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Abstract— We present a new dataset with the goal of ad-
vancing the state-of-the-art in object pose estimation especially
for stored porcelain and glass crockery in kitchen scenes.
Specifically the ESKO6d (EASE Stored Kitchen Objects with
6d poses) dataset features texture-less, glossy or glassy ordinary
used objects which were naturally stored in a cupboard, drawer
or dishwasher. There is a large degree of occlusion being the
specific challenge in these scenes. Each scene was recorded
in video sequences by two cameras (RGB-D (Kinect) and
binocular) within multiple setup stages. The dataset contains
an RGB-D image or binocular RGB image plus stereo-matched
depth image as well as 6d pose ground truth and instance
segmentation. Our dataset contains twelve stored object scenes
with a combined amount of 47 video sequences captured by
each camera, resulting in over 17k annotated Kinect images
and more than 42k annotated stereo images showing around
50 different objects. The ground truth annotation is pre-
cise to 3.5mm ADD (details see paper). The dataset can be
accessed under http://www.informatik.uni-bremen.
de/esko6d-dataset.

Besides the concrete dataset we propose a method of ground
truth pose measurement based on an external 3d tracking
system that allows on the one hand to precisely measure the
object’s pose inside a tight packed storage and on the other
hand to obtain the object pose in several images with just one
manual measurement.

I. INTRODUCTION

Datasets have been the driving force in computer vision
research for over two decades now. They make scientific
results comparable and relieve the individual researcher from
having to record and label own data for test and evaluation.
If a method involves machine learning also training data is
needed and indeed, the availability of large labeled datasets,
such as Imagenet [1], is commonly quoted as one of the
reasons causing the recent deep learning revolution [2].

General computer vision has the goal to understand images
in their full natural diversity and hence datasets in that area
often feature photographs which are annotated e.g. with
an object class, 2D bounding boxes or per pixel classes.
Vision for robotics in contrast provides sensor information
a robot can act on, in particular 6d object poses (position +
orientation).

In this paper we present such a dataset (Fig. 1) that is
motivated by the long term vision of a general household
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Fig. 1. The proposed ESKO6d-dataset features kitchen objects in cupboards
and dishwashers with 6d ground-truth pose. This setup is motivated by the
vision of a household robot and involves extreme occlusion in particular for
stacked objects. It also involves the grouping of objects typical for cupboards
that may be exploited as semantic context information.

robot [3], [4]. Such a robot must be able to fetch household
objects from cupboards, drawers and out of dishwashers.
These scenes are special for object detection and pose
estimation, because objects are

• tightly packed, even stacked and thus highly occluded,
• texture-less (crockery), transparent (glasses) and/or re-

flective (metal bowls),
• placed following a grouping scheme that, although not

strictly defined, offers context for the recognition,
• sequentially placed, i.e. there is information about a pre-

vious situation relative to which something has changed.

In particular we conjecture that often occlusion is so high
that without the context of neighbouring objects and/or a
previous situation there is probably not enough information
to recognize the object from its visible part alone. The
ESKO6d-dataset wants to foster addressing these challenges.

If ground truth is used for benchmarking an algorithm,
the ground truth error needs to be much smaller than the
algorithm’s error, otherwise the benchmark is inadequate. We
therefore quantify the ground-truth accuracy.

6d poses are usually annotated by manually aligning a
wireframe model of the object with the image [5]. This is
very laborious and difficult for large occlusion. We instead
propose here a different procedure where both the camera(s)
and the objects are localized with a 3d tracking system, the
objects indirectly by localizing tiny markings. This way, a
new object is localized once and after that the ground-truth
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Fig. 2. Sample binocular (rc visard) data included in the ESKO6d dataset. From left to right we show left-eye RGB image, class segmentation, instance
segmentation, right-eye RGB image, disparity image as well as the disparity confidence and error image. Note: The shown segmentation images correspond
to the left-eye image, the segmentation images corresponding to the right-eye image are omitted for clarity.

pose relative to the camera is available without further work,
even if the camera is moved or other objects are added or
removed as long as the object itself is not touched.

This paper extends the master’s thesis [6] contributing:
• A dataset with tightly packed kitchen objects in cup-

boards, drawers and dishwashers, taken with both a
binocular and two RGB-D-cameras with ground truth
pose relative to the camera and instance segmentation.

• An investigation on the error of the ground truth.
• A procedure to efficiently annotate such a dataset.
The paper is organized as follows: After related work we

describe details of the dataset and the annotation procedure,
followed by an analysis of the ground truth accuracy.

II. RELATED WORK

Among the datasets which aim at understanding the con-
tent of photographs there has been a transition from Pascal
VOC [7] over ImageNet [1] to MS COCO [8]. Pascal VOC
has 20 classes, 12k images, labels, bounding boxes and
pixelwise segmentation and has been accompanied by a
challenge from 2005-12. ImageNet has 1k classes (reduced
from the originally annotated 20k), 14M images and labels
and was accompanied by a challenge from 2012-17. MS
COCO has 171 classes, only 330k images but pixelwise
instance segmentation and human bodypart keypoints.

In the kitchen domain the EPIC-KITCHENS dataset [9]
covers 55 h of human activity in 32 kitchens around the
world with first-person video, activity labels and object 2d
bounding boxes. This dataset aims at kitchen activities on a

general human-level scale not at metrical object poses. [10]
presents another human activity dataset about table setting.

For 6d object pose estimation commonly used datasets
are LINEMOD [11], Occluded-LINEMOD [12], YCB-
Video [13], T-LESS [14] and Rutgers [5], all RGB-D.
Occluded-LINEMOD has 10k images, 20 objects and 3
lighting conditions and features office and toy objects (e.g.
camera, duck, punch) on a table with moderate to large
occlusion. Ground truth has been obtained by placing the test
object in the middle of markers on the table. YCB [15] is
originally a set of physical objects intended for reproducible
grasping research. The YCB-Video dataset shows RGB-D
videos of 21 of these objects on a table with 134k images.
Ground truth has been obtained by manually aligning a
model in the first depth image and then tracking the camera
by aligning all objects in the point-cloud simultaneously.
While this is efficient, it carries the danger of depth data
or aligning problems affecting both the ground truth and an
algorithm under evaluation in a correlated way hiding the
problem. The Rutgers dataset targets the Amazon Picking
Challenge [16] where objects are picked from warehouse
shelves (24 objects, 10k images), with manually annotated
poses. The scenes are related to our cupboard scenes, but
the objects differ (boxes and bags vs. crockery and glasses)
and there is no stacking or grouping. [17] evaluates on an
unpublished dataset with YCB objects in extreme lighting
conditions (e.g. sunny window). The T-LESS dataset fea-
tures texture-less industry-relevant objects, which are partly
composed of the same parts. This dataset’s test images also
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Fig. 3. Overview of all ESKO6d objects where often several instances of one type (mostly stacked) are in the scene. The numbers inside the images
indicate the maximum possible instance occurrence of the shown object per scene. Objects marked with a ’x’ occure inside a dishwasher scene.

include clutter and occlusion. Ground truth poses have been
obtained by manually aligning the CAD object models with
the scene models as well as using a turntable with markers
to track the camera pose.

To our knowledge T-LESS is the only dataset, that makes a
statement about its ground-truth accuracy. T-LESS measures
the distance between the captured depth and the (according
to the ground truth poses) rendered depth which results in
5 mm and 9 mm (depending on the sensor) average absolute
difference. The authors state this is near the accuracy of the
sensors.

As 6d annotation is laborious, researchers have tried
learning from rendered images, where exact ground truth
is readily available. [18] uses a mixture of few real and
many rendered images while [19] and [17] use purely
rendered images. An example for photorealistic rendering
is the Falling Things dataset [20] which has been generated
by the NVIDIA deep learning data synthesizer (NDDS) [21].
Despite this success all papers use real datasets for testing.

III. THE ESKO6D DATASET

The dataset divides into multiple subsets, where each is
available as binocular and RGB-D variant (for sample data
see Fig. 2):

Firstly, we provide the recorded video sequences with
the purpose to use for evaluation showing different stored
object scenes, where the objects are incrementally placed.
The placement was performed by students not involved in
the project to obtain a reasonable degree of realism. The
incremental placement is an intended feature: The content of
e.g. a cupboard does not change rapidly and remembering a
previous state could help for recognition. Such an approach

seems promising and can be evaluated with our dataset. For
each stage of placement a sequence with camera motion is
provided. Objects occlude each other to a large degree and
are stacked. This includes:

1) The main dataset, that is showing all objects stored
in cupboards and drawers.

2) A scene with a subgroup of objects (3(a), 3(b)-2, 3(d)-
1, 3(r)-2) stored in a dishwasher.

Secondly, we also provide auxiliary image sets, which may
be used for any purpose:

3) One distraction free video sequence per object observ-
ing the object alone from many perspectives. Since
objects in a dishwasher are often tilted, we added a
second upside down sequence for these.

4) A domain randomization dataset, that consists of
100000 images created with our self-made 3d models
(see III-A) by following the approach of [17].

A. Object description
For this dataset objects were selected, which one would

naturally find in a common kitchen. All used items can
be seen in Fig. 3. The dataset is built on three kinds of
items: At first we selected porcelain items like different
plates (e.g. 3(a), 3(f)) and cups (e.g. 3(d)). All porcelain
items are unicolored, mostly white. Some are black which
is more challenging because of low in-object contrast (e.g.
3(j), 3(o)). The second big item pool is built upon glassy
items. Most of them are made of glass, e.g. drinking (3(l)),
wine (3(b)) and shot glasses (3(q)-1) as well as glass bowls
(3(m)-2). Additionally, we included some transparent plastic
containers (3(s)). Lastly, the dataset contains metallic objects
including pots (e.g. 3(h)), pans (3(c)) and metal bowls (3(r)).



An additional selection criterion was to get multiple pairs
of items that mainly differ in size (e.g. 3(i), 3(j) or 3(c)).

For each object there is a handcrafted 3d-model, which
includes an approximated material and is also available
inside the ESKO6d dataset (http://www.informatik.
uni-bremen.de/esko6d-dataset/models).

B. Sensor Setup

There are two independent sensor setups: A Kinect that
provides RGB-D data and a roboception rc visard, that is
used to provide binocular RGB images with a random-dot
projector active in every second image and approximately
for every tenth RGB image a depth image based on stereo
matching. All stages of all scenes are available in both
sensors, of course with different sensor trajectories. The
sensors specifications are:
• RGB-D Camera: Kinect Sensor for XBOX ONE (Kinect

2), Color 1920× 1080 at 30 Hz with 16 bpp, Depth
512× 424 at 30 Hz with 13 bpp; operation range from
0.5 m to 4.5 m (ToF), FOV 70◦h./60◦v.

• Stereo Camera: roboception rc visard 160 color
– Binocular RGB color image: resolution 1280×960,

FOV 61◦h./48◦v., global shutter
– Stereo-matched depth with RandomDot projector:

roboception StereoPlus Module, range from 0.5 m
to 3 m, depth resolution 3.8 mm at 0.8 m distance.

C. Data description

The data consists of the following parts.
1) Kinect Data: Each Kinect datum includes an RGB

image, a depth image as well as the pose annotation (III-
C.3) and all postcalculated images from III-C.4. Kinect data
is generated in 30 Hz. The depth images have their own
pose since RGB and Depth camera are not synchronized.
All images are rectified (ignoring rolling shutter effects).

2) rc visard binocular data: Each rc visard datum in-
cludes two synchronized and rectified RGB images (’left
eye’, ’right eye’). The RGB images are sampled in 30 Hz.
Every second binocular RGB image includes the projection
from the RandomDot projector (which is only active during
the exposure of that frame). At a speed of 3 Hz the images
during frames with pattern projection are stereo-matched by
the camera itself. The result is a depth image as well as
a confidence and precision image (all with a resolution of
640× 480 pixels). In addition a rc visard datum includes
the pose annotations (III-C.3) and the postcalculated images
from III-C.4 for both eyes, too.

3) Pose Annotations: Since the main purpose of the
proposed dataset is to aid development of 6d pose object
estimation, each image has labels of all classes and 6d poses
of every object of the current observed scene (in camera
coordinates). In addition we provide per image the camera
pose inside the scene.

To reduce the overhead of handling data from different
sources inside a detection algorithm we aimed for consis-
tency in the annotation declaration with an existing dataset.

Therefore we write all our annotation and data files as similar
as possible to the format defined by NVIDIA Deep learning
Dataset Synthesizer (NDDS) [21], since to our knowledge
this is currently the best tool to generate (additional) syn-
thetic training data.

4) Calculated Data: For easy use we add accessory
calculated data by rendering the 3d object models (cf. III-
A) given their annotated pose in every image. In that way
we receive semantic segmentation and instance segmenta-
tion images. Note that all of these additional images only
comprise of the annotated poses (and the 3d models). Every
pixel which is not pointing onto any object is segmented
as background. While the drawer is an object and correctly
handled, the dishwasher rack is not modeled and ignored in
the segmentation image.

IV. ANNOTATION SYSTEM

The basic idea for obtaining an object pose relative to
the camera is to locate both the object and the camera in
the world frame with a 3d tracking system (ART TrackPack
with DTrack2, 2 cameras, 2011).

This makes the ground truth independent from the images
which are input to an algorithm under evaluation and avoids
errors that affect both in a correlated way and are therefore
hidden in the evaluation.

If the object is located once, the pose in the world frame
stays valid, as long as the object is not moved. This works
for camera movement yielding different viewpoints of the
same scene without additional annotation effort. Moreover,
it even works when objects are added to and removed from
the scene as long as the remaining objects are not touched.
Hence we build up scenes step by step.

A tracking target is attached to the cameras. Doing the
same for every object in the scene is impossible, since it
would spoil the images and hinder object placement. We
have used two alternatives in the dataset because the more
exact of them does not always work (Fig. 4):
• For round objects, e.g. cups and plates, we have pro-

duced cardboard lids with retroreflective stickers that
are directly tracked (requiring orientation towards the
tracking system) and removed after recording the pose.

• Where this is impossible, we locate human recognizable
markings on the object by touching with a probe with

Fig. 4. Alternatives of measuring an object pose: cardboard lid with
retroreflective stickers (left) and touching human recognizable markings on
the object with a retroreflective marked probe

http://www.informatik.uni-bremen.de/esko6d-dataset/models
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Fig. 5. The Labeling process: Camera and objects are located by a
3d tracking system, the objects indirectly with a probe that is in turn
tracked. The crashtest markers refine the camera orientation measurement.
The coordinate systems needed for the ground truth pose of an object
relative to the camera: Markers have been located in the object frame (O).
They are touched by a probe (mP) that has a target (PT) that’s tracked in
the world frame (W). The camera target (CT) is also tracked leading to the
camera frame (C). The crashtest markers and respective reflectors are used
to refine the camera orientation. Colors indicate if a connection is measured
(green) or precalibrated (blue).

a tracking target. The whole setup is attached to a
smartphone providing a user interface for the annotator.

A. Coordinate systems and transformations

Figure 5 shows the coordinate systems involved in the
process. In the transformation chain

TC←O = T−1
CT←CT−1

W←CT TW←O, (1)

the transform TCT←C is fixed and calibrated (blue) while
TW←CT is measured (green) by the 3d tracking system. In the
reflector-lid mode, TW←O is directly available. In the probe
mode, it is measured indirectly. Therefore, we probe several
markings sequentially and solve for TW←O in

TW←Omi
O = T i

W←PT mPT ∀i (2)

where mi
O is the known position of the i-th marking on

the object, mPT the fixed and calibrated probe position and
T i

W←PT is measured by the tracking system.

B. Calibration

The internal parameters of the rc visard camera are cal-
ibrated by OpenCV’s calibration functions [22] and the
Kinect2 using the IAI Kinect2 tool [23] which also calibrates
the relative pose between Kinect’s depth and RGB cameras.

The tracking target poses TCT←C of both cameras are
calibrated by moving the camera around a checkerboard that
is located by additional retroreflective markers and minizing
the reprojection error of the checkerboard corners. Similarly
mPT is calibrated by moving the probe around a fixed point.

All parameter fitting was performed by Ceres [24].

C. Camera orientation refinement

The tracking system obtains the target’s pose from its five
retroreflective balls. If we assume a ball-position error of
eB, a target diameter of d and a distance to the object of l,
roughly an object position error of eB +

l
d eB results, where

eB comes from translation and l
d eB ≈ 64cm

9cm eB ≈ 7eB from
rotation.

Thus we have implemented a step to refine the rotation.
In the scene two crashtest markers are placed, surrounded
by two retroreflective markers each, to locate them by
the tracking system (Fig. 5). These marker positions are
projected into the image and refined using OpenCV’s [22]
subpixel corner refinement. Then the camera orientation is
obtained from the image positions of these markers while
keeping the translation fixed.

D. Time synchronization

There is no hardware synchronization between cameras
and tracking system. As moving the camera (slowly) around
the scene is much faster than taking still images with a tripod,
we have developed a data-driven synchronization.

Therefore we track FAST keypoints using OpenCV’s
Lukas-Kanade optical flow implementation. These keypoints
are converted to world rays using a hypothetical time offset
to the tracking data. If the time offset is right, all rays of the
same keypoint should intersect. Hence, we define the sum of
distances between rays 0.4s apart as an error measure. This
error is minimized with respect to the time offset.

V. POSE-ANNOTATION ACCURACY

Ground-truth data can only be used for benchmarking if
it is significantly preciser than the subject of the benchmark.
Thus the precision of the ground-truth must be known. We
provide here an indication of the ground-truth precision, by
examining the world pose error and the image reprojection
error. The first evaluates the errors from object to world in
6d, the second from world to camera but only in 2d.

A. Error Metric

Regarding metric the recent state-of-the-art object pose
estimators are evaluated with the ADD error ([11], [13], [17],
[25]) or with its variants for symmetrical objects (eg. ADD-
S in [11], [13], [25]). Note that despite more than half of
the ESKO6d objects being symmetric the pose annotations
are not (due to the non-ambiguous markings). Therefore we
are using the ADD metric to evaluate our pose-annotation
accuracy.

ADD(T1,T2)=
1
n

n

∑
i=1
||T1 pi−T2 pi||=

1
n

n

∑
i=1
||pi−T−1

1 T2 pi|| (3)

The ADD metric [11] measures the average distance between
corresponding object points p1...n in ground truth and es-
timated pose. It implicitly weights rotation error with the
object radius resulting in a single number. If the translation



(a) Sample object point reprojection errors with rc visard (left) and with Kinect (right). (b) Sample object translation errors along their x-,
y- and z-errors labeled with the probe.

TABLE I
RMS ERROR OF THE MEASURED OBJECT POSE.

measuring mode transl. [mm] rotation [◦] ADD [mm]
lid with reflectors (repeatability) 0.15 0.10 0.41
markings probed (error) 1.27 0.32 2.10

error is ≤ et and the rotation error ≤ er the ADD is bounded
by

≤ 1
n

n

∑
i=1

(et + er||pi||)≤ et + rer, with r ≥max
i
||pi||. (4)

Note that this also bounds all ADD variants for symmet-
rical objects since they may only loose the corresponding
object points constraint to allow closer point distances and
therefore lower errors.

B. Object pose error

We use the reflector lid method as reference here, because
it directly measures TW←O with the tracking system, while
the other works indirectly. This view is supported by the
very good repeatability of that method (0.15mm/0.1◦) and
the idea that validating the tracking system itself is beyond
the scope of this paper. Also evaluating the precision of the
3d models and how well their reference system matches the
one used in annotation is beyond the scope of this paper.

For the probe we measured multiple times the same object
from different positions while comparing the outcomes.
Figure 6(b) shows translation error distribution and Table
I shows the rms result in rotation, translation and converted
to ADD by (4) with r = 150mm maximal radius.

C. Reprojection / Camera pose error

We evaluate the error in the measured (and refined) camera
pose by reprojecting a crashtest marker tracked with the 3d
tracking system into the image and taking the residual to
the image position obtained from corner detection. This is
similar to the refinement procedure (Section IV-C) but of
course uses a different marker in the middle of the drawer.

Table II and Figure 6(a) show the result depending on the
number of refinement-crashtest-markers in view. Residuals
are in the range of a few pixels. The refinement procedure
helps a lot for rc visard but not significantly for Kinect.

Fig. 6. Object’s diameter distribution for ESKO6d

D. Analysis

Finally, we want to assess how much this increases the
ADD of TC←O. We have therefore conducted a simulation
study where we added varying amounts of noise to the
position of the five balls of the tracking targets and observed
to how much reprojection error and ADD that lead. Here the
ADD refers to a r = 150mm sphere at the average distance
we experienced and the reprojection error refers to the sphere
center. We took the ADDs corresponding to the reprojection
errors from Table II and added the ADD of TW←O from Table
I. The result is shown as ”estimated overall ADD” in Tab. II.

If algorithms target the 0.1 factor of the object’s diameters
as ADD(-S) accuracy threshold (like eg. [11]), than we can
observe a factor > 3 from those to our ground truth for all
but the two smallest objects (cf. Fig. 6), in case the two
crashtest markers are in view. On account of this we say, with
the exception of the two smallest objects (namely 3(q)), our
ground truth values are clearly precise enough for evaluation.

TABLE II
ROOT MEAN SQUARED RESIDUUM OF A TRACKED OBJECT POINT.

Kinect rc visard
points avg. distance 556.4 mm 778.5 mm

no. of crashtest- estimated estimated
markers in view pixel overall ADD pixel overall ADD
0 2.065 3.358 mm 3.024 4.350 mm
1 2.077 3.377 mm 1.626 3.480 mm
2 1.850 3.275 mm 0.815 2.866 mm



This holds especially if one uses 2cm as accuracy threshold
like eg. [25], [17] do.

VI. CONCLUSIONS

We have presented a dataset of realistically packed crock-
ery items in kitchen cupboards, drawers and dishwashers an-
notated with 6d object poses. This dataset is meant to foster
household robotics research as it exhibits characteristics that
make this situation challenging and interesting. The ground
truth poses are accurate to ≈ 3.5 mm ADD.

The annotation process works by locating markings on the
objects with a handheld and tracked smartphone to obtain the
object in world pose which is then converted into an object
in camera pose by tracking the camera. This way an object
needs to be annotated only once, as long as it is not moved,
which greatly reduces the annotation effort.
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