
3D Modeling, Distance and Gradient Computation for Motion Planning:
A Direct GPGPU Approach

René Wagner Udo Frese Berthold Bäuml

Abstract— The Kinect sensor and KinectFusion algorithm
have revolutionized environment modeling. We bring these
advances to optimization-based motion planning by computing
the obstacle and self-collision avoidance objective functions and
their gradients directly from the KinectFusion model on the
GPU without ever transferring any model to the CPU. Based
on this, we implement a proof-of-concept motion planner which
we validate in an experiment with a 19-DOF humanoid robot
using real data from a tabletop work space. The summed-up
time from taking the first look at the scene until the planned
path avoiding an obstacle on the table is executed is only three
seconds.

I. INTRODUCTION

For truly autonomous operation of complex humanoid
robots in unknown, cluttered environments it is crucial
to close the sensor-model-planning-action loop efficiently.
This requires (a) the real-time self-acquisition of highly-
detailed, highly-accurate 3D environment models and (b)
efficient motion planning on these models. There have been
recent breakthroughs in both areas: (a) The introduction
of the Kinect sensor and the KinectFusion algorithm [13]
have made 3D environment models of unprecedented qual-
ity available at an unprecedented frame rate (30Hz) and
(b) recent advances in optimization-based motion planning
(OMP) [17, 20] allow for the direct computation of smooth
trajectories in reaching motions for dexterous manipulation
and in dynamically optimal whole body motions [1]. In
moderately cluttered scenes, stochastic OMP variants [10]
are similarly robust [20] as global sample-based planners
(e.g., RRT [11]), without having the drawback of the latter,
which can primarily generate only jerky trajectories.

In this paper, we show that the model representation used
by KinectFusion directly contains all information required
for planning, how this can be used to compute obstacle
avoidance and self-collision avoidance objective functions
and their gradients directly on the GPU without ever transfer-
ring any model to the CPU. The evaluation of the objective
and gradient functions dominate the computation time of
any OMP. We validate our GPGPU implementation against
an independently developed Mathematica (double precision,
CPU) implementation and in an experiment with DLR’s
19-DOF humanoid robot Agile Justin [1] using real sensor
data. Our focus is on the efficient objective and gradient

R. Wagner and B. Bäuml are with DLR Institute of Robotics and Mecha-
tronics, 82234 Wessling, Germany. U. Frese is with German Research Center
for Artificial Intelligence (DFKI) 28359 Bremen, Germany. R. Wagner and
U. Frese are also with University of Bremen, 28359 Bremen, Germany.
Contact {rene.wagner,berthold.baeuml}@dlr.de, udo.frese@dfki.de.

Fig. 1. DLR’s humanoid Agile Justin [1] in our evaluation scenario (top
left): Its left hand is to be moved from the left of a cardboard box to the
right of it. A 3D model of the scene is generated from depth data of a head-
mounted Kinect and converted to an EDT representation which is then used
for planning (top right). The robot is modeled as a set of spheres (red)
positioned according to the joint angles and forward kinematics. The initial
path goes through the obstacle (bottom left), the planned trajectory avoids it
(bottom right). The companion video shows how the complete experiment
including execution of the planned path is performed on the real robot.

computation which can be used with any gradient-based
OMP variant (e.g. quasi-Newton, conjugate gradient, or the
stochastic Hamilton Monte Carlo methods). To close the loop
in the experiment, we have chosen a standard optimizer to
plan a trajectory that avoids an obstacle in a tabletop scene.
Our system is able to handle static scenes in a manipulation
context where model acquisition (sensor sweeps, etc.), model
post processing and motion planning may take about a
second each.

The remainder of the paper is structured as follows. After
a discussion of related work (II), we introduce optimization-
based motion planning as a general method (III), briefly
explain key GPGPU (CUDA) concepts (IV), show how to
transform KinectFusion models into a representation suitable
for planning (V,VI), how to compute the motion planning ob-
jective functions and gradients from this (VII,VIII), present
our experimental results (IX), and close with conclusions and
future work (X).



II. RELATED WORK

A. 3D Modeling

The introduction of the Microsoft Kinect sensor has had
a fairly disruptive effect on the robotics community. Never
before has a sensor provided depth data at the same frame
rate (30Hz), resolution (640x480 depth values per frame),
density (virtually no “holes”), accuracy (depth error < 3cm
at 2m distance), with robustness against low texture environ-
ments (due to active stereo replacing one stereo camera with
an IR pattern projector), all in a fairly compact, inexpensive
package.

The first algorithm to fully leverage the Kinect depth data
was KinectFusion [13]. The unique properties of KinectFu-
sion are that it uses depth data to both track the sensor pose
and build the environment model (map) rather than relying on
RGB feature based SLAM and mapping with known poses as
earlier approaches [8]. It is thus less prone to problems due to
lighting or lack of texture, but needs environment geometry
that constrains the sensor pose (e.g. it is problematic if only
a single, entirely flat surface is in view). Another unique
property is that KinectFusion manages to process the vast
amount of all depth data at frame rate thanks to a highly
parallelized GPGPU implementation (NVIDIA CUDA).

As far as the generated model (map) is concerned, like
earlier methods, KinectFusion uses a voxel grid (although at
a very high resolution – with a voxel side length typically
≤ 6mm), but does not just maintain occupancy informa-
tion [19]. Instead, it stores the signed distance to the nearest
surface in each voxel, thus generating a sub-voxel surface
model, and facilitating averaging over distance values as
subsequent depth measurements are fused with the model.
Over time, this eliminates sensor noise and if the sensor
is moved also depth discretization errors. The result is an
unprecedentedly dense, smooth and accurate 3D model that
is instantly available due to operation at frame rate.

B. Motion Planning

For motion planning in high-dimensional spaces the three
most popular classes of algorithms are:
• sampling-based motion planning (e.g., PRM [12] and

RRT [11]) which first searches for a collision-free path
by random sampling and then optimizes this path for a
given criterion (e.g., smoothness),

• search-based motion planning [5] which formulates
planning as a search problem in a graph of motion
primitives resulting in a smooth collision-free path and

• optimization-based motion planning (OMP) [16, 17,
20], which computes an optimal path by minimizing a
functional objective comprised of an obstacle avoidance
and an optimality criterion (e.g., smoothness or energy
optimality) term.

For precisely controlled and dynamically performant hu-
manoid robots like DLR’s Justin [1] OMP is very attractive
as it allows for direct planning of precise reaching motions
close to obstacles as needed in dexterous manipulation tasks
(smoothness) or for the planning of fast whole-body motions

(dynamical optimality), e.g., when catching a ball (see [1] for
Justin in action). In addition, two major drawbacks of OMP
have been removed recently by algorithms for efficient com-
putation of the objective and its gradient and the alleviation
of the problem of local minima by using modern stochastic
optimization methods (e.g., Hamilton Monte Carlo [20] or
stochastic path integrals [10]).

To enable a robot to operate really autonomously in
unknown and cluttered environments, the sensor-model-
planning-action loop has to be efficiently closed. That esp.
implies that the planning algorithms have to be able to work
on models acquired from sensor data and that the model
acquisition and the planning are fast. It is only recently that
robustly working implementations have been shown using a
stack of processing modules [4, 9]:

• computing point clouds from 3D-sensors (e.g., Kinect
or laser scanner),

• outlier-filtering,
• integration in a probabilistic voxel-map (about 2cm

resolution) representing obstacles, free- and unknown
space (Octomap [19]) and

• sample-based planning for one arm (up to 12 DOF).

This differs from our approach in important aspects:

• We perform almost all processing directly on the GPU,
• raw data is directly integrated in a high-resultion (2mm)

model (which is also used in the sensor tracking step)
and

• an optimization-based planner computes paths for a full
humanoid with 19 DOF.

Recently, GPU-implementations for sample-based plan-
ners or the important part of obstacle-avoidance checking
have been presented [15]. However, none of them compute
an overlap volume or its gradient as needed for an OMP.

III. OPTIMIZATION-BASED PLANNING

In optimization-based planning, the problem of finding a
collision-free and optimal path from a given start to a given
goal configuration is formulated as a minimization problem
of a functional of the path. Here, we give an overview of the
continuous formulation of the method following [20], in VII
we present the discretized version as we have implemented
it.

The objective functional U(q) of a path q(t) is comprised
of a collision term Uc(q), which penalizes collisions of the
robot with obstacles, and a smoothness term Us(q), which
penalizes non-smooth paths, scaled with a weighting factor
λ. The equations adapted from [20] read as follows:

U(q) = Uc(q) + λUs(q) (1)

Us(q) =
1

2

∫ 1

0

∥∥∥∥ d

dt
q(t)

∥∥∥∥2 dt (2)

Uc(q) =

∫ 1

0

∫
B

c(x(q(t), u))

∥∥∥∥ d

dt
x(q(t), u)

∥∥∥∥dudt (3)



D(x)

c(x)

✏0
0

Fig. 2. The penetration depth function c(x) is essentially a clipped version
of the signed distance function D(x) adding an ε-transition range. D(x)
measures for each point x the distance to the nearest obstacle boundary
(negative values inside obstacles, positive outside). The ε-range basically
leads to smooth gradients at the border of occupied and free space.

c(x) =


−D(x) + 1

2ε if D(x) ≤ 0
1
2ε (D(x)− ε)2 if 0 < D(x) ≤ ε
0 otherwise,

(4)

where u runs over the robot’s volume B. Here, q(t) is an
arbitrary parameterization of the robot’s motion, e.g., the
joint angles, as a function of an arbitrary path variable t
(in the rest of the paper, we use the intuition of t being a
time) and x(q(t), u) is the cartesian coordinate of a point
of the robot, statically identified by u, e.g. link number and
coordinate in the link fixed coordinate system.

Intuitively, Uc(q) measures the overlap of the swept vol-
ume of the robot (i.e., the volume the robot sweeps over
during moving along the path) and the obstacles. Hence, to
minimize Uc(q) the optimizer tries to push the robot out of
obstacles. To make this pushing effect more robust and, e.g.,
even work when a link of the robot is completely inside an
obstacle, the overlap volume is weighted with a penetration-
depth field c(x) penalizing deeper penetration more (see
Fig. 2 and (4)). The key to making the objective invariant to
parameterization is the multiplication with the norm of the
Cartesian velocity:

∥∥ d
dtx(q(t), u)

∥∥dt measures an arc length
along the trajectory.

The smoothness term Us(q) is the square of the joint
angle velocities and minimizing it tries to straighten out or
smoothing the path.

Fast converging optimization methods, like quasi-Newton
or conjugate gradients, can take advantage of also providing
the gradient of the objective function. In the continuous
formulation the functional gradient of (1) has to be calculated
and reads as [20]

δU

δq
=
∂v

∂q
− d

dt

∂v

∂q̇
(5)

where v refers to all terms under the time integral. For the
collision term this results in [20]

δUc
δq

=

∫
B

JT ‖ẋ‖ [(I − ˆ̇xˆ̇xT )∇c− cκ]du (6)

κ = ‖ẋ‖−2 (I − ˆ̇xˆ̇xT )ẍ (7)

∇c(x) =


−∇D(x) if D(x) ≤ 0
1
2 (D(x)− ε)∇D(x) if 0 < D(x) ≤ ε
0 otherwise,

(8)

where ẋ = d
dtx(q(t), u) and ˆ̇x = ẋ/ ‖ẋ‖ denotes the unit

vector in the velocity direction and κ is the curvature of the
path.

Looking at (6) it is important to note that, given the
spatial gradient of the penetration-depth field ∇c(x) and the
Jacobian J of the forward kinematics for each point x, the
computation of the functional gradient δUc

δq is only slightly
more expensive than computing Uc(q) itself! This fact is
exploited to efficiently compute the discretized version of (6)
in section VII.

IV. GPGPU PROGRAMMING USING CUDA IN A
NUTSHELL

NVIDIA CUDA is essentially a subset of C++ (template
support is very limited) with some extensions that allow for
GPU and CPU code to co-exist in the same source file. GPU
and CPU code are passed to separate compilers. A runtime
API allows for GPU code to be loaded to and executed on the
GPU as well as copying of memory to and from the GPU.
For the purposes of this paper it will suffice to understand
the execution model as this is how the parallel structure of
a problem is encoded.

CUDA code that solves a certain task is wrapped in a
so-called compute kernel. The same kernel is executed in
the form of multiple threads in parallel where each thread
typically performs the same instruction on different data
items. The GPU contains several streaming multiproces-
sors (SMs) each of which operates independently from the
others and which in turn contains a number of compute
cores, e.g. the GTX 680 contains eight SMs consisting of
192 cores each [14]. The exact mapping from logical threads
to physical cores is hidden behind an abstraction that groups
threads into logical blocks. When launching a kernel, one
needs to specify how many blocks and how many threads
within each block are to be executed. A single block cannot
span multiple SMs and must not exceed available resources
(registers, shared memory, etc.).

Conveniently, with the present generation of NVIDIA
GPUs, both the number of threads and the number of blocks
to be executed can be specified in three dimensions each.
When a kernel is executed each thread can programmatically
access the indices of its position in the block of threads and
in the grid of all blocks. Thus, parallelization in CUDA es-
sentially boils down to mapping problem-specific dimensions
to CUDA block and grid dimensions.

V. FROM KINECTFUSION TO MOTION PLANNING

At the core of the KinectFusion algorithm [13] is a variant
of the iterative-closest-points (ICP) algorithm [2] which,
until convergence, alternatingly estimates the transformation
between two sensor poses and uses this new estimate to
projectively determine the data association of point clouds
obtained from these poses.

The reference point cloud is computed from a raycast of
the previous model (typically a 5123 voxel grid) as viewed
from the previous sensor pose, the second point cloud is
computed from the current depth image obtained from the



Fig. 3. 3D model of the tabletop scene generated with our KinectFusion
reimplementation and rendered using a simple lighting model based on the
raw surface normals (i.e. no smoothing/Phong shading) on the GPU. Note
that horizontally the model is smoother than vertically since the robot’s head
only panned but did not tilt in this experiment so that the depth discretization
cannot be “averaged away”. This does not occur with hand-held operation
due to the inherent shakiness of human motion.

sensor. The current depth image is then registered in the
model according to the new sensor pose obtained from ICP
to yield the new model and this is repeated every time a
new depth image is received from the sensor. KinectFusion
operates a frame rate (30Hz) by exploiting the parallel
structure of the problem (pixels in the depth image, voxels
in the model grid are largely independent) and offloading
virtually all computation onto the GPU.

We use a custom KinectFusion re-implementation which
achieves the same performance in terms of computing time
and the (visually compared) quality of generated models.
There are many tradeoffs and tunable parameters involved, so
our generated models are not necessarily identical. However,
we believe the only significant modification in our imple-
mentation is that we use the familiar radial distortion model
r′ = 1/(1 +κr2) while the original implementation neglects
distortion. In our experience an accurate sensor model and
calibration are crucial. We use the calibration method from
our earlier work [18]. The model generated from our tabletop
evaluation scene is depicted in Fig. 3.

To use models generated by KinectFusion for planning,
it is important to understand its truncated signed distance
function (TSDF) model representation. For every voxel p in
the voxel grid, it stores a weight W (p) and the truncated
signed distance F (p) to the nearest surface. Voxels with
W (p) = 0 have never been touched, corresponding to
unknown space. With D(p) being the signed Euclidean
distance to the nearest surface, the relevant intuition behind
F (p) can be captured as follows:

F (p) =


1 if D(p) ≥ µ
D(p)
µ if − µ ≤ D(p) < µ

undefined otherwise
(9)

Thus, within ±µ around surfaces the TSDF directly cor-
responds to the Euclidean distance needed for planning. The
truncation unfortunately prevents a direct lookup of distances
needed for planning but this truncation allows KinectFusion
to handle multiple surfaces so that, e.g., objects thicker than
2µ can be viewed from the front and back without surface

measurements cancelling out each other.
However, conversion to obstacle information is easy.

Conservatively treating unknown space as an obstacle, the
occupancy of a voxel can be determined as follows:

Occupancy(p) =

{
FreeSpace if W (p) > 0 ∧ F (p) > 0

Obstacle otherwise
(10)

Note how this automatically fills the insides of objects. This
binary information can then be used to recover the Euclidean
distance for every voxel as shown in the following section.

VI. COMPUTING THE EUCLIDEAN DISTANCE
TRANSFORM (EDT) AND ITS GRADIENT ON THE GPU

The Euclidean Distance Transform (EDT) of a function f
is defined as [6]

Df (p) = min
q

(‖p− q‖+ f(q)) (11)

We use f to encode obstacle and free space information,
i.e. to compute the distance from free space to the nearest
obstacle we set

f(q) =

{
∞ if q is FreeSpace
0 if q is Obstacle

(12)

which ensures that (‖p− q‖+f(q)) is minimal at the nearest
obstacle.

A naive implementation of (11) would be O(n2) where
n is the number of voxels. The key insight towards a fast
implementation is to compute the squared EDT and exploit
that in the 2D case [6]

Df (x, y) = min
x′,y′

((x− x′)2 + (y − y′)2 + f(x′, y′))

= min
x′

((x− x′)2 + min
y′

((y − y′)2 + f(x′, y′)))

= min
x′

((x− x′)2 +Df |x′ (y)). (13)

This extends to arbritrary dimensions and essentially boils
down to the application of the Pythagorean theorem. Thus,
we can compute the squared EDT of the 3D grid by succe-
sively computing the squared EDT along a single dimension
at a time.

Like CHOMP [20], we use the algorithm presented in [6]
to do the latter – except we run it on the GPU. It has a time
complexity of O(n) where n is the maximum extent along
a single dimension. It first analyzes the algebraic structure
computing the lower envelope of n parabolas (cf. (11)) and
from this determines the squared EDT in a second pass. The
linear time complexity comes at a price: space complexity –
the lower envelope computation needs O(n) memory.

Thus, while the algorithm from [6] can be transcribed
almost verbatimely into C++, its execution on the GPU
is not straight-forward: The algorithm works by looping
over a complete single column of the volume, later values
potentially depend on all previous values. The only way to
parallelize this is to have n× n parallel threads process one
column each. Each thread then needs O(n) memory easily
exceeding the available GPU memory.



Fig. 4. Contour plot of generated EDT (top) and its gradient (bottom).

To cope with this, we first downsample the 5123 TSDF
grid to a 2563 EDT grid. Additionally, note that the memory
actually accessed at any time is limited by the number of
runnable threads which in turn are limited by the number
and size of streaming multiprocessors on the GPU.1 We take
advantage of this by splitting the EDT computation into
multiple smaller kernel launches – each just large enough
to keep the GPU busy. While this direct implementation of
[6] on the GPU works, we plan to investigate other exact
EDT algorithms more tailored towards the GPU [3] (but
implementation-wise also much more involved as it needs to
merge partial results in a tree-style fashion) in future work.

The squared EDT computation is executed once for the
distance of free space voxels from the nearest obstacle voxels
and once the other way around. The results are merged and
the square root is taken in a post-processing step.

The computation of the EDT gradient is straight forward:
We use a 3 × 3 × 3 Sobel filter and appropriate scaling
to approximate the true gradient. Despite the downsampling
and the small filter size the resulting gradient is surprisingly
smooth (Fig. 4).

VII. COMPUTING THE OBSTACLE-AVOIDANCE
OBJECTIVE FUNCTION AND GRADIENT

We use a simple robot model comprised of a number of
spheres for each link. The forward kinematics is executed

1With the GTX 680, according to the cudaGetDeviceCount
API call the maximum number of runnable threads is 8 · 2048 =
multiProcessorCount · maxThreadsPerMultiProcessor.

on the CPU and we transmit the model to the GPU as
follows. Each sphere is represented by its center xBl

l,i in
the coordinate system of its link Bl and its radius rl,i. The
pose of each link at each time step is transmitted as the set
of SE(3) transformations F 0

Bl(tj)
with corresponding partial

derivatives
∂F 0

Bl(tj)

∂qk(tj)
of the frames with respect to the joint

angles qk(tj) where k identifies each joint.
We discretize the objective and gradient formulae from

III in the time domain according to [20] as follows. The
objective U at time tj is the sum of the penetration depths
over all links l and spheres i weighted with their respective
velocities:

U(tj) =
∑
l

∑
ic(xl,i(tj)) ‖ẋl,i(tj)‖ (14)

where the sphere centers are transformed to global coordi-
nates via

xl,i(tj) = F 0
Bl(tj)

· xBl

l,i (15)

and the corresponding velocities and accelerations are com-
puted through finite differences:

ẋl,i(tj) =
xl,i(tj)− xl,i(tj−1)

∆t
(16)

ẍl,i(tj) =
ẋl,i(tj)− ẋl,i(tj−1)

∆t
. (17)

The Jacobians are computed from the frame derivatives
taking the position of each sphere within its link (the added
“lever arm”) into account:

Jl,i,k(tj) =
∂F 0

Bl(tj)

∂qk(tj)
· xBl

l,i . (18)

With x̂ = x
‖x‖ , the time-discretized partial derivatives of

the objective with respect to each joint angle qk are then:

∂U(tj)

∂qk(tj)
=
∑
l

∑
i

(
JTl,i,k(tj) ‖ẋl,i(tj)‖

·
(

(I − ˆ̇xl,i(tj)ˆ̇xTl,i(tj))∇c(xl,i(tj))

− c(xl,i(tj))

‖ẋl,i(tj)‖2
(I − ˆ̇xl,i(tj)ˆ̇xTl,i(tj))ẍl,i(tj)

))
. (19)

To be numerically more stable we rewrote (19) using (I−
ˆ̇xˆ̇xT )b = b− (ẋ·b)ẋ

‖ẋ‖2 to yield

∂U(tj)

∂qk(tj)
=
∑
l

∑
i

(
JTl,i,k(tj)·

·
(
‖ẋl,i(tj)‖∇c(xl,i(tj))− (ẋl,i(tj)·∇c(xl,i(tj)))ẋl,i(tj)

‖ẋl,i(tj)‖

− c(xl,i(tj))
‖ẋl,i(tj)‖

(
ẍl,i(tj)− (ẋl,i(tj)·ẍl,i(tj)))ẋl,i(tj)

‖ẋl,i(tj)‖2

)))
. (20)

We can now instantiate (14) and (20) to obtain the obstacle
avoidance objective and gradient respectively by setting

D(x) := EDT (xl,i(tj))− rl,i (21)

and
∇D(x) := ∇EDT (xl,i(tj)). (22)



Parallelization for execution on the GPU is now straight-
forward: For each combination of l, i and tj for the objective
and l, i, tj and qk for the gradient, we can compute the
respective summand in parallel. We map the l and is to the
dimensions of each CUDA block and the j and ks to the
dimensions of the CUDA grid. The summation is computed
by means of a tree-style parallel reduce operation [7]. We
have compared the results of our GPU implementation with
an independently developed Mathematica implementation
and they turn out to be virtually identical when both imple-
mentations operate on same EDT and EDT gradient despite
the fact that the GPU uses single-precision floating point
operations. We primarily attribute this to the fact that the tree-
based summation is numerically more stable than a (naive)
sequential summation.

VIII. COMPUTING THE SELF-COLLISION-AVOIDANCE
OBJECTIVE FUNCTION AND GRADIENT

We essentially need to determine the depth of the self-
penetration of the robot. To compute this, we test, for each
sphere in the robot model, this one moving sphere against
the static rest of the robot. Since some spheres always
cause self-collisions we extend the above interface with a
blacklist specifying which pairs of (l, i) and (l′, i′) are to
be ignored (zero objective and gradient). Note that this is an
approximation since in reality the penetration depth depends
on how spheres move mutually relative to one another but
the approximation is conservative, i.e. the approximated
penetration depth is always larger.

As the structure is the same as above, we can once again
instantiate (14) and (20) to yield the obstacle avoidance
objective and gradient respectively this time by setting

D(x) := ‖xl,i(tj)− xl′,i′(tj)‖ − (rl,i + rl′,i′) (23)

and
∇D(x) :=

xl,i(tj)− xl′,i′(tj)
‖xl,i(tj)− xl′,i′(tj)‖

(24)

and performing the summation over two additional indices
l′ and i′.

Note that this time the summation needs to be computed
over four indices in total (l, i, l′, i′) exceeding the maximum
number of dimensions in a CUDA block. Thus, we need to
map the l′s to one of the CUDA grid dimemsions and use
a two-stage reduction first computing the sum over a block
and then over the result of all blocks with the same l′. Like
above, we have validated the GPU-computed results against
a Mathematica re-implementation and, remarkably, they turn
to be identical up to 10−6.

IX. EXPERIMENTAL VALIDATION

To join all previous components into a functional prototype
we have implemented the forward kinematics in Mathematica
and use the standard Mathematica optimization solver which
calls our CUDA implementation to compute the objective
functions and gradients. The model generation and planning
steps are currently invoked manually. For the experimental
setup, we use the setup depicted in Fig. 1. We use real data

Fig. 5. CAD model of Agile Justin (left) and overlayed sphere model
for self-collision avoidance (right). The legs are currently not modeled.
The hands are modeled in their closed position. Fingers are currently not
modeled individually.

TABLE I
PARAMETERS INFLUENCING THE PROBLEM SIZE.2

Number of Joints 19
Number of Links 16
Number of Spheres per Link 4
Number of Time Steps 50

acquired from the head-mounted Kinect to generate the 3D
environment model (Fig. 3). The KinecFusion grid size is
5123 with a voxel side length of 2mm, the EDT grid consists
of 2563 voxels with a side length of 4mm each.

The start and goal joints configurations with the TCP to
the left and to the right of an obstacle on a tabletop space
have been recorded from encoder readings. It should be noted
that although the goal is formulated for the TCP, a path for
the full 19 DOF of Agile Justin is to be planned, not just for
the arm configuration. The robot model consists of 16 links
and 4 spheres per link and fully encloses the robot (Fig. 5).
Thanks to Agile Justin’s round exterior shapes the model is
also very close to the true robot surface.

Tab. I illustrates the overall problem size and shows why
GPGPU parallization is beneficial. In terms of processing
hardware, we use an Intel Xeon E5-2665 @ 2.40GHz and
an NVIDIA GTX 680 GPU with 2GB GPU memory (8
streaming multiprocessors, 192 CUDA cores each).

The resulting trajectory after 100 calls of the GPU-based
objective/gradient computations is illustrated in Fig. 1 and
its execution is shown in the companion video.

The relevant computing times are given in Tab. II. The
KinectFusion step is slightly slower than reported in the
original paper since we use a finer step size in the raycaster.
As in the original implementation, the KinectFusion time is
not constant primarily because the raycasting step depends
on the model and view angle. Computation of the EDT takes
orders of magnitude longer than the other steps since the
algorithm does not parallelize well as discussed in section VI
and requires unsystematic (data dependent) reads and writes
to large amounts of temporary memory. The EDT gradient
computation is again fast and constant time. The obstacle
objective is constant time if the overlap of the robot model

2The number of links is smaller since due to rotational symmetry some
joints have no effect on the shape of the current sphere model.



TABLE II
COMPUTING TIMES OF INDIVIDUAL STEPS.

Step Time [ms]
KinectFusion (per Frame) 27-31
EDT (once) 1150
EDT Gradient (once) 32
Obstacle and Self-Collision Objec-
tive & Gradient (per evaluation)

8

with the EDT grid is constant (the area outside the grid is
assumed to be free space). The self-collision objective is
always constant time.

It should be noted that in our current implementation the
memory access pattern of both objective computations is not
ideal (i.e. not coalesced). This prevents simultaneous fetching
of larger memory blocks and typically has a significant
impact on memory throughput in any CUDA application.

X. CONCLUSIONS AND FUTURE WORK

We have presented a complete, functional proof-of-concept
GPGPU implementation of a 3D environment modeling and
motion planning system and evaluated it on real data on a 19-
DOF humanoid robot. Most notably, the environment model
used for model generation contains all information required
for planning and is never transferred to the CPU – virtually
all computation up to the point where the planning objectives
and gradients have been determined happens on the GPU.
The computing time of the overall system is dominated by
the EDT computation (≈ 1s). This is fast for planning on fine
resolution models as needed for dexterous manipulation.

In future work, we intend to further optimize the obstacle
and gradient computation as noted above and investigate
moving the complete optimizer onto the GPU. We will also
increase the EDT model resolution to 2mm by upgrading to
a 4GB version of the GPU card.

ACKNOWLEDGMENTS

This work was partly supported under DFG grant
SFB/TR 8 Spatial Cognition.

REFERENCES

[1] B. Bäuml, F. Schmidt, et al. Catching Flying Balls and
Preparing Coffee: Humanoid Rollin’Justin Performs
Dynamic and Sensitive tasks. In Proc. IEEE Int. Conf.
on Robotics and Automation, 2011.

[2] P. J. Besl and N. McKay. A method for registration
of 3-D shapes. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 14(2):239 – 256, 1992.

[3] T.-T. Cao, K. Tang, A. Mohamed, and T.-S. Tan.
Parallel banding algorithm to compute exact distance
transform with the gpu. In Proc. ACM SIGGRAPH
symposium on Interactive 3D Graphics and Games,
2010.

[4] S. Chitta, E. G. Jones, M. Ciocarlie, and K. Hsiao.
Perception, planning, and execution for mobile manip-
ulation in unstructured environments. IEEE Robotics
and Automation Magazine, 19(2):58–71, 2012.

[5] B. J. Cohen, S. Chitta, and M. Likhachev. Search-based
planning for manipulation with motion primitives. In
Proc. IEEE Int. Conf. on Robotics and Automation,
2010.

[6] P. F. Felzenszwalb and D. P. Huttenlocher. Distance
transforms of sampled functions. Technical Report
TR2004-1963, Cornell University, 2004.

[7] M. Harris, S. Sengupta, and J. D. Owens. Parallel prefix
sum (scan) with cuda. In H. Nguyen, editor, GPU Gems
3, chapter 39, pages 851 – 876. Addison Wesley, 2007.

[8] P. Henry, M. Krainin, et al. RGB-D mapping: Using
depth cameras for dense 3D modeling of indoor envi-
ronments. In Proc. Int. Symposium on Experimental
Robotics, 2010.

[9] A. Hornung, M. Phillips, et al. Navigation in three-
dimensional cluttered environments for mobile manip-
ulation. In Proc. IEEE Int. Conf. on Robotics and
Automation, 2012.

[10] M. Kalakrishnan, S. Chitta, et al. Stomp: Stochastic
trajectory optimization for motion planning. In Proc.
IEEE Int. Conf. on Robotics and Automation, 2011.

[11] S. Karaman and E. Frazzoli. Sampling-based algo-
rithms for optimal motion planning. Int. Journal of
Robotics Research, 30(7):846–894, 2011.

[12] S. M. LaValle. Planning Algorithms. Cambridge
University Press, 2006.

[13] R. A. Newcombe, S. Izadi, et al. KinectFusion: Real-
time dense surface mapping and tracking. In IEEE Int.
Symposium on Mixed and Augmented Reality, 2011.

[14] NVIDIA. NVIDIA GeForce GTX 680, 2012. Whitepa-
per.

[15] J. Pan and D. Manocha. GPU-based parallel collision
detection for fast motion planning. The Int. Journal of
Robotics Research, 31(2):187–200, 2012.

[16] S. Quinlan and O. Khatib. Elastic bands: Connecting
path planning and control. In Proc. IEEE Int. Conf. on
Robotics and Automation, 1993.

[17] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa.
CHOMP: Gradient optimization techniques for efficient
motion planning. In IEEE Int. Conf. on Robotics and
Automation, 2009.

[18] R. Wagner, O. Birbach, and U. Frese. Rapid develop-
ment of manifold-based graph optimization for multi-
sensor calibration and SLAM. In Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2011.

[19] K. M. Wurm, A. Hornung, et al. OctoMap: A prob-
abilistic, flexible, and compact 3D map representation
for robotic systems. In Proc. ICRA 2010 Workshop
on Best Practice in 3D Perception and Modeling for
Mobile Manipulation, 2010.

[20] M. Zucker, N. Ratliff, et al. CHOMP: Co-
variant hamiltonian optimization for motion plan-
ning. Submitted to Int. Journal of Robotics
Research, 2012. Preprint: www.cs.cmu.edu/

˜siddh/preprints/CHOMP12-ijrr.pdf.


