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Abstract— In this paper, we present a novel method of
incorporating dense (e.g., depth, RGB-D) data in a general
purpose least-squares graph optimization framework. Rather
than employing a loosely coupled, layered design where dense
data is first used to estimate a compact SE(3) transform which
then forms a link in the optimization graph as in previous
approaches [28, 10, 26], we use a tightly coupled approach
that jointly optimizes over each individual (i.e. per-pixel) dense
measurement (on the GPU) and all other traditional sparse
measurements (on the CPU). Concretely, we use Kinect depth
data and KinectFusion-style point-to-plane ICP measurements.
In particular, this allows our approach to handle cases where
neither dense, nor sparse measurements separately define all
degrees of freedom (DoF) while taken together they complement
each other and yield the overall maximum likelihood solution.

Nowadays it is common practice to flexibly model various
sensors, measurements and to be estimated variables in least-
squares frameworks. Our intention is to extend this flexibility
to applications with dense data. Computationally, the key is to
combine the many dense measurements on the GPU efficiently
and communicate only the results to the sparse framework
on the CPU in a way that is mathematically equivalent to
the full least-squares system. This results in <20ms for a full
optimization run.

We evaluate our approach on a humanoid robot, where in
a first experiment we fuse Kinect data and odometry in a
laboratory setting, and in a second experiment we fuse with
an unusual “sensor”: using the embodiedness of the robot we
estimate elasticities in the kinematic chain modeled as unknown,
time-varying joint offsets while it moves its arms in front of
a tabletop manipulation workspace. In both experiments only
tightly coupled optimization will localize the robot correctly.

I. INTRODUCTION

Recently, dense data, such as the depth images used in
KinectFusion [21], has gained attention relative to sparse
features described by a small number of parameters, such
as image corners, extracted lines or planes or relative poses.
However, while the latter have widely been used in com-
plex estimation scenarios, ranging from SLAM with aerial
vehicles [7] to full-body humanoid robot calibration [4],
most investigations on dense data assume a free floating
sensor [21, 27, 10]. When working with humanoid robots,
however, even in straightforward mobile manipulation sce-
narios such as ours where Agile Justin transports parts from
a storage site to a tabletop workspace and assembles them
to larger structures there are very common situations where
localization proves tricky unless one takes advantage of the
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Fig. 1. DLR’s humanoid Agile Justin [2] in a mobile manipulation setting.
The head mounted Kinect sensor frequently encounters planar structures
that only constrain some degrees of freedom (DoF) of the robot pose
causing localization via least squares optimization on Kinect data alone
to be inaccurate (local minimum due to noise) or to fail completely (nearly
singular information matrix). Top Left: With odometry alone, even small
orientation errors quickly accumulate to large position errors. However,
both sensors deliver complementary information: Planar structures in the
depth images constrain the sensor orientation while odometry measures the
distance traveled fairly accurately. With our unified approach to handling
dense and sparse sensor data in LS optimization one sensor can augment
undefined or underdefined DoFs in the data of the other sensor resulting in
the overall maximum likelihood solution. Top Right: In a second experiment,
Justin stretches its arms in front of a tabletop manipulation workspace.
Elasticities in the torso joints cause the kinematics model to become
inaccurate. In our new probabilistic kinematics model these joint offsets
are estimated as additional LS variables. Bottom Left to Right: RGB image
(for reference only), generated 3D model without offset estimation, and
with offset estimation for the stretch-objects dataset. The structure of the
kinematic chain combined with the Kinect sensing the tabletop plane allows
our approach to estimate the offsets and prevent objects from washing out
in the 3D model. Please also see the video attachment.

fact that the sensor is mounted on a robot equipped with
complementary sensors from odometry or inertial sensing
to specific kinematic chains. It is promising to model this
situation, the involved sensors and their relationships and
fuse the provided information with the dense data from the
main sensor. Fig. 1 shows two typical situations where this
may be worthwhile: When moving back and forth between
different sites in the laboratory the robot’s depth sensor
often observes just a wall leaving 3 out of 6 degrees of
freedom (DoF) unconstrained. When fused with odometry,



all DoF are constrained. Even more, the result is much
better than odometry alone, because orientation and lateral
distance comes from the depth sensor and the remaining
longitudinal distance is measured by odometry rather pre-
cisely. Similarly, when manipulating in front of a tabletop
workspace elasticities in the upper body (which are not
measured by any sensor) cause a deviation of the kinematic
model and the actual robot motion. The Kinect, however only
sees the tabletop workspace the geometry of which varies
significantly during manipulation and cannot be relied upon
to fully constrain the sensor pose. In particular, KinectFusion
alone fails when the workspace is empty leaving only a single
plane. Similar situations can arise with different sensors or
involving other quantities, e.g. calibration parameters, to be
estimated alongside. How could such a desirable, flexible
fusion be realized in a systematic way? For sparse features
the established approach is to model measurement equations
for all sensors including the features in a least-squares
system and compute the system’s maximum-likelihood solu-
tion [17, 13, 1]. For dense data the most common approach
is to extract sparse features and feed these into the least-
squares system, e.g. apply ICP [3] to match depth images
and use the resulting relative pose. However, this would not
work in a situation with unconstrained DoF as in Fig. 1.
It is also theoretically unsatisfying, because ICP by itself
performs least-squares estimation, so why not set up one
huge unified least-squares system with one measurement
for every depth pixel instead of composing several least-
squares systems on a software component level? Our paper
investigates this approach of building a unified least-squares
system to fuse measurements for every dense data item with
measurements from complementary sensors. It contributes

• an analysis of the unified least-squares system that
reveals a structure which combines the dense mea-
surements into compact matrix blocks but retains the
full system of equations and thus allows us to jointly
optimize over data from all sensors at once such that
complementary information can supplement each other;

• an algorithm that exploits this structure by processing
the dense data on a GPU, thereby solving the unified
least-squares system efficiently;

• a case study fusing Kinect depth data with odometry on
a humanoid robot (Fig. 1, top left) in a difficult situation
with unconstrained DoF;

• a second case study fusing Kinect depth data with a
probabilistic kinematics model of a humanoid robot’s
upper body (Fig. 1, top right, bottom) also with uncon-
strained DoF in a tabletop manipulation setting.

The remainder of this paper is structured as follows. We
first discuss related work (II), then introduce our approach in
general terms (III), present our concrete implementation for
point-to-plane ICP on Kinect data (IV), show how this can
be combined with odometry and a probabilistic kinematics
model for SLAM on Justin (V), discuss experimental re-
sults (VI), and close with conclusions and future work (VII).

II. RELATED WORK

Least squares (LS) optimization in robotics has been
studied extensively within the context of simultaneous local-
ization and mapping (SLAM) culminating in several frame-
works for graph-based LS [14, 17, 13, 1]. Applications have
traditionally relied on what we call sparse measurement data,
i.e. that in itself is compact such as a 2D image feature or
can be approximated as a compact representation such as a
3D LIDAR as a SE(3) pose relation [17]. The Kinect sensor
spurred interest in dense depth data, or combined with RGB
images refered to as RGB-D data. Initial SLAM approaches
on Kinect data [9, 5] relied on sparse RGB-D keypoint
features and RANSAC as the front-end and pose relation
optimization by the graph-based backend. KinectFusion [21]
was first to perform fully dense GPU-based real-time envi-
ronment modeling and a point-to-plane variant of ICP [3]
with a special-purpose Gauss-Newton LS optimizer. Fusion
of dense Kinect depth data with other sensor modalities
was first done [27] by running the same custom optimizer
on the weighted sum of the two normal systems of the
geometric [21] and photometric [24] (RGB) errors. Interest
then shifted to generic graph-based LS backends for global
consistency via loop closure constraints [28, 10]. These
approaches are layered in that the ICP result is passed to the
backend as an SE(3) pose relation. As discussed above this
has the great disadvantage that sensor modalities only present
on the graph SLAM side cannot stabilize ICP convergence
and vice versa. The focus of this line of research has been
to treat the Kinect as a self-contained free-floating sensor so
that this was not noticed as a fundamental theoretical design
problem. Also, fusion of dense Kinect data is usually limited
to the built-in depth and RGB sensors with structurally very
similar models, leaving only the problem of weighting which
is typically solved by a tuning factor [27, 29]. With RGB-
centric approaches one can also use keyframes to represent
the map [20, 6] and apply semi-dense methods that evaluate
near large image gradients only [6]. An alternative to the
more common LS backends is to marginalize sensor poses
away and store/optimize the equivalent information in a map
deformation graph [29]. As for fusion with other sensors, it
is very common to combine IMU data with sparse image
keypoint features [12, 18, 7] but there does not appear to be
equivalent work for dense RGB-D data. It was, however, very
recently proposed [16] to fuse joint angle and Kinect depth
data to estimate offsets and elasticities of a robotic arm along
with a 3D map. They view this as new SLAM problem class
(ARM-SLAM). Our approach (developed independently) is
more general in that we view it as a general LS problem with
a robot-specific model. Our key contribution is the generic
integration of dense data in a general LS framework (SLoM):
everything but the robot model (V) can be re-used directly
and very flexibly applied to other situations/robots. Thus,
their approach can be seen as a special-purpose, robot arm-
specific implementation of our more general approach, i.e.
they lack the split of generic vs. robot specific parts and
use a custom gradient descent-based solver. They also use a



TSDF map rather than the higher-quality surfel map and a
single global weighting factor rather than a scene-dependent
per-pixel noise model. Conceptually closest to our unified
LS approach is the work by Ruhnke et al. who also estimate
the full LS problem over all 2D LIDAR [22] or 3D Kinect
endpoints (surfels) [23]. In contrast to our work they do not
analyze or transform (Fig. 2) the structure of the problem
and do not use GPU acceleration but consider each surfel as
a separate LS variable on the CPU. Presently, we believe the
latter to be hard to do in real time such that our approach
attempts a balance between handling the complete estimation
problem and computational feasibility by grouping surfels
into sub maps attached to reference poses [26].

III. UNIFIED LEAST SQUARES ON DENSE DATA

Least squares (LS) optimization aims to find the X̂ mini-
mizing the squared norm of the residual F (X) = r:

X̂ = argmin
X

1
2 ‖F (X)‖2 , (1)

where in the following we will assume that X is a stacked
vector of all variables Xk to be estimated and F (X) consists
of all stacked measurement functions fi(X) = ri normalized
to have unit-covariance:

F (X) :=

[
L−1

1 f1(X)
:̇

L−1
m fm(X)

]
, fi(X) ∼ N

(
0, Σi = LiL

T
i

)
. (2)

A. Why Optimize Jointly?

There are many ways to instantiate (2) for robotics appli-
cations. A very large and successful body of research [17]
uses pose relations for each of the fi to perform SLAM.
The established approach to incorporating dense data such as
Kinect RGB-D data first runs KinectFusion’s [21] ICP code
which performs a fixed number of Gauss-Newton iterations
on the per-pixel measurement equations of a single depth
image alone to estimate the Kinect sensor pose. The resulting
pose relation estimate is then passed to a generic graph-
based LS optimization backend either as a frame-to-frame
link between consecutive sensor poses [28] or as a frame-to-
map link between the sensor pose and the map [10, 26].

The problem with this layered approach is that the Kinect-
Fusion Gauss-Newton solver is not guaranteed to converge.
This happens particularly when the data fails to constrain
some DoF of the sensor pose (a very common situation in
indoor environments dominated by large planar surfaces).
Heuristics [21] to detect such cases are not perfectly reli-
able. Thus, in the worst case a problematic estimate goes
unnoticed and is passed as a valid pose relation link, in
the best case unconstrained DoF lead to a pose relation
being discarded altogether. Passing the information matrix
last used by the KinectFusion Gauss-Newton solver to the
generic backend in addition to the mean does not fully solve
this as there is always some spurious information along
unconstrained DoF which makes the least squares result
ill-defined and may then spoil data association within the
ICP. By contrast, when jointly optimizing, other sensors can
complement the unconstrained DoF leading to a well-defined

least squares problem including the ICP problem which taken
by itself would be ill-defined. Our approach discussed below
will make this possible.

B. Exploiting Structure Beyond Sparsity: Unified LS

At the core of any quasi-Newton method for non-linear
least squares optimization essentially the following normal
system needs to be solved at each iteration:

JTJδ = −JTr, (3)

where J = dXF (X) := d
dXF (X) ∈ RM×N is the

measurement Jacobian, r = F (X) ∈ RM the measurement
residual, δ ∈ RN a small incremental change that is applied
to improve the estimate X̂ , and M and N the sum of all
measurement and variable degrees of freedom respectively.
JTJ is naturally sparse since not every measurement

depends on all variable DoFs to be estimated. State-of-the-
art graph-based least squares frameworks [17, 13] encode
these dependencies in a hypergraph from which the sparsity
pattern is computed such that only relevant dense blocks of
JTJ need to be considered when solving (3).

Unfortunately, the software interfaces require each mea-
surement function to compute the residual ri from which
Ji is typically computed numerically (although analytical
derivatives can be provided). When dense measurements
treat, e.g., every pixel of a 640 × 480 image as a separate
measurement these become very large, i.e. for a single image
ri ∈ R640·480, and, assuming a dependency on a single 6DoF
pose only, Ji ∈ R640·480×6. Thus, even if we parallelize
the evaluation of the measurement function on the GPU, the
overhead of copying results over to the CPU alone would be
prohibitive. Instead, our initial motivation for this work was
that there is no need for access to r and J individually when
solving (3) and that for the example above (JTi Ji) ∈ R6×6

and (JTi ri) ∈ R6×1 are very compact.
For the following, more rigorous, analysis let us return

to equations (1) and (2) and consider the case where every
measurement function fk,i(X) computes a single residual,
e.g. for every pixel i in every image k. Computation of the
information matrix

Ω =
∑
k

∑
i

JTk,iJk,i (4)

using a naive approach requires double summation over all i
and k. However, as illustrated in the diagram in Fig. 2, each
fk,i can be seen as a composition of three functions

fk,i = hk,i ◦ gk ◦ selectk . (5)

The selection step encodes the sparsity pattern, i.e. it selects
only those individual variables from the stacked variable
vector X that g and h depend on. This is the part com-
monly handled by graph-based LS frameworks as discussed
above and usually returns a set of sensor poses, calibration
parameters, etc. Further, g, which we call the composition
function, then translates these into the most compact form
possible, typically into a single relative sensor pose T , which
is then passed to h, the core sensor model. We now note that
neither select, nor g depend on the pixel index i. The chain



X
fk,i = hk,i ◦ gk ◦ selectk

rk,i
Ω =

∑
k

∑
i (Jh,k,iJg,kJselect,k)

T
(Jh,k,iJg,kJselect,k)

Xrk =
∑
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∑
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Fig. 2. The unified least squares (LS) problem on dense data treats each per-image k and per-pixel i measurement individually in one huge LS
problem together with all other sparse measurements. Structural analysis (III-B) reveals that by splitting each measurement function into a composition
fk,i = hk,i ◦ gk ◦ selectk , where select handles the sparsity, i.e. picks only the set of dependent variables D (many poses, calibration parameters, etc.)
from all variables X , g translates this into a minimal form T (in IV just one relative pose) and h is the core sensor model, we can compute the solution of
the full, huge LS problem but still efficiently evaluate the dense data in a small parallel inner loop on the GPU. Note that, here, we show the information
matrix only but the same applies to the gradient.

rule allows us to split the evaluation of the measurement
Jacobian and re-arrange the summation in the information
matrix computation as illustrated in Fig. 2. Thus, all pixel-
dependent information can be accumulated in a parallel inner
loop on the GPU. The role of the composition function g
is two-fold: It ensures that the inner loop only needs to
compute the minimal-sized matrix block, but it also ensures
that the highly-optimized GPU-code is entirely application
independent. All application specifics are handled by g and
select. Our implementation is an extension of the SLoM
framework [13], where select determines the relevant blocks
of SLoM’s large information matrix and gradient which are
then updated with the results of h ◦ g in every iteration of
SLoM’s Gauss-Newton or Levenberg-Marquardt optimizer.

IV. POINT-TO-PLANE ICP ON KINECT DATA

We will now derive the core sensor model h for point-
to-plane ICP on Kinect data. The basic idea, popularized
by KinectFusion [21], is to match a Kinect depth image
to a 3D surface model by generating a synthetic depth and
normal image via projection into the camera image plane and
minimizing, for each image k and pixel i, the point-to-plane
distance between each point and the surface [21]

hk,i(Tk) = (Tkvk,i − v̂k,i)Tn̂k,i, (6)

where v̂k,i, n̂k,i ∈ R3 are the surface point and normal
respectively, vk,i ∈ R3 the point from the current depth
image associated to v̂k,i via projective data association [21],
Tk ∈ SE(3) the transform from camera to surface coordi-
nates, and we use Tv to denote transformation of a point:

Tv := Trv + Tt, (7)

where Tr ∈ SO(3) and Tt ∈ R3 are the rotational and trans-
lational parts of T . hk,i is assumed to be subject to distance-
dependent noise using the same model as [26]. SLoM lifts the
notion of quasi-Newton numerical optimization from the fa-
miliar Rn into the tangent space of non-Euclidean manifolds
(SO(2), SO(3),S2) via its �-operator [13] (and the inverse
�). The same formalism was later adopted by g2o [17] and

we want to keep it here, too, which requires analytical �-
derivatives. The �-operator works by perturbing manifold
variables with small, minimally parameterized changes δ ∈
R3 which gives rise to the definition of derivatives on �-
manifolds based on the usual derivative on Rn, i.e. within
the perturbation space spanned by �-adding a small δ to the
manifold variable [11]:

dxf(x) := dδ(f(x� δ)� f(x))|δ=0 (8)

For Lie groups � is implemented by means of the fa-
miliar Lie group exponential map. Note, however, that this
formalism is more general since any Lie group is also a
manifold but not vice versa (e.g. S2). In the following we
will work with derivatives of functions of SE(3) transforms.
Intuitively, one can think of these in the usual sense, i.e., for
every input and output DoF (component of the Jacobian),
answering the question of how much the output changes
given small changes in the input.

Also, the chain rule applies as usual, such that we can
ground most derivatives in the following elementary deriva-
tives on SO(3) [11]:

dRR
T = −RT (9a)

dRRv = −[Rv]× (9b)
dR1

(R1R2) = I3 (9c)
dR2

(R1R2) = R1, (9d)

where R,R1, R2 ∈ SO(3), v ∈ R3, and [·]× is the matrix
having the same effect as the cross product.

We can now determine the derivative of (6) as follows.
First, it is easy to see that

da(a
Tb) = da

(∑
i

aibi

)
= bT (10)

where a, b ∈ Rn, and we also lift (9b) to SE(3) such that

dTTv = dTr,Tt
(Trv + Tt) = [−[Trv]× I3] , (11)

where T ∈ SE(3) and v ∈ R3. Application of the chain rule
then yields the desired result:

Jh,k,i(Tk) = dTk
(Tkvk,i − v̂k,i)Tn̂k,i

= n̂Tk,idTk
(Tkvk,i − v̂k,i)



q2
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q4

Fig. 3. The difference image of the start and end configurations of Justin
stretching its arms (cf. Fig. 1, top right) shows that the added torque causes
a small joint offset in q2, virtually no offset in q3 and a significant offset in
q4. Note the duplicate Vicon marker and other spots marked with arrows.

= n̂Tk,idTk
(Tkvk,i)

= n̂Tk,i [−[Tr,kvk,i]× I3]

=
[
(Tr,kvk,i × n̂k,i)T n̂Tk,i

]
. (12)

Thus, for each pixel i, (6) yields a 1 × 1 matrix as the
residual rk,i and (12) a 1×6 vector as the Jacobian Jh,k,i. We
compute these with one CUDA call per image k in parallel
over all i on the GPU. We do not, however, copy them
to the CPU directly. Instead, as part of the same parallel
CUDA kernel, we compute the squared residual (rTr)k,i,
the gradient (JTr)h,k,i, and (exploiting symmetry) only the
lower triangular part of (JTJ)h,k,i and then perform a two-
stage parallel reduce operation [19] to compute the sum of
each of these components over all pixels in an image. For
each Kinect image, only these resulting 28 float values
are copied over to the CPU, typically after 125 µs per frame.

V. MODELLING AGILE JUSTIN

We apply our method for SLAM on the humanoid robot
Agile Justin with a dense 3D map and fusion of Kinect depth
images with odometry and a probabilistic kinematics model.

A. Probabilistic Forward Kinematics Model

Justin’s torso includes a mechanism to drive the chest
up and down using three joints q2, q3 (both actuated) and
q4 coupled to q2 and q3 through cables (Fig. 3). Allowed
commanded motion is strictly up and down but joint elas-
ticities cause rotational and forward motion particularly of
the head so we would like to estimate these based on
a probabilistic model. Adding one joint offset parameter
per joint would create redundant DoFs and likely cause
instabilities in the optimizer. It also neglects the physical
behavior of the robot (Fig. 3). There is virtually no offset in
q3 and the signs of the offsets in q2 and q4 due to load
are always the same. Also, we have found that the ratio
of the offsets in q2 and q4 remains similar across different
runs. Thus, we use the following model: For each time step
k there is one offset parameter ψ̂ ∈ SO(2) and one ratio
parameter φ̂k ∈ R both subject to colored noise, i.e. priors
say that ψ̂k is approximately zero (with σψ,abs. = 10◦)
and φ̂k approximately 0.2 (with σφ,abs. = 0.05) and that
neither change over time (with σψ,rel. = 0.1◦ and σφ,rel. =

0.005 respectively). The estimated joint angles are then

q̂2 = q2 + φ̂ · ψ̂, (13a) q̂4 = q4 + (1− φ̂) · ψ̂. (13b)
B. Composition Function

The formulation of the point-to-plane distance measure-
ment function in (6) is intentionally idealized. In an actual
application, it depends on more than just a single transform
T as a variable. On Agile Justin it depends on the robot
pose R̂k, the map pose Ŝ, the Kinect pose K̃k :=
K(φ̂k, ψ̂k) and the pose Ck from which the synthetic
depth/normal image was generated (relative to the map):

fk,i = (R̂kK̃kvk,i − ŜCkv̂k,i)T((ŜCk)rn̂k,i), (14)

where (·)r denotes the rotational part of a transform, R̂k, Ŝ,
φ̂k and ψ̂k are SLoM variables (picked by select), and Ck is
treated as a constant which could be an arbitrary transform
but is usually chosen to be the previous best estimate of the
Kinect pose. K(φ̂k, ψ̂k) is computed from the kinematics
model, the extrinsic Kinect calibration parameters, and the
joint offset parameters φ̂k and ψ̂k. It is the job of the
composition function g to translate (14) into the form of (6).
For the function itself this is straightforward; re-arranging
the transforms yields:

fk,i = (C−1
k Ŝ−1R̂kK̃kvk,i − v̂k,i)Tn̂k,i

= hk,i( C−1
k Ŝ−1R̂kK̃k︸ ︷︷ ︸

:=T=gk(selectk(X))

). (15)

Similarly, the chain rule allows us to split the application
specific derivative from the generic one in (12). We need
derivatives w.r.t. all SLoM variables, i.e.

dR̂k
fk,i = dR̂k

(C−1
k Ŝ−1R̂kK̃kvk,i − v̂k,i)Tn̂k,i

= dTk
(Tkvk,i − v̂k,i)Tn̂k,i · dR̂k

C−1
k Ŝ−1R̂kK̃k, (16)

dψ̂fk,i = dψ̂k
(C−1

k Ŝ−1R̂kK̃kvk,i − v̂k,i)Tn̂k,i
= dTk

(Tkvk,i − v̂k,i)Tn̂k,i︸ ︷︷ ︸
generic

·dψ̂k
C−1
k Ŝ−1R̂kK̃k︸ ︷︷ ︸

application specific

(17)

and analogously for Ŝ and φ̂k. Further application of the
chain rule yields the derivative w.r.t. R̂k (and analogously
w.r.t. Ŝ, φ̂k and ψ̂k):

dR̂k
Tk = dR̂k

C−1
k

(
(Ŝ−1R̂k)K̃k

)
︸ ︷︷ ︸

:=B

= dBC
−1
k B · dR̂k

(Ŝ−1R̂k)︸ ︷︷ ︸
:=A

K̃k

= dBC
−1
k B · dAAK̃k · dR̂k

Ŝ−1R̂k, (18)

where the remaining elementary derivatives are given in Ap-
pendix A, and dφ̂k

K̃k and dφ̂k
K̃k are computed through

numerical differentiation of the kinematics model. We can
now apply dR̂k

Tk, dŜk
Tk, dφ̂k

Tk and dψ̂k
Tk to turn the

very compact form of the core sensor model measurement
information from IV into its larger application-specific form
(14 × 14 for (JTJ)k and 1 × 14 for (JTr)k) which is then
added on top of the corresponding blocks of SLoM’s large
normal system (3) at every solver iteration.



C. Odometry, Additional Priors and Graph Optimization

Odometry is modeled as pose relations combined with
prior information that the z-position is roughly but not
exactly known as in our previous work [26, §VI-A,B]. In
contrast to [26], we now use a sliding window, i.e. the SLoM
graph consists of robot poses for the last 10 Kinect and
odometry measurements; earlier poses are fixed (no longer
optimized) when they leave the sliding window. Optimization
is performed on odometry, prior and dense Kinect point-to-
plane ICP measurements with the same resolution pyramid
approach as [21] for the latter. Every time a new Kinect frame
comes in we perform three Levenberg-Marquardt SLoM
iterations on the full unified LS system at each level and
after this full optimizer run update the surfel map.

D. Surface Map Representation

Previously [26], we used truncated signed distance func-
tion (TSDF) [21] to represent the map as an implicit surface.
We now use surfel maps [15]: Each surfel is a disc repre-
sented as a center, radius, normal and confidence weight,
stored in unordered, flat arrays on the GPU. Extraction of
depth and normal images [8] and map updates [15] work
by projection of the surfel list into the image and the same
weighted averaging (equivalently to a simple Kalman filter)
as [21], yet surface normal quality is noticably better as
normals are encoded explicitely and many Kinect pixels need
to agree on the normal for a surfel hypothesis to be kept.

VI. EXPERIMENTS

To tackle the tricky situations discussed in the introduc-
tion, we devised two experimental setups. In the first, we
had Agile Justin drive back and forth parallel to a wall in
our lab (Fig. 1) while the Kinect is directed at the wall.
The commanded trajectory is a straight line of 4m length
(one way, Fig. 4) and 8 round trips are executed for a
total distance traveled of 64m per dataset. We repeat this
at different distances to the wall to generate the multi-
wall-0.9m, multi-wall-1.6m and multi-wall-2m datasets. The
wall leaves some DoF unconstrained in the Kinect data,
odometry measures motion on the ground plane only and
small orientation errors accumulate to position errors that
would quickly make e.g. gripping of objects impossible
without re-detection, and finally the prior on the z-position
constrains only a single DoF. Note that the choice of a
straight line as the trajectory is deliberate as motion along
an arc combined with the measurement of the orientation
relative to the wall would constrain the position. Due to
the small scale of the environment we use a single surfel
map although the composition function (15) treats the map
pose as a variable which would allow for multiple map
segments as we did previously with TSDF maps [26]. For the
driving datasets, the SLoM optimizer was invoked with a new
Kinect depth image every 10 cm since we need to ensure that
LS measurements are stochastically independent, especially
because we are filtering over the surfel map. Otherwise,
systematic errors in the Kinect depth image would “burn”
into the map. The resulting trajectories are plotted in Fig. 6.

Fig. 4. For the experiment fusing Kinect depth data with odometry, Justin
drives 4m from the start pose (left) to the end pose (right) and back for 8
consecutive round trips per multi-wall-* dataset.

Fig. 5. stretch-clutter dataset: RGB (left, for reference), the washed out 3D
model generated with original kinematics model (center) and the consistent
3D model generated with our new probabilistic kinematics model fused
with Kinect depth through our unified dense/sparse LS approach (right).
The perspective of the renderings is identical – arrows pointing to the same
pixels highlight inconsistencies in the original model (e.g. too tall tubes).

In the second experiment, Justin is positioned in front of
a tabletop workspace. It does not drive around, but this is
not known a-priori and only sensed through actual odometry
measurements. It then extends its arms forward as if to
manipulate objects, which excites the mentioned elasticities
in the torso. The arms are partially visible in the Kinect depth
images and masked out with a robot model consisting of
spheres [25]. Background pixels are also masked out as they
are unrealiable. The arm stretching motion is repeated four
times increasingly fast and the whole sequence is repeated
with three different scenes: with an empty tabletop where
ICP alone would fail (stretch), with few, small objects that do
not yet form reliable geometric constraints (stretch-objects)
but allow judging model consistency visually (Fig. 1), and
with many objects on the table (stretch-clutter) to show that
additional geometry does not hurt either (Fig. 5). With these
datasets, we enable joint offset estimation after the map has
stabilized (after 30 frames while the robot is not moving yet)
and then run SLoM every time a new Kinect image comes
in. The estimated head trajectory and joint offset parameters
for the stretch dataset is plotted in Fig. 7. The plots for the
other datasets show very similar performance so that we have
summarized these by means of average estimation errors in
Tab. I. Renderings of the generated 3D maps without and
with joint offset estimation are shown in Figs. 1 and 5.

Ground truth is provided by a Vicon system (6 ceiling-
mounted 16Mpx cameras covering a volume of 6x6x2m3)
tracking retro-reflective markers attached to Justin’s head.
The specified precision is <1mm for the position and <0.5◦

for the orientation under ideal conditions. In practice, marker
occlusions can degrade this significantly especially when
Justin’s head is tilted forward.

All computations run in real time at Kinect frame
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Fig. 6. Head position (relative to the initial odometry pose) for the driving datasets. The wall is located to the top of the trajectory. Odometry does not
sense the drift perpendicular to the wall well and basically reports the commanded trajectory. Our unified dense/sparse LS approach recovers the actual
motion. Note that our trajectory seems somewhat short on the right because we plot poses with Kinect data only (every 10cm) and w.r.t. the Vicon data
that the tabletop datasets contain a small motion only while here we rely on global Vicon precision throughout the tracking volume which is much lower.
In some cases there are even easily identifiable Vicon errors (bottom, at x=3m) as the robot cannot jump sideways.

Dataset Rotation · [rad] Position · [m]
x y z x y z

stretch 1.23 2.08 4.19 1.26 0.71 0.63
stretch-objects 2.10 3.58 2.41 2.26 4.44 1.36
stretch-clutter 1.71 1.63 2.51 3.18 4.93 1.74

TABLE I
AVERAGE ERRORS OF ESTIMATED HEAD POSE VS. VICON

rate (30Hz). Average computing times using a single CPU
core of a Xeon E5-2667v3 and a GTX Titan X GPU were as
follows. With the stretch-*/multi-wall-* datasets, 1.5ms for
pre-processing, 2ms/4.2ms to synthetize a depth&normal
image from the map, 17.2ms/18.5ms for each full optimizer
run, 1.6ms/5.4ms per map update.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an approach to handle
dense data in least-squares (LS) estimation with the goal of

fusing it with complementary sensors. The initial idea is to
make every dense data-item an individual per-pixel measure-
ment in a single, huge LS problem, which is theoretically
rigorous but sounds computationally challenging. However,
careful analysis of the resulting structure shows that all dense
measurements of a single image can be combined into a 6×6
information matrix and 1 × 6 gradient vector on a relative
pose which can be done efficiently on a GPU while still,
without approximation, estimating the full, huge LS problem.

We have shown in a case study with Agile Justin that
this approach facilitates sensor fusion on a humanoid robot
because it allows to formulate robot specific models flexibly.
This is ”embodiment” as it allows the perception system to
use the information provided by the humanoid’s body.

Future work will include to extend the formalism to a
full SLAM system where we do not filter over the map
and instead estimate it as a first-class LS variable and to



-0.002
 0

 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014

 0  20  40  60  80  100

x [
m

]
Head Position

-0.008
-0.006
-0.004
-0.002

 0
 0.002
 0.004
 0.006
 0.008

 0  20  40  60  80  100

y [
m

]

Vicon
Fwd. Kinematics

Ours

-0.002
 0

 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014

 0  20  40  60  80  100

z [
m

]

Vicon
Fwd. Kinematics

Ours

 0.19
 0.195

 0.2
 0.205

 0.21
 0.215

 0  20  40  60  80  100

ph
i

Estimated Joint Offset Parameters

-0.005
 0

 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0  20  40  60  80  100

ps
i [

ra
d]

Time [s]

Fig. 7. Head position (relative to the initial head pose) and estimated joint
offset parameters for the stretch dataset (empty tabletop workspace). Our
estimate almost exactly matches Vicon groundtruth.

further refine the robot model, particularly to handle shaking
motion of the robot in combination with a head mounted
IMU. Imagine the robot standing still in front of a wall
(Fig. 1) but with some shaking. The IMU would sense the
shaking, odometry would prevent unbounded drift and those
DoF observable from the wall would be even more precise.
Another extension would be a core dense sensor model for
the structurally very similar RGB-D visual odometry [24]
analogously to IV.

APPENDIX

A. Elementary �-Derivatives

The derivative (18) of the Agile Justin-specific composi-
tion function relies on three new elementary �-derivatives

concerning SE(3) transforms A,B which follow from the
definition in (8) and the elementary SO(3) derivatives in (9):

dAAB =
[

I3 0
−[ArBt]× I3

]
(19a)

dBAB =
[
Ar 0
0 Ar

]
(19b)

dAA
−1B =

[
−AT

r 0

([AT
rBt]×A

T
r−[AT

r]×A
T
r) −AT

r

]
(19c)
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