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Abstract— Map joining is an efficient strategy for solving
feature based SLAM problems. This paper demonstrates that
joining of two 2D local maps, formulated as a nonlinear least
squares problem has at most two local minima, when the asso-
ciated uncertainties can be described using spherical covariance
matrices. Necessary and sufficient condition for the existence
of two minima is derived and it is shown that more than
one minimum exists only when the quality of the local maps
used for map joining is extremely poor. The analysis explains
to some extent why a number of optimization based SLAM
algorithms proposed in the recent literature that rely on local
search strategies are successful in converging to the globally
optimal solution from poor initial conditions, particularly when
covariance matrices are spherical. It also demonstrates that
the map joining problem has special properties that may be
exploited to reliably obtain globally optimal solutions to the
SLAM problem.

I. INTRODUCTION

When SLAM problem is formulated as a nonlinear least
squares problem, the dimension of the problem is very high
because all feature positions and robot poses are present
as variables. It can be expected that such high dimensional
nonlinear optimization problem have a huge number of local
minima and in general local search strategies are unlikely to
be successful unless a very good initial guess is available.
However, recent research shows that some methods based on
local search can sometimes provide surprisingly good solu-
tions to SLAM without being trapped into a local minimum.

For pose graph SLAM problems, the results presented
in [1] surprised many SLAM researchers where stochastic
gradient descent (SGD) is used to solve the optimization
problem by dealing with each constraint individually and
the algorithm can converge to the correct solution with poor
initial values. Recently, a more efficient SLAM algorithm,
tree-based network optimizer (TORO), was proposed in [2]
where a tree structure is used on top of the SGD approach.
Surprisingly, very large scale problems can be solved effi-
ciently without the need of good initial values, especially
when the covariance matrices of the relative poses are close
to spherical [2].

Our initial investigation [3] into point feature based
SLAM, formulated as a nonlinear least squares problem has
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also highlighted some interesting behavior. A simple Gauss-
Newton algorithm can sometimes converge to the global op-
timal solution from random initial values, when used with the
popular Victoria Park dataset [4]. This, however, occurs only
when the covariances of observations and odometries are set
to be identity matrices, although the resulting solution is very
close to the true solution obtained using the correct sensor
and motion models. A number of numerical experiments
demonstrated that the chance of getting trapped in a local
minimum from a random initial guess is only about 20%.
The DLR-Spatial Cognition dataset [5] also exhibits similar
behavior, when started from a zero initial guess.

These results indicate that the number of local minima
present in the nonlinear least squares formulation of the
SLAM problem is likely to be small if the covariance matri-
ces are spherical. This observation is the main motivation for
the work presented in this paper. In particular, we examine
the problem of joining two maps as well as the special case
where information gathered at two robot poses are combined
to build a local map. We argue that any feature based SLAM
problem can be decomposed into a sequence containing these
two steps. It is theoretically proven that the nonlinear least
squares optimization problems associated with both these
scenarios have at most two local minima. It is experimentally
demonstrated that (a) the two local minima occur only when
the odometry and observation information are extremely
inconsistent with each other, and (b) the solution to the
approximate map joining problem using spherical covariance
matrices is practically very close to the true solution to the
map joining problem using the actual covariance matrices.

The paper is organized as follows. Section II formulates
the least squares SLAM and map joining problems. Section
III provides a lemma which underpins the proofs of the main
results. Section IV analyzes the one-step SLAM problem
while Section V examines the map joining problem. Exper-
imental results to demonstrate the outcomes of the analysis
is presented in Section VI. Section VII concludes the paper.
Appendix A presents the proof of the lemma and Appendix
B presents the proof of the main theorem of the paper.1

II. L EAST SQUARESSLAM AND MAP JOINING

FORMULATION

A. Least Squares SLAM Formulation

Suppose a number of 2D point featuresf1, f2, · · · , fN

in the environments are observed from a sequence of 2D

1The MATLAB source code for testing the results are available at
http://services.eng.uts.edu.au/˜sdhuang/research.htm.



robot posesr0, r1, r2, · · · , rp. The first robot pose (poser0)
is chosen as the origin of the global coordinate frame.

We useXfj
= (xfj

, yfj
)T to denote thex, y position of

featurefj . Xri = (xri , yri)
T denotes thex, y position of

robot poseri while φri
denotes the orientation of poseri.

Rri
is the rotation matrix of poseri given by

Rri
= R(φri

) =
[

cosφri − sin φri

sin φri
cos φri

]
. (1)

The least squares SLAM formulation [6] is to use the
odometry and the range and bearing observation information
to estimate the state vector containing all the robot poses and
all the feature positions

X = (XT
f1

, · · · , XT
fN

, XT
r1

, φr1 , · · · , XT
rp

, φrp)T (2)

and the SLAM problem is to minimize [6]

F (X) =
p∑

i=1

(Oi−1
i −HOi(X))T P−1

Oi (Oi−1
i −HOi(X))

+
∑

i,j

(Zi
j −HZi

j (X))T P−1
Zi

j
(Zi

j −HZi
j (X))

(3)
whereOi−1

i (1 ≤ i ≤ p) are odometries,Zi
j are observations,

andPOi andPZi
j

are the corresponding covariance matrices.

In the above least squares SLAM formulation,HZi
j (X)

andHOi(X) are the corresponding functions relatingZi
j and

Oi−1
i to the stateX. The odometry is a function of two poses

(XT
ri−1

, φri−1)
T and (XT

ri
, φri)

T and is given by

HOi(X) =
[

RT
ri−1

(Xri −Xri−1)
φri − φri−1

]
. (4)

The range and bearing observation is a function of one
pose(XT

ri
, φri)

T and one feature positionXfj and is given
by

HZi
j (X) = RT

ri
(Xfj −Xri). (5)

In particular, sinceφr0 = 0 and Xr0 = (0, 0)T , the
odometry function from robotr0 to r1 is given by

HO1(X) =
[

Xr1

φr1

]
(6)

and the observation function from robotr0 to fj is given by

HZ0
j (X) = Xfj . (7)

“One-step SLAM” problem is the special case where the
number of robot poses is two, i.e.p = 1.

B. Map Joining

Joining of multiple local maps obtained by solving the
above least squares problem can also be formulated as
an optimization problem [7][8]. Suppose that there are a
sequence ofk local maps and the end robot pose of local
map j is the start robot pose of local mapj + 1. The state
vector of the map joining problem considered in [7] contains
all the feature positions and robot end poses of each local
map:

XMJ = (XT
r1e

, φr1e , · · · , XT
rke

, φrke
, XT

f1
, · · · , XT

fN
)T (8)

whererje is the robot end pose of local mapj (1 ≤ j ≤ k).
Suppose local mapj is defined by(X̂L

j , PL
j ) whereX̂L

j

is the state estimate andPL
j is the associated covariance

matrix. Also assume the features present in the local mapj
are fj1, · · · , fjnj . The local map state estimatêXL

j can be
regarded as an observation of the true relative positions from
the robot start poser(j−1)e to the featuresfj1, · · · , fjnj and
the robot end poserje. That is,

X̂L
j = Hj(XMJ ) + wj (9)

where

Hj(XMJ ) =




RT
r(j−1)e

(Xrje
−Xr(j−1)e

)
φrje

− φr(j−1)e

RT
r(j−1)e

(Xfj1 −Xr(j−1)e
)

...
RT

r(j−1)e
(Xfjnj

−Xr(j−1)e
)




and wj is the zero-mean Gaussian “observation noise”
whose covariance matrix isPL

j (when j = 1, Xr(j−1)e
=

[0, 0]T , φr(j−1)e
= 0).

So the problem of joining local maps1 to k is to estimate
the global stateXMJ using all the local map information (9)
for j = 1, · · · , k. This problem can be formulated as a least
squares problem. That is, findingXMJ such that

k∑

j=1

(X̂L
j −Hj(XMJ ))T (PL

j )−1(X̂L
j −Hj(XMJ )) (10)

is minimized.
Most of the map joining algorithms such as sequential

map joining [7] and divide-and-conquer strategy [9] combine
two maps at a time. Furthermore, it can be seen that “one-
step SLAM” problem defined in (3) withp = 1 is also
a special case of joining two maps. Therefore, any feature
based SLAM problem can be decomposed to a sequence of
problems of joining two local maps.

III. A U SEFUL LEMMA

It will be shown in the following sections that the problem
of joining two maps and its special case, one-step SLAM
problem can both be reduced to a nonlinear equation con-
strained by a nonlinear inequality with one variable, when
associated uncertainties can be described using spherical
covariance matrices. The following lemma gives a special
property of such problems.
Lemma 1: Assume thata > 0, Cφ ∈ [−π, π) are two
constants. Consider the following two conditions:

f(φ) = a sin(φ + Cφ) + φ = 0 (11)

g(φ) = a cos(φ + Cφ) + 1 > 0 (12)

There are at least one and at most twoφ ∈ [−π, π) satisfying
(11)-(12) simultaneously. Moreover, there are two solutions



if and only if

a ≥ 1 (13)

−a sin Cφ − π ≤ 0 (14)√
a2 − 1 + φ1 ≥ 0 (15)

−
√

a2 − 1 + φ2 ≤ 0 (16)

−a sin Cφ + π ≥ 0 (17)

φ1 − φ2 ≤ 0 (18)

hold simultaneously. Here

φ1 = wrap(arccos(− 1
a )− Cφ)

φ2 = wrap(− arccos(− 1
a )− Cφ) (19)

wherewrap(θ) is a function which wrapsθ into [−π, π).
Proof: See Appendix A.

Remark 1: Fig. 1 illustrates the conditions (13)-(18). The
possible pair ofa, Cφ when there are two solutions to satisfy
conditions (11)-(12) simultaneously is shown in the shaded
area. For example, it can be seen that ifa < 1, there is only
one solution. If|Cφ| < arcsin( π√

π2+1
) = 1.2626, there is

also only one solution. Fig. 2 shows the functionsf(φ) and
g(φ) whena = 3, Cφ = 2 and it is clear that there are two
solutions to (11)-(12).
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Fig. 1. Possible situations of having two solutions by satisfying conditions
(13)-(18). The x-axis isCφ, and y-axis isa. In the shaded area, there are
two solutions to (11)-(12), in the other area, there is only one solution.
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Fig. 2. An example of two solutions to (11)-(12):a = 3, Cφ = 2.

IV. ONE-STEPSLAM

This section analyzes the number of local minima present
in the one-step SLAM problem.

Suppose there aren features which are all observed by
both poser0 and poser1, as shown in Fig. 3. DenoteX =
(xf1 , yf1 , . . . , xfn , yfn , xr, yr, φ)T where(xr, yr, φ) is robot
poser1, and consider the case when the covariance matrices
PO1 , PZ0

i
, PZ1

i
, i = 1, · · · , n are all identity matrices.

Fig. 3. One-step SLAM problem withn feature

Suppose the odometry between poser0 and poser1 is
O0

1 = (zxr , zyr , zφ)T , the observation of featurefi from r0

is Z0
i = (zxfi

, zyfi
)T and the observation offi from r1 is

Z1
i = (zxr

fi
, zyr

fi
)T , then the SLAM problem is to minimize

F (X) = (O0
1 −HO1(X))T P−1

O1
(O0

1 −HO1(X))

+
n∑

i=1

(Z0
i −HZ0

i (X))T P−1
Z0

i
(Z0

i −HZ0
i (X))

+
n∑

i=1

(Z1
i −HZ1

i (X))T P−1
Z1

i
(Z1

i −HZ1
i (X))

= (zxr − xr)2 + (zyr − yr)2 + (zφ − φ)2

+
n∑

i=1

[(zxfi
− xfi)

2 + (zyfi
− yfi)

2]

+
n∑

i=1

(Z1
i −R(φ)T δi)T (Z1

i −R(φ)T δi) (20)

where

δi = Xfi −Xr =
[
xfi − xr

yfi − yr

]
(21)

Note that

(Z1
i −R(φ)T δi)T (Z1

i −R(φ)T δi)

=|Z1
i −R(φ)T δi|2

=|R(φ)Z1
i − δi|2 (22)



Thus the objective function (20) can be converted into

F (X) = (zxr − xr)2 + (zyr − yr)2 + (zφ − φ)2

+
n∑

i=1

[(zxfi
− xfi

)2 + (zyfi
− yfi

)2]

+
n∑

i=1

[(Ai − (xfi − xr))2 + (Bi − (yfi − yr))2]

(23)

where

Ai = zxr
fi

cφ − zyr
fi

sφ, Bi = zxr
fi

sφ + zyr
fi

cφ. (24)

Here cφ, sφ denotecosφ and sinφ, respectively. Note that
Ai andBi satisfy the following equations

dAi

dφ
= −Bi,

dBi

dφ
= Ai, A2

i + B2
i = z2

xr
fi

+ z2
yr

fi

. (25)

The number of local minima of objective function (23) is
given by Theorem 1.
Theorem 1: The one-step SLAM problem withn features
has at least one local minimum and at most two local
minima. Moreover, there are two local minima if and only
if conditions (13)-(18) hold with

a =
√

p2 + (d + q)2, Cφ = atan2(p, d + q) (26)

whereatan2(y, x) denotes the arc tangent ofy, x and

d =
1
2

∑

1≤i≤n

[(zxfi
− zxr )

2 + (zyfi
− zyr )

2]

− 1
2(n + 2)

∑

1≤i,j≤n

[(zxfj
− zxr )(zxfi

− zxr )

+ (zyfj
− zyr )(zyfi

− zyr )] (27)

p = δaczφ
+ δbszφ

q = −δaszφ
+ δbczφ

(28)

with

δa =
n∑

j=1

(

[
∆zxr

fj

∆zyr
fj

]T




1
n+2zyr − 1

2zyfj
+ 1

2(n+2)

n∑

i=1

zyfi

−1
n+2zxr + 1

2zxfj
− 1

2(n+2)

n∑

i=1

zxfi


)

δb =
n∑

j=1

(

[
∆zxr

fj

∆zyr
fj

]T




−1
n+2zxr + 1

2zxfj
− 1

2(n+2)

n∑

i=1

zxfi

−1
n+2zyr + 1

2zyfj
− 1

2(n+2)

n∑

i=1

zyfi


)

(29)
and

∆zxr
fi

= zxr
fi
− [(zxfi

− zxr )czφ
+ (zyfi

− zyr )szφ
]

∆zyr
fi

= zyr
fi
− [−(zxfi

− zxr )szφ
+ (zyfi

− zyr )czφ
]
(30)

for i = 1, · · · , n. Here czφ
and szφ

denotecos(zφ) and
sin(zφ), respectively.

Proof: See Appendix B.
Remark 2: In Theorem 1, the∆zxr

fi
, ∆zyr

fi
defined in

(30) are the differences between the observation from pose

r1 and the observation from poser0 combined with the
odometry. Thusδa, δb, p, q as well asCφ represent the level
of inconsistency between the observation data from pose
r1 and the data obtained through observation from poser0

combined with the odometry. In the ideal case when the
data are completely consistent (e.g. when all the sensors are
perfect), we have∆zxr

fi
= 0,∆zyr

fi
= 0, i = 1, · · · , n. Then

p = 0, q = 0 and thusCφ = 0. In this case, it is evident that
(18) does not hold anymore sinceπ2 < arccos(− 1

a ) < π,
thus the problem has only one minimum (this can also be
seen from Fig. 1 whenCφ = 0).
Numerical Illustration. Consider the special case when only
one featuref is observed from the two poses. Assume the
odometry is given by(zxr , zyr , zφ)T = (2, 2, 0.5)T and the
observation from poser0 to f is (zxf

, zyf
)T = (0, 3)T . We

consider different observation fromr1 to f , (zx, zy)T , by
varying∆zx,∆zy. From (30), we havezx = −1.2757+∆zx,
andzy = 1.8364 + ∆zy because

(zxf
− zxr )czφ

+ (zyf
− zyr )szφ

= −1.2757,

−(zxf
− zxr )szφ

+ (zyf
− zyr )czφ

= 1.8364.

Given any pair of (∆zx, ∆zy), the numerical values for
δa, δb, d, p, q, a, Cφ can all be computed, and conditions
(13)-(18) can be evaluated. Fig. 4 shows the number of
minima that exist for different(∆zx, ∆zy). The shaded area
corresponds to the case where there are two local minima,
while the remaining space corresponds to the conditions
where there is only one minimum.
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Fig. 4. Number of local minima to the one-step one-feature SLAM problem
as a function of∆zx, ∆zy . When|∆zx| ≤ 3, |∆zy| ≤ 3, there is only one
local minimum. Normally, one cannot expect 3m measurement error with
measurement values within 2m. So it is very unlikely to have two local
minima unless the data association is wrong.

V. JOINING TWO LOCAL MAPS

This section demonstrates that the least squares optimiza-
tion problem of joining two local maps, also has at most two
local minima.

Consider the two local maps shown in Fig. 5 wherer0

is the start pose of local map 1 which is the origin of the
global map,r1 is the end pose in local map 1 as well as the
start pose of local map 2,r2 is the end pose in local map
2. Assume(zxr1

, zyr1
, zφr1

)T is the estimate of poser1 in
local map 1,(zx

r1
r2

, zy
r1
r2

, zφ
r1
r2

)T is the estimate of poser2 in
local map 2. Supposen is the number of features that appear



Fig. 5. Joining of two local maps

in both map 1 and map 2, andzxfi
, zyfi

, zx
r1
fi

, zy
r1
fi

, i =
1, · · · , n are the estimated positions of these features in local
map 1 and local map 2. Supposen1 is the number of features
that appear only in map 1, andzx

f1
j

, zy
f1

j

, j = 1, · · · , n1

are the estimated positions of these features in local map 1.
Supposen2 is the number of features that appear only in map
2 andzx

r1
f2

k

, zy
r1
f2

k

, k = 1, · · · , n2 are the estimated positions

of these features in local map 2.
Consider the case when the covariance matrices of the

local maps are both identity, similar to (23), the map joining
problem becomes minimizing

F (XMJ ) = (zxr1
− xr1)

2 + (zyr1
− yr1)

2 + (zφr1
− φr1)

2

+ (Ar − (xr2 − xr1))
2 + (Br − (yr2 − yr1))

2 + (zφ
r1
r2

− (φr2 − φr1))
2 +

n1∑

j=1

[(zx
f1

j

− xf1
j
)2 + (zy

f1
j

− yf1
j
)2]

+
n∑

i=1

[(zxfi
− xfi)

2 + (zyfi
− yfi)

2]

+
n∑

i=1

[(Ai − (xfi − xr1))
2 + (Bi − (yfi − yr1))

2]

+
n2∑

k=1

[(Ck − (xf2
k
− xr1))

2 + (Dk − (yf2
k
− yr1))

2] (31)

where stateXMJ contains(xr1 , yr1 , φr1)
T , (xr2 , yr2 , φr2)

T ,
and all the feature positions, and

Ar = cφr1
zx

r1
r2
− sφr1

zy
r1
r2

, Br = sφr1
zx

r1
r2

+ cφr1
zy

r1
r2

Ai = cφr1
zx

r1
fi

− sφr1
zy

r1
fi

, Bi = sφr1
zx

r1
fi

+ cφr1
zy

r1
fi

Ck = cφr1
zx

r1
f2

k

− sφr1
zy

r1
f2

k

, Dk = sφr1
zx

r1
f2

k

+ cφr1
zy

r1
f2

k

Theorem 2: The map joining problem with two locals
maps has at least one local minimum and at most two
local minima. Moreover, there are two local minima if and
only if conditions (13)-(18) hold witha,Cφ defined in (26),
d, p, q, δa, δb defined similar to (27),(28), and (29) with

∆zx
r1
fi

= zx
r1
fi

− [(zxfi
− zxr1

)czφr1
+ (zyfi

− zyr1
)szφr1

]

∆zy
r1
fi

= zy
r1
fi

− [−(zxfi
− zxr1

)szφr1
+ (zyfi

− zyr1
)czφr1

]

i = 1, · · · , n

Proof: The proof follows similar arguments to those
used for proving Theorem 1. It should be noted that some
data including the numbersn1, n2 do not affect the results.
Detailed proof is omitted.
Remark 3: Theorems 1 and 2 can be extended to the case
where covariance matrices for each observation/odometry
(feature/pose) are all spherical (diagonal with thex, y el-
ements being the same) but different from each other.
Remark 4: It is easy to see that when combining two
local maps each containing more than two robot poses (e.g.
Tectonic SAM map joining [8]), the same results hold as
long as the covariances are spherical.
Remark 5: If the robot poses are not available, map joining
problem reduces to the problem of finding the relative
transformation between two coordinate frames given two
corresponding point sets. When the covariances of the un-
certainty associated with feature locations are assumed to be
spherical, it is known that the problem has a closed-form
solution [10].

VI. EXPERIMENTAL RESULTS

In this section, we use publicly available experimental
datasets to demonstrate that the problem of joining two local
maps has only one local minima in practice.

A. Results using Victoria Park dataset

The Victoria Park dataset was divided into two parts
to build two local maps which are shown in Fig. 6. The
covariance matrices of the two local maps were set to identity
matrices. Using the local map data to compute the values
of a, Cφ in Theorem 2, we obtaina = 203660, Cφ =
−0.0029. Obviously they do not satisfy the conditions (13)-
(18), meaning that the map joining problem only has one
local minimum. To check the result, Gauss Newton algorithm
is used to solve the map joining problem. In an experiment
with more than 100 trials, the algorithm always converged to
the solution shown in Fig. 7(b) from arbitrary initial guesses
to the robot poses and feature locations. Example initial
guess is shown in Fig. 7(a).
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(a) Local map 1.
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(b) Local map 2.

Fig. 6. Local maps 1 and 2 of Victora Park dataset. The black stars denote
the robot position, the red dots denote the feature positions.

Fig. 8(a) compares the map joining result using identity
covariance matrices with that using the original covariance
matrices of the two local maps, the differences due to the
use of spherical covariance matrices is negligible.
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(a) Example initial guess to robot
and feature locations.
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(b) Result of map joining.

Fig. 7. Result of map joining for the Victoria Park dataset. The black stars
denote the robot position, the red circles denote the feature positions.
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(a) Victoria Park dataset
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(b) DLR dataset

Fig. 8. Comparison of the map joining results using spherical covariance
matrix and original covariances. The two results are almost identical. This
is probably due to the high quality of the local maps.

B. Results using DLR-Spatial Cognition dataset

The experiments described in Section VI-A was repeated
using the DLR dataset. Fig. 9 shows the two local maps
obtained. An example initial guess and the map joining
results are shown in Fig. 10(a) and Fig. 10(b). Fig. 8(b)
compares the map joining result using identity covariance
matrices with that using the original covariance matrices.
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Fig. 9. Local maps 1 and 2 of DLR dataset. The black stars denote the
robot position, the red dots denote the feature positions.

VII. C ONCLUSIONS ANDFUTURE WORK

This paper proves that nonlinear least squares problems
associated with joining two 2D maps with spherical covari-
ance matrices have at most two local minima. Moreover, it is
demonstrated that two local minima exist only if the quality
of local maps are much poorer than what is practically
achievable. The necessary and sufficient condition for the
existence of two local minima can be evaluated using the data
from the two local maps. This makes it possible to guarantee
that the globally optimum solution has been reached leading
to the possibility of obtaining robust solutions to the SLAM
problem even when the initial guess is unreliable.
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(a) Example initial guess to robot
and feature locations.
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(b) Result of map joining.

Fig. 10. Result of map joining for the DLR dataset. The black stars denote
the robot position, the red circles denote the feature positions.

The results in this paper shows that the joining of two
maps with spherical covariance matrices is equivalent to the
solving of a one dimensional problem. Given the argument
that all SLAM problems can be decomposed to that of
joining two maps, it may be possible to use simple tech-
niques such as bisection to obtain a solution to SLAM very
efficiently. However, further work is needed to evaluate the
impact of the assumption of spherical covariance matrices.

The results presented in this paper clearly show that
SLAM is a very special optimization problem, and goes
someway towards explaining the success of some of the re-
cent techniques for SLAM that rely on local search strategies
yet lead to good solutions. Further work on the analysis of
these algorithms, for example TORO, may lead to even better
and more efficient solutions to SLAM.

Furthermore, the extension of the results to multi-step
SLAM, the joining of multiple maps, 2D bearing-only or
range-only SLAM, and 3D SLAM are all non-trivial. Work
in all these directions has the potential to enhance the
understanding of this important robotics problem and lead
to more reliable and efficient solutions to robot navigation.

APPENDIX

This appendix provides the proofs of Lemma 1 and
Theorem 1.

A. Proof of Lemma 1

It is easy to see thatg(φ) = df(φ)
dφ .

First consider the case whena < 1. Sincecos(φ + Cφ) ≥
−1, g(φ) > 0 for anyφ. That isf(φ) is monotone increasing.
Since we have

f(−π) = a sin(−π + Cφ)− π < a− π < 1− π < 0,

f(π) = a sin(π + Cφ) + π > −a + π > π − 1 > 0,

there is one and only oneφ ∈ [−π, π) satisfying (11)-(12)
simultaneously.

Now consider the case whena ≥ 1. g(φ) = 0 has two
solutions in [−π, π) which areφ1 = wrap(arccos(− 1

a ) −
Cφ), φ2 = wrap(− arccos(− 1

a )− Cφ).
First consider the case whenφ1 ≤ φ2, since g(φ1) =

0, g(φ2) = 0, φ1, φ2 divide interval [−π, π) into three
intervals wheref is monotone in each of the intervals,
i.e., [−π, φ1], [φ1, φ2], and [φ2, π), there are at most two



φ satisfying (11)-(12) simultaneously, which belong to in-
tervals[−π, φ1] and [φ2, π) provided thatf(φ) is monotone
increasing in these two intervals.

Since|φ| ≤ π, the number of solutions to satisfy (11)-(12)
simultaneously can be analyzed by observing the four values
f(−π), f(φ1), f(φ2), f(π).

Note thatf(−π) = −a sinCφ−π, f(π) = −a sin Cφ +π,
f(φ1) =

√
a2 − 1 + φ1, f(φ2) = −√a2 − 1 + φ2, it is

impossible to havef(−π) > 0 andf(π) < 0 simultaneously,
thus, there are 12 cases which are stated in Table I.

We will now show that the two cases

f(−π) < 0, f(φ1) < 0, f(φ2) < 0, f(π) < 0,

f(−π) > 0, f(φ1) > 0, f(φ2) > 0, f(π) > 0

could never happen.
For the casef(−π) < 0, f(φ1) < 0, f(φ2) < 0, f(π) < 0

it can be obtained byf(π) < 0 that

sin Cφ >
π

a
> 0 (32)

Thus Cφ ∈ (0, π). Since a > 0, we havearccos(− 1
a ) ∈

(π/2, π], thus we havearccos(− 1
a ) − Cφ ∈ (−π/2, π),

since arccos(− 1
a ) − Cφ ∈ [−π, π), we have φ1 =

wrap(arccos(− 1
a )−Cφ) = arccos(− 1

a )−Cφ ∈ (−π/2, π).
Moreover, byf(π) < 0 we also havea > π. Thus

f(φ1) =
√

a2 − 1 + φ1 >
√

π2 − 1− π/2 > 0.

This contradicts withf(φ1) < 0.
Similarly, for the casef(−π) > 0, f(φ1) > 0, f(φ2) >

0, f(π) > 0, it can be obtained byf(−π) > 0 that

sin Cφ < −π

a
< 0 (33)

Thus Cφ ∈ (−π, 0). Sincea > 0, we havearccos(− 1
a ) ∈

(π/2, π] and − arccos(− 1
a ) ∈ [−π,−π/2), thus we have

− arccos(− 1
a ) − Cφ ∈ (−π, π/2). Since− arccos(− 1

a ) −
Cφ ∈ [−π, π), we haveφ2 = wrap(− arccos(− 1

a )− Cφ) ∈
(−π, π/2). Moreover, byf(−π) > 0 we also havea > π.
Thus f(φ2) = −√a2 − 1 + φ2 < −√π2 − 1 + π/2 < 0.
This contradicts withf(φ2) > 0.

Thus, whenφ1 ≤ φ2, only 10 out of the 12 cases listed in
Table I may happen. So there are at least one and at most two
solutionsφ satisfying conditions (11)-(12) simultaneously,
and there are two solutions if and only if the following
conditionsf(−π) ≤ 0, f(φ1) ≥ 0, f(φ2) ≤ 0, f(π) ≥ 0
hold simultaneously, which are equivalent to conditions in
(14)-(17).

Now consider the case whenφ1 > φ2. Following the same
lines as that of the case whenφ1 ≤ φ2, we have that to
ensure that there are twoφ satisfying conditions (11)-(12) si-
multaneously, the following conditionsf(−π) ≤ 0, f(φ2) ≥
0, f(φ1) ≤ 0, f(π) ≥ 0 need to hold simultaneously, which

TABLE I

ANALYSIS OF SOLUTION TO(11)-(12).

f(-π) - - - - - - - - + + + +
f(φ1) - - - - + + + + - - + +
f(φ2) - - + + - - + + - + - +
f(π) - + - + - + - + + + + +
No. 0 1 1 1 1 2 1 1 1 1 1 0

’-’ denotes ’<0’, ’+’ denotes ’>0’, ’0, 1, 2’ denote the number of solution
to satisfy (11)-(12) simultaneously.

are

− a sin Cφ − π ≤ 0 (34)√
a2 − 1 + φ1 ≤ 0 (35)

−
√

a2 − 1 + φ2 ≥ 0 (36)

− a sin Cφ + π ≥ 0 (37)

φ1 > φ2 (38)

However, from (35), we haveφ1 ≤ −√a2 − 1 < 0, and from
(36), we haveφ2 ≥

√
a2 − 1 > 0, which meansφ1 < φ2

and contradicts with (38). Thus it is impossible for (34)-(38)
to hold simultaneously.

In summary, there are two solutions if and only if condi-
tions in (14)-(17) hold simultaneously together withφ1 ≤ φ2

anda ≥ 1. This completes the proof.

B. Proof of Theorem 1

We prove the theorem by showing that for the objective
functionF (X) in (23), its gradient∇F (X) = 0 is equivalent
to a nonlinear equation with only one variableφ. The key
reason for this is that the2n+2 equations in∇F (X) = 0 are
linear whenφ is fixed and thus all the other2n+2 variables
can be expressed byφ.

In fact, by (23) and (25)

∇F (X) = 2




−(zxf1
− xf1)− (A1 − xf1 + xr)

−(zyf1
− yf1)− (B1 − yf1 + yr)

−(zxf2
− xf2)− (A2 − xf2 + xr)

−(zyf2
− yf2)− (B2 − yf2 + yr)

...
−(zxfn

− xfn)− (An − xfn + xr)
−(zyfn

− yfn)− (Bn − yfn + yr)

−zxr + xr +
n∑

i=1

(Ai − xfi + xr)

−zyr + yr +
n∑

i=1

(Bi − yfi + yr)

φ− zφ +
n∑

i=1

[Bi(xfi − xr)−Ai(yfi − yr)]




Let∇F (X) = 0. The first2n+2 equations can be expressed
by

MnXn = Nn (39)

whereXn is the vector of the first2n + 2 elements of state
variableX

Xn =
[
xf1 yf1 · · · xfn yfn xr yr

]T



and

Mn =
[
A CT

C D

]
(40)

Nn =




zxf1
+ A1

zyf1
+ B1

...
zxfn

+ An

zyfn
+ Bn

zxr
−

n∑

i=1

Ai

zyr
−

n∑

i=1

Bi




(41)

with

A = 2I2n×2n,

C =




−1 0
0 −1
...

...
−1 0
0 −1




T

2n×2

D =
[
n + 1 0

0 n + 1

]
,

Applying Matrix Inversion Lemma, we have

M−1
n =

[
Y UT

U V

]

where

Y =
1
2




Y1 Y2 Y2 · · · Y2

Y2 Y1 Y2 · · · Y2

Y2 Y2 Y1 · · · Y2

...
...

...
. ..

...
Y2 Y2 Y2 · · · Y1




2n×2n

U =
[
Y2 · · · Y2

]
2×2n

,

V =
[ 2

n+2 0
0 2

n+2

]
(42)

with

Y1 =
[
1 + 1

n+2 0
0 1 + 1

n+2

]
,

Y2 =
[ 1

n+2 0
0 1

n+2

]
. (43)

Then from

Xn = M−1
n Nn, (44)

we have

xfj − xr =− 1
n + 2

zxr
+

1
2
zxfj

− 1
2(n + 2)

n∑

i=1

zxfi

+
1
2
Aj +

1
2(n + 2)

n∑

i=1

Ai

yfj − yr =− 1
n + 2

zyr +
1
2
zyfj

− 1
2(n + 2)

n∑

i=1

zyfi

+
1
2
Bj +

1
2(n + 2)

n∑

i=1

Bi

j =1, . . . , n (45)

Combining the above equations with the last equation in
∇F (X) = 0, we have

φ− zφ +
n∑

j=1

[Bj(− 1
n + 2

zxr
+

1
2
zxfj

− 1
2(n + 2)

n∑

i=1

zxfi
)]

−
n∑

j=1

[Aj(− 1
n + 2

zyr +
1
2
zyfj

− 1
2(n + 2)

n∑

i=1

zyfi
)]

= 0 (46)

which is equivalent to

φ̃ +
n∑

j=1

{
[
zxfj

− zxr

zyfj
− zyr

]T [
sφ̃ −cφ̃

cφ̃ sφ̃

]
[
1
2

[
zxfj

− zxr

zyfj
− zyr

]

+
1

2(n + 2)

n∑

i=1

[
zxr − zxfi

zyr − zyfi

]
]}

+
n∑

j=1

{
[
∆zxr

fj

∆zyr
fj

]T [
sφ −cφ

cφ sφ

]

×




− 1
n+2zxr + 1

2zxfj
− 1

2(n+2)

n∑

i=1

zxfi

− 1
n+2zyr + 1

2zyfj
− 1

2(n+2)

n∑

i=1

zyfi


}

= 0

which can be denoted as

d sin φ̃ + δa cos φ + δb sin φ + φ̃ = 0 (47)

where φ̃ = φ − zφ, andd is defined in (27) andδa, δb are
defined in (29).

Let k = δa cosφ + δb sin φ, we have

k = δa cos(φ̃ + zφ) + δb sin(φ̃ + zφ)

= (δa cos(zφ) + δb sin(zφ)) cos φ̃

+ (−δa sin(zφ) + δb cos(zφ)) sin φ̃

Then, we have that (47) becomes

d sin φ̃ + φ̃ + p cos φ̃ + q sin φ̃ = 0

where p, q are defined in (28). Furthermore, it can be
rewritten as

(d + q) sin φ̃ + p cos φ̃ + φ̃ = 0. (48)



Sincexr, yr, xfi
, yfi

, i = 1, . . . , n depend only on variable
φ, the number of the critical points of the objective function
F (X) depends on the number of solutioñφ to (48).

Furthermore, we have

∇2F (X) = 2




Mn LT
n

Ln 1 +
n∑

i=1

[Ai(xfi − xr) + Bi(yfi − yr)]




whereMn is the same as stated in (40), and

Ln =

[
B1 −A1 · · · Bn −An −

n∑

i=1

Bi

n∑

i=1

Ai

]

applying Schur Complement [11], we have∇2F (X) > 0 is
equivalent to

1 +
n∑

i=1

[Ai(xfi
− xr) + Bi(yfi

− yr)]− LnM−1
n LT

n > 0

which is

1 +
n∑

j=1

[Aj(xfj − xr) + Bj(yfj − yr)]− 1
2

n∑

j=1

(A2
j + B2

j )

− 1
2(n + 2)

n∑

j=1

n∑

i=1

(AjAi + BjBi) > 0

Submit (45) into the above inequality, we have

1 +
n∑

j=1

(
[
Aj

Bj

]T




−1
n+2zxr + 1

2zxfj
− 1

2(n+2)

n∑

i=1

zxfi

−1
n+2zyr + 1

2zyfj
− 1

2(n+2)

n∑

i=1

zyfi


) > 0

(49)

which is equivalent to

1 +
n∑

j=1

{
[
zxfj

− zxr

zyfj
− zyr

]T [
cφ̃ sφ̃

−sφ̃ cφ̃

]
[
1
2

[
zxfj

− zxr

zyfj
− zyr

]

+
1

2(n + 2)

n∑

i=1

[
zxr − zxfi

zyr − zyfi

]
]}

+
n∑

j=1

{
[
∆zxr

fj

∆zyr
fj

]T [
cφ sφ

−sφ cφ

]

×




− 1
n+2zxr + 1

2zxfj
− 1

2(n+2)

n∑

i=1

zxfi

− 1
n+2zyr + 1

2zyfj
− 1

2(n+2)

n∑

i=1

zyfi


} > 0

which is

d cos φ̃− δa sin φ + δb cos φ + 1 > 0. (50)

Since (50) is equivalent to

(d + q) cos φ̃− p sin φ̃ + 1 > 0 (51)

It is evident that the number of minima to objective function
F (X) equals to the number of solutions to satisfy conditions
(48) and (51) simultaneously.

Note that (48) and (51) are equivalent to

a(cos Cφ sin φ̃ + sin Cφ cos φ̃) + φ̃ = 0 (52)

a(cos Cφ cos φ̃− sin Cφ sin φ̃) + 1 > 0 (53)

wherea =
√

p2 + (d + q)2 and

sin Cφ =
p

a
, cos Cφ =

d + q

a
(54)

Furthermore, (52) and (53) are equivalent to

a sin(φ̃ + Cφ) + φ̃ = 0 (55)

a cos(φ̃ + Cφ) + 1 > 0 (56)

Applying Lemma 1, it can be obtained that if conditions
(13)-(18) hold with a,Cφ defined in (26), there are two
minima to SLAM problem, else, there is only one minimum.
This completes the proof.
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