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Abstract—Map joining is an efficient strategy for solving also highlighted some interesting behavior. A simple Gauss-
feature based SLAM problems. This paper demonstrates that Newton a|gorithm can sometimes converge to the g|oba| op-

joining of two 2D local maps, formulated as a nonlinear least 5| solution from random initial values, when used with the
squares problem has at most two local minima, when the asso-

ciated uncertainties can be described using spherical covariance popular \ﬁctonq Park dataset [4]. Th's' however, 00‘?‘“5 only
matrices. Necessary and sufficient condition for the existence When the covariances of observations and odometries are set
of two minima is derived and it is shown that more than to be identity matrices, although the resulting solution is very
one minimum exists only when the quality of the local maps close to the true solution obtained using the correct sensor

used for map joining is extremely poor. The analysis explains 544 motion models. A number of numerical experiments
to some extent why a number of optimization based SLAM

algorithms proposed in the recent literature that rely on local dgmonstrated that the cha.n.c.e of getthg trapped in a local
search strategies are successful in converging to the globally minimum from a random initial guess is only about 20%.
optimal solution from poor initial conditions, particularly when ~ The DLR-Spatial Cognition dataset [5] also exhibits similar
covariance matrices are spherical. It also demonstrates that pehavior, when started from a zero initial guess.
the map joining problem has special properties that may be  thege results indicate that the number of local minima
exploited to reliably obtain globally optimal solutions to the . . -
SLAM problem. present in the nonlinear least squares formulation of the
SLAM problem is likely to be small if the covariance matri-

. INTRODUCTION ces are spherical. This observation is the main motivation for

When SLAM problem is formulated as a nonlinear least® Work presented in this paper. In particular, we examine
squares problem, the dimension of the problem is very highl® Problem of joining two maps as well as the special case
because all feature positions and robot poses are preséfitere information gathered at two robot poses are combined
as variables. It can be expected that such high dimensiorf@Puild a local map. We argue that any feature based SLAM
nonlinear optimization problem have a huge number of loc&lroblem can be decomposed into a sequence containing these
minima and in general local search strategies are unlikely B0 Steps. It is theoretically proven that the nonlinear least
be successful unless a very good initial guess is availabféduares optimization problems associated with both these
However, recent research shows that some methods basedS6fnarios have at most two local minima. It is experimentally
local search can sometimes provide surprisingly good soldémonstrated that (@) the two local minima occur only when
tions to SLAM without being trapped into a local minimum.the odometry and observation information are extremely

For pose graph SLAM problems, the results presentdgconsistent with .e(.';\c'h other, and gb) the s'olutlon to the
in [1] surprised many SLAM researchers where stochast@PProximate map joining problem using spherical covariance
gradient descent (SGD) is used to solve the optimizatioWatr'f:e_S_'S practically very close to the tru@T solution t_o the
problem by dealing with each constraint individually andM@p joining problem using the actual covariance matrices.
the algorithm can converge to the correct solution with poor The Paper is organized as follows. Section II formulates
initial values. Recently, a more efficient SLAM algorithm, the least squares SLAM and map joining problems. Section
tree-based network optimizer (TORO), was proposed in [jjl provides a_lemma which underpins the proofs of the main
where a tree structure is used on top of the SGD approadksults. Section IV analyzes the one-step SLAM problem
Surprisingly, very large scale problems can be solved eﬁyyhlle Section V examines the map joining problem. Exper—_
ciently without the need of good initial values, especiallymemal results to demonstrate the outcomes of the analysis

when the covariance matrices of the relative poses are cloSePresented in Section VI. Section VIl concludes the paper.
to spherical [2]. Appendix A presents the proof of the lemma and Appendix

Our initial investigation [3] into point feature basedB Presents the proof of the main theorem of the paber.

SLAM, formulated as a nonlinear least squares problem has II. L EAST SQUARES SLAM AND MAP JOINING
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robot poses, 1,72, -+ ,7p. The first robot pose (posg) wherer;. is the robot end pose of local magp(l < j < k).
is chosen as the origin of the global coordinate frame. Suppose local map is defined by(XJL,PJL) whereXL
We useXy, = (zy,,ys,)" to denote ther,y position of s the state estimate ant” is the associated covariance

feature ;. X,, = (z,,y-,)" denotes ther,y position of matrix. Also assume the features present in the local jnap

robqt poser; while Or,; Qenotes the .orientation of pose. are f;;,-- -, fin;- The local map state estimaféjL can be
R, is the rotation matrix of pose; given by regarded as an observation of the true relative positions from
oSGy, — sin . the robot start pose;_). to the features;i,-- -, fj,, and
Ry, = R(or) = | o ¢T: cos ¢Til : (1) the robot end pose;.. That is,
The least squares SLAM formulation [6] is to use the X]L = H,;(Xus) + w; 9)

odometry and the range and bearing observation information
to estimate the state vector containing all the robot poses aghere

all the feature positions . ( )

R X, — X,
_ T T T T T(j—1)e Tje T(i—1)e

X_(Xfla"'7XfN7 ,lagbrlv"'?X'rpaqu‘p) (2) ¢7‘je_¢7'(] e

and the SLAM problem is to minimize [6] H;(Xwng) = RvTo e X = X 000)

P ;

F(X) = Z(Ol_l - HOZ(X))TPO_il(OZ'_l - HOZ(X)) RT (Xf- . - X
mng

T(j—1)e T(jfl)ﬁ)

Zl Tp—1(ri Zi
+Z - H™ (X)) PZ;- (25 — H* (X)) and w; is the zero-mean Gaussian “observation noise”
3) whose covariance matrix |§]L (whenj =1, X, . =

TG—1e
T —
whereOl la<i<p)are odometrlesZZ are observations, [0, 0] s @r_1ye = 0)-

and Pp; andPT are the corresponding covariance matrices. SO the problem of joining local magisto & is to estimate
the global stateX,; ; using all the local map information (9)

for j =1,---,k. This problem can be formulated as a least
squares problem. That is, finding,,;; such that

In the above least squares SLAM formulatiafiZs i(X)
andHO7( ) are the corresponding functions relatidig and
O§‘1 to the stateX. The odometry is a function of two poses

(XTI, ¢p,_)" and (X7, ¢,,)" and is given by k A
o RT (X, — X, ) Z Hi(Xp)" (PPN X) — Hi(Xns)) (10)
HO(X) = | e L D7 W
o R T T
The range and bearing observation is a function of onl§ Minimized.

pose(XT, 4,..)T and one feature positiof;, and is given Most of the map joining algorithms such as sequential
by o ’ map joining [7] and divide-and-conquer strategy [9] combine

zi _ pT _ two maps at a time. Furthermore, it can be seen that “one-
_ _ R ' step SLAM” problem defined in (3) witlp = 1 is also
In particular, sinces,, = 0 and X,, = (0,0)", the a special case of joining two maps. Therefore, any feature

odometry function from robot, to r; is given by based SLAM problem can be decomposed to a sequence of
X problems of joining two local maps.
mo) = | 5] ©®

and the observation function from robat to f; is given by . A USEFULLEMMA

HZS (X) = X,. @) It will be shown in the following sections that the problem
! of joining two maps and its special case, one-step SLAM
“One-step SLAM” problem is the special case where thgroblem can both be reduced to a nonlinear equation con-
number of robot poses is two, i.e.= 1. strained by a nonlinear inequality with one variable, when
associated uncertainties can be described using spherical

B. Map Joining
covariance matrices. The following lemma gives a special
Joining of multiple local maps obtained by solving the

above least squares problem can also be formulated peréoperty of such problems.
an optimization problem [7][8]. Suppose that there are mma 1: Assume that > 0, Cy € [-m,m) are two

onstants. Consider the following two conditions:
sequence of local maps and the end robot pose of Ioca? g

map j is the start robot pose of local mgp+ 1. The state — L O+ b =0 11
vector of the map joining problem considered in [7] contains J(9) = asin(¢ 8) ¢ (1)
all the feature positions and robot end poses of each local 9(¢) = acos(¢ +Cy) +1>0 (12)
map:

There are at least one and at most tve [—, 7) satisfying
Xnrg = (X7 s X Ors XFo XG0T (8)  (11)-(12) simultaneously. Moreover, there are two solutions



if and only if

a>1 (13)
—asinCy —m <0 (14)
vaz—14+¢;1 >0 (15)
—va2—14+¢3<0 (16)
—asinCy +7 >0 a7)
b1 —¢2 <0 (18)
hold simultaneously. Here
¢1 = wrap(arccos(—1) — C’¢) (19)
¢o = wrap(— arccos( a) Cyp)
wherewrap(0) is a function which wrap$ into [—, 7).

Proof: See Appendix A. [ ]

IV. ONE-STEPSLAM

This section analyzes the number of local minima present
in the one-step SLAM problem.

Suppose there are features which are all observed by
both posery, and poser;, as shown in Fig. 3. Denot& =
(T s Yprse s Ths Yfos T Yry )T Where(z,., -, ¢) is robot
poser;, and consider the case when the covariance matrices
Pol,PZ?, Pzg,i =1,---,n are all identity matrices.

Remark 1: Fig. 1 illustrates the conditions (13)-(18). The
possible pair of:, C4 when there are two solutions to satisfy
conditions (11)-(12) simultaneously is shown in the shaded

area. For example, it can be seen that & 1, there is only
one solution. If|Cy| < arcsin(_=Z=) = 1.2626, there is

also only one solution. Fig. 2 shows the functiof{g) and

g(¢) whena = 3,C, = 2 and it is clear that there are two

solutions to (11)-(12).

Fig. 1. Possible situations of having two solutions by satisfying conditions
(13)-(18). The x-axis i€y, and y-axis isa. In the shaded area, there are
two solutions to (11)-(12), in the other area, there is only one solution.
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fand g

Fig. 2. An example of two solutions to (11)-(13):= 3,Cy = 2.

Fig. 3. One-step SLAM problem with feature

Suppose the odometry between pogeand poser; is
OY = (zz,,2y,,24)", the observation of featurg from r,

is Z) = (2ay, > 2y, )T and the observation of; from r; is
Zl = (zx; 27 ) then the SLAM problem is to minimize
F(X) = (0) — HO'(X))" P, ! (0} = HO' (X))

+i<ngZ?< X)) Py (2] — HZ (X))

+i(ZS—HZi1(X)) PNz} - B (X))
i=1
:(zm

- xr)Q + (ZyT - yr)z + (Z<Z> - ¢)2

+ Z Zey, —05)° + (2y,, —up)’]
+ Z (2} — R(¢)"6:)" (2} — R(¢)"6:)  (20)
where
o . _ Tf, — Ty
8 =Xy, — X, L/f B y} (21)
Note that
(Z} — R(¢)"6:)"(Z} — R(¢)"5;)
=|Z} — R(¢)"6;?
=|R(¢)Z} — ;| (22)



Thus the objective function (20) can be converted into
F(X) = (Zxr - xr)z + (Zyr - y7’)2 + (Z¢> - ¢)2

+ Z[(zﬂﬂf1 - mfi)z + (nyi - yfi)z}

)

I
—

[(As = (25, = 20))* + (Bi = (g, = ur))]

(23)

v

s
Il
-

+

where
A, = Zma Cop — Zy}l S B, = vah S + Zyjrz Co- (24)
Here ¢4, s4 denotecos ¢ andsin ¢, respectively. Note that
A; and B; satisfy the following equations
dA; ;
L = _Bi7 @ =
d¢ do

A;, A2 4 B2 =22 + zif (25)

»
xr
fi

r1 and the observation from posg combined with the
odometry. Thus,, d, p, ¢ as well asCy, represent the level

of inconsistency between the observation data from pose
ry and the data obtained through observation from pgse
combined with the odometry. In the ideal case when the
data are completely consistent (e.g. when all the sensors are
perfect), we havé\z,» =0,Azyr =0,i=1,--- ,n.Then
p=0,¢ =0 and thusCy = 0. In this case, it is evident that
(18) does not hold anymore sincg < arccos(—%) <,

thus the problem has only one minimum (this can also be
seen from Fig. 1 whed';, = 0).

Numerical lllustration. Consider the special case when only
one featuref is observed from the two poses. Assume the
odometry is given by(z;.,zy.,26)7 = (2,2,0.5)T and the
observation from posey to f is (24, 2,,)" = (0,3)”. We
consider different observation from to f, (z.,z2,)T, by
varyingAz,, Az,. From (30), we have, = —1.2757+Az,,

The number of local minima of objective function (23) isand z, = 1.8364 + Az, because

given by Theorem 1.
Theorem 1: The one-step SLAM problem with features

(Ze; = 22, )Czy + (2y; — 2y,)82, = —1.2757,

has at least one local minimum and at most two local —(22; — 22,)82, + (2y; — 2y, )C2, = 1.8364.

minima. Moreover, there are two local minima if and only

if conditions (13)-(18) hold with
a=+\/p*+(d+q)? Cy = atan2(p,d+q) (26)

whereatan2(y, x) denotes the arc tangent g9fz and

S Y T

1<i<n

1
_ m 1<;<n[(zxfj — ZL»)(szi — )
+ (ny-j — zyr)(zyfi — Zyr)] (27)

D= 5acz¢ + 6bsz¢

28
q= 75a5z¢ + 5bcz¢ ( )

with

n
1 1 1
n _AZx; 17 | 72% — 2%y, T 2m42) § 1:nyi
i =

i=1 L fj ] =1 1 _ 1
J ! nF2fee T 3%s, T 3my § :fo
i=1

n
=1 1 1
Az ] T | n3z?er T 2%, ~ 3mi2) szn
¥ i—1

=1 L i’n -1 1 __1
/ ! 2t T 2%, ~ 3tmt § :ny

L =1
(29)

and

Azx}l = Zm}; - [(th - er)c,% + (Z?Jf1 - Zyr)sz¢]
Azy;i =zy; — [~ (22, = 22,)824 + (2y;, = 2y,)C2,]
(30)
for i = 1,---,n. Herec,, and s., denotecos(z,) and
sin(zg4), respectively.
Proof: See Appendix B. |
Remark 2: In Theorem 1, theAz,: ,Az,~ defined in

Given any pair of Az, Az,), the numerical values for
dq,0,d,p,q,a,Cy can all be computed, and conditions
(13)-(18) can be evaluated. Fig. 4 shows the number of
minima that exist for differentAz,, Az,). The shaded area
corresponds to the case where there are two local minima,
while the remaining space corresponds to the conditions
where there is only one minimum.
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Fig. 4. Number of local minima to the one-step one-feature SLAM problem
as a function ofAz;, Az,. When|Az,| < 3,|Az,| < 3, there is only one
local minimum. Normally, one cannot expect 3m measurement error with
measurement values within 2m. So it is very unlikely to have two local
minima unless the data association is wrong.

V. JOINING TWO LoCcAL MAPS

This section demonstrates that the least squares optimiza-
tion problem of joining two local maps, also has at most two
local minima.

Consider the two local maps shown in Fig. 5 whege
is the start pose of local map 1 which is the origin of the
global map,r; is the end pose in local map 1 as well as the
start pose of local map 2; is the end pose in local map
2. Assume(z,, ,z, %4, )" is the estimate of pose in
local map 1,(21;5 ) Zy7L z%)T is the estimate of pose in

(30) are the differences between the observation from podecal map 2. Suppose is the number of features that appear



tocal map 2= — : Proof: The proof follows similar arguments to those

s N used for proving Theorem 1. It should be noted that some
P : data including the numbers;, n, do not affect the results.
PR WY, | / Detailed proof is omitted. [ ]
e /\ . Remark 3: Theorems 1 and 2 can be extended to the case

where covariance matrices for each observation/odometry
[ D A (feature/pose) are all spherical (diagonal with the el-
o A e ements being the same) but different from each other.
Remark 4: It is easy to see that when combining two
local maps each containing more than two robot poses (e.g.
Tectonic SAM map joining [8]), the same results hold as
long as the covariances are spherical.
Remark 5: If the robot poses are not available, map joining
problem reduces to the problem of finding the relative
glansformation between two coordinate frames given two
. corresponding point sets. When the covariances of the un-
map 1 and local map 2. Supposeis the number of features ; ; . X
certainty associated with feature locations are assumed to be

that appear only in map 1 anﬂﬁf}7zyfj“] - _1"" " spherical, it is known that the problem has a closed-form
are the estimated positions of these features in local map dy|ytion [10].

Suppose, is the number of features that appear only in map
2 and zmré,zuré,k =1,--- ,no are the estimated positions VI
f °f

Fig. 5. Joining of two local maps

in both map 1 and map 2, angd,, ,z,, ,2,m,2

Ly yr‘17 e

7
1,---,n are the estimated positions of these features in loc

2 . EXPERIMENTAL RESULTS
of these features in local map 2. ) . . . )
Consider the case when the covariance matrices of the!” this section, we use publicly available experimental

local maps are both identity, similar to (23), the map joinindjatasets to demonstrate that the problem of joining two local
problem becomes minimizing maps has only one local minima in practice.

F(Xng) = (20, —2r,)? + (2, —yr)? + (26,, —¢n)°  A. Results using Victoria Park dataset

+(Ar = (@ry = 20,))" + (Br = (Yra — yr))? + (2471 The Victoria Park dataset was divided into two parts
™1 to build two local maps which are shown in Fig. 6. The
— (Pr, — 0r))* + Z[(Zmﬂ — Tyl )? + (ny1 — Y5} )’] covariance matrices of the two local maps were set to identity
j=1 ! ’ matrices. Using the local map data to compute the values
= 5 5 of a,C, in Theorem 2, we obtairu = 203660,Cy =
+ Z[(Z% —@p)" + (o, —yn)7 —0.0029. Obviously they do not satisfy the conditions (13)-
Zjl (18), meaning that the map joining problem only has one
+ Z[(Ai — (g, — )+ (Bi — (s, — yr))?) local minimum. To check the result, Gauss Newton algorithm
P is used to solve the map joining problem. In an experiment

na with more than 100 trials, the algorithm always converged to
+ Z[(Ck —(zg2 — z,,))? + (D, — (y2 — yr))?] (31) the solution shown in Fig. 7(b) from arbitrary initial guesses
k=1 to the robot poses and feature locations. Example initial
where stateX ;s CONaINS(z,,, Yo, br, )T, (Trys Yrys bry)7,  9UESS IS Shown in Fig. 7(2).
and all the feature positions, and

Ar = oy 2oty = S0, 2yt Br = S0 Zaty o, 7y . I
0| - = T
Ai = C¢>r1 Zix — s¢>r1 Zy;j R Bi = S¢7,1 ZLE + C¢rl Zy;} *:‘? ‘ z{;
= Fy 1 o
Ck; - C¢7‘1 ZZL’T12 B 8(757‘1 lera ’ Dk - 5457‘1 ZZL’TIQ + Cd)rl Zyré AL Rt *:.?”“*A*a = e
i i i i o o e -

Theorem 2: The map joining problem with two locals s
maps has at least one local minimum and at most two
local minima. Moreover, there are two local minima if and
only if conditions (13)-(18) hold withe, C; defined in (26), Fig. 6. Local maps 1 and 2 of Victora Park dataset. The black stars denote
d,p,q,8,,0, defined similar to (27),(28), and (29) with the robot position, the red dots denote the feature positions.

(a) Local map 1. (b) Local map 2.

AZIE = Fafl T [(zay, = Za,, )Cay,, + (Zy;, — 2y, )52, ] Fig. 8(a) compares the map joining result using identity
Azy;il =z = [— (22, — Z%)SZ% + (2y;, = Zyny ), ] covariance matrices with that using the original covariance

matrices of the two local maps, the differences due to the

i=1,--,n use of spherical covariance matrices is negligible.
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(a) Example initial guess to robot (b) Result of map joining. (a) Example initial guess to robot (b) Result of map joining.
and feature locations. and feature locations.

Fig. 7. Result of map joining for the Victoria Park dataset. The black starBig. 10. Result of map joining for the DLR dataset. The black stars denote
denote the robot position, the red circles denote the feature positions. the robot position, the red circles denote the feature positions.

The results in this paper shows that the joining of two
maps with spherical covariance matrices is equivalent to the
solving of a one dimensional problem. Given the argument
that all SLAM problems can be decomposed to that of
joining two maps, it may be possible to use simple tech-
N nigues such as bisection to obtain a solution to SLAM very
efficiently. However, further work is needed to evaluate the
impact of the assumption of spherical covariance matrices.

Fig. 8. Comparison of the map joining results using spherical covariance . .
matrix and original covariances. The two results are almost identical. This The _reSU|tS present_ed In _th_IS Paper clearly show that
is probably due to the high quality of the local maps. SLAM is a very special optimization problem, and goes

someway towards explaining the success of some of the re-
cent techniques for SLAM that rely on local search strategies
B. Results using DLR-Spatial Cognition dataset yet lead to good solutions. Further work on the analysis of
The experiments described in Section VI-A was repeatdfiese algorithms, for example TORO, may lead to even better
using the DLR dataset. Fig. 9 shows the two local mapand more efficient solutions to SLAM.
obtained. An example initial guess and the map joining Furthermore, the extension of the results to multi-step
results are shown in Fig. 10(a) and Fig. 10(b). Fig. 8(b$LAM, the joining of multiple maps, 2D bearing-only or
compares the map joining result using identity covarianc&énge-only SLAM, and 3D SLAM are all non-trivial. Work

matrices with that using the original covariance matrices. in all these directions has the potential to enhance the
understanding of this important robotics problem and lead

to more reliable and efficient solutions to robot navigation.

(a) Victoria Park dataset (b) DLR dataset

* rahd * &
BRI DRI .
: APPENDIX
Y st ) 1 : : .
e T This appendix provides the proofs of Lemma 1 and
R : i Theorem 1.
e .
T A. Proof of Lemma 1
a) Local map 1. b) Local map 2. i _ 4
@ P () P It is easy to see thaj(¢) = %. _
Fig. 9. Local maps 1 and 2 of DLR dataset. The black stars denote the First consider the case when< 1. Sincecos(¢ + Cy) >
robot position, the red dots denote the feature positions. —1, g(¢) > 0 forany¢. Thatisf(¢) is monotone increasing.
Since we have
VIl. CONCLUSIONS ANDFUTURE WORK f(=m) =asin(—7+Cy) —m<a—7<1—7 <0,

This paper proves that nonlinear least squares problems () — ¢ sin(r + Co)+m>—a+m>m—1>0,
associated with joining two 2D maps with spherical covari-
ance matrices have at most two local minima. Moreover, it ithere is one and only on¢ € [—m, ) satisfying (11)-(12)
demonstrated that two local minima exist only if the qualitysimultaneously.
of local maps are much poorer than what is practically Now consider the case when> 1. g(¢) = 0 has two
achievable. The necessary and sufficient condition for treplutions in[—m, 7) which are¢, = wrap(arccos(—1) —
existence of two local minima can be evaluated using the da€&, ), ¢» = wrap(— arccos(—1) — Cy).
from the two local maps. This makes it possible to guarantee First consider the case whefy < ¢o, sinceg(¢;) =
that the globally optimum solution has been reached leadifgg(¢2) = 0, ¢1,¢2 divide interval [-m,7) into three
to the possibility of obtaining robust solutions to the SLAMintervals wheref is monotone in each of the intervals,
problem even when the initial guess is unreliable. i.e., [—m, 1], [P1,¢2], and [¢pa, 7), there are at most two



TABLE |

¢ satisfying (11)-(12) simultaneously, which belong to in- ANALYSIS OF SOLUTION T0(11)-(12).

tervals[—m, ¢1] and[¢2, 7) provided thatf(¢) is monotone

increasing in these two intervals. T -
Since|¢| < m, the number of solutions to satisfy (11)-(12) [f(é2) || - | - | + | * | - | - |+ | + | - | + +
simultaneously can be analyzed by observing the four values f(m) || - |+ ] - [ +] - | + il e M I B
F=7), (1), F(@2), f (). o oAl 2L L]
_ _ '-" denotes <0’, '+ denotes >0, '0, 1, 2’ denote the number of solution
(No)te th% —_i- (bibm(ab) g f(\/zz;arngbi(b ITTS to satisfy (11)-(12) simultaneously.
impossible to havg (—7) > 0 and f(7) < 0 simultaneously,
thus, there are 12 cases which are stated in Table I. are
We will now show that the two cases ]
—asinCy —7 <0 (34)
f(=m) <0, f(é1) <0, f(d2) <O, f(m) <0, Va2 —14+¢; <0 (35)
f(_ﬂ)>07f(¢1)>07f(¢2)>07f(7r)>0 _\/0«2_1+¢220 (36)
—asinCy +m >0 (37)
could never happen. 61> & (38)
For the casef(—m) < 0, f(¢1) <0, f(p2) <0, f(m) <0 ! 2
it can be obtained by (7) < 0 that However, from (35), we havé; < —v/a? — 1 < 0, and from
(36), we haveps > va? —1 > 0, which meansp; < ¢o
sin Oy > TS0 (32) and contradicts with (38). Thus it is impossible for (34)-(38)
a to hold simultaneously.

. X In summary, there are two solutions if and only if condi-
Thus Gy € (0,7). Sincea > 0, we havearccos(—3) € tions in (14)-(17) hold simultaneously together with < ¢s
(m/2,7], thus we havearccos(—3) — Cy € (=7/2,7),  andg > 1. This completes the proof.
since arccos(—%) — C, € [-m, m), we have ¢; = -
)

wrap(arccos(—+) — C’¢)—arcc05(—f) Cy € (—m/2,m). B. Proof of Theorem 1

Moreover, byf( ) < 0 we also have: > m. Thus We prove the theorem by showing that for the objective
function F(X) in (23), its gradienV F(X) = 0 is equivalent
=va2—14+¢ > V2 —-1-7m/2>0. to a nonlinear equation with only one variahle The key
reason for this is that th#n+2 equations itV F'(X) = 0 are
This contradicts withf(¢;) < 0. linear wheng is fixed and thus all the oth@mn + 2 variables

Similarly, for th <0 0 can be expressed hy.
imilarly, for the casef(—) > (’f(¢1)> S(02) > et by (23) and (25)

0, f(m) > 0, it can be obtained by (—=) > 0 that
[ (fol Ifl)i(Alixﬁ‘F‘TT) 1
sin Cy < ,g <0 (33) —(zy;, —yp) — (Br —yp +yr)
_(waf xfz) (AQ —Xf, + CCT)
- 1 (25, — ) — (B2 —yp + 9)
Thus Cy € (—m,0). Sincea > 0, we havearccos(—) € 12 2 2
(m/2,7] and —arccos(—l) € [-m, —m/2), thus we have :
—arccos(—1) — Cy € (—m,7/2). Since — arccos(fl) — —(2a,, —x4,) — (An — x4, +77)
Co € [om ) we haveg, = wrap(—arccos(—;) — Cy) € VEF(X)=2 —(2ys, —Y£a) — (Bn — Y5, +r)
(—77,7r/2). Moreover, byf(—m) > 0 we also haver > 7. n
Thus f(¢s) = —Va® — 1+ ¢o < —V/72—1+7/2 < 0. —z, e+ Y (A — g+ 1)
This contradicts withf(¢2) > 0. i=1
Thus, whenp; < ¢, only 10 out of the 12 cases listed in —zy. +Yr + Z(Bi —ys +yr)
Table | may happen. So there are at least one and at most two i=1
solutions ¢ satisfying conditions (11)-(12) simultaneously,
and there are two solutions if and only if the following T Ze +Z i(@g —ar) = Ailyy, —vr)]

conditions f(—m) < 0, f(¢1) > 0, f(¢2) < 0,f(r) > 0 -
hold simultaneously, which are equivalent to conditions ket VF(X) = 0. The first2n+2 equations can be expressed
(14)-(17). by

Now consider the case when > ¢-. Following the same My Xy, = Ny, (39)
lines as that of the case whel < ¢», we have that t0 whereX,, is the vector of the firsen + 2 elements of state
ensure that there are twpsatisfying conditions (11)-(12) si- variable X
multaneously, the following conditions(—=) < 0, f(¢2) > T
0, f(¢1) <0, f(m) > 0 need to hold simultaneously, which Xo=[2p yp - T Yr. o Y



and we have

A CT 1 1 1 -
Mn: 40 =Ty =— -~ —Zp, — -
{C D} WO o = e e, 2(n+2>i;Z“
1
) ] A+ ——Y A
fay + Al AEERETEs DY
2y, T B 1 1
: e R Ji cxn PO
Z.'chn + An 1 1 n B
N, = | 2y, +Bn 41 “B+— N "B
Yin T (41) Jr2 J+2(n—|—2);
_;Ai j=1,...,n (45)
B zn:B- Combining the above equations with the last equation in
VF(X) =0, we have
with —Z¢+z R S L o B
n—|—2 270 2(n+2) — fi
A= 2I2n><2n7 o } . ; n
-1 01" Z n+2 v ¥ 9%, 2(n +2) & 1zyf")]
0 -1 = 0 (46)
C=1: which is equivalent to
-1 0 " T
0 —1lane B I A A N b
. Ry, T Fyr Cs Sg ] 2 |2y, — Ay,
D= n+1 0 j=1 J J
U n

1 Z 2. — %
Xy Ifi
i ; : +2(n+2) Lyr_zy }]}
Applying Matrix Inversion Lemma, we have

n
v o S e
-1 _ — 2y Co 8¢
o[ 7] 2
1
where n+2 . er 2(n+2) Zzzh }
Vi V2 Yo oo Y — e + 3%, — T DA,
Yo 1 Y5 - Y, i=1
y=1v va vi - Y, =0
2 P : which can be denoted as
MEEREIRE Y1l gnwan dsin ¢ 4 0, cos ¢ 4 dpsind + ¢ = 0 47)
U= [Y22 Y2]2x2n’ where¢ = ¢ — z4, andd is defined in (27) and,, §, are
s 0 defined in (29).
—_ | n+2
v { 0 n;] (42) Let k = §, cos ¢ + 8, sin ¢, we have
with k=64 co8(¢p+ 2g) + 0y sin( + z4)
= (04 c08(z4) + dpsin(zg)) cos b
Y, = 1 +O%+2 . +0 ) } 7 + (—0a8in(24) + 8y cos(24)) sin ¢
) n+2 Then, we have that (47) becomes
—5 0 - . - -
Yy = [naz 1] (43) dsing+ ¢ +pcos¢p+gsing =0
n+2

where p,q are defined in (28). Furthermore, it can be
Then from rewritten as

X, = M:IN,, (44) (d+q)sing +pcosd + ¢ = 0. (48)



Sincex,, yr,xy,, Yy, = 1,...,n depend only on variable
¢, the number of the critical points of the objective function

Note that (48) and (51) are equivalent to

F(X) depends on the number of solutignto (48). a(cos Uy sin ¢ + sin C'y cos ?) +té=0 (52)
Furthermore, we have a(cosCycosp —sinCysing) +1 >0 (53)
M, . Ly wherea = /p? + (d + ¢)2 and
V2F(X) =2
Ly, 1+Z;[Ai(xfi — ) + Bilys, — yr)] i Cy = £, cos C, = dj;q (54)
where M,, is the same as stated in (40), and Furthermore, (52) and (53) are equivalent to
L = |B —A B, —A, —ZBi ZAz' asm(gii—i— Cy)+¢=0 (55)
i=1 i=1 CLCOS((ZS + Cqb) +1>0 (56)

applying Schur Complement [11], we haV& F(X) > 0 is
equivalent to

I+ Z[Az(xﬁ - xr) + Bz(yfl - yr)] - LnMn_lL;l; >0
i=1

which is
L) Ay, =)+ Bilyy, —wn)l = 5 ) (AT + BY)
j=1 j=1 (2]
1 n n

Submit (45) into the above inequality, we have
[4]

n
=1 1 _ 1
nzcer T 2%, ~ 32 § :Zﬂ«’fi
ot ) >0
=1 1 __1
nr2 2y T 2%y, 2<n+2>Znyi
i=1

3l

(5]

(49)

— 2,
- Zyr

which is equivalent to (6]

n T
1+ f Fagy T Fa { € Sé] [1 ey,
= Zys, T Ryn =85 Cg| 2 Zys,

n

1 2y — Z
+ Ty zfi
2(n+2) Z Lyr - nyj}}

(71

(8]

i=1
T
1L [Azgr c s
+ 2 [ o ﬂ [
];{ Azy;j —S¢  Co

n
_1 1 __1
s R s R T M) (oW § :Zlf,
i=1

X >0
— a2 t 3%y, — mz%
which is
dcosd — 0, sin¢ + 8, cosd + 1 > 0. (50)
Since (50) is equivalent to
(d+q)cosp —psing+1>0 (51)

It is evident that the number of minima to objective function
F(X) equals to the number of solutions to satisfy conditions
(48) and (51) simultaneously.

Applying Lemma 1, it can be obtained that if conditions
(13)-(18) hold witha,Cy defined in (26), there are two
minima to SLAM problem, else, there is only one minimum.
This completes the proof.
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