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Abstract

Pose tracking belongs to the classic tasks in robotic environments. There are many
well-investigated methods which are based upon photogrammetric calculations. Neverthe-
less, the real-time extraction a robot’s pose from images under changing lighting conditions
remains a challenging task. To decide on a specific tool chain which transforms pixel values
to spatial information involves balancing complexity, speed, and robustness.

This thesis focuses on the design, implementation and testing of a tracking method
which is robust to changes in lighting conditions, and provides a clean separation between
signal and background information. Furthermore, the presented method requires only min-
imal configuration for use in unknown environmental conditions.

In order to achieve this, used flashing Light Emitting Diodes (LEDs) were used as mark-
ers arranged in grids. With this setup, the feasibility of uniquely identifying different flash-
ing LEDs using a sequence of monocular images is investigated.
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List of Symbols

Symbols

Symbol Name Description
� Iota Intensity value of a grayscale (shades of gray) im-

age
� � Delta Iota Intensity change between Frame Ft and Ft�1

j Square-Root of -1 For the Fourier transform j represents
p�1 in the

context of complex numbers
Xk Bin1 Value Frequency-Domain value X of the kth spectral

bin
xt Signal Value time-domain value x at time t

Units

Symbol Name Description
fps Frames per Second A measure for the speed of image processing de-

vices or software
Hz Hertz Recurrence of a periodic event per second, com-

monly used to classify frequencies
s Second Time unit

1See Glossary for a definition



1 INTRODUCTION 5

1 Introduction

1.1 Motivation

Starting from a raw image a robot has no or little environmental knowledge, which can aid it in
interpreting what he sees. Therefore, in machine vision knowledge about the environment must
be derived from how raw pixel information is interpreted. Basically human vision faces the same
problems, but there is a basic difference in terms of context knowledge. When a human sees a
picture of an object, it is clear to him that this object represents a certain entity in his perception
of the world. We look through a window and see a green meadow. The green is bright when the
sun shines through a hole in the clouds’ cover and changes to a grayish color as larger clouds
pass by. Nonetheless we know that this is the same meadow we saw before with a different
color, and that it is growing on the ground. It is therefore intuitive to us that a person walking on
this meadow will occlude some parts of ground. Likewise an orange ball on the ground behind
the person will remain where it is, and reappear after the person has walked past it.

What seems so obvious to us is in fact a collection of complex context, which is linked to the
colors, textures and shapes we see. What was really observed by us were the reflections of light
as waves of photons by some physical compounds in the visible spectrum of electromagnetic
radiation. As our eye is able to categorize the frequencies of light waves into the visual bands of
certain colors, we perceive a pattern of color information. This information is now grouped by
some constraint, so for example equally colored areas will be recognized as connected. Subse-
quently the alignment of objects we have recognized tells us something about our own attitude
towards the scene and so on. It falls into place that the perception of objects is an incremental
process which may include arbitrary compositions of low- and high-level information. The lat-
ter can be formed from small bits of, considered alone less useful, information from low level
entities, which is processed regarding certain attributes. This applies to human as well as digital
image processing.

In machine vision the above mentioned human intuition about environmental context is not
available. The algorithms can only use the limited information their sensors provide, all the sub-
sequent reasoning has to be modeled using raw data. Such models may include the recognition
of patterns, properties, temporal occurrence and so on. In [Gonzalez and Woods, 2006] digital
image processing is described as a process taking place in three levels. The lowest level pro-
cesses images and also returns images. Mid-level processes will, for instance, segment certain
parts of the image to form intermediate knowledge. Finally the higher-level methods of image
processing make sense of an image. An example of this would be how things are arranged on a
table, or where in a scene an object is moving.

One well known way of interpreting image data is to register colored markers. For instance, in
the RoboCup2, a robotic soccer challenge, colored patterns are recognized and give information
about a robot’s location and velocity. Those markers can be found and identified on a single
frame. The more general problem of image segmentation in terms of color is called color slicing.

2See [Röfer, 2008] for details
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It involves thresholding the parameters of a color space in a way that a specific region of an
image gets selected. Common color spaces are the Red-Green-Blue (RGB) space basing on the
combination of primary colors or the more intuitive Hue-Saturation-Intensity (HSI) space. The
latter was inspired by the human intuition in describing colors. In Figure 1.1 a specific region
for blue is selected by thresholding the HSI color space.

Figure 1.1: Selection of a blue range in the HSI color space

While this works well if the lighting is stable, problems arise in volatile environments including
even sunlight. Objects will change their color shade based on the intensity they are illuminated
with. Small changes in lighting can cause the “blue” of an object to leave the region covered
by the slice in Figure 1.1. As we have only little influence to natural sunlight, algorithms to
detect certain color features are sensitive to those changes. Therefore this thesis describes an
alternative approach without leaving optical methods.

1.2 Problem Description

To overcome the problems of lighting dependent color-mappings, this thesis proposes a method
for lighting-independent optical pose tracking in 3D. Its application area is real-time robotic
navigation. In contrast to many other approaches, the focus of this method is to avoid the need of
color codes for marker positions. This goal is accomplished by the use of frequency information
gained from blinking Light Emitting Diodes (LEDs) instead of color segmentation. In doing so,
the camera image is analyzed to find certain intensity changes over time. One challenge related
to this task is the fact that a transformation of intensity information into blinking patterns must
be done in real-time for a robot to navigate. For an stationary object, this is done by watching at
the information of a pixel over time. In contrary to other approaches though, the used markers
are not persistent in each frame, like a color feature would be. The latter provide absolute
information about the position of an object enclosed in any frame, whereas the frequency is only
interpretable after a sequence of images of the same scene. Hence for spread sequential image
data, recognizing movement is more complicated than it is for persistent markers.

To summarize, the core of this work is the development of a method to use blinking LEDs as
markers for position determination. A key advantage of this method is that it functions well in
outdoor environments and is immune to changes in lighting conditions. Furthermore, the general
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(a) Input (b) Output

Figure 1.2: As input the system gehts raw images from the camera. In (a) the older pose is drawn shaded to symbolize
that the cart has already moved. Its movement is indicated by the red arrow. Out of this the system calculates the
LEDs’ positions and the attitude of the cart shown in (b). The lines in that image denote the trajectory of the LEDs.

focus is to avoid configuration effort where possible to achieve a robust on demand positioning
without the need to calibrate to the current lighting conditions.

2 Scientific Placement

In general this thesis is situated in the field of machine vision, thus the whole approach incor-
porates general image processing techniques like BLOB building or region finding. Further,
the proposed method is used as the recognition component of a robotic application capable of
estimating a certain object’s pose in space. The tools necessary for this kind of calculation are
well known and can be found as photogrammetric algorithms [Bradski and Kaehler, 2008]. Al-
though many problems are already solved, there are still areas of intense research. The so called
perspective n-point problem is solved in many different ways, but there are still publications
like [Xu et al., 2008], which explore new techniques. The problem describes how a machine can
extract perspective information out of pictures. The motivation behind such intense research in
robotic perception is, among other things, the fact that many problems in machine vision are no
problem for a human observer with immense contextual information in mind.

The presented approach encloses the identification of unique binary patterns, hence it will touch
digital signal processing. With the Fourier transform [Smith, 1997, Ch. 8], a classical tool for
extraction of information from wave forms is used. To increase the performance, the special
version named Sliding Discrete Fourier Transform (S-DFT) is utilized.

Apart from the Fourier transform as aid to identify certain blinking patterns, I analyzed the use of
Hidden Markov Models (HMMs) [Russell and Norvig, 2003, Ch. 15.3]. Coming from the area
of knowledge representation in artificial intelligence, this method is most common in speech and
gesture recognition. Here it helps to distinguish between several aberrations of a signal such as
a spoken word, which sounds different depending on the speaker.
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To estimate the motion of objects, a Bayesian state estimator is used. Specifically a particle-
filter [Thrun et al., 2005, Ch. 4.3] is used to predict the motion performed by a supervised
object. As soon as a motion prediction is available, the pixels at the new object position can
be used as further input for the frequency analysis taking place beforehand at the static, initial
position. Based on this the hypotheses of the estimator can be checked for consistency with the
collected frequency data, allowing a subsequent pose prediction.

Finally, methods of runtime optimization were used to make the whole approach suitable for
real-time use. This involves both conceptual considerations like choosing fast algorithms as
well as optimizing their implementation on the software level. Their importance for the system
as a whole is crucial as only by this acceleration the approach is usable as intended. For real-
time performance it is necessary to finish all calculations for a frame before the next frame
arrives. For example, at an operational capturing rate of 30 fps (frames per second), this means
all computation triggered by this frame has to be completed within 33 ms to be ready for the
next frame.

2.1 Contribution

The main feature of this work is to provide a method for real-time robotic vision, which is in-
dependent of the lighting conditions of the surrounding environment. It can therefore be used
outdoors and in real world applications, where artificial lighting constraints are difficult to en-
sure.

The idea is not new — from a cursory glance it appears to be nothing more than motion captur-
ing with active markers. However, motion capturing techniques commonly rely on constantly
illuminated features allowing BLOBs in the infrared light spectrum to be easily identified. The
desired lighting independence is therefore not addressed by such techniques.

From the problem presented in Section 1.2, several subproblems can be identified. First, a
method for the registration of pixelwise blinking patterns has to be developed. That was done by
providing a very fast method for solving large scale Fourier analysis of continuous, discrete data.
In a secondary step, a relative pose of the camera must be extracted from the data segmented by
the foregoing frequency analysis. Afterward, the method must be transferred to a moving target
in order to track the observed object. The presented approach connects frequency analysis with
probabilistic estimation resulting in a feedback between both components, which approximates
the real position in real-time.

2.2 Related Work

The problem to be solved can be described as a motion capturing problem with active LED
markers [Barca et al., 2008]. Therefore many industry standard solutions can be listed, that im-
plement such a capturing with active LED markers, but these solutions are designed to record
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data, which can be analyzed later. In contrast, my robot perception approach provides instanta-
neous position data usable for navigation.

As will be discussed later, there are certain advantages of high sampling rates in conjunction
with active LED based tracking. In [Perry, 1990] for example, an extremely high sampling rate
of 10,000 fps is used. While this is a system for use in high dynamic situations, industry standard
systems work at frequencies around 50 Hz (Hertz) up to 1,000 Hz as a maximum. Furthermore
[Schepers, 2009] states that there are professional industry solutions working with active LED
markers. For example, Optotrak3 is mentioned.

Another area containing similar problems are medical applications. To position a patient on full
body scanning units like the Magnetic Resonance Tomograph (MRT) or the more widely known
Computer Tomograph (CT), active LED markers are used because of their stability against en-
vironment lighting [Westermann and Hauser, 1996]. For reasons of higher accuracy, mainly
infrared LEDs are used. This excludes a large amount of clutter in the captured images. A good
overview about the state-of-the-art in on-line rigid body tracking is given in [Jansen et al., 2007].

Tracking in general can be done with many different approaches. As described by the excellent
summary about this topic given in [Allen et al., 2001], what I am doing is optical tracking, in
more detail ray measurement, using Charged Coupled Devices (CCDs) combined with active tar-
gets in an “outside-looking-in” (fixed camera with markers on the moving object) configuration.
Following from that I am only looking at one small sub-area of tracking in general. Alternative
approaches range from acoustic measurements over magnetic fields to inertia sensors and of
course hybrid systems containing combined approaches.

A system which is more clearly related to my work is described in [Koch et al., 2008]. This
paper describes a system for matching multiple camera views to a global coordinate system.
Supporting my conclusions regarding the requirements for the proposed problem, Koch also
tries to implement a fast, simple and lighting invariant marker pattern. He uses an LED at
frequencies about 7 Hz and identifies the frequency by Fourier analysis. In Section 4.3.5 a
comparison between Koch’s approach of segmentation, and the method used in this thesis is
given.

In addition [Yamazoe et al., 2004] describes an even more similar system. In this approach
flashing LEDs are again used to calibrate multiple camera perspectives. In contrast to Koch,
Yamazoe et al. solve the correspondence problem directly as is done in this thesis and present a
calibration method not only for static scenarios, but for complete video scenes. They encode not
only identity information, but also time-stamps into the blinking pattern, allowing video streams
to be exactly synchronized later-on. As the system should also be used in motion, stochastic
means are used to predict linear motion. Analogous to my method of pose estimation, they also
use homographies of planar feature arrangements to estimate relative poses.

3See Northern Digital Inc., http://www.ndigital.com for details

http://www.ndigital.com
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3 Basics

This section describes the theoretical aspects of the methods used throughout this thesis. For
each of these methods a short introduction is provided to give the required background infor-
mation. In Section 4, the algorithms are pursued in the context of the work presented in this
thesis, based on the information presented in this chapter. Below a short list of used symbols is
provided for orientation.

3.1 Frequency Analysis

For the described method of detecting LEDs by flashing patterns, a means of translating the
sequences of pixel intensities into a binary blinking code is needed. To realize this, I initially
began with an approach based on HMMs. This approach turned to be inappropriate for real-
time purposes due to the computational complexity of the final algorithm, which is necessary
to extract the desired information from the model’s data. I therefore shifted from the HMM
approach and selected a standard mechanism for frequency analysis using the Fourier transform.
In the following section, I introduce both variants’ theory.

3.1.1 Hidden Markov Models (HMMs)

According to [Rabiner, 1989], HMMs were developed in the late 1960s, but did not become
popular until the middle of the 1980s. This statistical method is based on Markov Chains and
allows to estimate the current state inside a model, for which certain state-transitions are defined.
These states are hidden behind observations. Every time an observation is made, the “hidden”
model performs a transition between two states. To allow a good estimation of the current hidden
state, each problem has to be modeled using the different attributes a model provides. An HMM
is formally defined by a 7-tuple H = fS;N;A; V;M;B; �g. The elements of this tuple are
described in Equations (3.1) - (3.7).

Hidden States S = fs1::sNg; st = state at time t (3.1)

Number of States N = jSj (3.2)

Transition Probability A = faijg; aij = P [st+1 = sj j st = si] 1�i;j�N (3.3)

Observation Symbols V = fv1::vMg (3.4)

Number of Symbols M = jV j (3.5)

Emission Probability B = fbj(k)g; bj(k) = P [vk at t j st = sj) 1�j�N; 1�k�M (3.6)

Initial Probability � = f�ig; �i = P [s1 = si] 1�i�N (3.7)

After these elements are defined, they describe how the respective process works. Basically, this
is a graph of states S with transition-probabilities A between each pair of states, and observation
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symbols V as input with a predefined probability B of observing a given symbol while in a
particular state. Through this a trellis is spanned, which later on can be traversed respecting the
sequence of symbols observed.

All probabilities must be chosen manually in order to match the characteristics of the process
to be modeled. This includes the probabilities �i which describe how likely it is that a process
based on this model starts in a state si. Having built a suitable primary model, algorithms like
Baum-Welch [Baum et al., 1970] can be used to refine the probabilistic model.

After the selection of the set of states and symbols along with some reasonable probabilities, the
process modeled by the HMM can start. This means, the process begins in some state si, which
is unknown, with probability �i. The only known element is the symbol vi, which is observed
on the next and all consequent observations. By this, it is possible to infer, based on the data of
the model, which state the model was in when the process started and which path was chosen
afterward. This traversal is calculated by the Viterbi Algorithm [Forney, 1973]. It tries to find the
best state sequence P = fs1; s2; : : : ; stg for a given observation sequence U = fv1; v2; : : : ; vtg.
For this purpose the algorithm tries to maximize a score �t(i) defined in Equation (3.9). This
score denotes the highest probability along a path P having length t. After t observations from
U it ends in state st. The tuple � defined in Equation (3.8) resembles the set of all probabilities
in a model H [Rabiner, 1989].

Model Probabilities � = fA;B; �g (3.8)

Viterbi Score �t(i) = max
s1;s2:::st�1

P [s1; s2; : : : st = i ; v1; v2; : : : ; vt j �] (3.9)

3.1.2 Fourier Transformation

The following section provides an introduction to the usage of Fourier transformation, named
after Jean Baptiste Joseph Fourier. It is a standard tool in Digital Signal Processing (DSP), which
is elaborately explained in the DSP-Guide [Smith, 1997]. Much of the information presented
here is based on that text, adapted to fit the needs of a rough overview for understanding the later
application of the transform.

The main feature of this technique is the decomposition of a signal into sinusoids. Fourier proved
that any periodic function of arbitrary complexity can be expressed as weighted sum of cosine
and sine waves. In this thesis, discrete data in form of intensity values is used, thus the special
form of the Discrete Fourier Transform (DFT) applies to the problem. For this type of Fourier
transform it is assumed that there is a distinct number of discrete input values recorded over
a certain period of time. By this a signal’s wave form can be approximated depending on the
sampling rate used. Such a signal can be seen in Figure 3.1. Furthermore a sampled signal in
the context of a DFT is assumed to repeat towards negative and positive infinity.
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Figure 3.1: This graph shows a discrete periodic signal. Each square is a measurement or sample at the specific point
in time which discretises the wave signal. [Smith, 1997, p. 190]

In general this number of n discrete input values x0 : : :xt is named the time domain. The Fourier
transform now converts these n signals into the corresponding amplitudes of n

2 sine and n
2 co-

sine waves using Equations (3.10) and (3.11). Those are the basic equations for the DFT, which
define the frequency-domain value in rectangular form in Equation (3.12), as sum over all con-
sidered frequency fractions. In an N -point DFT, the frequency k runs from

�
0 : : : N2

�
while i

takes values from [0 : : : N � 1].

cosine ck[i] = cos

�
2�ki

N

�
(3.10)

sine sk[i] = sin

�
2�ki

N

�
(3.11)

Rectangular Xk =
1

N

N�1X
n=0

�
xn

�
cos(

2�kn

N
� j sin(

2�kn

N
)

��
(3.12)

This representation of the input is referred to as the frequency domain. It is important to mention
that the frequency domain is only another representation of the same information. The process of
transforming a signal from the time-domain to the frequency-domain is called Fourier analysis.
Once the frequency domain signal is calculated, it can be converted back into the time-domain
using the inverse Fourier transform (Fourier synthesis), without any loss of information. The
loss of accuracy through floating point arithmetic is neglected in this statement.

After transforming the input signal into the frequency domain, a statement about the magnitude
and phase of a certain frequency inside the signal can be made. However, as mentioned above
the Fourier transform provides a set of amplitudes of both sine and cosine waves. This is called
the rectangular notation. As the two trigonometric functions are only shifted in phase, both
of them contain parts of the signal for a particular frequency. In order to combine them, it is
necessary to use the polar representation of the frequency domain values.
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Figure 3.2: The picture shows the polar representation of the sine and cosine values by the angle �, and the
magnitude M . The magnitude corresponds to the signal strength, while the angle � represents the signals shift to the
corresponding wave.

As shown in Figure 3.2, a pair of sine and cosine amplitudes can be parameterized by a magni-
tude M and an angle �, without any loss of information. This gives the possibility to measure
the total amount of a certain frequency via the magnitude for a given input signal. The magni-
tude is of primary interest, as the phase only provides knowledge about where in the sequence
of a particular frequency the capturing started, thus shifting the signal in time only affects �.
That is useful to determine the phase shift between the blinking of an LED and the cameras cap-
turing rate. Equations (3.13) and (3.14) show the conversion from the rectangular to the polar
representation.

Magnitude Mi =
q
cos2i + sin2i (3.13)

Phase �i = arctan

�
cosi

sini

�
(3.14)

To explain the Fourier transform used in this thesis, the realm of complex numbers has to be en-
tered. For mathematical correctness and easier representation, Fourier transforms are typically
calculated via complex numbers [Smith, 1997, p. 577f]. In doing so, the gap between the sinu-
soids and complex values is filled via Euler’s relation Equation (3.15). To avoid disambiguation
for i as index, the engineering standard j =

p�1 is used for complex numbers.

Euler’s relation ex j = cos(x) + j sin(x) (3.15)

cos(x) =
ex j + e�x j

2
(3.16)

sin(x) =
ex j � e�x j

2 j
(3.17)

As stated before, the Fourier analysis combines the sum of sine and cosine waves to form the
frequency-domain value. Equation (3.12) shows the basic rectangular representation for a single
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information component in the frequency-domain. This component is the signal Xk constructed
from the time-domain signal xn. Using Euler’s relation this can be turned to the polar represen-
tation for the complex DFT in Equation (3.18). Like n, the index k runs from [0 : : : N � 1] and
k is the index of a frequency-fraction N

2 � fs from the sampling-frequency fs. In Figure 3.3, a
frequency spectrum is shown. This visualizes the width of each “ bin”, which means one unit
of spectral density N

2 as fraction of fs. One such bin accumulates all frequencies’ time-domain
signal falling in its area.

Polar Xk =
1

N

N�1X
n=0

�
xn e

2�kn j
N

�
(3.18)

Equation (3.18) builds the base of the Fourier analysis usually performed by scientific algo-
rithms. It is, for instance, used in the library called Fastest Fourier Transform in the West [Frigo
and Johnson, 2005] (FFTW). This library is internally utilized by the GNU-Octave software
[Eaton, 2002], which I used to verify my results. Note that the equation used in the FFTW-
Library is not normalized, meaning that the above added factor of 1

N
is missing (see [Frigo,

2003] for details on the incorporated equations). In consequence, the factor is applied later
during normalization for the segmentation described in Figure 4.3.4. Special about this imple-
mentation in FFTW is the precise way the equation is solved.
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Figure 3.3: Example of a frequency spectrum. Each element in the spectrum covers N
2
� fs where fs is the sampling

rate and N is the resolution of the DFT [Smith, 1997, p.156]

As the name of the FFTW-library already quotes, the Fast Fourier Transform [Cooley and Tukey,
1965] (FFT) is calculated, which is a fundamental algorithm in DSP to accelerate the calculation
of Fourier transforms. Although this is a really fast and robust implementation, there is the
restriction of being forced to calculate the entire DFT-width, meaning all bins of the frequency
domain. Of course this is no problem if all of them are needed, but in my case this is not required
and slows down the algorithm. Depending on the way a frequency spectrum is interpreted, not
all bins might be of interest.
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3.1.3 Sliding Discrete Fourier Transform (S-DFT)

In order to split the Fourier Analysis binwise, there are several possibilities. For computational
reasons, I decided to use the S-DFT introduced in [Jacobsen and Lyons, 2003], or rather the
alternative formula introduced in [Jacobsen and Lyons, 2004]. Mentioned therein is also an
alternative, computational superior, solution supported by the Goertzel Algorithm. However,
the Sliding Goertzel Algorithm is implemented as z-Transform (another kind of signal transform
in DSP), I chose the S-DFT with regard to the given time frame of the thesis, taking the small
loss of one real multiplication per calculation.

The described algorithm relies on the circular shift property [Oppenheim and Schafer, 1989,
8.87, p. 567]. By this, we can express the spectral component value of a bin using its previous
value, as well as the first and current input signal. This relation is expressed in Equation (3.19).
It is the equation for the kth spectral component bin. At this, Xk(n) means the current new bin
value, whereas Xk(n � 1) stands for the previous ones. Accordingly, the x values refer to the
first registered input signal and the new observed one.

Spectral Bin Value Xk(n) = Xk(n� 1) � e 2k i
N � x(n�N) + x(n) (3.19)

Finally, the computation for one new spectral component needs only one complex floating point
multiplication and two real additions. This is one of the key features, which makes the S-DFT
computation attractive compared to the HMM methods4.

Despite the advantage of single bin computation, there is one drawback to this method. The
sequential calculation of the values makes it impossible to omit any intermediate calculations.
This means, that for every new input value xn, the corresponding spectral component bin value
Xk(n) with index k must be computed, as it relies on its preceding value. Still, the S-DFT can
be computationally superior to the traditional FFT implementation if for an N -Point transform
a new spectral value is desired every M th frame and M < log2(N). This is due to the runtime
O(N) of the S-DFT being smaller than the O (N log2(N)) of the FFT in this case. In my case
every new value should be calculated, and therefore M = 1 and N = 30, making the S-DFT the
method of choice.

3.2 Camera Calibration

When dealing with photogrammetric processes, one has to model the parameters necessary for a
mapping of world coordinates in 3D space to the image plane of the camera. These parameters
will adjust the equations used for the transformation. They approximate the properties of the
optics and the relative attitude between camera and the observed object. The used calibration
tools are described in [Bradski and Kaehler, 2008, pp. 370ff].

4See Section 5.11.2 for further details on how this property is used for runtime optimization
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The mentioned parameters used for a description of the camera setup divide into two groups.
In machine vision, determining these extrinsic and intrinsic parameters is a basic problem. It
is described as the perspective N-point Problem where N is the number of points whose coor-
dinates in both world and image plane need to be known to calculate a transformation between
them. Knowing both parameter sets describes the camera’s attitude and provides the mapping of
Equation (3.20).

Pworld =

0
@xy
z

1
A 7! Pimage =

�
u

v

�
(3.20)

At first, the extrinsic parameters describe the relative attitude between the camera- and the world
coordinate system via a rotation (Equation (3.21)) and translation (Equation (3.22)) of the world
coordinate system’s origin. They are applied in Equation (3.23). Equation (3.21) contains both
the 3�3 and the 3�1 version of a rotation matrix. While the 3�3 maps a vector to the rotated
vector, the 3�1 Rodrigues Vector contains the same information but performs a different rota-
tion. A single custom axis is created by its coordinates, while the norm of the vector defines the
rotation around this axis. After all, it is just a compact representation of a 3D rotation. However,
this is the best physical description to model simultaneous motion on all axes.

Rotation R =

0
@r[0;0] r[0;1] r[0;2]
r[1;0] r[1;1] r[1;2]
r[2;0] r[2;1] r[2;2]

1
A 7! Rrodrigues =

0
@rxry
rz

1
A (3.21)

Translation ~t =

0
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1
A (3.22)

0
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0
@xy
z

1
A+ ~t (3.23)

The Intel Computer Vision library (OpenCV), which was used for matrix operations, also models
the lens distortion. In order to apply the particular distortion modifiers, the coordinate dimension
is reduced from 3D to 2D coordinates in Equations (3.24) and (3.25). Subsequently the distor-
tion can be included. OpenCV models radial translation via the parameters k1���3 depicted in
Equations (3.26) and (3.27). Moreover it incorporates tangential distortion by parameters p1���2
in Equations (3.28) and (3.29).

u0 =
xm

zm
(3.24)

v0 =
ym

zm
(3.25)
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Radial x-Distortion ur � u0 � �1 + k1r
2 + k2r

4 + k3r
6
�

(3.26)

Radial y-Distortion vr � v0 � �1 + k1r
2 + k2r

4 + k3r
6
�

(3.27)

Tangential x-Distortion ut � ur +
�
2p1y + p2

�
r2 + 2x2

��
(3.28)

Tangential y-Distortion vt � ur +
�
p1
�
r2 + 2y2

�
+ 2p2x

�
(3.29)

where r2 = u0
2
+ v0

2 (3.30)

Finally, the principal point cx, cy and the focal distance fx, fy for both image dimensions must
be added. For this purpose Equations (3.31) and (3.32) do the initially discussed mapping of
Equation (3.20)

Pimage(x) u = fx � ut + cx (3.31)

Pimage(y) v = fy � vt + cy (3.32)

3.3 Random Sample and Consensus (RANSAC)

The Random Sample and Consensus (RANSAC) algorithm [Fischler and Bolles, 1981] is a
method to sort out outliers from a set of points belonging to a model. In general, every mapping
from one set of values to another can be considered as a model. Therefore a simple example for
a model is the equation for a line in space, which defines a mapping from a set of x values to a
set of y values. In this model the slope m and the y-axis intercept n are the parameters of the
model equation y = mx+ n.

Given a set of noisy y values, the RANSAC algorithm is used to guess the model’s parameters
matching the provided results best. In order to do this it repeats several steps while approximat-
ing the optimal result in each step.

1. Select the minimal necessary number of data points to calculate the model. In case of a
line in 2D space those are two points.

2. Calculate the model parameters.

3. Calculate the number of other data points whose distance to the model is smaller than a
threshold t. The number of points propagated here is the consensus set.

4. If the size of the consensus set is above a threshold d, a fitting model was found.

5. Repeat steps 1 to 4 for k iterations and remember the model with the best fit for the
observed data.

RANSAC represents a statistical approach to sort out outliers. Data points not fitting the cal-
culated models will get sorted out quickly, so that only hypotheses explaining many points of
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the observed data will be kept. Of course the performance of the algorithm is dependent on the
quality of the scoring system used to weight the model parameters against each other. In case
of the above mentioned example, the scoring system is the Euclidean distance of a data point
to the line. Additionally the parameters t; k and d have to be chosen reasonably to gain a quick,
accurate model with the least effort. The accuracy is dependent on the value of k, as the quality
of the estimation increases as the amount of iterations increases. However, each iteration also
consumes arbitrary time, dependent on the used model equation. This means that the more iter-
ations are used, the better the accuracy gets, but the more time is consumed by the process. The
complexity of the model equation therefore regulates how good the algorithm performs provided
a static time slot.

3.4 Particle Filter

Probabilistic means in computer science algorithms mostly rely on the Bayes rule in Equation
(3.33). This rule grants the possibility to express the posterior probability P (xjy) of an event y
occurring in state x, using the likelihood P (yjx), and the prior probability p(x), which expresses
the likelihood that a particular state will occur. In the following I want to give an introduction to
the concept of a particle-filter using descriptions and notations from [Thrun et al., 2005].

P (x j y) = P (y jx)P (x)

P (y)
(3.33)

Understanding x as the current state of knowledge, and y as the new data observed, this means
one can estimate the probability of a certain state, knowing only the probability of the occurrence
of certain data. Algorithms working based on this assumption are commonly described as Bayes
Filters. The principle behind these algorithms is to estimate the belief of a dynamic system at
time t, bel(xt). In order to do so there are two steps performed by the filter. First, the update
rule defines the transition from bel(xt�1) to bel(xt). It does this by incorporating a control
statement ut, which causes a transition from state xt�1, resulting in a new predicted state bel(xt).
This state expresses the belief, that the system really is in state xt. Subsequently the second
step named measurement update follows. In here, the belief bel(xt) is assessed considering a
particular observation zt (measurement update). By recursive application of these steps the filter
can give an estimate of the current belief, meaning the assumed state of the system.

Replacing the former symbol y of Equation (3.33) by the current observation zt and condition-
ing the whole equation on the observations and measurements of all previous state transitions
(z1 : : : zt�1, u1 : : : ut) results in Equation (3.34).

P (xt j z1 : : : zt; u1 : : : ut) = P (zt jxt; z1 : : : zt�1; u1 : : : ut)P (xt j z1 : : : zt�1; u1 : : : ut)

P (zt j z1 : : : zt�1; u1 : : : ut)
(3.34)
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If now, it is assumed that every current state contains all knowledge induced by previous state
transitions, we can express Equation (3.35), what is called a Markov assumption. In particular
what is modeled here, is a first order Markov process. It derives from Markov chains named after
Andrei Markov and contains the above assumption [Russell and Norvig, 2003, p. 539]. However
this assumption is only a simplification, which may be violated by several special conditions,
like for instance strong effects of the environment not modeled in ut [Thrun et al., 2005, Ch.
2.4.4]. Together with an initial state x0, which is believed to be true, the filter can guess all
subsequent states.

P (zt j z1 : : : zt�1; u1 : : : ut) = P (zt jxt) (3.35)

Based on the initial ideas presented there are several options to estimate processes with prob-
abilistic filters. The class of Gaussian Filters can estimate processes hidden behind Gaussian
noise distributions and are generally the first choice for real-time applications as they feature fast
calculations. One example is the Kalman Filter [Kalman, 1960]. Nevertheless I decided in favor
of the particle-filter . The Monte Carlo methods used by this algorithm go back to [Metropolis
and Ulam, 1949]. This is why the method is also called Sequential Monte Carlo (SMC). The
approach has the advantage of being able to model arbitrary distributed environmental effects
on the target measurement. Secondary in comparison to Gaussian filters their implementation
is considerably straight forward and easy to extend. The latter is also the reason for a trend
towards this method in probabilistic robotics. At last the approach benefits from its modularity,
which means that the quality of the final estimation can be raised or lowered using more or less
computation time. Analog to the presented RANSAC method this grants the possibility for a
quality/performance trade-off.

The name of the particle-filter comes from the way it approximates the real state of a system.
A particle describes one particular hypothesis of the current state. Given a robotic setup this
is mostly one possible set of position data, which may be true or not (e.g. position p(x; y) for
a piece on a chessboard). Those particles are generated from the initial state of the filter by
adding noise to those measurements and performing the implemented motion (cf. update rule).
Afterward the generated particles are rated using measurements from the filters input data (cf.
measurement rule).

At this, another important step of contemporary particle-filters is brought to bear, the importance
sampling [Smith and Gelfand, 1992]. This process is described by Figure 3.4. In there we see
the target probability distribution f in search, which shall be described by means of a second
probability function g, which is observable. On the bottom it is shown how f can be approxi-
mated with samples of g, which were already weighted at this point. It is important that g will
not produce zero values for values where f does not do so. In order to restart the steps of the
particle-filter now the weighted particles are resampled. This means out of the weighted parti-
cles the same number of particles is drawn with respect to their individual probability. Hereafter
all particles have the same weight and the cycle begins again. That causes the filter to throw
away hypotheses, generated from the motion update, which do not fit to the observations made
and will generate more particles at positions where both filter steps support each other. There-
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fore the filter will converge towards the real position with an accuracy defined by the number of
particles used.
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Figure 3.4: Probability distribution f is in search, while sampling is only possible from the second distribution g.
The lines at the bottom show differently weighted samples (particles) approximating f (Image based on: [Thrun
et al., 2005, p. 101]).

The exact method used for resampling in this thesis is a method known as low variance sam-
pling [Thrun et al., 2005, p. 109ff], also called Stochastic Universal Sampling (SUS) [Baker,
1987]. The effect is shown in Figure 3.5. First, all weights of the particles are summed up,
corresponding to the whole circle. Second, the average weight w of all samples is calculated,
which is the distance of the arrows. Beginning at a random number wr = rand(0 : w), the
sampling begins by choosing the particle at that point in the sequence. Afterward w is added
to the current weight wc, and the next particle pn matching the condition of Equation (3.36) is
selected.

wr +
nX
i=0

(wi) > wc (3.36)
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Figure 3.5: The pie symbolizes the sum of all particle’s probabilities. Each individual particle is represented by a
segment of size wi according to his fraction of the weight-sum. The arrows depict the positions where a particle is
selected. An arrow pointing to the segment of a particle means, that he will be contained in the new sample. (Image
Source: [Burgard et al., 2009, p. 23]).

The technique has several advantages over choosing random particles. If for example all samples
have the same weight, this method simply maps all particles to the next sample. Furthermore
the algorithm can be implemented with runtime O(N).

4 Approach

In this section I want to introduce the methods I use in order to solve the problems described in
Section 1.2. It is about how to apply the theory introduced in chapter 3 to fill the gap between a
blinking LED on the input side, and a final pose as output. In the beginning a short overview will
outline the whole framework. Thereafter the approach to the system is incrementally developed,
beginning with the segmentation in Section 4.3, which defines the interpretation of pixel inten-
sities in the image. Among the actually used DFT, the ideas behind the previously examined
segmentation with HMMs are explained. After that, some specific problems of the DFT method
used are discussed in Section 4.4, which were encountered on the way to generate an initial pose
with the approach. Finally, Section 6.3 describes how the initial pose is refined using probabilis-
tic methods. This approach makes pose tracking in motion possible. At last, I shortly introduce
the hardware used and the consequences for the final system. To separate names of code ob-
jects from floating text, a mono spaced font is used. Furthermore the names of the thesis’
software modules, described as subsections in Section 5, are highlighted (e.g. DFTSampler).

4.1 Overview of the Approach

The planned system assumes a split setup with two components. On the one hand, there is the
fixed camera driven by the developed software as active, pose searching part. On the other hand,
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there is a pattern of planar LEDs, blinking at a given frequency attached to the observed object.
Connected via FireWire (IEEE 1394 interface), the camera is recording frames at 30 Hz.

In a first step, the raw 8 bit monochrome (shades of gray) frame is analyzed pixelwise over
time, to search for a certain frequency. According to a final threshold, clusters of pixels possibly
belonging to a certain LED are built. In the subsequent step, the system chooses one combination
of pixels suitable for the observed clusters. This is done by connecting the known geometry of
the LED pattern with the observed pixel positions. Finally, they are combined to a perspective
model of the attitude between camera and object in the scene. This works for static scenes.

However, as soon as the object moves, it is impossible to gain frequency information, without
knowing the parameters of the movement. Instead, this method initializes a modified pose es-
timation, which provides the necessary motion information. The estimation algorithm starts to
guess the movement of the object, and interpolates the new LED-positions by the assumed po-
sition. This way, many hypotheses for the motion of the observed object, in this case the cart
with mounted LEDs, get created. Afterward the interpolated LED-positions are used to provide
a new LED image-position for the initial method of frequency analysis. At this point, a redun-
dant cycle of supporting estimation is started, which is finally able to estimate the pose by using
frequency information, although the pixels in new frames may not match those observed in the
previous frame at the same coordinates.

Altogether, the planned positioning system should perform well enough to determine the po-
sition of an object in space, navigate in its direction and place a robot relative to the detected
heading. As practical example for the accuracy, a robot placing himself relative to a cart can be
considered. After moving behind the cart, the robot should be close enough to the right position
to climb up.

4.2 System Overview

The system overview in Figure 4.1 explains the connections between the modules of the whole
system. Herefrom arises the division of the system into three global steps, the Acquisition,
Segmentation, and Pose Estimation. While the Acquisition is only an auxiliary step to get frames
from either a camera device or an image from the hard disk, the pixel related Segmentation
relates pixels to an LED based on whatever method is used, whereas the Pose Estimation is used
to filter positional information in space out of the LED poses found. The particular modules
used to perform those tasks are described further in Section 5.
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Figure 4.1: System overview showing the core components of the overall system
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4.3 Segmentation

4.3.1 BLOB detection

To avoid the problems with defining color-value ranges described in Section 1.1, a completely
different kind of image perception is used. For this purpose, the pixelwise intensity information
received by the camera is not interpreted as directly usable value, but as part of a binary signal.
This signal means, a lit LED represents the 1 state, while an unpowered LED corresponds to
the 0 state. By doing so, the problem of categorization for a certain pixel changes from the
decision to map a certain color to a color space (e.g. 2553 for RGB), to a mapping on two states.
Although this introduces an advantage, it raises several problems. In Figure 4.2 the subsequent
image frames F0 : : : FN on the time axis t show how the intensity value � is interpreted as a
sequence of values from a pixel on the same position in each frame. The result is an intensity
pattern.
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Figure 4.2: Illustration explaining how the information on the image plane are interpreted as continuous signal on
the time axis t

At first, the mapping of a pixel to either the on or the off state still requires a certain thresh-
olding likewise done in more complex color spaces by look-up tables. A simple thresholding is
not sufficient as the whole image context is reduced to a smaller range when considering 8 bit
grayscale images. Because of this, many areas in the image may contain the same information
as the lit LEDs, preventing the LEDs from being exclusively filtered. This can be overcome by
treating sequences of images as the information to be processed, instead of only single frames.
In other words, an LED is not by definition a light spot on an image, but a certain combination
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of light and dark spots that represent a certain pattern. This interpretation leads to a significant
problem area: By interpreting sequences of images, we lose the possibility of classifying an
object within a single frame. Therefore, the benefits of a more simple classification come at the
price of sequential dependency. Nonetheless, this is not only disadvantageous, because when
information is spread across many images, the quality of the information hypothesis of an object
at a certain position is automatically averaged while in the case of color frame segmentation,
this must be done manually with filters. In general, the drawback is outweighed by the fact that
sequential grayscale data is not susceptible to many lighting problems, which aligns well with
the goal of this work.

4.3.2 Blooming and Anti-Blooming

During the initial test records for the construction of HMMs two optical effects causing problems
in segmentation appeared. When the blinking LEDs are recorded at a distance of only one or
two meters, bright stars appear on the images. In general, nearby light sources appear bigger
than their light emitting surface. This effect is dependent on the distance and the brightness of
the light. It is called blooming and appears if the light sensitive units on the camera’s CCDs
exceed their maximum charge. In this case the superfluous charge is passed to the neighbored
units, so they register light although there is no light source at that position. Additionally there is
an optical phenomenon causing the star-shape, or spikes, how they are called in astronomy. The
effect appears if wave forms hit surfaces and is called diffraction. The light slipping through the
small apperture hole is thereby spread in the spikes’ direction. Furthermore diffraction is caused
by the grid arrangement of the light sensitive elements on the CCD. They work like a diffraction
grating used in physics [Van Overschelde and Wautelet, 2005]. Due to the high power LEDs
being used near to the camera, the mentioned spikes appear in the images (d) - (f) of Figure 4.5
at 1.5 m distance, whereas the effect is not visible in images (a) - (c), recorded at 9 m distance.

In addition, looking closely at the recorded light reveals a black shadow around the center of each
LED. These shadows are visible in the images of Figure 4.3 and are caused by Anti Blooming
Gate (ABG) firstplurals [Keenan and Hosack, 1989]. Figures (a) and (d) show the background
of the LEDs, to verify that those pixels were lighter than black before. After the LED was lit
(Figures (b) and (e)), there are black regions around the center of the light-cone. Those black
regions are highlighted in (c) and (f) to show their positions.

The ABG-mechanism detects the blooming effect electronically by shifting charge between the
sensor units in order to cancel the superfluous parts, meaning the charge above the sensitivity
level of it. Because of this, there are some black values at the points where the charge was
removed. The described effect entailed difficulties in detecting the light source of an LED.
Problems occur when a rising intensity edge is expected by the LED being switched on, but
the pixels affected by the ABGs perform the opposite change in intensity. The problem was
finally solved by switching to the Fourier analysis as blinking pattern recognition. In contrast
to the Hidden Markov approach this method does not expect a certain intensity to appear, but
only a pulsating change. As in this case a rising and falling intensity edge exposes the same
rate of changes per time, the different edges will reflect the same information though at different
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(a) Near LED off (b) Near LED on (c) Highlighted

(d) Far LED off (e) Far LED on (f) Highlighted

Figure 4.3: The effects of ABGs are shown by highlighting all pixels, which got black without reason. (a) and (d)
show the background, while (c) and (f) show the same images as (b) and (e), but mark black pixels on the border of
the light cone in red.

intensities. More recent CCD technologies have appeared which overcome this problem, but
because the camera used in this diploma thesis lacks the newer technology this problem must be
considered during the system design.

4.3.3 Application of the HMM

In a first step, I evaluated LED blinking using HMMs. The idea behind this is to understand the
blinking pattern, its sequence, as a hidden state. Determining the exact position in this sequence,
and also to distinguish different sequences containing the same elements, is not possible directly.
Instead the intensity information � from an image can be observed. These serve as indication
for a specific state. Filtering knowledge out of dependent events is a classical task for HMMs.
With the LEDs being switched on and off the blinking can be understood as binary pattern.

After investigating different types of HMMs, I chose to use a simple left-right model [Rabiner,
1989, p. 266], meaning each state has a transition to one other state but can also, with a very
small probability, transition to itself. This “self transition” is a standard approach that com-
pensates for inaccuracy between the model and the real process. To be independent from the
intensity bias, I chose to use the intensity difference � � between two subsequent 8 bit frames
� � as input symbols. The resulting difference frame Fdiff from the subtraction Fdiff = Ft�Ft�1

is an array of 16 bit values in the interval [�255 : 255]. Consequently the observation symbols
V are based on a signed difference image between two subsequent 8 bit grayscale images. To
visualize such an image I calculate a three channel image out of the 16 bit single channel values
gained from the difference. The pixels with positive sign are drawn on the green channel, those
with negative sign will receive an according blue value. An example is shown in Figure 4.4.
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(a) Minuend (b) Subtrahend

(c) Difference

Figure 4.4: The difference image in 4(c) shows the result of the operation (a)�(b). Blue marks pixels, which became
darker while green pixels became brighter
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The next step to explain how HMMs can be applied to my problem is to define the interpretation
of pixel values. Using this as input signal, an HMM can be built to estimate the affiliation of
a pixel to an LED or to the background. This is the most tangible information provided by
HMMs, which I call the meta-state. Each LED is represented as such a state and is defined as
an independent string in the model. In general, what is to be determined by the HMM is to
which meta-state the observed � sequence belongs. Moreover it is desirable to know at which
position inside the blinking pattern the current observations are located. Figuratively spoken we
want to know if the LED is being switched on, off or zero-off at the moment. The latter means
that a switched off LED stays off. These three states are called intermediate-states and are the
building blocks of each meta-state. Finally, there are the real hidden-states of the HMM as
described in Section 3.1.1. These represent a certain � � value of a pixel at a distinct position in
the blinking pattern. The term hidden thereby depicts that they cannot be observed directly. The
position of a particular intensity value � in the context of the HMM is not observable, instead
we can only observe � values and reason from their sequence to their position in the pattern. It
becomes clearer how to imagine the connection between all different described states by looking
at Figure 4.7. This figure also contains also an advanced concept described in the following.

(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 1 (e) Frame 2 (f) Frame 3

Figure 4.5: These are two 64�64 pixel parts of three subsequent frames in each case. They show an LED being
switched on at ca. 9 m in (a)-(c) , and at 1.5 m distance in (d)-(d). After two frames it reached its full intensity. Any
following frames in the on state looks the same as the third one.

This concept dissects the intermediate-state more finely. The reason is that it helps to overcome
some practical problems caused by the camera synchronization issues, which were encountered
during the implementation of the approach. Those problems are present due to the camera and
LEDs not belonging to the same system and thus being asynchronous. Hence, this asynchronism
has to be modeled by the system. To do this, it is necessary to be aware of the consequences
for an intensity value in the resulting image. In Figure 4.5, there are three consecutive frames
taken from an LED being switched on. One can see that in the middle of the LED there is light
after only one frame, but on the border of the high intensity region, there are pixels which do not
get bright until the second frame. This is caused by asynchronism. In Figure 4.6, the situation
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for one pixel in the center is illustrated. It is assumed that the LED is switched on instantly,
stays two frames in the on state, and is switched off after exactly 2 frames. Furthermore we
assume the camera, which has a frame rate fc = 30 fps with an exposure time of te = 1

100s
(second), is adjusted perfectly to provide the maximum grayscale value of 1 after te seconds.
Each frame takes tf = 1

30 s time until it arrives at the system. Starting in frame 1, the LED
is switched on. This is visualized by the green line. In contrast, the red line, which stands for
the pixel’s intensity �, now rises linearly with the exposure time until it reaches full intensity
after te. Vertical lines represent the point in time at which a frame is recorded by the system.
In Figure 4.6(a), the frames are recorded exactly at the switching point of the LED. As a result,
the pixel will have an intensity of 1 at frame 2. However, if the phase of the capturing points
is shifted by 0:2 � tf = 6:6ms, the intensity is recorded during the rising edge of the intensity
values. The difference value between two consecutive frames is drawn as blue bar centered on
the frames. Resulting from the phase between the camera capturing and the LED phase, those
values look completely different, but still model the same pixel.

� Observation Symbols: � � [�255 : 255]

� Hidden-States: � � value at a distinct position in the blinking pattern

� Intermediate-States: An LED being switched on, off , or no light at all. Each intermediate-
state has the horizontal length of two hidden-states.

� Meta-States: A combination of intermediate-states modeling a sequence of rising, falling
or constantly zero � � signals. This sequence is unique for each LED so it can be identified
by a hidden-state belonging to an intermediate-state, which belongs to the meta-state of
this LED. Although the sequences consist of the same components of intermediate-states
there will be separate copies for each meta-state. This is necessary as each intermediate-
state may have different successor or predecessor states depending on the meta-state it
belongs to.
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Intermediate-State

Hidden-State Hidden-State

Hidden-State Hidden-State

ON Intermediate-State

Hidden-State Hidden-State

Hidden-State Hidden-State

OFF

tSELF

tFIRM

tFIRM

tLESS

tMORE

tMORE

Figure 4.7: Example for a used HMM representing an LED being switched on and off repeatedly

Figure 4.7 shows the smallest example for an LED-HMM. The meta-state models an LED being
switched on and off . Note the dashed arrows in front of, and after the state. They are con-
nected with each other, but were chopped for better visualization. Inside this meta-state the two
intermediate-states representing the LED switched off and on are visible. Finally, the intensity
values � are shown as gray bars. They correspond to the blue bars described in Figure 4.6.

To model the probabilities A for state transitions four levels of transition were introduced. SELF

transitions have a very small probability of 0.02, in opposition to FIRM, which describes an
almost certain probability of 0.98. Shifting phases is possible but seldom, thus it gets a small
probability LESS of 0.05, while the normal transition stays in the current phase with probability
MORE valued 0.95. For the emission probabilities B, three kinds of functions were used. If
a specific value is expected a Gaussian is centered on this value, otherwise a rising or falling
logistic function describes the tendency of the expected �.

The method to extract the information about the current state of a HMM is the Viterbi Algorithm
mentioned in Equation 3.1.1. This algorithm traverses the HMM given a � � value sequence
Q = v0 : : : vn and reports the most probable path of states exhibiting Q. In fact it calculates
every path’s probability, so the most likely path can be extracted out of this result. Furthermore,
it reports a total probability for the traversal. According to [Russell and Norvig, 2003] the
Viterbi algorithm has a linear runtime O(n) where n is the input-sequence length. Although
this is a linear run-time, it is important to look at the omitted constant factors. In each step,
the algorithm checks the probability of each state Si (pre) changing to Si+1 (post) observing the
symbol vi. Consequently, the runtime is dependent on the constant number of states jSj resulting
in O(n � jSj2). As this additional factor of jSj2 is applied pixelwise, it grows very fast. An initial
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implementation of an HMM for 6 LEDs, constructed from the intermediate-states discussed
earlier, resulted in about 80 states. To avoid ambiguity, the signal patterns of the LEDs have to
be disjoint in phase. This means the state combination on; off is the same as off; on, since it is
not known when the algorithm starts to observe the pattern. Hence, the allowed combinations
of intermediate-states result in a fast growth in length of the meta-states each, adding 4 hidden-
states to the HMM as a whole. Summarizing, the introduced method proved to be not appropriate
for pixelwise use. Otherwise the algorithm is very easy to parallelize, what made it popular in
DSP. Research for improved implementations of the Viterbi algorithm revealed the “lazy Viterbi
algorithm” [Feldman et al., 2002]. An optimal runtime of O(1) is mentioned, while being not
worse than standard Viterbi in the worst-case. However, the algorithm is fit for convolutional
codes with only two states 0 and 1. Resulting from this, I searched for another method of
recognizing blinking patterns, which is described in the following chapter.

4.3.4 Using the Fourier Transform

As reference implementation for the detection of LED blinking patterns I use Fourier analysis.
Again, I want to begin with explaining the manner information is interpreted by this method.
Starting on the raw 8 bit values of the input image, there is for each pixel discrete information
about its intensity. Instead of using now � � to look for the change, each pixel’s intensity value
� is interpreted as direct part of the LED’s blinking signal. Unlike in the context of the HMM,
where LED switch sequences are understood as binary patterns, they are now considered as
frequency signal. More precisely they are samples of such a frequency at special points in
time, those points where the camera took a picture. As such, they are discrete samples of their
frequency. That can be determined by using Fourier analysis.

Interpreting the input image pixelwise means that for every pixel a frequency spectrum is kept.
In order to calculate this spectrum, the sequence of 8 bit values for a pixel with coordinates [u; v]
(see Figure 4.2) over several frames is pushed on a circular buffer representing the time-domain
signal. The frequency spectrum which is generated using the DFT indicates which frequencies
are contained in the last N values for this pixel. Thus each pixel’s intensity history is now
converted to the frequency domain. At this point it is once again necessary to look at what can
be inferred by this information.

In 8(a), the spectrum for a rectangular pulse function with parameters is visible. This is the
function an ideal LED would provide. It is a square wave function with a certain y-offset.
For an LED blinking at fLED = 5Hz at a sampling rate of fs = 30Hz its properties are:
A = 255; k = 4; T = 6. The figure shows that the input signal on the left results in spikes on
the right at each multiple of fs. These spikes in the frequency-domain are the harmonics of the
sampling rate. At this point I want to mention that the Fourier transform of a rectangular function
is the sinc function. Resulting from this spectrum the first harmonic of the pulse function can be
identified as frequency with the largest fraction of the frequency-domain signal. Though this is
true for the signal shown in 8(a) where k < k� T , in the case of the 5 Hz LED then k > k� T .
As a result the on portion of the signal is larger than that for off. Hence the 0- bin rises above the
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first harmonic. This is due to the fact that the zero- bin in the DFT represents the Direct Current
(DC) part, the average value, of the LED signal.
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(a) A pulse function in time-domain and frequency-domain
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(b) Time domain in the context of pixel intensity

Figure 4.8: The figures show a pulse function in time and frequency domain. Figure (b) connects the intensity value
� with the time domain in the context of a Fourier transform. The � values are adopted from Figure 4.2 to show the
connection, the function is leaned on Figure 4.6 (Image source for (a): [Smith, 1997, p. 257]).

Therefore we omit the 0- bin and look for the first harmonic, which is the frequency that looks
the most like the input signal and is also the frequency that should be found while observing an
LED. To separate this frequency signal from the others, it is possible to just select the bin with
the highest frequency fraction. Since the S-DFT is used, the calculation can be skipped. At this,
we make the assumption that all LED’s frequencies were selected so that the first harmonic of
each LED is detectable by one of the DFT’s bins. To reach this, for a sampling rate fs of 30 fps,
we have to use a N = 30 element wide DFT. This way, each bin corresponds to a fraction of
the sampling rate, which is fs

30 = 1Hz. This means that each bin has a spectral density of 1 Hz,
so every frequency registered in this bandwidth will cause this bin to rise.
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Concluding it is possible to define a pixel as belonging to the frequency with the highest spectral
bin except 0. However, this would lead to a lot of over-segmentation. It is necessary to apply
a threshold for the signal strength, such that the center of an LED receives a good value, and
reflections or blooming in the image are devalued. Furthermore the measure shall be invariant
to changes in intensity. Hence it is not important which intensity value the blinking LED ex-
hibits. To reach this, I use a simple equation, which embodies the relation between a pixel’s
frequency-domain value and the standard deviation of the intensity �, shown in Equation (4.4).
The resulting value obtained by applying this equation to a frequency-domain signal is called X̂
in the following.

In order to force this normalized value to the [0 � � � 1] range, it is necessary to normalize the
frequency-domain signal first with a factor of 2

N
. Hereafter, the signal has the same scale as in

the ingoing time-domain. Using the absolute value jXnormj at this point causes the imaginary
and the real part of the frequency-domain signal to collapse into a single real value. Finally the
division by �(x) from Equation (4.1) causes the resulting value to be dependent on the standard
deviation from the pixel’s � values. It utilizes the computational formula for the variance to
minimize the effort to calculate the value in each new step of input.
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(4.4)

Using this normalization, the basic brightness of a pixel does not influence the normalization
value as the standard deviation represents the power of the signal’s fluctuation. By this, pictures
of different brightness can be thresholded in the same way. Additionally the factor 1

N
is present

in each part of the equation, making it invariant in terms of the DFT-resolution N . Moreover
Equation (4.5) represents the average � for one pixel. In DSP his is also referred to as the DC
component of a signal. As this term is included in �(x) in Equation (4.1), the measurement is
also not dependent on the amplitude of a signal.

x = DC =
1

N

NX
i=1

xi (4.5)

Nevertheless, there is one problem left. First, the blooming causing the characteristic “stars”
around a nearby LED are not completely cut off. The reason therefore is the missing synchro-
nization with the camera’s shutter (see 4.3.3). As the center of the LED is exposed first, but
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can also be bright on a frame where the LED is not lit anymore, it seems to match the searched
frequency less good than a pixel on the arms of the “blooming stars”. The latter is an effect
of partial exposure over a fraction of the current exposure time. Resulting from this, it is not
possible to depict a perfect threshold to separate the LED core from those caused by blooming
or reflections. In order to do so, the synchronization between camera and LED flashing has to
be known, or the selection of a specific bin should not only depend on the highest bin of the
first harmonic. Instead of this, the whole spectrum can be interpreted like a fingerprint of the
LED searched. The following two chapters look in more detail at the problems arising from this
approach and methods to deal with them.

4.3.5 Comparison with Koch’s Segmentation

In an approach similar to my approach, Koch tries to detect blinking LED frequencies on a
per-pixel basis to gain perspective knowledge from a picture. [Koch et al., 2008] In contrast to
my approach Koch uses multiple cameras and is only interested in finding the same spot of an
LED in each cameras image. Hence, his method uses multiple perspectives and geometrical
constraints of more than one camera observing the same object. Furthermore Koch uses LEDs
in the infrared spectrum. In general, he does not search for a certain arrangement of LEDs, but
for one single light spot. Apart from that, Koch’s work shares with this thesis the same method
for segmenting the pixels. He analyzes sequential images and tries to find frequency information
for a pixel by analyzing its intensity values i1 � � � iN with N being the resolution of his Fourier
analysis.

The biggest difference between Koch’s and my approach is the way that LEDs are chosen as
belonging to a certain frequency or not. While I simply assume the largest bin value as the LED
in search, he infers the affiliation to an LED as a metric over all bins of the frequency-domain. By
comparing the observed combination of bin values as a feature vector, he calculates a similarity
between the observed and the expected spectrum. In the following he evaluates the advantages
of using the Euclidean or the Mahalanobis distance as measure between the stated vectors. His
results show that the best rate of information while choosing a minimal DFT resolution N = 8
is reached at a blinking frequency of fLED = 7:5Hz.

Koch’s results show that it is not necessary to use a high number of bins, but also use a very
limited number of bins with another metric of comparing the observed spectrum to the expected.
However, Koch only uses that metric as a binary decision method to determine if an LED was
observed or not. In his paper he does not examine how well his method works to separate
different LED frequencies from each other. Nevertheless, his approach can be combined with
my selective calculation of bins. By thresholding on the mentioned feature vector, and not only
the highest or most likely bin value, aliasing effects can be incorporated in the separation process.
This might help to separate pixels in the LED’s core from those getting lit by the blooming effect
(see Section 4.3.2).

Finally one distinct difference between Koch’s implementation and the presented one is the
following. Koch uses a special processing unit with many parallel processors, he mentions
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for QVGA (320�240 pixels) one processor per line memory unit. This means there are 64
Processing Elements (PEs). Although these processors are very small ones, this is an advantage
at this point. All frequency analysis equations for one pixel are independent from the other
pixel’s results, so they can be solved at the same time. In opposition to this, my single threaded
application has to calculate everything in sequence. As a consequence Koch’s computation is
done faster. An approach to use parallelization on consumer hardware is also part of this work
and explained in Section 5.11.2.

4.4 Pose Finding

4.4.1 Aliasing

When sampling is performed, a continuous signal in wave form is split into equidistant values
over time. The distance between those samples defines the resolution or accuracy by which the
wave form is approximated. As a low resolution will always contain less information than a
higher one, certain finer structures of a signal might get lost. Indeed, sampling wave forms can
yield even worse effects described as aliasing. Aliasing occurs if a frequency falias is sampled at
a rate fs being less or equal than 2 � falias.
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Figure 4.9: Aliasing causes a sub-sampled high frequency to look like a much lower one [Smith, 1997, p. 190]

A look to Figure 4.9 shows the effect. The frequency of the signal is at 95% of fs. Combining
the sampling points to a signal shows that they seem to be settled on a much lower frequency
while they in fact represent samples from the narrow frequency painted in the background. In
contrary, looking back to Figure 3.1 shows that a signal of 9% from fs will be captured correctly.
The observed effect is expressed by the sampling theorem in Equation (4.6) [Shannon, 1949].
It states that for correct sampling, the sampling frequency has to be more than twice as high
than the highest possible frequency fmax in the signal. The first frequency causing aliasing in a
system is the Nyquist-frequency fNyquist =

fs
2 .

fs > 2 fmax (4.6)
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For the current system this means that there is an absolute limit for the frequency of an LED.
Additionally, even LED-frequencies close to the Nyquist-frequency will cause aliasing. The
reason therefore are the harmonics of the rectangular function seen in 8(a). While they will
interfere with the frequency in search, this also holds a chance. The characteristics of a certain
amount of aliasing from an LED may be used to detect and separate an LED more robustly from
the background. This was not part of my work, but can be used with Koch’s approach, which is
described in the following section.

4.4.2 Selection of LED Frequencies

(a) Input Frame 5 (b) DFT Frame 5 (c) DFT Frame 26

Figure 4.10: The picture in the middle shows a visualized DFT-Segmentation after 5 frames of input Samples of the
size 320�240 pixels. All red pixels are segmented as belonging to the LED with 1 Hz. After 20 frames many false
positives are sorted out, as can be seen on the right. The picture on the left shows the real scene in frame 4. The DFT
used for this image was 30 bins wide. See archive dft 1hz false positives in Section A.2 for details.

As described in Section 4.3.4 and 4.4.1, it is necessary to select the blinking frequency of an
LED in a special range. In addition to the limit of the Nyquist frequency, it is necessary to
avoid very low frequencies below 7 Hz. This is indebted by the general noise of the camera
perception and the fact that smaller movements or for example the rapid movement of an arm
in a scene can create frequencies up to 7 Hz like can be seen in Figure 4.11. The colors in
those figures represent the affiliation of this pixel to a certain LED. Furthermore [Allen et al.,
2001] mentions possible human motion frequencies of up to 20 Hz. Therefore they recommend
capturing frequencies of 40 Hz and higher. However, my proposed system is limited to 30 Hz by
the capturing rate of the camera.

Another reason for avoiding low frequencies is the fact that an LED, which blinks in an arbitrary
frequency in the beginning will pretend to be another one. Without all the frames necessary to
detect its particular frequency, it will show a signal close to 1 Hz signal due to the fact it changed
at all. Later, after more information is put into the DFT input buffer, the wrong DFT-answers
will vanish like it is shown in Figure 4.10.

In opposition to the tendency towards high frequency the initialization time has to be kept in
mind. Choosing a higher frequency with alignment of one bin per LED causes the DFT resolu-
tion to increase. Following from that the number of samples needed to fill the whole set of input
data raises proportionally. As the number of samples per second is fixed by a hardware limit
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(a) Input Frame (b) DFT Frame

Figure 4.11: On the left, one may begin to fathom on a part of the input screen that I move my hands quite fast
vertically. As a result of my body movement, there are false positives in the picture on the right. The magenta pixel
in the center of frame 90 is the false positive value with the highest frequency I was able to simulate literally by hand.
It corresponds to 6 Hz, as can be looked up in Section A.1. See archive dft 1hz false positives in A.2 for details.

this means an increasing time to initialize the pose estimation, although it is not compulsory to
completely fill the input buffer before a pose can be calculated. Nevertheless, the results will not
represent the exact frequency spectrum of the images observed.

Therefore I chose to use a compromise between high frequencies and a small initialization time.
Starting at 7 Hz the frequencies are high enough to be distinguished from random noise. The
bandwidth of 7 Hz up to Hz is split in steps of � 0.43 Hz. By stopping at 14 Hz, neither the
Nyquist-frequency is reached, nor the initialization will exceed � 2.3 s with a resolution if N =
70. Those frequencies are created with a switching reaction time of 1�s on the circuit controlling
the LEDs.

4.4.3 Using the S-DFT

Performing pixelwise calculation of DFT-bins is computationally very expensive. For instance
for a small QVGA image, which is quarter the size the camera used in this system provides,
there are 76,800 Fourier spectra to calculate. At the desired capturing rate of 30 fps, for all
those pixels the bin values have to be calculated below 33.3 ms. Looking at Equation 3.18, a
naive implementation would perform at least N complex multiplications as well as the same
amount of additions. It is necessary to minimize those calculations in a real-time environment,
since the above mentioned calculation time is also used by other program components in a
single threaded environment. Moreover the tests described in Section 5.11.1 revealed that the
section computing the Fourier analysis is the bottleneck. In consequence a method to reduce the
necessary calculations was used.

In general this is the application of the S-DFT described Section 3.1.3. It uses a special property
of the DFT to calculate the spectral value Xi(t) at time t by using Xi(t � 1). This results in



4 APPROACH 39

a great increase of performance if a high DFT resolution is used, since there are only a few
predefined frequencies we want to find in the image. In contrary, the FFT calculations of all bins
for all pixels is wasteful, but also does not benefit from the previously calculated Xi(t� 1).

To further increase the benefit gained from this method it was implemented using Single Instruc-
tion Multiple Data (SIMD) instructions. The developed algorithm is described in more detail in
Section 5.11.2.

4.4.4 RANSAC for the initial pose

After assigning an LED to each pixel inside the image, there has to be some means of grouping
these pixels together. The pixels found for one LED may form a connected BLOB or multiple
unconnected BLOBs of different sizes. Of course one of those BLOBs will represent the center
of the corresponding LED, but the others may be unconnected parts of the center-BLOB or
reflections of the LED’s light on other objects. Those reflections will reveal similar values as the
center as discussed in Figure 4.3.4. It is necessary to combine the information gained pixelwise
into one pose per LED.

This is a critical step, as the quality of the initial pose rules how good any probabilistic method
used later will perform. Therefore additional to the mentioned thresholding via normalization
the segmented pixels left have to be analyzed. Valuable for this task is the knowledge of the
fixed geometry of the object in search. It is known how the LEDs will be arranged on the image
plane provided that a set of extrinsic parameters is known. Yet these parameters are unknown
and the state space of a 3D7!2D is large. As solution the knowledge of the segmented pixels
LED affiliation is connected with the transformation parameters.

One method to reach this is RANSAC, described in Section 3.3. The implemented variant of the
algorithm is visible in Algorithm 1cod:ransac. As a model, four planar points are used. Together
with the intrinsic parameters calibrated in advance, a homography between the observed pattern
with known geometry in World coordinates and its 2D representation on the image plane can be
calculated. Using this the transformation Hitch5 7! FWCam5 5 is evaluated for an arbitrary set
of four image points with known world correspondence.

Hereafter it is necessary to rate the determined extrinsics. This is done by calculating the back-
projection of each LED. In other words, the known world coordinates of each LED are projected
to image coordinates using the calculated transform. This makes it possible to compare the cal-
culated 3D 7!2D transform to the coordinates of the segmented pixels. In more detail each LEDs
position is compared to each segmented pixel possibly representing this LED. If the Euclidean
distance of a pixel under-runs the point-threshold it is added to the consensus set, the points
supporting the hypothesis of this transform. The generation of a consensus set is shown in
Algorithm 1cod:consensusSet.

After doing this for each pixel the set’s size is compared to the set-threshold. Out of the models
exceeding that threshold, the largest is remembered. In summary Figure 4.12(a) shows the

5See Table 8 for a list of coordinate systems
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Algorithm 1 Generation of a transform from segmented pixels

Require: segmentedPixels
for i = 0 to iterations do
sample drawSample();
tmpHitch2Cam calculateModel(sample);
LEDProjections projectLEDs(tmpHitch2Cam)
tmpSet generateConsensusSet(ledProjections; segmentedP ixels);
if tmpSet:size > setThreshold then
chosenSet tmpSet;
Hitch2Cam tmpHitch2Cam

end if
end for
return Hitch2Cam;

Algorithm 2 generateConsensusSet()

Require: segmentedP ixels; LEDProjections

for all pixels in segmentedP ixels do
euclideanDistance euclideanDistance(pixel, LEDProjections(pixel:LED);
if euclideanDistance < pointThreshold then

consensusSet.add(pixel);
consensusSet.weight += euclideanDistance;

end if
end for
return consensusSet
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processed frame after pixel segmentation, but before RANSAC was applied to generate a pose
out of it. Using the described approach the system selects a model for the extrinsics, which
produces the back-projected LED positions labeled in Figure 4.12(b).

(a) Segmented pixels (b) The back-projection of each LED’s pose

Figure 4.12: Out of the set of segmented pixels a model is generated, which represents the extrinsic parameters

4.5 Movement of Objects

Core of the problem with frequencies in movement is that there is not the same kind of feature for
an LED in every frame. A blinking LED may appear as dark pixel on one frame, but as a bright
one on the next. This is why we cannot simply search for the LED in a single frame. Remember,
to estimate the flashing pattern of an object, we need multiple images of it without much motion
of the target. If, however, a moving, blinking object should be classified by frequency on an
image, we have to know its position on each subsequent frame to compensate the displacement
of those frames. The absence of this information is a problem. In fact, the trajectory of the found
LED is the information we searched for, so the problem seems to be insolvable by frequency
analysis. This is a key problem of optical tracking, which is visualized in Figure 4.13. As the
motion gets faster, the tracking gets more and more difficult.

Figure 4.13: Performance of optical and inertia sensors [Allen et al., 2001, p. 57]
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Therefore probabilistic estimation is used here. With this we simply guess a possible movement
of the cart. To do this the state of the cart as 6D pose is captured in a state Ct, which denotes the
state of the cart at time t (Equation (4.7)).

Ct =
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Figure 4.14: Cart coordinate-system Hitch in motion

It contains the translation ~p in mm and the fixed object velocity ~vp. The rotation ~! is represented
as Rodrigues Vector, the same representation, which also thea ngular velocity tensor ~v! uses.
In such a vector the rotation for all axes is applied simultaneously, like a real object would
move in space. Using these coordinates, we can describe the cart’s position in space as well as
its motion, what helps to guess the future position. All particle coordinates are considered as
relative coordinates to the position which was determined at the estimation’s start. Hence if the
initial particle describes the transform Hitch 7! FWCam6, the transform stored in the particles is
Axis6 7! FWCam6, where Axis is simply the moved variant of Hitch after initialization. Looking
at Figure 4.14, both Hitch and Axis are visible. Hitch is shaded in the background while Axis
represents the clearly visible coordinate system. The motion performed by the object in this case
is defined by the translation vector ~p and the rotation angle  on the z-axis.

6See Table 8 for a list of coordinate systems
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Figure 4.15: Workflow of the particle-filter

Schematically, the particle-filter tasks form a cycle denoted as a self-transition in Figure 4.1.
This cycle is explained in more detail by Figure 4.15. Here we see an initial calibration C0,
which comes from the PoseFinder, which calculates a pose out of the images recorded from
the stationary object. It contains all elements from Equation (4.7). As a result each run through
the cycle produces a refined hypothesis Ct at time t.

Move Particles In this step, the particles are moved in the direction of their velocities vp and
v! state. By this, the particles represent different possible movements of the cart.

Insert Auxiliary Hypotheses Afterward some particles representing special behavior of the
cart are added. They help to recover from estimation failures. In the proposed system at this step
standing, and random particles are added. The latter simply help to find a nearby better solution
while the former particles act as a substitute for a stationary cart. Their velocities are simply
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set to zero. If the cart has stopped, it is very likely that those particles provide a much better
hypothesis than those still in motion.

Rate Particle Fit This is the core step of rating the quality of the particles. As the particle-
filter itself cannot accomplish this, the help of the Sampler is needed again to check if the
new position of a particle is reasonable provided the resulting frequency information gained by
connecting it with the previous input data. Due to the interaction between the Fourier transform
on the one hand, and the particle-filter on the other hand being one of the core features, it
is explained further via Figure 4.18. To reduce the computational complexity of the Fourier
transform again ROIs (Regions Of Interest) are defined. At the assumed LED-positions of the
back-projections from a particle’s calibration Cp, a ROI of configurable size is defined for each
LED, like shown in Figure 4.16.

(a) Hitch coordinate-system (X,Y, Z) detected
by the PoseFinder

(b) The resulting ROIs

Figure 4.16: Mapping from a set of extrinsic parameters to the ROIs around the assumed LEDs

This projection is done for each particle in each step, while every time the ROI defines the area
of pixels used as new input for the DFT. Resulting from this the ROI is moved in the image
according to the changing extrinsics stored inside the particle.

While this alone is not sufficient to propagate the motion of the object, it opens up the possibility
to use the frequency based searching again, because hypothetical motion performed by the cart
is encapsulated in a particle moving in that particular direction. The pixel positions of the LEDs
can be projected to the image plane using its transform. After doing this, the new intensity
values are added to the history of that particle. Subsequently, the new signal influences the
overall signal calculated by the frequency analysis of the pixels inside all LEDs’ ROIs. That
process is visualized by Figure 4.17. A path through this tree represents the history of a particle.
Each level represents the total amount of pixels in the filter at that time. The number of pixels
shown here is chosen for visualization purposes, normally the filter uses exactly the same amount
of particles in each run. Resampling causes now a particle to be either dropped, like R6, or to
create children. In general the rectangles R1:::8 represent are images from one ROI, created to
find a particular LED. If after the resampling step, a high amount of pixels segmented as the
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LED in search is found in the ROI, the hypothesis of this particle is assumed to be good. If not,
the particle will receive a low weight.
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Rx = ROILED (Particlex)

Figure 4.17: Sequence of ROI inputs

Compute weighted Mean By building a weighted mean using the weights gained in the last
step the new hypothesis Ct for this loop-cycle is determined. This overall output of the particle-
filter combines the information of all particles.

Resample from weighted Particles Dependent on their weight as defined in the step “Rate
Particle Fit”, the particles will be either transferred to the new set of particles or dropped. In this
context a transfer is realized as passing the circular input-buffer of all LED-ROIs. Through this,
the particles representing wrong hypotheses will vanish while those providing a good estimate
will stay in the focus of the algorithm. Furthermore, the resampled particles will inherit the input
information gathered from their predecessor thus a new initialization is not necessary.
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In the beginning the inheritance of the input history was left out and all particles had one com-
bined history. This proved to be inappropriate as the information added by only one frame is
rather small, compared to the history of N frames for an N -point DFT as a whole. Having
separate histories for each particle preserves the whole sequence of a good particle and gives the
possibility to add further frames in later filter steps by inherited particles.

Add noise to velocities The cycle is closed by the random element of the filter. At this step
Gaussian noise, dependent on the time passed since the last time this was done, is added to
each particle’s velocities. The idea behind this is to add so much particles that one of them will
eventually resemble the position of the cart after the real, unknown motion it performed.
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Figure 4.18: Feddback connection between the particle-filter and the DFT

To demonstrate one of the most noteworthy aspects of the presented tracking approach, Fig-
ure 4.18 connects the particle-filter and the DFT. On their own, both are insufficient to track a
moving object. The frequency analysis on the one hand can only provide reasonable information
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about an LED’s blinking if the trajectory of the object in the image is known. On the other hand,
the particle-filter implements only a stochastic approach to handle hypotheses and needs other
methods to judge the quality of randomly selected models. If, however, both are combined, it is
possible to achieve a plausible trajectory of the object in search.

Based on this hypothesis the particle-filter estimates the next position of the cart and provides
a new estimated position to the DFT. Using this position, it is possible to propagate the back-
projected location of the pretended cart and its LEDs in the image. This is the information the
DFT needs to add the right intensity values to the particular LED’s input buffer. As a result,
the DFT can offer the particle-filter a measure of how plausible this movement step was. By
doing this for all possible particles, the ones next to the real LED positions get better weights
than those moving randomly in the wrong direction. At this point, the particle-filter can again
move its particles and the process starts again. In each step of this feedback, the hypotheses
of the randomly spread particles get better, the filter converges until the result finally is a good
Movement Hypothesis. Actually, the particle-filter will generate this hypothesis in each step, but
the effect of the feedback of both components causes the hypothesis to be valuable at all. To start
the feedback loop, an initial pose has to be estimated with a stationary object (see Section 4.4.4).
Using the current frequency setup, this initialization takes �2 s (see Figure 4.4.2).

4.6 Physical Setup

The proposed system assumes a specific hardware setup. One of the assumptions is that the
camera is fixed and does not move after calibration. This restriction is made to reduce the
complexity of the system. While movement of the camera itself can be incorporated in the
system, it requires knowledge about the moved distance. This could be determined, for example
with an inertia sensor or odometry data from a pan/tilt unit, but is outside the scope of this work.
Combining the information of both was for instance done by [Birbach et al., 2008]. According
to the sensor properties already presented in Figure 4.13 this combination can compensate the
weaknesses of both sensor properties.

The LEDs The used light sources can be seen in Figure 4.19. As described in the beginning of
Section 2.2, most other tracking solutions rely on Infrared-LEDs (ILEDs). This circumvents the
visibility of the light needed to detect markers in the scene. More common are indeed passive
markers, which have the advantage of not requiring any circuitry for the markers, although for
many passive systems there are also active ILED-Markers available to increase the operational
range. Industrial standard approaches for tracking mostly rely on passive, retro-reflective mark-
ers, which are illuminated from the cameras direction in the infrared light spectrum. Camera
devices illuminating passive LED markers are usually high priced special equipment. [Xsens,
2009] Furthermore, passive markers cannot directly solve the correspondence problem, mean-
ing to distinguish the markers from each other, without the use of multiple perspectives from
more than one camera. Instead, they have to form certain unambiguously rotatable compounds.
For complex objects, this can require subsequent processing of the captured data by special soft-
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ware [Furniss, 2000]. This is due to the fact that all markers will reflect the light in a uniform
way, as simply glowing LEDs would do. However, active ILEDs can be used for the proposed
approach.

All in all the reason for not using infrared LEDs as markers for my thesis were medical concerns
as the light is not visible by the human eye. Its natural closing reflex consequently will not work.
The hardware for my thesis, which was preset by the DFKI7 Bremen was therefore constructed
with usual white LEDs. They are high power LEDs, which operate at 350 mA in the used circuit.
At a viewing angle of 120�, they emit at 180 lm white light with a color temperature of 6500 K,
which is similar to daylight.8 Each LED can be controlled via an independent output of the
driver board. Power is provided via a battery containing of 18 x NiMH cells connected in series
having an overall capacity of 3000 mAh. Though the electronic hardware9 was designed and
built by the DFKI-Bremen electronic support staff, the program running on the microprocessor
was written along this thesis.

Figure 4.19: Used LEDs in a close-up shot.10

Cart While the fixed camera makes the sequential data connectable, the observed object, in
this case the LED-pattern, is moving within the scene. Derived from this setup the pattern may be
put on an arbitrary object which supports planar arrangement of the LEDs. For testing purposes,
this setup was realized using an aluminum cart, which is visible in Figure Figure ??(b). The cart
was built for the case where a legged robot should find its way back to this cart. On all sides,
there are LEDs embedded into the cart’s aluminum bars. The LEDs were arranged in order to
support the usage of the Zhang method described in Section 5.9. LEDs were placed on both
sides and the back of the cart, so that at least four planar markers should be visible from most
perspectives around the cart. Because the LED driver circuit supports only 16 LEDs, there are
no LEDs on the top, and because the front of the cart will be occluded by the trekking vehicle
there are neither LEDs on the front of the cart. The chosen arrangement on the side, with six
LEDs in L-shape, was intended to add two additional feature points to the four necessary planar

7“Deutsches Forschungszentrum für Künstliche Intelligenz”
8LUXEON Rebel LXML PWC1 0100 Date: 02-16-2010
9See Section B.3for a diagram

10Image source: http://www.leds.de/index.php?cl=media&mid=33845f51e51b840ea44fc
333ece9d013-1&type=zoom

http://www.leds.de/High-Power-leds/Lumileds-LUXEON-leds/LUXEON-Rebel-LXML-PWC1-0100-weiss-180lm.html
http://www.leds.de/index.php?cl =media&mid=33845f51e51b840ea44fc333ece9d013-1&type=zoom
http://www.leds.de/index.php?cl =media&mid=33845f51e51b840ea44fc333ece9d013-1&type=zoom
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points of the pattern. As a result, the difference of using only four feature points in comparison
to the pattern with six points should be evaluated. However, it turned out during the final tests
that the L-shape is generally incompatible with the used algorithms. In [Zeng et al., 2008]
it is mentioned that no three points of a four-point-pattern are allowed to be collinear for the
calculation of a 3D space to image homography. Resulting from this, the only valid combination
of LEDs on the L-shape is using two LEDs from one bar and two from the other one.

No three collinear LEDs To circumvent the problems of the L-shaped LED arrangement,
which was determined to be unfeasible during the finalization, a top view of the cart was used.
This way LEDs 5-8 and 13-16 are arranged in a rectangular pattern of eight LEDs which allows
the application of the introduced algorithms. At this juncture, the problem of widely spread
reflection compared to a very small range of a valid LED position occurred. To explain the
problem, Figure 4.20 shows three different modes of an LED appearing in the image. Figure
Figure 4.20(a) shows a complete overview from the original camera frame with frames around
the regions shown below. The light emitted by the LEDs was white, so the color shown is
originated by the system indicating the particular blinking frequency of this LED with purple.
To visualize the intensity of the frequency signal a linear scaling of the color’s values was done
relative to the pixel exhibiting the strongest signal. The orange arrows were inserted after the
processing to highlight the position of the LED.

Beginning with Figure 4.20(b), an LED is visible, which was captured from a bird’s eye view.
It is visible that the LED itself is comparatively small in contrast to the light cone in the rest of
the image, which is caused by reflection on the floor. Hence, a threshold to separate the LED’s
center from the reflection will work, but will result in a very small amount of pixels around the
LED with a high risk of loosing the signal at all. Lowering the threshold will collect a usable set
of pixels, but the general problem here is the position of the LED center relative to the gained set
of pixels. The arrangement is not symmetric and it is not possible to quickly determine the origin
of the light robustly. The basic concept of recognizing an LED in this system is the symmetric
formation of pixels around a light source. The reason for this is to damp down the blooming
effect (see Section 4.3.2) which can be observed looking at Figure 4.20(d). As the LED was
directly visible by the camera this effect results in a symmetric spread of the signal around the
LED’s center. In consideration of this problem a funnel, open only to the top where the camera
is placed, was placed below the LED. The resulting frequency signals for the gray colored LED
are visible in Figure 4.20(c). All light rays, which would normally cause the reflections on the
floor, as discussed before, are reflected by the funnel’s walls. As a result, the shape of the funnel
is observed on the frequency image. This allows to define the funnel’s center as the core of the
LED in search.
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(a) Overview with marked regions

(b) Top view of an LED (c) Top view with light-funnel (d) LED in front view

Figure 4.20: The figure shows the different relations of the observed light cone and the corresponding LED-position.
For location of figures 20(b)-20(d), an overview of the original image with frames is given by 20(a). The center
of an LED is marked by an orange arrow on each scaled sub-region. Other colors are generated according to an
LED-affiliation and signal intensity (see Section A.1 for a color legend).
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(a) The cart like it is seen by the system’s camera

(b) Manually taken picture of the cart

(c) 3D Model of the cart with LEDs marked as light spots in
colors according to Table A.1

Figure 4.21: The used cart is shown in a photo, through the used camera, and as a 3D model. The colors in (c)
correspond to those used by the system (see Table A.1). Dimensions can be looked up in Section B.1

.
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5 Software

This section covers the implemented system to solve the given problem. Beginning with a short
description of the used working environment I will describe the important parts of the software
in more detail. It is divided into several modules, which implement the methods described in
Section 3. All of them are compiled together to the libtrack, a C++ programming language
(C++) shared library which is the overall result of my software development for this thesis.
For further implementation details see the reference manual documentation.pdf or the
HTML version in documentation/index.html generated via Doxygen11. This document
is created by extraction of code comments, which explain the implementation with more respect
to the software architectural perspective and provide direct linked access to the library API. To
make the relations between the described Modules more understandable a global illustration of
the interconnections is provided in Figure 4.1.

All functions mentioned, variables, or preprocessor macros in the texts of a certain class refer to
members of this particular class unless specified by explicit scope operators.

The system overview on page 23 explains the connections between the modules of the whole
system. Starting on the very base each module performs a certain task and is interchangeable
if the API is preserved. To keep it simple, this API is only constructed around one method, the
run method. By its arguments it takes input and returns a preset output format. Herefrom arises
the division of the modules into three steps, the Acquisition, Segmentation and Pose Estimation.
Each of those steps requires a different API for the run method. Furthermore every module has
a Mode object in common. Via inheritance from the interface class interface/Module.h,
every module is able to receive a set of properties. Those are stored in the mode object. It is
a class constructed to store certain properties like paths or a state configuration accessed during
runtime. In order to pass or manipulate those values in tune with the C++ initializer lists, all
parameters can be read or written via method chaining.

5.1 Working Environment

I chose C++ as programming language for development. First I decided to use OpenCV as core
component for the necessary matrix algebra. By virtue of several issues with the FireWire in-
terface of OpenCV I switched to FireWire library [Douxchamps et al., 2009] (libdc1394v2), a
common Linux FireWire Application Programming Interface (API). The whole system is imple-
mented as C programming language (C)/C++ library with consistent interfaces. This approach
benefits from a wide variety of available libraries.

To keep the development as easy and smooth as possible, no embedded systems were used
directly on a robot. Instead a standard end user PC with common microprocessor architecture is
used. For the purpose of simple development the system is single threaded.

11See [van Heesch, 2009]
11http://www.archlinux.org
12See [Sony, 2001] for technical details.

documentation/index.html
http://www.archlinux.org
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Table 5.1: Properties of the computer system used for development

Processor: Intel Pentium M 2�2,2 GHz
Target Architecture: i686-pc-linux-gnu x32

Main Memory: 2 GiB
Operating system: Arch Linux @2.6.32 (IEEE 1394 module stack)11

Camera: Sony DFW-50012 on IEEE 1394

The camera model mentioned in Table 5.1 was built for industrial image processing and therefore
provides better optics and can be controlled by standard IEEE 1394 imaging libraries. It operates
at a maximum sample rate of 30 fps providing an 8 bit grayscale image.

It is necessary to keep in mind that the actual system, when moved to an on board computer,
might operate on weaker hardware and another Linux distribution or even operating system.
Therefore I have focused on the system performance and attempted to make the software as
portable as possible. I used a general module structure throughout my classes, variable type
macros and watched for warning free code. At last the whole library was furnished with a build
system. This provides a convenient method for compiling the whole system on an arbitrary
platform and checks for library preconditions. Due to this efforts it is no struggle to integrate
the finished system on a mobile device.
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5.2 Tools used

Table 5.2: Used Tools

Name Version Author Description

OpenCV 1.1.0 [Sourceforge, 2008] Open Source computer vision library
originally developed by Intel. It imple-
ments a method to calculate the intrinsic,
as well as the extrinsic parameters of a
camera scene (see 3.2). It was also used
for common matrix mathematical tasks.

g++ / GCC 4.4.3 [Free Software Foun-
dation, 2008]

C++ compiler from the GNU Compiler
Collection (GCC)

GSL 1.13 [Galassi et al., 2009] The GNU Scientific Library (GSL) was
used to simulate random data for Gaus-
sian distributions.

libdc1394v2 2.1.0 [Douxchamps et al.,
2009]

This library was used as interface to grab
frames from the FireWire device.

Boost 1.41.0 [Dawes et al., 2009] The library boost::filesystem is
used as platform independent file sys-
tem API, boost::regex helps sorting
recorded data while boost::test is
used to perform unit tests on the library.

CMake 2.8.0 [Martin and Hoffman,
2008]

Platform independent build-system.

Doxygen 1.6.2 [van Heesch, 2009] Used to compile a reference manual out
of the comments in the source code.
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5.3 Modules

The developed software is split into modules as seen in Figure 4.1. As an example application
with access to the developed library the program named watch is provided. This command-
line tool is able to use all developed modules, switch them on and off, and to pass parameters to
them. Listing 1 shows the parameters to use the modules.

Listing 1: Module arguments for watch application

Global Thesis Tool (watch - Ruben Stein 2009/2010)
This tool utilizes the features implemented in the libtrack for my diploma thesis.:

General:
-h [ --help ] Produce this help message

Modules:
-c [ --capture ] Grab frames from camera with provided index.
-e [ --differ ] Calculate 16 bit difference image between current

and last frame.
-d [ --dft-segment ] Use Fourier transform to segment image.
-l [ --load ] arg Load frames from provided path and filename-pattern

(e.g. --load data/img*.ppm).
-f [ --particle-filter ] After initialization (filling the S-DFT), use

a particle-filter to estimate further movement of
LEDs.

-p [ --pose-finder ] Use RANSAC and Zhang’s algorithm to find the best
solution to the perspective-N-Point-problem.

In addition to the plain functionality to use the implemented algorithms, the application provides
also some convenience functions. Amongst them are routines to save all kinds of calculated re-
sults with and without debug drawings, plotting of resulting coordinates and custom termination
conditions. These are listed in Listing 2

Listing 2: Convenience function arguments for watch application

Interactive:
-H [ --halted ] [=arg(=0)] program will be started halted, press p to

continue or n for next frame
-T [ --halt-term ] Instead of waiting for user action, terminate

after the amount of frames specified via --halted.
-S [ --save ] arg Save images to this folder using their predefined

subfolders.
-q [ --quiet ] Mute standard text output. This does not affect

plotting output.
-O [ --out-original ] Show the original input frame.
-M [ --out-sample ] Show the downsampled version of the input frame.
-D [ --out-dft ] Generate a visible representation of the

segmentation result from the Sampler.
-F [ --out-pose ] Highlight each found LED of the final estimation

with a colored circle corresponding the defined
LED-colors.

-J [ --plot-led-poses ] Prints the coordinate for each LED in 3D
coordinates of the camera coordinate system. The
output is not formatted to be interpreted by
plotting programs.
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The supported debug-drawings are listed in Listing 6. All of them will be printed on every
used image (e.g. original frame, down-sampled frame, segmentation result) and are dynamically
scaled. Clicking on one of them during runtime will show details about the target pixel. If the
target was located on a pixel inside a DFT-ROI, the internal data such as time-domain signals,
frequency-domain output and normalization result will be printed to the console.

Listing 3: Possible debug-drawing arguments for watch application

Graphics:
-A [ --relative ] Each DFTSampler draws color values relative to its

maximum.
-W [ --windows ] Use OpenCV to show images.
-C [ --draw-cart-axes ] Draws the coordinate system on the cart (X(red)

Y(green), Z(blue).
-E [ --draw-difference ] Paint difference image between current and last

frame.
-L [ --draw-labels ] Paints label next to found LEDs.
-Z [ --draw-particles ] Paint one pixel per particle’s estimated LED

position in the particular color of that LED.
-P [ --draw-pose ] Highlight each found LED of the final estimation

with a colored circle corresponding the defined
LED-colors.

-R [ --draw-rois ] Paint current ROIs from sampler.

5.4 StateFinder

The StateFinder implements the HMM stack inside the software. Important to mention at
this point is the difference between the development status of HMM- and Fourier stack. While
the HMM stack was implemented until the concept worked for small 32�32 images, the Fourier
stack was continued as productive code.

Beginning with the required input for the StateFinder, the HMM class comes into focus.
This class implements the core concepts of a Hidden Markov Model like described in 3.1.1. To
reduce errors by linearly repeating code, the concepts of the described tripartite state model are
encapsulated in generation functions. In order to allow the automatic generation of a HMM’s
states are represented as raw numbers hidden by a naming pattern, which describes their task.

� L1_0_UP_0_ON_POS_FUL
LED index

� L1_0_UP_0_ON_POS_FUL
Phase of the LED, meaning the horizontal state index (cf. Figure 4.7)

� L1_0_UP_0_ON_POS_FUL
The current edge (up, down, zero) of the LED from list fUP;DO;ZEg. Depending on the
previous intermediate-state it either rises, falls or does not change at all.

� L1_0_UP_ON_POS_FUL
Will take values from fON;OFg controlled by the LED being switched on or off in this
state.
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� L1_0_UP_ON_POS_FUL
Indicates if a � � signal is positive, negative or zero. fPOS;NEG;ZERg
� L1_0_UP_ON_POS_FUL

Divides the strength of the � � signal into two classes according to the blue medium and
full size bars in Figure 4.6 fFUL;MIDg

Another property which can be evaluated at this point is the period or state of the LEDs. As the
LEDs are synchronized among each other, a wrong period in an LED may give a clue for an
outlier who is not based on the LED pattern on the robot.

Based on the path calculated by the Viterbi Algorithm (see Figure 4.3.3) it is possible to de-
termine which LED is represented by the input. Therefore the output of this module contains
the most probable meta-state for each pixel, what corresponds to the LED it belongs to, and a
probability value for this hypothesis.

5.5 DFTSampler

This class implements a pixelwise sliding window discrete Fourier transform. This means for
every pixel, a frequency spectrum is kept. In order to calculate it, the sequence of 8 bit values for
a pixel with coordinates [x; y] over several frames is interpreted as discrete time-domain signal
(see Figure 4.2). The frequency spectrum tells which frequencies are contained in the last N
values for this pixel. Based on this spectrum a certain score for each LED is calculated (see
Figure 4.3.4). In the end this states which LED’s frequency is most likely to get sampled by this
pixel’s grayscale values.

The common work-flow for this class starts with pushing the input signal to the buffer via
putInBuffer. After this a call to sdftStep calculates the DFT-Data. In more detail
it calculates for every pixel a set of frequency values for arbitrary bins defined in Mode::
calcBins. Each of this bins is mapped to a particular frequency by Mode::binToLED. In
other words if the normalized value for this bin is the highest in one calculation step, the pixel
gets its LED affiliation by the mapping of the bin-index to an LED via Mode::binToLED.

Internally this class has the task to compute many similar steps for a large amount of items, in
this case pixels. This property yields the possibility to parallelize this task. Many independent
workers can calculate the values for each pixel without needing each other’s results. In Contrast
to Koch’s approach (see 4.3.5) I used a method for small-scale parallelization on consumer
hardware, which is described in more detail in Section 5.11.2.

For the pose calculation only the segmented pixels are needed (pixels). For the construction
of a visible representation of the data on the other hand also not segmented pixels have to be
stored (pixelsImgOrder). Those values can be parsed sequentially to form a colored image
out of the DFT-Data (getPaintableDFTImg). Table A.1 explains which color is used for
which LED and also explains the special relative image. The mentioned LED-indices can be
looked up from the technical drawing in Section B.1.
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5.6 Sampler

This module can be looked upon as infrastructure unit above the DFTSampler. In terms of
the API, it behaves exactly like the DFTSampler. It is defined for a certain image size and
has the task to provide an LED index for each pixel, based on Fourier analysis of subsequent
frames. In fact every DFTSampler in a system can be replaced by the Sampler. However
this relation is not always reversible. The reason is that the sampler is a skeleton which allows
to define multiple DFTSampler instances on one image.

Starting with a raw Sampler there will be no segmentation at all. In order to start the process one
has to define a certain Region in the sampler’s range. This region is henceforth represented
as a DFTSampler instance. Internally this DFTSampler does not know about its limitation
to a specific image area, it operates on a normal image. The key difference is that the Region
structure passes the Sampler’s image to the DFTSampler. In doing so it is possible for

multiple DFTSamplers to work on one bigger image without the need to calculate the whole
image. So the Sampler allows for ROIs inside the image, which get segmented by the Fourier
stack. Through this a huge amount of calculation capacity can be saved.

Being able to selectively calculate over smaller regions reduces the computational complexity
of the pixel segmentation. This is because the sampler is able to reduce the resolution of an
input frame and calculate the Fourier information for the small image. Although the accuracy is
reduced as several pixels information are combined, one can now define a new DFTSampler
to calculate the Fourier information for a small extract of the higher resolution image. Because
of this the performance of the overall system is significantly improved while preserving the
accuracy of the initial input-frame resolution.

Listing 4: Sampler arguments for watch application

Fourier Sampler:
-w [ --normalization-threshold ] arg (=0.058) Threshold for the normalized

values of the Fourier
Transform. If a pixels value
for the highest bin exceeds
this value, it is accepted as
segmented for an LED.

-y [ --pf-normalization-threshold ] arg (=0.5) Same as above, but only
applies in ROIs of
ParticleFilter.

-z [ --pf-normalization-target ] arg (=1) Target value around which the
threshold is applied (only
for ROIs of Particle Filter)

-o [ --normalization-target ] arg (=1) Target value around which the
threshold is applied.

-i [ --region-rect ] arg Sets the region in pixels for
which the DFT values will be
computed. The region must be
specified in sample
coordinates. Allowed argument
numbers are 2 (<x==y>
<width==height>, e.g. -i 4 10)
or 4 (<x> <y> <width>
<height>, e.g. -i 3 2 640
480).
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-k [ --samples ] arg (=30) Width of the Fourier comb, so
number of frames to use when
calculating the Fourier
values.

-s [ --sample-size ] arg (=320 240) Size in pixels to which the
original input image will be
scaled down. May be specified
as single value for a square
(e.g. -s 4) or rectangle
<width> <height> (e.g. -s 640
480).

5.7 ParticleFilter

The ParticleFilter was implemented to make tracking of moving objects possible. In
contrast to the situation for a stationary object, an object in motion cannot provide the neces-
sary data for a frequency analysis. As explained in Section 4.1, multiple input frames shall be
combined to detect certain intensity patterns caused by blinking LEDs. Although observing a
stationary object is possible because subsequent frames can be computed to a pixelwise fre-
quency image, this is not possible for blinking LEDs which move in the image. For this to work,
the system has to be aware of the motion the blinking object performs. Another approach would
be to bypass the frequency analysis once the system is calibrated and knows an initial position
of the LEDs in space. We could now switch all LEDs on and simply try to follow their intensity
values in the image. However this was not recently implemented due to a lack of time.

In either case a state estimation approach based on a particle filter will be used. The idea behind
its use is to treat the particles of the filter as random hypotheses of the object’s movement. Once
the PoseFinder calculated an initial transformation between world and image coordinates,
the particle-filter is initialized. Its particles all contain a complete hypothesis about the relative
pose of the camera with respect to the object.

Listing 5: ParticleFilter arguments for watch application

Particle Filter:
-K [ --automatic-start ] [=arg(=1)] (=0) Particle Filter starts after

input-buffer for DFT is filled.
-t [ --initial-noise-time ] arg (=1000) Time in ms that should be used to

mime an initial dynamic step to
spread the particles after
initialization.

-n [ --particle-number ] arg (=40) Number of particles used.
-x [ --patch-size ] arg (=10 10) Size in pixels for the region

around an LED as center, for which
the Fourier values are calculated.
May be provided as single value
for a square or two values for a
rectangle.

-r [ --sigma-rotation ] arg (=5,5,5) Mean noise on the rotation axes in
degrees per second. May be
provided separate for each axis
x/y/z or as single value separated
by a comma (e.g. --sigma-rotation
1,0.3,4).
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-j [ --sigma-translation ] arg (=10,10,10) Mean noise on x/y coordinates of
particles in mm per second. May be
provided separate for each axis
x/y or as single value separated
by a comma (e.g.
--sigma-translation 1,0.3,4).

-b [ --reinit-threshold ] arg (=1.E-3) If the summed up weight of all
pixels falls below this value, all
pixels are reinitialized using the
current hypothesis.

5.8 PoseFinder

This module receives a samplerOutput_t, a map of segmented MotherPixels sorted by
LED from a Segmenter module. Using RANSAC (see Section 3.3) it generates a
Calibration, containing the extrinsic parameters of the assumed object-pose. Therefore
from four different LEDs’ pixels one pixel is chosen randomly, a model is calculated, and finally
rated according RANSAC’s algorithm. The process is repeated for a configured number of
iterations and returns the best rated model generated along the way.

Listing 6: PoseFinder arguments for watch application

Pose Finder:
-v [ --iterations ] arg (=80) Number of iterations for the RANSAC algorithm

in PoseFinder.
-g [ --pointThreshold ] arg (=10) Maximal Euclidean distance in pixels from a

point to the current model.
-u [ --setThreshold ] arg (=10) Minimum number of points supporting a model

hypothesis (below pointThreshold) to get
into the consensus set.

5.9 Camera calibration

Calibration is done using a set of OpenCV methods in a small tool shipped with the windows
distribution of the library. It can be found in src/calibration. The theoretical background
for this calibration can be found in 3.2. As input this program gets pictures of a chessboard
with known geometry observed in at least two different attitudes. I used 12 valid, meaning fully
recognized, different images of a 7�7 squares chessboard (counting only inner edges) whereas
one square has the dimensions of 11:2 cm edge length (Figure 5.1(b)).

Internally the methods used for the propagation of the needed camera parameters are derived
from Zhang’s method [Zhang, 2000], although the distortion parameters will be calculated
via [Brown, 1971]. Zhang’s method needs at least 4 planar points, arranged in known world
coordinates and solved correspondence as input. Given the fact that the lens is of fixed focal
length, the intrinsic parameters have to be calculated only once before the whole system can be
used. However: Remind that the focal distance fx, fy as well as the principal point cx and cy
need to be scaled proportionately to the image size used during calibration.
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(a) Small Chessboard (b) Big Chessboard

Figure 5.1: The two chessboards used for calibration as frame from the camera

During runtime of the program, the intrinsic parameters are stored in memory. The extrinsic
parameters have to be evaluated every time the relative poses of camera or LED-pattern towards
each other have changed.

5.10 LED Driver Board

To generate a certain blinking frequency at the LED output, an interrupt was used. It is triggered
at intervals of milliseconds defined by IRQS_PER_SECOND. In an Interrupt Request (IRQ) the
kernel stops for a certain scheduled event. For most of the tests, a value of 1,000,000 IRQs per
second was used, corresponding to a reaction time of 1�s for switching an LED on and off.
The micro-controller-code necessary to raise the interrupt and configure an according timer was
adapted from [rn-wissen.de, 2008]. In every interrupt the controller checks if it is time to switch
the output for an LED by comparing to a pre-calculated array fitting to the desired frequencies.
The source code for this is located in led-driver.c.

Analogous to the previously described IRQ approach, the generation of blinking patterns for
the HMM algorithms is built. Instead of specifying a frequency for each LED output, a binary
pattern is specified. Together with a value of the capturing rate (CAPTURE_RATE) and the
maximum signal length (MAX_SIGNAL_LENGTH) the patterns are stretched to let every signal,
one bit of the binary LED pattern, last two frames of the capturing rate. This allows the camera
to register a change in an LED’s state at its particular sampling rate.14

14See Figure 4.3.3 for details on the chosen length of a signal
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5.11 Runtime Optimization

5.11.1 Profiling

Before the optimization was done, I used a profiler to check which parts of the software actually
slow down the process. Optimizing program code without use of such a tool is unprofitable,
since only those regions consuming much time, really slow down the process. The used tool
for this analysis was Valgrind [Seward et al., 2008]. It is a suite for debugging and profiling,
containing the callgrind tool. This profiler simulates a virtual Central Processing Unit (CPU),
and optionally also the behavior of caches. In order to connect a normal program with this tool,
the program to profile is simply started as parameter. Valgrind now checks the debug output of
the executable and lets tools like cachegrind insert special instructions for a later analysis. Not
only the executable itself, but all calls to shared libraries are included in the analysis. In contrast
to this, many other profilers are not capable of tracing shared library calls.

The generated output includes statistics about instruction fetches, cache misses, loop relations
and the corresponding assembly instructions. Important in this context is: profiling code without
compiler-optimization cannot represent the performance of the optimized program. It is possible
that changes which increase the performance in unoptimized code actually decrease the perfor-
mance of optimized code. One reason for such behavior includes cache misses, which often
outweigh the cost (consumed time) of repeated instructions.

5.11.2 Data Representation and Streaming

Internally, the pixelwise information of the DFTSampler15 is stored in long, connected chunks
of memory. Through this a lot of optimization is reached by simply storing them in subsequent
memory areas. The module supports caching facilities, and also eases fetching multiple values
manually by the use of Single Instruction Multiple Data (SIMD) instructions.

The Fourier values are calculated using a shifting property of the complex Fourier calculation
(see Section 3.1.3). This way only one complex multiplication and two real addition operations
are necessary to calculate a new Fourier value for a single bin. For this to work certain buffered
values must be available. Those are the Fourier value Xk(n� 1) in an N -Point DFT for the kth

bin at frame n - Xk(n), as well as the input pixel intensity values vn�N and vn. Consequently
for the input values there is a circular buffer to read the first and last input signal of the window.
Furthermore this calculation was, among others, transformed to a look-up table calculated during
the creation of the DFTSampler object. This allows values with a discrete value range to
be directly connected to a calculation output without repetitions of calculating them in each
instance.

SIMD instructions allow application of one operator to more than one value in only one CPU in-
struction, a process called vector processing. While vector processing was common in scientific

15See Section 5.5 for a description of the module or Section 4.3.4 for the concept
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computation, it was integrated to the end-user market by Intel through Multi Media Extension
(MMX) [Peleg and Weiser, 1996]. The new instruction set was inspired by the needs of com-
mon tasks in sound or video calculations, which needed to perform the same operation on a large
amount of data. Currently almost every consumer level microprocessor architecture is able to
execute a certain subset of SIMD instructions. One popular subset are the Streaming SIMD Ex-
tensions (SSE) instructions by Intel, which introduce eight 128 bit wide registers (XMM 0-7).
They are aligned to the needs of common multimedia work-flow. Based on those registers the
instruction set offers many basic calculations [Raman et al., 2000]. For my thesis I used the
SSE3 instruction set, an addition to the SSE instruction set, that was published in 2004 [Intel,
2009b, 5.7 p.157].

Consider the following as an example of a use case that fits utilization of SIMD instructions, a
standard application for streaming operations is the calculation of the maximum, considering two
disjoint sets of numbers which are stored sequentially regarding their particular set. It can be
calculated using the __m128 _mm_max_ps(__m128 a, __m128 b) instruction [Intel,
2007, p. 33]. In this instruction, __m128 are simply 128 bit registers with 16 bit alignment,
a data-type representing the internal registers. In Figure 5.2 a packed instruction (indicated in
the above example by the suffix “_ps”) is shown. It connects the sets of values column-wise
to calculate the corresponding column entry in the result-set. This example uses, like in this
thesis, four 32 bit single precision values. Since the size of the registers is fixed, only two double
precision values can be calculated by a packed instruction.

X4 X3 X2 X1

Y4 Y3 Y2 Y1

X4 op Y4 X3 op Y3 X2 op Y2 X1 op Y1

OP OP OP OP

OM15148

Figure 5.2: Packed instruction, which operates on two sets of four elements each, connecting the values column-wise
to calculate a result also having four elements (Image Source: [Intel, 2009a, p. 89]).

The above mentioned instruction is part of the intrinsic C instructions of Intel. These C-Macros
ease the use of SSE-Instructions by freeing the programmer from the need to directly use as-
sembly code and thus from time intensive address management for registers. Instead a new
data type __m128 is introduced to represent the XMM registers making it easier to integrate the
instructions to C/C++-Code.

Using these instructions in the core of my applications, increased the performance of the S-DFT
calculation drastically. All internal calculations of the function DFTSampler::sdftStep
were rewritten in a way to support streaming operations. Therefore the sizes of containers had
to be adjusted for processing in 128 bit chunks, while the used data type remains variable so the
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actual implementation may support double precision as well, if this is needed.

The core sequence to compute the complex multiplication of a bin, which is the most costly
operation in terms of CPU instructions, was adapted from [Smith et al., 2004, p. 23]. All the
other auxiliary transformations towards the SSE version of sdftStep were developed within
the scope of this thesis. Apart from the SSE mechanisms there is also much use of look-up
tables for constant expressions like DFTSampler::expPiLUT, which holds all combinations
of passed bin indices with pre-computed multiplications of 2, �, and N . In contrast the core
instructions only deal with the unavoidable computations.
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5.11.3 S-DFT-Algorithm

Listing 7: Naive code for S-DFT algorithm

1 for (size_t pixelIdx(0); pixelIdx < pixelIdxMax; ++pixelIdx)
2 {
3 calc_t* cSigSum = sigSum + pixelIdx;
4 calc_t* cSigSumQuad = sigSumQuad + pixelIdx;
5 calc_t* cStdDev = stdDev + pixelIdx;
6 complex_t* out = fourierOutput + pixelIdx;
7 calc_t* norm = normalised + pixelIdx;
8 calc_t * polar = polarOutput + pixelIdx;
9

10 //calculate the standard deviation
11 *cStdDev = sqrt( ( *cSigSumQuad / N )
12 - ( quad(*cSigSum) / quad(N))
13 );
14
15 for (size_t binIdx(0); binIdx < bins; ++binIdx)
16 {
17 complex_t* cOut (out + binIdx);
18 calc_t* cPolar(polar + binIdx);
19 calc_t* cNorm (norm + binIdx);
20
21 //subtract first signal in buffer, add the last
22 *cOut -= firstIn - lastIn;
23
24 //do complex multiplication
25 *cOut *= exp(std::complex<comp_t>(0, 2 * PI * calcBins[

binIdx] /N));
26
27 //calculate norm of output
28 *cPolar = sqrt(quad(cOut->real()) + quad(cOut->imag()));
29
30 //normalise the result;
31 *cNorm = (*cPolar * 2) / (*cStdDev * N);
32
33 //select maximum bin
34 if (*cNorm > normMax)
35 {
36 normMax = *cNorm;
37 }
38 }
39 }
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The algorithm presented in Listing 7 shows a naive method for calculating the S-DFT. This
implementation is used as comparison to the SSE-enhanced version. It iterates over all pixels
and calculates the bins’ values. In Line 11 the standard deviation is calculated using computa-
tional formula for the variance16 to minimize computation. Afterward, in Line 15, the loop for
computing each bin’s value begins. Line 22 adds the current intensity value of the pixel �, and
subtracts the first one from its input buffer. Together with the complex multiplication in Line
25, these computations represent the S-DFT calculations from Equation (3.19). Subsequently
the norm of the complex number is calculated in Line 28. Regarding SSE instructions it is nec-
essary to mention, that up to this point each calculation is done twice, since two complex 32 bit
values result in one 32 bit polar value. Finally the values are normalized in Line 31, according
to Equation (4.4), and in Line 36 a norm value superseding the current maximum is saved.

It has to be mentioned that the implemented SSE algorithm was developed at a state where the
results of multiple bins per Fourier Spectrum were used. In other words, the initial search for an
LED requires every bin to be calculated, because we do not know which LED the pixel might
represent. Later, if we are searching for a particular ROI, where only the bin representing the
LED of that ROI is of interest, the algorithm is not optimal. The reason is that the current
implementation includes one bin-wise vectorized loop. That means the results are calculated for
four subsequent bins. If now only one bin has to be calculated, the other three computations are
wasted. As a result, there is still a lot of potential for performance increases if the algorithm is
implemented to calculate four subsequent pixels’s values simultaneously instead of bins’.

5.12 Performance

To show the performance of the developed algorithm for DFT computation three versions of
solving the calculations were compared. First, the FFTW-library [Frigo and Johnson, 2005]
was used as performance indicator. This library is a state-of-the-art Fourier transform library.
Second, the SSE-version of my S-DFT implementation was used. Additionally the naive im-
plementation of the S-DFT was included to show the performance boost of the SSE version in
comparison. Figure 5.3 shows the compared runtimes for 100 iterations of a 640�480 input
frame.

16German: “Verschiebungssatz”
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Figure 5.3: Runtime comparison for thre different methods. The bars are based on the mean of 100 runs for a
640�480 input frame and pixel-wise dft calculation.

On the right, the comparison for 16 bins is the most representative to show the advantages of the
FFTW over the SSE method, as well as those of the SSE method over the naive implementation.
The FFTW is computational superior in finishing this task, as it is designed to always calculate
all bins of the DFT. Being slightly slower, the SSE implementation can be, in theory, faster than
the FFTW for the case of continuous data. The reason for being not is simply the overall code
performance. While the FFTW represents an internationally accepted, fast library optimized
by many experts, the presented SSE code was conceptually designed in line with this thesis.
Considering this disparity, the SSE method shows a large increase in performance compared to
the naive algorithm. On the left the naive implementation is very close to the SSE approach,
which performs best here. This is caused by the design of the SSE method, which always
calculates at least four bins (see Section 5.11.3). In case of calculating only one bin like in the
graph on the left, the current SSE algorithm wastes the time it could have used for more than
twice the number of operations. For this reason the run with four bins shown in the middle is
provided to give a better impression about the relative runtime behavior. To finish this section,
Table 5.3 provides the parameter setup for which the system was able to work in real-time.
Only the parameters, which significantly influence the systems performance are listed. For these
values the system was able to run at �31.529, which is the average value of 226 runs after the
initialization of the particle-filter.
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Table 5.3: Parameters for Real-Time Performance

Parameter Shortcut Description Value

--iterations -i RANSAC-Iterations 140
--normalization-threshold -w �-value around target value 0.05
--normalization-target -o Target value for normaliza-

tion. At this value we expect
an LED.

1.3

--particle-number -n Number of particles in
particle-filter

140

--patch-size -x Size of an “image patch”
(c.f.ROI) around each LED
for use in particle-filter

2�2

--sample-size -s The input image is scaled
down to this size before it is
processed

160�120

6 Experiments

In the following I want to document which kind of tests were performed, what setups were used
and the drawn conclusions. In case of the stationary object, this is done in form of boxplots
to provide a quick visual outline about the system’s performance. For a moving object, the
algorithm did not perform well enough to provide a direct, metric comparison with the ground
truth data, which was collected for this purpose. Instead I systematically examine all parts of
the system to detect possible error sources. Finally a hypothesis is provided why the current
implementation was not able to track in motion.

6.1 Ground-Truth

In order to check how well the algorithm performs I used a separate, commercial tracking sys-
tem. It provides a pose tracking resolution in the range of millimeters though this is dependent
on the quality of the manual system calibration. That resolution is reached by multiple cameras
observing the scene at the same time. Both, this system and the system presented in this thesis
recorded the same situation at the same frame rate. To synchronize the results I performed a
rotation on the y-axis of the cart,17 which could be identified in both logs.

The commercial system is a professional motion capturing system from Qualisys. It is based on
autonomously acting cameras recording a scene, that is illuminated by a grid of infrared LEDs
arranged around the lens of each camera. This light is subsequently reflected by passive marker
spheres, which are mounted on the observed object. The reflectors are retroreflective, meaning

17Rotating around the y-axis means raising the hitch of the cart (see Figure 4.14)
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most of the light arriving is reflected in the direction of the light-source. As the markers do
not differ from each other, the system uses geometric constraints to resolve the correspondence.
Therefore multiple cameras are required to observe the target from different perspectives. At the
same time, the cameras process the marker position on their image plane, and the global tracking
software joins the information of all devices to evaluate the final object pose. Due to the fact
that there are three cameras in my setup, it does not matter if a tracked point is lost in one frame
by occlusion.

Figure 6.1: Promotion picture of Qualisys Pro Reflex
TM

MCU 1000 motion capturing camera18

Parameters of the used setup

� 3x Pro Reflex
TM

MCU 1000 capturing devices (Figure 6.1)

� Uses the World19 coordinate system (see Qualisys L-Wand on page 98)

� Captures 30 fps

Both tracking systems refer to the coordinate origin of the Qualisys system. For a good calibra-
tion of the camera a planar pattern on the floor, namely a cross is used. It is built by five points
and can be seen in Figure B.2 (name: Calibration Cross). The Qualisys calibration pattern (L-
Wand seen in Figure 6.2), a metal tri-square with fixed markers is placed on top of this cross
with point C1 (see Section B.2) located at the center of the calibration-cross. In the following,
the standard calibration sequence for the Qualisys system was performed by moving the wand, a
T-shaped metal with known geometry and two markers across the scene. After the system is cal-
ibrated, four markers are placed on the end points of the cross’ bars and one on the intersection.
This cross is visible in the range of my system’s camera. Since the cross is high in contrast, its
end points are easy to spot. An ideal calibration World 7! FWCam19 was calculated manually,
by mapping the observed image points to the World coordinates of the tracking system. Using
those coordinate pairs, the relative pose of the FWCam (FireWire Camera of the proposed sys-
tem) to the motion capturing system’s coordinates is propagated. The system reports the center
of a sphere as location, so the point of origin hovers above the floor at about 15 mm in positive
z-direction.

18Image source: http://www.qualisys.com/archive/image_products_small/Proreflex%
20big.jpg

19See Table 8 for a list of coordinate systems

http://www.qualisys.com/archive/image_products_small/Proreflex%20big.jpg
http://www.qualisys.com/archive/image_products_small/Proreflex%20big.jpg
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(a) Calibration Cross (b) Usable calibration
with L-Wand

(c) Wrong calibration with L-Wand

Figure 6.2: Calibrations with cross and L-Wand. Each of the images contains a 30�30�30 mm coordinate system,
drawn in points of 1 cm distance representing the coordinate system it shall calibrate (red x-axis, green y-axis, blue
z-axis). The additional colors in (a) represent backprojected IR-markers of the Qualisys system.

In Figure 6.2(a) the above mentioned cross is visible together with the back-projected positions
of the markers. The calculated positions are good and yield a back-projection-error in the sub-
millimeter range if converted from World 7! FWCam20 and back FWCam 7! World20. Figures
6.2(b) and 6.2(c) show alternative calibrations using the L-wand. As mentioned in Section 4.6
this shape is not usable for calibration of the camera’s relative pose to an object. The reason why
it works for Figure 6.2(b) might be the spacial displacment of the points towards the camera.
In contrast to the former figure, Figure 6.2(c) is recorded with the plane spanned by the wand
almost parallel to the image plane of the camera. Without spacial information, the resulting
values are completely wrong, thus the axes do not even appear in the image.

6.2 Initialization of a Stationary Object’s Pose

6.2.1 Intial Guess

Figure 6.3(b) shows the quality of the pose-initialization which resulted from applying my pose-
tracking system to the pictured setup scenario. The values in Figure 6.3(b) are based on a
stationary object observed from the perspective shown in Figure 6.3(a). The three boxes show
how well the system matched the particular axis coordinate for LED 1 (point D1 in Figure B.1).
Not shown in this figure are three frames with massive outliers. As orientation for the quality of
the numbers, the magenta position marks the motion-tracking’s mean value. Both, the boxplot
and the mean value, are generated from 27 subsequent values taken after the initialization of the
Fourier input buffer. The observed values are acceptable for the x and y axis with a distance of
jX thesis �Xmocapj = 7:6940mm for the x-axis and jY thesis � Y mocapj = 9:4070mm for the y-
axis, meaning an average error of 1 cm. Not shown in this figure is an amount of approximately
5% outliers with deviations above 1 m, for which the value was unusable. Their number can

20See Table 8 for a list of coordinate systems
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be decreased by increasing the RANSAC performance and using a higher number of iterations
in this algorithm. Although the results still show a big error in terms of robotic navigation, it
should be noted that these errors are a result of a chain of several factors.

� The LEDs were not arranged completely symmetric on the cart, since the blueprints pro-
vided in this thesis were created for this thesis, after the cart was built externally. There is
no ground-truth available for the carts dimensions.

� All measurements for the LED’s distances were made by hand with a sliding caliper or
plain ruler. Even the LED-positions generated from the motion-capturing system are in-
fluenced by this error, as the interpolation between the markers’ and LEDs’ position uses
this data.

� The calibration uses 4 points, which is the minimal required number of points to perform
a 3D7!2D homography based pose estimation. In his original paper [Zhang, 2000], the
author of the underlying calibration method used patterns having between 100 and 300
features.

� Zhang also shows that the calibration error is very high for the first frame and decreases
strongly after multiple different views of the target are available. This is not possible in
the fixed, single-camera setup that was used.

In contrast to the deviation of the x and y values, the large deviation on the z-axis can be easily
seen. The reason for this is the artificial setup, which had to be chosen because of the fixed
LED arrangement on the cart. The camera view is from directly above the cart. Therefore
raising or lowering the device will cause only very small changes in the calibration pattern (cf.
Figure 6.2(a)) by narrowing the points a bit. The amount of 140 iterations for the RANSAC
algorithm described in Section 4.4.4 is small enough to provide the other parts of the system
with enough time-resources to finish until the time slot for the current frame has expired. In
comparison Figure 6.3(c) shows the results for an increased number of 800 iterations for the
RANSAC algorithm. While it provides slightly better results, it also fails in correcting the z-
axis error and goes beyond for realtime performance.
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(a) Camera image showing the
perspective

-200

0

200

400

600

800

1000

A
x
is

 v
a
lu

e
 i
n

 m
m

System Median
Outliers

Real Position

115.13
123.55

-80.299
-57.86

565.05
220.22

Y-AxisX-Axis Z-Axis

(b) Deviation of each axis values compared to the mo-
tion capturing system (140 Iterations)

-200

0

200

400

600

800

1000

A
x
is

 v
a
lu

e
 i
n
 m

m

System Median
Outliers

Real Position

130.87

123.55

-46.604
-57.86

665.5

220.22

Y-AxisX-Axis Z-Axis

(c) Deviation of each axis values compared to the ref-
erence system (800 Iterations)

Figure 6.3: Comparison of the system’s result to the reference system
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6.2.2 Particle-Filter

Based on the initialization results described above, the particle filter is initialized. Figure 6.4
shows that the values are generally more spread. It is caused by the filter, generally averaging
weighted over all particles. This shows that there must be many particles striving into random
direction. However, the spread depends on the used noise values. In the tests performed those
were adjusted to give a reasonable estimate for the carts movement (see Table 6.1).

Table 6.1: The used noise values depict the average velocity deviation per second, which is applied in each movement
step as product with

p
� t, with � t as difference in ms between the current, and the last measurement.

Rotation in (�/s) Translation in (mm/s)
X Y Z X Y Z

0.2 0.2 1 25 7 2

They describe the typical movement of the cart, which can move fast on the x-axis of the Hitch
coordinate system, only moderately fast on its y-axis, and very little on the z-axis. Similary the
rotation values were adjusted to model normal movement on a planar ground rotating about 1�

on the z-axis. The two small values for the y- and z-axes allow the filter to compensate for an
incorrect pose.
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Figure 6.4: The figures show for each component of the cart’s pose ~Pcart = (xc; yc; zc)
T its distribution value

distribution for 100 runs of the particle-filter. In (a), the system measured values for xc in the range depicted by the
boxplot, while the mean value of the commercial tracking system showed is shown by the star.
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While the particle-filter spreads better around the target values it also spreads the values of the x-
and y- axis, which were better in the initialization. This is a normal effect based on probabilistic
estimation, which combines all particles to form a hypothesis. Although a single measurement
might worsen, the overall hypothesis for the extrinsic parameter can improve. In case of the
presented system it is likely to happen that the hypothesis getting worse for one particular LED
enhances those of other ones.

6.3 Estimation of a Moving Object’s Pose

In order to test the performance of the system in motion, multiple runs for lateral and horizontal
motion relative to the camera’s pose, as well as simple rotation were performed. Interpreting
the values in general shows problems in the accuracy. The system was designed to track the
cart in the image and provide a plausible position after movement. However, after converging
on the initialized position and following the pose for about 20 cm, the filter stops providing a
usable hypothesis. At least at the current state of implementation, it does not allow an accurate
navigation of a robot. Figure 6.5 shows a plot of the cart performing straight motion. The
particles are drawn as tuples of red x-axis, green y-axis and blue z-axis. The situation shows the
point in time where the filter loses the cart and starts providing wrong hypotheses.

(a) Particles converging towards standing cart (b) Particles losing the cart

Figure 6.5: Particles spread around the hypothetical position of the cart. They are shown as red x-axis, green y-axis
and blue z-axis each. Additionally the LEDs and the ROIs are shown. In Figure (a) the filter converges towards a
usable pose while the cart is stationary. In contrast Figure (b) shows that the filter looses track of the cart after a short
period of time in linear motion on the x-axis.
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Summarizing, there were varying approaches to increase the performance of the algorithm. Each
of them tried to improve a single aspect of the system, to approach the possible error from mul-
tiple points of view. For example the method to weight a particular particle was changed several
times, because it is one of the most important regions for the cooperation of the segmentation
and estimation parts of the software. It has to provide a measure for the particle filter whether
the pose of this particle is good regarding the observed frames or not. To operate on the image,
again, the back-projections21 of the LEDs into the image are used. Possible variants:

� Sum of normalized magnitudes for the maximum bin of each pixel’s spectrum.
Problems: The value of an unsought LED’s bin might corrupt the value.

� Sum of pixels responding. Accept only the pixels where the bin index i = argmax( ^jXij),
where i is also the index of the ROI defined for LEDi.
Problems: The quality of a frequency response is not considered.

� Another hypothesis is that good regions are those with an LED in the center, not on the
edge. To enforce this policy the distance of a pixel in the ROI to the center of that ROI is
calculated. This is similar to the kernel used in [Yamazoe et al., 2004].

All of those measures were implemented and checked, but none of the ratings worked in a
way, which made the overall approach applicable. In consequence, possible error sources were
analyzed to find the reason for the failure of the approach. In the beginning unit-tests were
used to verify critical sections of the software containing perspective mappings or other matrix
operations. In the course of this, many software problems could be excluded. Subsequently
the thresholding values were evaluated. Figure 6.6 visualizes the values observed by the system
after the DFT is completely filled. Generally the visible values support the assumption that
the LEDs should be weighted higher than other regions in the image. While the plain use of
the frequency-domain magnitude in 6(a) has the advantage of being more distinct regarding the
LEDs, it is not possible to apply the same threshold on different image sets. This means, if a
particular magnitude strength is expected for an LED, the LED will possibly be ignored as the
background changes. The reason is that the detected frequency on it’s own will be the same, but
the magnitude decreases as the contrast between background and lit LED decreases. In contrast,
the values for LEDs shown in 6(d) are not that easy to distinguish from background reflections,
but are invariant regarding the intensity as stated in Section 4.3.4. The normalized values, which
are preferred due to their illumination invariance, thus need a range threshold instead of a strict
barrier. This means a target value a � 1:3 is defined for the normalization and another value
b � 0:1 defines the allowed deviation from that target value.

21See Figure 4.16 for an explanation of LEDs-back-projections to the image.
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(a) Segmentation based on Frequency Magnitude

(b) Zoomed upper left LEDs of (a) (c) Upper left LEDs of (d)

(d) Segmentation based on Normalization

Figure 6.6: The above images give an intuition about the values used for pixel-segmentation. The values in (a)
represent the frequency magnitude, whereas those in (d) are based on the normalization introduced in Equation (4.4).
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After testing the segmentation, I tried to visualize the values computed internally by the particle
filter. Therefore I took a set of input frames and initialized the system to create ROIs at about
the position of the LEDs. The values observed in Figure 6.7 revealed the expected behavior. The
good ROI is weighted better than the partly correct one, and both are much better than random
data.
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Figure 6.7: Scores of a ROI on the correct position inside the image, matching almost the LED’s position, and on
random data. The occluded sequence means the projection of an LED which is not visible and thus will provide bad
data. The score is the value used to weight the particles.

In the following I observed the behavior of the score for a good sequence, in which wrong data
is inserted. The simplest case for wrong data is a dark frame, or possibly image background,
where a bright LED was expected. This situation is shown in Figure 6.8, where at frame 100
a bright pixel was expected, but a dark one provided. This situation might occur if a particle
moves away from a fitting LED position. In general, this is just an example of what will happen
inside the filter, simplifying the way the score is calculated. However, what can be observed
is that the score decreases instantly at frame 100. This behavior is desired, since a particle not
fitting to the expected data should be devalued. What is not undesired, however, is the fact that
that value remains lower for the next 70 frames, where in this sample N = 70 is the resolution
of the DFT.
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Figure 6.8: Score for a ROI analogous to Figure 6.7. The red line shows how the score changes if one wrong frame
is placed at frame 100.

An explanation for this behavior is quickly identified by reviewing the definition of the frequency-
domain magnitude in Section 3.1.2. The intensity values � of the wrong frame are pushed on
the input buffer of the particle at frame 100. The buffer represents the frequency-domain sig-
nal’s property of being composed of a sum over the input signals. The new value in the buffer
instantly changes the value of the DFT. Furthermore, as the frequency-domain magnitude is de-
fined internally as a sum over these values, the effect of that value stays constant. Moreover
the constant offset moves from the end of the circular buffer to the beginning in 70 frames after
which it has no more influence on the signal anymore. That explains why after 70 frames, the
score returns back to a higher value.

Looking at the feedback approach (see Figure 4.18) to estimate a pose, this can lead to undesired
effects. For example a bad frame devalues instantly, but a good frame does not increase the
weight in the same way. Actually every frame after the erroneous one is exactly the same for
both sequences drawn in Figure 6.8. Despite that, the particle is not increased in weight because
the bad frame is still inside the circular buffer. Quite the contrary, if a second bad frame follows
the value will get even worse, although it has provided good values for almost the same time as
another particle.

All this conflicts with how the particle-filter compares the weights of the particles. The particle-
filter is fair with respect to one frame. This means, after resampling, which is done after every
frame, each particle has the same chance of getting into the new sample (see Figure 3.4). In
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contrast, the scoring via the DFT is fair with respect to a complete cycle of input data. The
difference between the time frame considered in the particle filter and that in the DFT, can cause
the score of good particles to degenerate until the DFT has raised it, after the bad frame has left
the buffer.

Nonetheless, the presented hypothesis for the failure of the approach does not assume the above
mentioned differences of considered time frames as the only reason. It rather shows a conceptual
problem of using frequency analysis for rating a dynamic system. As previously stated by [Allen
et al., 2001], tracking systems should use sampling rates of above 40 Hz. The found problems
support this statement as a higher sampling rate means faster information updates, thus smaller
effects of the above described degeneration situation. Another consequence might be to orientate
the approach on the feature vectors presented by [Koch et al., 2008]. This allows smaller DFT
resolutions, which might also reduce the effect of the problem described.

6.4 Results

Summarizing, the performed tests show as a “proof of concept” that it is possible to recognize an
object with frequency information. For stationary objects the tests show good results, having a
maximum of �1-6 cm deviation from the position determined by a commercial motion tracking
system. Albeit this is only true if the fact is ignored that only bird’s eye view recordings were
possible due to the mentioned problems with the L-shaped LED arrangement on the side of the
cart. For stationary objects, the approach works well and can provides a precise estimation of an
object’s attitude relative to the camera.

The goal of robust frequency recognition was completely reached using the implemented Fourier
approach. The system can perform the necessary calculations in real-time but is limited to a
restricted pixel range in this case. A resolution of 160�120 pixels lets the system perform in
real-time. This resolution can be used to spot the target object in the image and later-on split to
inspect special ROIs in more detail.

From the segmented pixels a position can be calculated using the RANSAC approach with rated
back-projection of the LEDs. The second goal of this work was therefore reached, the generation
of a pose out of registered blinking-patterns.

Finally, tests in motion were performed. The laborious setup for reaching ground-truth has
shown weaknesses of the current system in registering motion. While in the stationary case, the
particles converge in tolerable limits, the correspondence of ground-truth and the data from the
system showed a significant deviation when the object being tracked is in motion. A hypothesis
for the reasons of those problems is given in Section 6.3. Generally the result of this work
shows the not the maximum possible accuracy of the supposed method, because there were only
a minimal amount of features available to identify the searched object, namely four LEDs in a
plane.
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7 Conclusion

The presented method is effective for solving the correspondence problem using a single stan-
dard camera and inexpensive high energy LEDs. The final solution additionally requires no
lighting dependent configuration of thresholds assuming a minimum image quality, which can
be provided by automatic exposure-time and aperture adjustments of current camera systems.
Apart from the capturing device only some electronics to drive the LEDs is needed. A piece of
software was developed, to calculate a multiplicity of frequency analyses on consumer hardware
in real-time. The described approach yields the ability for large scale Fourier transforms in case
of continuous data. This allows an unusual interpretation of pixelwise frequency data. The tests
of the implemented probabilistic approach reveals problems in the robustness of estimating a
moving object’s pose. However the system is, according to the initial motivation, much less sen-
sitive to lighting influences. Nevertheless, this robustness comes at the price of less robustness
in motion.

7.1 Lessons Learned

As the focus of this work was on the development of the method itself and the software required
to implement it, the used hardware was not modified to a large extent. While this allowed broad
research and development of multiple approaches to solve the faced problem, some fundamental
issues had an impact on the quality of the product, which were not solvable by smarter software.
In general the decision of using only the minimal amount of features is questionable. Although
the placement of the LEDs was decided during the thesis, the development status at that time
was insufficient to make a reasonable decision. It would have been better to completely ignore
the arrangement until the final tool-chain was developed.

Furthermore the complete development of the HMM-approach before its functionality was proved,
was disadvantageous. As it was a first idea to solve the problem, much time was consumed with
the result of a dead-end related to the fundamental Viterbi algorithm. Resulting from this prob-
lem the alternative Fourier approach was deeply investigated before using it. Only after the
the needed theory was completely overseen and a supportive method to reduce its runtime (the
S-DFT) was found, I started implementing it. As a result however the time consumed by the
development of the HMM approach was missing in the late phase of improving the final work.
Similar to that, the problem regarding the overlooked invalid arrangement of three features on a
line when calculating a homography points in the same direction. Comprehensive checking of
the necessary concepts in the way a deep-first search saves time and contributes to the overall
quality of the implemented approach. In addition this yields the advantage of a complete catalog
of requirements allowing straighter development.

Retrospectively seen, the decision to arrange the whole software as modular library was very
good. Uncoupling specific functionality such as the multiple transformation of coordinates for
the comparison of ground-truth data acquired via shifted markers was no struggle. Moreover
I profited from the library design when the system scaled. For example the Sampler was
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designed as a wrapper to allow ROIs in the DFTSampler, which has no knowledge of this.

Additionally the work pointed out the benefits of the smart-pointer concept from the boost-
library, which was very supportive. Memory management is one of the most tedious tasks to
deal with using a language with direct access to the memory. Using the smart objects makes it
possible, to a certain extent, to eliminate software errors due to memory mismanagement. This
saves a lot of time for research, as the effects of memory corruption are difficult to spot.

7.2 Future Prospects

The most essential future task would be the stabilization of estimation in motion. Considering
the different problems which were encountered, one possible starting point can be the use of
direct intensity information instead of frequency-measures during the motion estimation. By the
initialization using the proposed frequency-based approach a phase-offset between the blinking
patterns and the capturing rate of the camera can be estimated, which allows to forecast the
expected intensity value in a certain image region of an assumed LED. The increased quality of
the measurement step in the particle-filter might increase the usability of the motion estimation.

In a second step the performance of the system can be increased. Both, the RANSAC and the
particle-filter methods provide a variable quality/performance trade-off. In other words the ac-
curacy of both methods can be increased using more computational resources. One possibility
for further performance increases is given by extended parallelization. As the SIMD instructions
already increased the performance strongly, more vectorization is possible on other hardware.
Using the Graphics Processing Unit (GPU), arrays of many processors which can operate in
parallel, are available on consumer hardware. The scientific field of these applications is called
General Purpose GPU-Programming (GP-GPU) computing. In order to support a common syn-
tax Khronos Group, a committee funded by the leading graphics hardware companies, have re-
cently released OpenCL (Open Computing Language). This is a programming language, whose
syntax can later-on be translated into instructions understood by manufacturer-specific drivers.
Alternatively there are many other options of hardware supporting extended vectorization, such
as the mobile devices presented in [Koch et al., 2008].

Further performance increments can be reached by reducing the computational effort for the
homography estimation. A rough estimation of a possible fitting homography might be enough
to let the RANSAC algorithm converge towards a usable initialization value. In addition there
are many aspects supporting the system in a smaller scale, which in sum might have a noticeable
influence. Approaches in this direction include a clean construction of a new target object,
distortion of ROIs according to the assumed pose of the corresponding particle or supportive
mechanisms like optimization algorithms, which can optimize the configuration of a particle
filter.
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Glossary

Notation Description Page List
aliasing Aliasing is the effect which occurs if a wave form

is sampled with a too low rate. Higher frequen-
cies, which also belong to the original signal will
appear in form of phantom signal fractions of
lower frequencies in the frequency-domain

35

bin A bin means one element in a histogram like fig-
ure. In the context of Fourier Analysis this means
the value for one specific fraction of the sampling
frequency, which is calculable with the current
DFT’s resolution

13, 14, 31–34, 37, 62, 64

BLOB BINARY LARGE OBJECTS: In this context a
group of connected pixels with a special property
in the image.

6, 7, 38

grayscale A grayscale image meant here is a monochrome
image in shades of gray. Used here are 8 bit vari-
ants with values from 0 (black) to 255 (white), as
well as a 16 bit version for differences between
8 bit images. Their values from [�255 : 0] rep-
resent an 8 bit decrease in intensity, whereas the
values from [0 : 255] mean an increment

23–25, 28, 53

LED-pattern Grid-Arrangement of LEDs 48, 61

monochrome A monochrome image is an image in shades of
only one color. Meant here are shades of gray
ranging from black to white

20

particle One local state hypothesis of the particle-filter al-
gorithm described in Section 3.4

18

ROI REGION OF INTEREST: A rectangular region in
an image

43–45, 56, 58, 66, 68,
75, 76, 78, 80, 82



Acronyms 89

Acronyms

Notation Description Page List
C++ C++ programming language 52, 54, 63

C C programming language 52, 63

ABG ANTI BLOOMING GATES: Circuitry to stop the
blooming effect in CCDs

24, 25

API Application Programming Interface 52, 54

CCD CHARGED COUPLED DEVICE: Light sensitive
chip in a digital camera

8, 24

CPU Central Processing Unit 62, 64

CT Computer Tomograph 8

DC DIRECT CURRENT: Average value of a signal in
digital signal processing

32, 33

DFT Discrete Fourier Transform 10, 11, 13, 20, 31–34,
36, 37, 43, 45, 46, 56,
57, 62, 66, 67, 76, 78–80

DSP Digital Signal Processing 10, 13, 14, 31, 33

FFT Fast Fourier Transform [Cooley and Tukey, 1965] 13, 14, 38

FFTW Fastest Fourier Transform in the West [Frigo and
Johnson, 2005]

13, 66, 67

FireWire Apple trade name for the IEEE 1394 interface,
used synonymously for the technology

20, 52, 54, 69

GNU GNU IS NOT UNIX: A “backronym” (i.e. recur-
sive acronym) [DiBona et al., 1999]

54

GP-GPU General Purpose GPU-Programming 82

GPU Graphics Processing Unit 82

GSL GNU Scientific Library [Galassi et al., 2009] 54

HMM Hidden Markov Model 6, 9, 10, 14, 20, 24, 25,
27, 30, 31, 56, 61, 81

HSI HUE-SATURATION-INTENSITY: A color space
defining colors by values a human would use to
describe colors

5

ILED Infrared-LED 47
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Notation Description Page List
IRQ Interrupt Request 61

LED Light Emitting Diode 1, 5–9, 12, 20, 21, 23–
25, 27–34, 36–38, 40,
43–49, 56–61, 66, 68,
70, 71, 75, 76, 78, 80–
82, 87, 89

libdc1394v2 FireWire library [Douxchamps et al., 2009] 52, 54

MMX MULTI MEDIA EXTENSION: SIMD instruction
set introduced by Intel

63

MRT Magnetic Resonance Tomograph 8

OpenCV Intel Computer Vision library 15, 52, 60

PE Processing Element 35

QVGA QUARTER VIDEO GRAPHICS ARRAY: A short-
cut for a resolution of 320�240 pixels used to de-
scribe display sizes

34, 37

RANSAC Random Sample and Consensus 16, 18, 38, 40, 60, 71,
80, 82

RGB RED-GREEN-BLUE: A color space defining col-
ors by mixing the primary colors

5, 23, 87

S-DFT Sliding Discrete Fourier Transform 6, 14, 32, 37, 63, 66, 81

SIMD Single Instruction Multiple Data 38, 62, 63, 82

SMC Sequential Monte Carlo 18

SSE Streaming SIMD Extensions 63, 64, 66, 67

SUS Stochastic Universal Sampling 19
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Coordinate Systems

Notation Description Page List
Axis The moved local coordinate system Hitch after

the cart was relocated
42

FWCam Coordinate system of the FireWire camera. Its
origin is in the top left corner of the image, the
x-axis points right, the y-axis down and the z-axis
into space in the viewing direction of the camera.
The system is right-handed

38, 42, 69, 70

Hitch Local, right-handed coordinate system on the
cart. The origin is located in the middle of the
aluminum bar over the cart (see “Hitch Origin” in
front view of Figure B.1). The x-axis points to
the front through the hitch, the y-axis goes to the
right and the z-axis towards the ceiling

38, 41, 42, 72

World Global reference coordinate system. It is defined
by the coordinate system of the motion capturing
system. The “L-Wand” calibration tool defines
the origin in point C1 of Figure B.2. The x-axis
points along the longer bar of the wand towards
C2, the y-axis is defined along the smaller bar
through C3, while the z-axis points upwards, to-
wards the ceiling. This calibration tool is placed
on a Calibration Cross of two tape-stripes on the
floor

69, 70
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9 Lists

List of Algorithms

1 Generation of a transform from segmented pixels . . . . . . . . . . . . . . . . 40
2 generateConsensusSet() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

List of Figures

1.1 HSI color slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Input and Output shown schematic . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Discrete periodic time-domain signal . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Frequency spectrum showing the spectral density of bins . . . . . . . . . . . . 14
3.4 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 SUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Illustration of the information flow . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Effects of ABGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Example for a difference image . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Three consecutive frames after switching on an LED . . . . . . . . . . . . . . 28
4.6 Asynchronism between LED frequency and camera capturing . . . . . . . . . 30
4.7 An example for an HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8 A pulse function in time-domain and frequency-domain . . . . . . . . . . . . . 33
4.9 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.10 False positives from low frequencies . . . . . . . . . . . . . . . . . . . . . . . 37
4.11 Manually reproducible frequencies . . . . . . . . . . . . . . . . . . . . . . . . 38
4.12 Selection of a pose from BLOBs . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.13 Performance of optical and inertia sensors . . . . . . . . . . . . . . . . . . . . 41
4.14 The local coordinate-system Hitch22 on the cart moves with his motion. . . . . 42
4.15 Workflow of the particle-filter . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.16 Mapping of a particle state to ROIs . . . . . . . . . . . . . . . . . . . . . . . . 44
4.17 Sequence of ROI inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.18 Feedback connection between the particle-filter and the DFT . . . . . . . . . . 46
4.19 Used LEDs in a close-up shot . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.20 Comparison of LEDs observed from different viewpoints . . . . . . . . . . . . 50
4.21 The used Cart in different views . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1 The two chessboards used for calibration as frame from the camera . . . . . . . 61
5.2 Packed SSE-Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 DFT runtime comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

22See Table 8 for a list of coordinate systems
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A Appendix: Software

A.1 LED-Color legend

For debugging purposes a method was implemented to generate pictures from segmented im-
ages. In those images the color of a pixel depicts which LED is assumed to be represented by
it. Therefore particular colors were assigned to the LED-indices as shown in the blueprint of
Figure B.1. The following table assigns an RGB color value to each LED. Note that the relative
representation of a frequency image scales down those values linearly depending on the signal
strength of the pixel. As a result a pixel belonging to LED 1 (Red: 255, Green: 0, Blue: 0) with
50% of the maximum signal strength observed in one frame will get the relative value of (Red:
0.5 � 255 = 127, Green: 0.5 � 0, Blue: 0.5 � 0).

Table A.1: Colors showing a pixel’s affiliation to an LED in the segmented image

LED-Index Color-Name Color Red Green Blue

0 black 0 0 0

1 red 255 0 0

2 green 0 255 0

3 blue 0 0 255

4 yellow 255 255 0

5 cyan 0 255 255

6 magenta 255 0 255

7 light gray 200 200 200

8 purple 150 50 200

9 brown 150 100 50

10 mint 100 255 50

11 beige 200 200 100

12 dark blue 0 0 150

13 orange 255 100 0

14 peach 255 220 185

15 pig 255 180 200

16 light yellow 255 255 204
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A.2 Experiments

The directory tree below shows the structure of all archives in the analyse folder. These
archives contain the commands and input necessary to reproduce a certain output, which is also
contained pre-built. This way the described experiments can be reconstructed for full trans-
parency.

/
com/ ...............................Contains meta-information about this test run.

commands .....This file contains the command used to gain the output which is
contained in the archive. All Parameters are in the long format
to allow a natural language overview over the steps to reproduce
the result.

info ...........Herein a timestamp, the revision number used as well as the
output of the cpufreq-info [Brodowski and Dongili, 2005] tool
give a clue about the environment settings which were used while
this archive was filed.

dft ............... In here, the visual representations of the DFT-Segmentation are
filed. A black pixel on such an image means, that this pixel has
no LED affiliation. Other colors match the legend described in
Section A.1.

region <i> <img>.tiff .......Those files contain the segmented output of
the region with index <i> corresponding to
the image file <img>.

sampler <img>.tiff ....Where the above mentioned region images contain
only the segmented output of a certain region,
this image is composed from the whole sample,
containing all regions segmentation information
placed at the right positions. Every image is related
to the original frame named <img>.

pics ..............This folder contains the original images used to calculate the
output found in the other folders.

samples ..........The images found here are the downscaled equivalents of the im-
ages found in pics.

Archives The following listing contains a short description of all archives with analyzed data,
which are contained in the analyse folder of the thesis. See Section A.2 for a description of
the structure inside those files.
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dft_1hz_false_positives.tar.bz2 By this test the effect of very low frequencies
like 1 Hz are shown. After 4 frames there are a lot of false positives due to the fact, that
the DFT-buffers contain only zero data and now are fed with the input of this very bright
scene.

B Appendix: Technical drawings

The drawings in this section help understanding the results of the described algorithms. Except
the technical drawing in B.3, they were created in line with this thesis. Below is a short descrip-
tion of the drawings including the sub-drawings on pages 97-98.

Cart To allow for reproducible revision of data from the system I included a drawing, which
describes the dimension of the entire cart from the three relevant sides back (upper middle
of the drawing), left (right side of the drawing like one rotates the cart along the hitch) and
right (left). The front was omitted as there are no LEDs on this side. In the drawing each
LEDs position can be checked as well as the affiliation to a certain plug and plug-group is
visible.

Markers The Qualisys markers used for my tests are visible on the top left. Those markers
were placed on the cart and are thus labeled as Sphere.

L-shaped Calibration Wand To calibrate the system I used a standard calibration tool by Qual-
isys. As my measurements are also dependent on its dimensions I included a drawing.

Calibration Cross The cross created of tape on the floor, which was used to match my cameras
calibration with that of the motion capturing system was also included to clarify the values
in my experiments understandable.

LED-Driver-Circuit The following images contain diagrams for the LED driver board used to
let the LEDs blink. It was planned and constructed at the DFKI Bremen.



300

7
2
2

3
2
2

D
1
6

100
4
3
,1

1
5
6

P
a
g
e
s

P
a
g
e

C
A
R
T

D
e
s
c
ri
p
ti
o
n

D
o
c
u
m
e
n
ta
ti
o
n
N
o
.

D
a
te

N
a
m
e

E
d
it
o
r

A
u
d
it
e
d

N
o
rm

S
c
a
le

M
o
d
if
ic
a
ti
o
n
M
o
d
if
ic
a
ti
o
n
-N
o
.

N
a
m
e

D
a
te

2
9
.1
2
.2
0
0
9

S
te
in

1
:5

2
2
3

1
0
5

1
1
3

9
7

1
1
1

69 111

2
4
.3

6
3
.7

Q
u
a
li
s
y
s
M
a
rk
e
r
S
p
h
e
re

M
5
:1

D
e
ta
il
Z

17,2

2
0

A

5
:1

W
Z 1
2

3
4

-
D
1
D
2

D
3

D
4

D
5

D
6

D
7

-D
8

-

D
9 D
1
0

D
1
1 D
1
2

-

D
1
3

D
1
4 D
1
5

1

2

L
a
rg
e

D
2

D
1

D
1
0

D
9

D
8

D
7

D
6

D
5

2
2

D
4

D
3

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

D
1
6

H
it
c
h
O
ri
g
in

(0
,
0
,
0
)

A
3

A
1

A
5

A
4

A
2

3
.1

2.3

4.8

2.4

D
e
ta
il
W

L
E
D

D



1
0
,7

12 10

Detail Y Detail X

B C

Y

9
0

3
0
0

200

Qualisys Wand Kit 750
M1:10

Calibration Cross
M1:10

2
6
5

5
1
5

985

1
5
.0
7

Qualisys Marker Sphere
M5:1

Pages

Page

Description

Documentation No.

Date Name

Editor

Audited

Norm

ScaleModification Modification-No. Name Date

Calibration

CART

2

2

Small Wand

375

29.12.2009 Stein

1:5

5:1

B1

B3

B5B4

B2

X

C1

C2

C4

C3

World Origin

(0, 0, 0)

15



L
E
D
-
D
r
i
v
e
r
-
C
i
r
c
u
i
t


	Symbols
	Units
	Introduction
	Motivation
	Problem Description

	Scientific Placement
	Contribution
	Related Work

	Basics
	Frequency Analysis
	Hidden Markov Models (HMMs)
	Fourier Transformation
	Sliding Discrete Fourier Transform (S-DFT)

	Camera Calibration
	Random Sample and Consensus (RANSAC)
	Particle Filter

	Approach
	Overview of the Approach
	System Overview
	Segmentation
	BLOB detection
	Blooming and Anti-Blooming
	Application of the HMM
	Using the Fourier Transform
	Comparison with Koch's Segmentation

	Pose Finding
	Aliasing
	Selection of LED Frequencies
	Using the S-DFT
	RANSAC for the initial pose

	Movement of Objects
	Physical Setup

	Software
	Working Environment
	Tools used
	Modules
	StateFinder
	DFTSampler
	Sampler
	ParticleFilter
	PoseFinder
	Camera calibration
	LED Driver Board
	Runtime Optimization
	Profiling
	Data Representation and Streaming
	S-DFT-Algorithm

	Performance

	Experiments
	Ground-Truth
	Initialization of a Stationary Object's Pose
	Intial Guess
	Particle-Filter

	Estimation of a Moving Object's Pose
	Results

	Conclusion
	Lessons Learned
	Future Prospects

	Glossary
	Glossary
	Acronyms
	Coordinate Systems

	Lists
	List of Algorithms
	List of Figures

	Appendix: Software
	LED-Color legend
	Experiments

	Appendix: Technical drawings
	Cart and mounted marker spheres
	Calibration patterns
	LED circuit


