Research, vol. 25, no.
12, December 2006, pp. 1181-1203.

9. M. R. Walter, R. M. Eustice and J. J. Leonard, “Exactly
sparse Extended Information Filters for feature-based SLAM”.
International Journal of Robotics Research, vol. 26, no. 4, 2007,
pp. 335-359.

10. S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics,
The MIT Press, 2005.

11. J. D. Tardos, J. Neira, P. M. Newman and J. J. Leonard,
“Robust mapping and localization in indoor environments us-
ing sonar data”, International Journal of Robotics Research,
vol. 21, no. 4, April 2002, pp. 311-330.

12. S. B. Williams, Efficient Solutions to Autonomous Mapping
and Navigation Problems, PhD thesis, Australian Centre of
Field Robotics, University of Sydney, 2001. available online
http://www.acfr.usyd.edu.au/

13. G. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte,
and M. Csorba, “A solution to the simultaneous localization
and map building (SLAM) problem,” IEEE Trans. on Robotics
and Automation, vol. 17, pp. 229–241, 2001.

14. T. P. Speed, and H. T. Kiiveri, “Gaussian Markov distri-
butions over finite graphs”. The Annals of Statistics, 14(1):
138-150, 1986.

15. K. Ni, D. Steedly, and F. Dellaert, “Tectonic SAM: Ex-
act, out-of-core, submap-based SLAM,” In Proceedings of 2007
IEEE International Conference on Robotics and Automation
(ICRA), Rome, Italy, 10-14 April 2007, pp. 1678-1685.



18

16. M. Kaess, A. Ranganathan, F. Dellaert, “iSAM: Fast incre-
mental Smoothing and Mapping with efficient data associa-
tion,” In Proceedings of 2007 IEEE International Conference
on Robotics and Automation (ICRA), Rome, Italy, 10-14 April
2007, pp. 1670-1677.

17. J. E. Guivant and E. M. Nebot, “Optimization of the si-
multaneous localization and map building (SLAM) algorithm
for real time implementation,” IEEE Trans. on Robotics and
Automation, vol. 17, pp. 242-257, 2001.

18. S. Huang, Z. Wang, and G. Dissanayake. “Mapping large-
scale environments using relative position information among
landmarks”. In Proceedings of 2006 International Conference
on Robotics and Automation, pp. 2297-2302, 2006.

19. J. Folkesson and H. I. Christensen, “Closing the loop with
Graphical SLAM”, IEEE Transactions on Robotics, 2007, vol.
23, no. 4, pp. 731-741.

20. R. J. Lipton and D. J. Rose and R. E. Tarjan, “General-
ized nested dissection”, SIAM Journal on Numerical Analysis,
1979, vol. 16, no. 2, pp. 346-358.

21. U. Frese, “Treemap: An O(log n) algorithm for indoor simul-
taneous localization and mapping”. Autonomous Robots, 21(2):
103-122, 2006.

22. P. Krauthausen, F. Dellaert, and A. Kipp, “Exploiting lo-
cality by nested dissection for square root smoothing and
mapping”, In Proceeding of Robotics: Science and Systems,
Philadelphia, U.S.A. 2006.

23. L. M. Paz, J. Guivant, J. D. Tardos, and J. Neira, “Data
association in O(n) for Divide and Conquer SLAM,” In Pro-
ceedings of 2007 Robotics: Science and Systems, June 27-30,
Atlanta, USA.

24. U. Frese and L. Schroder, “Closing a million-landmarks
loop”. In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Beijing, China, Octo-
ber 9 - 15, 2006, pp. 5032-5039.

25. U. Frese, “Efficient 6-DOF SLAM with Treemap as a generic
backend,” In Proceedings of 2007 IEEE International Confer-
ence on Robotics and Automation (ICRA), Rome, Italy, 10-14
April 2007, pp. 4814-4819.

26. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P.
Flannery. Numerical Recipes, Second Edition. Cambridge Uni-
versity Press, Cambridge, 1992.

27. S. Huang, Z. Wang and G. Dissanayake. “Sparse local
submap joining filter for building large-scale maps”. IEEE
Transactions on Robotics, 2008, Vol. 24, No. 5, 1121-1130, Oc-
tober 2008.

28. L. M. Paz, P. Pinies, J. Neira, and J. D. Tardos. “Global lo-
calization in SLAM in bilinear time”. In Proceedings of the 2005
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 655-661, Edmonton, Alberta, Canada,
August 2-6, 2005.

29. S. Huang, Z. Wang, G. Dissanayake, and U. Frese, “Iterated
SLSJF: A sparse local submap joining algorithm with improved
consistency”, 2008 Australiasan Conference on Robotics and
Automation. Canberra, December 2008. Available online:
http://www.araa.asn.au/acra/acra2008/papers/pap102s1.pdf

30. G. Grisetti, D. L. Rizzini, C. Stachniss, E. Olson and W.
Burgard, “Online constraint network optimization for effi-
cient maximum likelihood mapping”. In Proceedings of 2008
IEEE International Conference on Robotics and Automation
(ICRA), Pasadena, California, on May 19-23, 2008.

31. C. Hertzberg, A Framework for Sparse, Non-Linear Least
Squares Problems on Manifolds, Master Thesis, University of
Bremen, 2008.



19

−50 −40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

20

30

X(m)

Y
(m

)

(a) Map obtained by ML

−50 −40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

20

30

X(m)

Y
(m

)

(b) Map obtained by joining 200 local maps using I-
DMJ

−50 −40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

20

30

X(m)

Y
(m

)

(c) Overlap of EKF map with ML map

9 10 11 12 13 14 15
−23

−22

−21

−20

−19

−18

−17

−16

X(m)

Y
(m

)

(d) Overlap of EKF map with ML map – close look

−50 −40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

20

30

X(m)

Y
(m

)

(e) Overlap of I-DMJ map with ML map

−8 −7.5 −7 −6.5 −6 −5.5 −5
−7

−6

−5

−4

−3

−2

−1

0

X(m)

Y
(m

)

(f) Overlap of I-DMJ map with ML map – close look

−50 −40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

20

30

X(m)

Y
(m

)

(g) Overlap of I-SLSJF map with ML map

7 8 9 10 11 12
9

10

11

12

13

14

15

16

17

18

19

X(m)

Y
(m

)

(h) Overlap of I-SLSJF map with ML map – close look

Fig. 9 Compare the maps from different algorithms using DLR-Spatial-Cognition data set. In Figures 9(c) to 9(h), the (red) crosses
are the estimated feature positions from ML, the (blue) ellipses are the 2σ covariance ellipses from the other algorithm.



20

−50 −40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

20

30

Y
(m

)

X(m)

(a) EKF SLAM result

−50 −40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

20

30

X(m)

Y
(m

)

(b) Map obtained by joining 200 local maps using I-DMJ (191
“admissible” local maps were built from the 200 local maps)

−50 −40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

20

30

X(m)

Y
(m

)

(c) Map obtained by joining 200 local maps using I-SLSJF

−50 −40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

20

30

X(m)

Y
(m

)

(d) Map obtained by ML

Fig. 11 The results using the first 2938 step data of DLR-Spatial-Cognition data set. The (blue) dots are the estimated positions
of all the features. The two features with (red) 2σ covariance ellipses around them are actually the same feature but we deliberately
allocate different IDs to them such that all the algorithms treat them as different features. The true data association results of all the
other features is used in the different algorithms. It can be seen, that except for EKF the result is roughly consistent.



21

−150 −100 −50 0 50 100 150 200 250
−100

−50

0

50

100

150

200

250

300

X(m)

Y
(m

)

(a) ML result

−150 −100 −50 0 50 100 150 200 250
−100

−50

0

50

100

150

200

250

300

X(m)

Y
(m

)

(b) Map by joining 200 local submaps using I-DMJ

−150 −100 −50 0 50 100 150 200 250
−100

−50

0

50

100

150

200

250

300

X(m)

Y
(m

)

(c) Overlap of EKF map with ML map

156 158 160 162 164 166 168

60

62

64

66

68

70

72

74

76

X(m)

Y
(m

)

(d) Overlap of EKF map with ML map – close look

−150 −100 −50 0 50 100 150 200 250
−100

−50

0

50

100

150

200

250

300

X(m)

Y
(m

)

(e) Overlap of I-DMJ map with ML map

−80 −78 −76 −74 −72

9

10

11

12

13

14

15

16

17

18

X(m)

Y
(m

)

(f) Overlap of I-DMJ map with ML map – close look

−150 −100 −50 0 50 100 150 200 250
−100

−50

0

50

100

150

200

250

300

X(m)

Y
(m

)

(g) Overlap of I-SLSJF map with ML map

70 71 72 73 74 75 76
−20

−18

−16

−14

−12

−10

−8

X(m)

Y
(m

)

(h) Overlap of I-SLSJF map with ML map – close look

Fig. 12 Comparing the maps obtained by different algorithms – Victoria Park data set. In Figures 12(c) to 12(h), the larger ellipses
(blue) for features are the 2σ covariance ellipses obtained from ML.


