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Abstract— For such common tasks as motion planning or
object recognition robots need to perceive their environment
and create a dense 3D map of it. A recent breakthrough in this
area was the KinectFusion algorithm [16], which relies on step
by step matching a depth image to the map via ICP to recover
the sensor pose and updating the map based on that pose.
In so far it ignores techniques developed in the graph-SLAM
area such as fusion with odometry, modeling of uncertainty and
distributing an observed inconsistency over the map.

This paper presents a method to integrate a dense geometric
truncated signed distance function (TSDF) representation as
KinectFusion uses with a sparse parametric representation as
common in graph SLAM. The key idea is to have local TSDF
sub-maps attached to reference nodes in the SLAM graph and
derive graph-SLAM links via ICP by matching a map to a depth
image. By moving these reference nodes according to the graph-
SLAM estimate, the overall map can be deformed without
touching individual sub-maps so that re-building of sub-maps is
only needed in case of significant deformation within a sub-map.
Also, further information can be added to the graph as common
in graph SLAM. Examples are odometry or the fact that the
ground is roughly but not exactly planar. Additionally, the
paper proposes a modification of the KinectFusion algorithm
to improve handling of long range data by taking the range
dependent uncertainty into account.

I. INTRODUCTION

This work is part of continued effort [21, 22] to equip
DLR’s humanoid robot Agile Justin [1] with environment
modeling capabilities that generate accurate surface models
and free-space information (Fig. 1) for motion planning
and object recognition. We have previously used a custom
re-implementation [21] of the popular KinectFusion algo-
rithm [16] for this purpose. KinectFusion relies on a variant
of the well-known iterative closest points (ICP) algorithm [2]
to track the sensor pose by minimizing the point-to-plane
residuals of the current depth image vs. the one expected
according to the current map and the sensor pose estimate.
KinectFusion’s map is a so called truncated signed distance
function (TSDF), an implicit surface defined by a regular 3D
voxel grid which, within a truncation region around surfaces,
stores the signed distance to the nearest surface. This leads
to very smooth, sub-voxel precise surface models well-suited
to motion planning [21] and object recognition.

Unfortunately, ICP fails whenever the environment geom-
etry does not constrain the sensor pose in all six degrees of
freedom. Additionally minimizing the reprojection residuals
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Fig. 1. DLR’s humanoid Agile Justin [1] in our mobile manipulation
scenario (top) and a marching cubes [15] mesh export of our signed distance
function model after graph optimization (bottom, robot pose marked by blue
ellipsis). To build the map Justin first observed the tabletop workspace,
left the lab through the door at the far end, and returned to the tabletop
workspace via two outside corridors and the lab door on the right such that
the overall trajectory forms a clockwise loop. The companion video shows
the optimization in progress and a fly-through of the generated model.

in RGB images [23] helps alleviate this but does not fully
solve the problem as it relies on texture often not available
in indoor environments (e.g. blank walls in long corridors).
Taking advantage of the fact that our Kinect is not a free-
floating sensor but attached to the robot body we have
previously [22] used forward kinematics plus odometry to
get the sensor pose. This is very accurate when the robot
is stationary and only certain joints are active. However,
elasticities in some joints are problematic and odometry
errors accumulate.

In contrast to the dense geometric approach of KinectFu-
sion, the graph SLAM (simultaneous localization and map-
ping) paradigm is purely parametric, i.e. sparse. Variables
to be estimated (e.g. robot poses) are nodes in a graph.
Measured sensor data and measurement models (predicting
measurements based on all dependent variables) form links
(edges). This can be transformed into a least squares problem
and the maximum likelihood values of all variables obtained
through standard numerical optimization methods (Gauss-
Newton, Levenberg-Marquardt, etc.). With Agile Justin this
has already proved very successful in modeling the robot in
a calibration context [20, 3].

Thus, we would like to model the robot including all errors
in the forward kinematics chain and odometry using a graph
SLAM framework and combine this with KinectFusion-style



dense mapping and ICP. In this setup the different sensors
nicely complement each other, e.g. odometry measures the
distance traveled quite accurately while the Kinect constrains
the orientation of the robot. This paper is the first step
towards this goal in so far as it integrates KinectFusion’s
TSDF maps and ICP with the SLoM [10] graph SLAM
framework. The robot model in this paper is the most straight
forward one: simple odometry. As soon as this combination
works a more sophisticated robot model (e.g. kinematic
errors, elasticities, vibration, etc.) can later be implemented
purely on the traditional graph SLAM side.

The key idea behind our approach is to split the world
into overlapping sub-maps consisting of a small TSDF grid
each. The pose of each sub-map’s origin is added as an
additional variable to the graph SLAM problem. All sub-
maps are attached to the robot pose graph via graph SLAM
links formed by ICP. As the pose graph is optimized most
deformations of the map as a whole only require rigid
body transformations of its sub-map parts, i.e. the optimizer
can simply change the position and orientation of their
origins. Only if the pose graph within a sub-map changes
significantly a sub-map will need to be rebuilt. This results
in an important property: Sub-maps are generated in real-
time and can be used for e.g. planning at all times.

The remainder of this paper is structured as follows. After
a discussion of related work (II), we introduce our approach
to graph SLAM on signed distance function maps (III), show
how this can be used for SLAM on Justin (IV), how sub-
maps are managed in our system (V), how an improved
sensor model allows us to use KinectFusion on long range
Kinect depth data (VI), discuss experimental results (VII),
and close with conclusions and future work (VIII).

II. RELATED WORK

The idea to work with a collection of local maps instead
of one large map is an old one. To our knowledge the first
realization in the SLAM area was the Atlas framework [5].
Graph SLAM is now an established method with several
open source software frameworks available, e.g. with a focus
on incremental optimization [11], speed [14], or elegant
handling of manifold spaces [10]. A separate line of research
has lead to the KinectFusion [16] algorithm which was
first to combine the previously computationally challenging
ICP [2] and dense truncated signed distance function (TSDF)
mapping [7] in a real-time GPU implementation. Extensions
exist to increase the map coverage by moving volume parts
in and out of the GPU on demand [6], using hierarchical data
structures based on hash-tables [18], octrees [19] or our own
multi-scale TSDF [22]. Unlike our work, these do not address
global consistency but they are complementary in that these
data structures can be used to represent each individual
sub-map at higher resolution. The drift in KinectFusion’s
ICP can be alleviated by simultaneously minimizing the
reprojection residuals in RGB images [23]. To get closer
to global consistency, one approach [24] is to perform graph
SLAM using a surface mesh extracted from a sliding volume
KinectFusion variant as the map and mesh deformation to

keep the mesh consistent with the SLAM graph. The original
TSDF is discarded, the mesh only represents the mean of the
surface distribution thus preventing correct fusion of new
depth data into the map. Also, the mesh export loses free vs.
occupied space information which is vital for safe motion
planning.

Finally, we have been made aware of two very recent
approaches after initial submission of our work. One [25]
performs KinectFusion on short sub-sequences of temporally
adjacent depth images, extracts a mesh fragment from each
resulting TSDF and then applies least-squares optimization
to minimize errors in overlapping mesh fragments while
penalizing non-smooth camera trajectories. Conceptually this
is similar to our work. The additional sensor data (odom-
etry) in our approach, however, gives a better idea of the
camera trajectory than the smoothness assumption and the
reported computing time of 160 times the acquisition time
is problematic. The other [9] is very similar to ours in
that it also uses a set of small TSDF volumes and graph
optimization for global consistency. The TSDF volumes
are object-aligned bounding volumes requiring segmentation
and volume growing. We believe the parameterization of
ICP links is different. Additionally, RGB links in the spirit
of [23] are used. They apply some of the sensor model-
related changes which we describe in VI. The critical µ-
scaling in (24), however, is missing, as is a discussion of
the exact graph setup, and timings broken down into ICP
vs. graph optimization steps, thus making a computing time
comparison with our implementation difficult although it
appears that the graph optimization is slightly faster and the
rest slower than ours.

III. GRAPH SLAM WITH TSDF MAPS

To perform graph SLAM with TSDF maps using the
SLoM framework we need to find ways to represent TSDF
maps in the framework analogously to a SLoM variable and
to use the result of KinectFusion’s ICP as a SLoM link.

A. Sub-Maps

On the mapping side, rather than using a single large
TSDF map, our key idea is to split the world into a set of
small sub-maps. The assumption behind this is that the local
trajectory of the robot is usually well known. Errors take time
(distance travelled) to accumulate. Thus, global consistency
can be achieved mainly by rigid body transformation of sub-
maps, i.e. without touching the dense data.

To make this possible we define a sub-map to be a TSDF
grid plus the 6DOF pose of its origin. This pose is added as
a SLoM variable to the graph SLAM problem, so that the
optimizer can move maps around if that reduces the overall
error in the graph. In our current single-GPU implementation,
each sub-map consists of a 1283 voxels TSDF grid covering
a volume of (7 m)3. We found this rather coarse resolution
sufficient due to our modeling changes in VI and since the
TSDF achieves sub-voxel precision. However, we have 16
K20 GPUs available (across two machines) and one could



also move sub-maps between GPU and host (CPU) memory
on demand to gain higher resolution.

B. KinectFusion ICP Revisited

Let us first have a look at what KinectFusion’s ICP [16]
does internally. It aims to determine the T̂ ∈ SE(3) that
minimizes the point-to-plane residual between two point
clouds ∑

i

(ri)
2

:=
∑
i

(
(T̂ vi − v̂i)T n̂i

)2

, (1)

where v̂i and n̂i are the points and normals from the
reference point cloud and vi the corresponding point from
the second point cloud (determined via projective data asso-
ciation [16]).

To find this minimum it performs least squares optimiza-
tion by runnning a fixed number of Gauss-Newton iterations,
i.e., starting from an initial guess, e.g., T̂0 = I , in each
iteration, it solves the normal system

JTJδ = JT r, (2)

where r is the residual, i.e. the components of (1), J the
Jacobian of r w.r.t. δ, and δ is a 6-vector parameterizing
a small relative SE(3) transform. J and r are very large,
i.e., J ∈ R6×m and r ∈ Rm×1 where m is in the order of
the number of depth pixels. Thus, the much more compact
JTJ ∈ R6×6 and JT r ∈ R6×1 are computed in parallel on
the GPU. The improved estimate is then

T̂k+1 = T̃ (δk) · T̂k, (3)

where T̃ turns a parameter vector δ = (β, γ, α, tx, ty, tz)
T

into a linearized SE(3) transform [16]

T̃ (δ) =

 1 α −γ tx
−α 1 β ty
γ −β 1 tz

 . (4)

At the final iteration, T̂n is the mean of the Gaussian
estimated transformation between the two point clouds and
JTJ its information matrix or inverse of the covariance, i.e.

JTJ ≈ ΩICP = Σ−1
ICP . (5)

The mean is a regular SE(3) transform and can be inter-
preted independently of how it was computed and can thus be
directly used in a SLoM link. More care must be taken with
ΣICP as it is defined in terms of the parameterization (4) of
δ which we will get back to shortly.

C. KinectFusion ICP as a Link in SLoM

First, let us briefly review the SLoM [10] framework.
It solves the least squares problem minimizing the sum of
squared residuals

X̂ = argmin
X

1
2

∥∥∥∥ f1(X)�z1
:̇

fm(X)�zm

∥∥∥∥2

Σ

, (6)

where X is the stacked vector of all variables to be estimated,
the zi are the measured data, the fi(X) the measurements
predicted by the respective measurement model fi based
on all dependent variables in X , and ‖·‖Σ denotes that

all measurement residuals have been normalized to be of
unit covariance. � is the difference operator of the �-
method [10]. Combined with the matching addition op-
erator �, this enables SLoM’s least squares optimizer to
manipulate variables from a non-Euclidean manifold S (such
as 3D orientations) as if locally they were plain vectors [10]:

� : S × Rn → S, � : S × S → Rn. (7)

This can be thought of as a generalization of the exp and
log known from Lie group theory to generic manifolds.

SLoM supports the use of different � operators for
different measurements. Thus, we need to find a � that is
compatible with the parameterization of the small transform
in KinectFusion’s ICP as defined by T̃ (δ) from (4). Apart
from sign and variable ordering, the rotation part is the same
as the standard � on SO(3) [10]. The translation is normally
handled independently by SLoM, but we can easily define a
new � that does the same as KinectFusion:[

R1 t1
0 1

]
� δ :=

[
R2 t2
0 1

]
, (8)

where

R2 := exp (

[̂
−α
−β
−γ

]
) ·R1 (9)

t2 := exp (

[̂
−α
−β
−γ

]
) · t1 +

[ tx
ty
tz

]
, (10)

and exp denotes the exponential map used in the standard
SO(3) � [10] implemented by means of the Rodriguez
formula. The corresponding � is then simply the inverse: β

γ
α
tx
ty
tz

 :=

[
R2 t2
0 1

]
�

[
R1 t
0 1

]
, (11)

where [
−α
−β
−γ

]
:= log (R2 ·R−1

1 ) (12)[ tx
ty
tz

]
:= t2 − (R2 ·R−1

1 ) · t1 (13)

and log is the inverse of the standard SO(3) � exp above.

IV. DEFINING THE SLOM LINKS FOR GRAPH SLAM

Now that we have shown how KinectFusion-style TSDF
maps and graph SLAM can be combined in general we will
discuss how this can be used for graph SLAM on a wheeled
robot such as Agile Justin.

The nodes in the SLoM graph are the variables to be
estimated. In our scenario these are the robot poses F̂W←Rt
and the poses of the sub-map origins F̂W←Sk where F̂A←B
denotes an estimated SE(3) transform from B to A, W is
the world, Rt the robot coordinate system at time t, and Sk
the k-th sub-map. The measurement models and measured
data form the edges or links in the graph. For each type of
measurement these will be given below.



A. Odometry Links
The odometry measurement model simply determines the

relative transform of two poses:

F̂Rt←Rt+1
= (F̂W←Rt)

−1F̂W←Rt+1
(14)

Comparing this with the transform FRt←Rt+1 measured by
odometry yields the following residual:

F̂Rt←Rt+1
� FRt←Rt+1

(15)

The covariance of the odometry link is derived from the as-
sumption that along the (approximately) straight line segment
(for a small distance) traveled in that link noise continuously
affects the wheel measurements that made the link. This as-
sumption leads to an analytical formula that correctly models
the dependence of the covariance on the link itself and the
correlation between position and orientation. We have taken
this formula from the function stdCovariance in the
implementation of [8] and lifted it to 3D by adding noise
in pitch and roll direction in a similar way to accomodate
for vibrations and steps in the environment.

B. Near Ground Links
Although, locally, we want to permit full 6DOF motion,

globally, Justin remains roughly at the same level by virtue
of its design as a wheeled robot and its environment. We
call this the “near ground measurement” which simply states
that up to a standard deviation of 0.05 m the z-ordinate of
all F̂W←Rt is zero which corresponds to the height of door
steps in our lab. This does not suppress motion in z-direction
altogether, but prevents unconstrained drift.

C. Frame-to-Map Links
So far, we have a pure robot pose graph. We will now

attach the sub-maps to it via ICP. For these frame-to-map
ICP links we first compute a raycast (as KinectFusion does
on a single map) on all nearby sub-maps that are intersected
by the surface in the current depth image (V-B) and then
merge these into a single raycast by taking the minimum
depth data point for each pixel. This yields a synthetic depth
image as it should have been observed from the sensor pose
(F̂W←RtFRt←Kt) given the surface model in the sub-maps,
where FRt←Kt is the transform from Kinect (K) to robot
coordinates at time t according to forward kinematics. Both,
the synthetic and the real depth image are converted into
point clouds and then we run ICP to estimate the relative
transform between the two. Conceptually, however, this is
a relation between the depth image and the map. Thus,
we transform it to yield the sensor pose relative to each
sub-map FSk←Kt and with FRt←Kt obtained from forward
kinematics and stored as user data in the SLoM link compute
the residual:

(F̂W←Sk)−1(F̂W←RtFRt←Kt) � FSk←Kt (16)

We also transform the covariance as returned from ICP to
be in the correct coordinate system via

Σ′ICP =
[
Q 0
0 Q

]
· ΣICP ·

[
Q 0
0 Q

]T
(17)

where Q is the rotation in FSk←Kt .

D. Frame-to-Frame Links

We also support frame-to-frame ICP links. In this case
ICP estimates the relative transform FKt←Kt+1

between two
Kinect poses at two consecutive points in time based on the
corresponding depth images. The covariance is taken as-is
from the ICP and with FRt←Kt , FRt+1←Kt+1 obtained from
forward kinematics and stored as user data in the SLoM link
the residual is determined as follows:

(F̂W←RtFRt←Kt)
−1(F̂W←Rt+1

FRt+1←Kt+1
) � FKt←Kt+1

(18)

Note, however, that although also ICP-based this is struc-
turally different from frame-to-map links: While frame-to-
map links essentially perform localization against a global
frame of reference, frame-to-frame links perform localization
against the previous frame only, i.e. localization errors, no
matter how small, add up quickly when many frame-to-frame
links are used. Thus, the only frame-to-frame link we actually
use is to connect the last and first depth frame for loop
closure as discussed in the next subsection.

E. Relocalization and Loop Closure

Relocalization refers to determining whether the current
view matches a previously visited place. This is useful to
reset accumulated pose estimation errors when revisiting
known places after long loops. It could be achieved by
keypoint-based methods such as [4] but it is not our focus
in this paper. Instead, we manually pass in relocalization
information as an external signal and compute the spatial
relationship via ICP. This relative transformation is added
to the graph SLAM problem as a frame-to-frame link. Our
main intention here is to show that the rest of our system,
particularly the handling of sub-maps, supports this loop
closure situation.

F. Loose Sub-Map Attachment Links

Finally, to prevent the sub-map origins from drifting along
undefined DOFs (e.g. in a straight corridor) we introduce a
loose coupling (standard deviation 1 m, 1 rad) of each sub-
map Sk to the robot pose Rξk from which it was created.
Thus, we compare the predicted sub-map pose relation with
the initial relative sub-map pose stored at the time of its
creation ξk to yield the residual function

(F̂W←Rξk )−1F̂W←Sk � FRξk←Sk,ξk (19)

V. SUB-MAP MANAGEMENT

A. Sub-Map Creation

Our placement policy for sub-maps to be newly created
is to place their center at a fixed distance of presently 1.2
times the map radius (3.5 m) ahead of the robot in the current
viewing direction of the Kinect sensor. Maps are newly
created if this center is more than the map radius away from
any other recently added map. An example of this process
is illustrated in Fig. 2. A better policy is certainly possible
(less overlap, fewer sub-maps). However, to us it was most
important to ensure that no sensor data is “lost” because
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Fig. 2. Sub-map creation policy: New sub-maps are always created ahead
of the robot in the viewing direction of the Kinect sensor such that those
parts of the world observed by the sensor can be stored in the map. When
the head turns (left) this leads to maps being swept around the robot. When
the robot moves while the head joints are fixed (right) new maps cover the
area ahead of the robot.

it falls into space that is not covered by a sub-map and to
ensure overlap such that free-space information in particular
is preserved for planning [21].

Note that the division into sub-maps could also be changed
after the fact. Whenever the surface within two TSDF sub-
maps is well-aligned a combined map can be obtained by
simply projecting voxels (signed distance plus weight) from
one into the other and performing weighted averaging. In
particular, this would be useful upon loop closure (but we
have not implemented it yet). Note that perfect alignment
is not necessary for this to work: There just needs to be
sufficient overlap of the TSDF support regions (i.e. the region
where the signed distance is not truncated yet).

B. Sub-Map Updating and Contribution of Sub-Maps to
SLoM Links

We still need to answer two related questions: 1. When
does a sub-map need to be updated to enter new depth data?
2. When does a sub-map contribute to a SLoM ICP link?
Both can be determined by computing the intersection of
depth data with the bounding box of a sub-map. We do this
on the GPU by checking the following two conditions for
each depth pixel. A sub-map update is needed if

λ1 < z + µ(z), (20)

where λ1 is the depth at which a ray through this pixel
first intersects the bounding box of the sub-map, z the mea-
sured depth and µ(z) the depth-dependent TSDF truncation
distance (VI). Whether a sub-map contributes to a SLoM
ICP link ultimately depends on the surface model within the
sub-map and will be determined by performing a raycast to
generate the point cloud the ICP takes as input. Raycasts,
however, are expensive even on the GPU, so we want to do
this only if there is a chance that a sub-map can contribute
at all. This is the case if for any depth pixel

λ1 < z < λ2, (21)

where λ2 is the depth at which a ray through this pixel
intersects the back of the bounding box of the sub-map.

Executed on the GPU these two checks are rather cheap,
taking about 0.15ms per depth image and sub-map.

C. Sub-Map Rebuilding

Deformation of the pose graph can lead to inconsistent
sub-maps especially when the robot moves around corners
where there is a large odometry error due to friction/wheel
slippage and ICP is difficult as the world around the corner
has not observed before. Thus, we re-build affected maps by
re-running the usual KinectFusion map update procedure on
all frames with their new camera pose as determined from
the robot pose graph.

To make this possible we keep the raw disparity data as
PNG-compressed images (∼ 110kB/frame) in host (CPU)
memory which are transferred to the GPU as needed. Keep-
ing the raw data may seem wasteful but host memory is
cheap today, GPU memory sizes and transfer bandwidth
are steadily increasing. With future GPU/unified memory
architectures already announced by AMD/Intel this will be
even less problematic as the lines between host and GPU
memory will blur further.

Presently, we rebuild all sub-maps. However, we believe
this is actually only necessary when the pose graph within a
sub-map has been deformed to a certain extent. We have not
implemented the book-keeping code required to determine
this yet, but it would make the re-building of a sub-map a
rare occasion primarily needed when large loops are closed.

Note that alternatingly re-building of sub-maps and graph
optimization yields an expectation-maximization (EM) like
procedure that converges to the maximum likelihood overall
SLAM solution. In our experience, already a single iteration
results in very good maps (Fig. 4; Fig. 6, right). The full
iterative process with alternating map re-building and re-
running the ICP, however, is future work.

VI. AN IMPROVED SENSOR MODEL IN KINECTFUSION

The original KinectFusion algorithm [16] neglects an
important characteristic of the Kinect sensor: It is essentially
a stereo camera and thus measures disparity not depth. This
was first described within a calibration context [13], later
re-discovered through analysis of the optical geometry [12]
or model fitting [17] and most importantly means that the
metric depth error is proportional to z2. Analytically, this is
easy to see since

z =
b · f
d
⇒ dz

dd
=
−b · f
d2

=
z2

−b · f
. (22)

As a by-product of our own Kinect calibration [20] we can
confirm that as illustrated in Fig. 3 the disparity error is
constant while the depth error grows quadratically with depth
where the 2-σ bound can be approximated as

2σz = 0.008 m−1 · z2. (23)

Our focus here is that this effect has dramatic conse-
quences wherever it is not modeled correctly when using
Kinect data at large ranges of up to 10 m as it leads to 2-σ
depth errors of up to ±0.8 m. Thus, we modify several parts
of KinectFusion. The combination of these changes allow us



0.5 1 1.5 2 2.5 3 3.5 4

−10
−5
0
5

10

0.5 1 1.5 2 2.5 3 3.5 4

−0.4
−0.2

0
0.2
0.4
0.6

Fig. 3. Kinect depth error [cm] vs. depth [m] (left) and the disparity
error [px] vs. depth [m] (right; 2σ bounds as solid lines) as a by-product of
Kinect calibration using checkerboard corners with known geometry [20].
The disparity error is constant while the depth error grows quadratically.

to achieve a quality of large-scale maps that to our knowledge
has not been described in the literature before.

In the bilateral filter which is used for smoothing of depth
images, the depth discontinuity parameter needs to be scaled
with σz . The same goes for the threshold that determines
whether pixels contribute to the averaging filter in the depth
image down-sampling. As for the ICP, like any other least
squares method it should normalize measurement residuals
based on appropriate noise models. SLoM does this based
on the Σ in (6). The original KinectFusion ICP [16] treats
all point-to-plane residuals equally leading to biased sensor
pose estimates. We normalize these by scaling them with
1/σz when the normal system (2) is computed on the GPU.
This is not exact as the exact measurement noise obviously
depends on the orientation of the surface patch with respect
to the sensor (which would be computationally too expensive
to consider) but it models the predominant error source.

The most visible effect on the overall mapping perfor-
mance is achieved in the TSDF mapping code itself. Recall
that the TSDF stores in each voxel the signed distance to
the nearest surface but only within a support region of ±µ
around surface. Farther into objects the TSDF is undefined
and farther away from objects it is truncated to a maximum
value. The weighted depth averaging that is vital to map
quality, as over time it eliminates sensor noise, only happens
within this support region. We originally assumed µ to be
a fixed parameter, upon second reading it turns out that
the KinectFusion authors [16] in fact scale µ linearly with
distance from the sensor. Given (23) this is obviously not
sufficient. Instead we scale µ via

µ(z) := max(15 · l, 2σz), (24)

where l is the voxel side length and 15 an empirically
determined factor [22] that defines the minimum support
region size. The second mapping change is in the weights
of the weighted depth averaging. The KinectFusion authors
propose [16] a weight of cos(θ)/z where θ is the angle of
the camera ray vs. the surface normal but suggest that in
their experience a constant weight of 1 works equally well.
We find that this is not true in our setting where surfaces are
observed first from very far away (10 m) and later from up
close (< 1 m). Here, too, it is crucial to model the sensor
noise that increases quadratically with depth. Thus, we use
weights of 1/z2. We believe the angular factor of cos(θ)
would help further as Justin often sees some surfaces under
a poor viewing angle, but we have not implemented this as,
again, it would be computationally too expensive.

Tabletop
Workspace

Other
Workspaces

Corridor A

Corridor B

Corridor C

Start/End

Fig. 4. Overview of our lab environment used for the experiments with
several places labeled. The panoramic photo in Fig. 1 was taken from the
bottom left corner. The overview map is a 2D slice at z = 1.5m of a 3D
map generated in a single large TSDF grid after loop closure and pose graph
optimization (i.e. without frame-to-map links).

VII. EXPERIMENTS

We already know [20] that graph optimization using the
�-method works well on problems consisting of 6DOF pose
relations. Thus, we believe the key question in evaluating
the method in this paper is: What happens to the map under
deformation of the SLoM graph – does it remain consistent?

To assess this let us consider the worst case, a loop closure
after a long loop. We have acquired several logs of Agile
Justin traversing a 50 m loop in the institute building. An
overview of this scenario with several labeled places is given
in Fig. 4, the final map is depicted in Fig. 1. The trajectory
was chosen such that the start and end pose of the robot was
identical up to a precision of a few millimeters and a few
degrees. As noted above, the loop closure ICP link is added
upon a manual signal when the robot reaches this start/end
pose after the loop. All processing is done on log data. The
initial sub-maps and the full SLoM graph are built in real-
time. Graph optimization happens in batch mode once the
complete graph is available. In future work, this could easily
be changed to run at regular intervals and on a relevant sub-
graph only for online operation.

To check for global map consistency we run the optimizer
with the frame-to-map ICP links deactivated. What we expect
to see is that the sub-maps are moved generally consistently
with the pose graph as they are loosely attached to the
poses from where they were created via (19). As shown
in Fig. 5 this is indeed the case. A closer look, however,
reveals that there is some mis-alignment in the form of gaps
between sub-maps in corridor B as shown at the bottom of
Fig. 5. This is expected as there is no other measurement that
would observe this error when the frame-to-map links are
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Fig. 5. 2D slice of the map before (top left) and after optimization (top right; axis ticks in 5m steps). 3D mesh export of the overlapping sub-maps
before (bottom left) and after (bottom right) graph optimization. The graph optimization nicely aligns the overlapping sub-maps.

deactivated. If we activate these links as well, as illustrated
in Fig. 6, the overall map becomes locally consistent in so far
as gaps between sub-maps are now closed and the corridor is
“straightened”. This straightening effect, however can only
work at the resolution chosen for the division into sub-maps
as the SLoM graph optimization cannot modify the content
of sub-maps. This is handled by re-building the sub-maps
based on the optimized sensor poses taken from the SLoM
graph and the original Kinect depth data. Within a single
map this effect is hard to see in our data sets as Justin’s
odometry alone is already very precise (less than 1.8 m
accumulated position error after the whole loop). Another
effect, however, is clearly visible in Fig. 6: Overlapping sub-
maps disagree slightly about the location of surfaces before
sub-map-rebuilding. After sub-map-rebuilding they are much

more consistent. Perfect consistency will only be achieved
after iterated graph optimization, ICP, and map-rebuilding,
but, as noted in V-C, this iterative process is future work.

All processing was done on a single-core of a Xeon E5-
2643 @ 3.30 GHz and an Nvidia K20 GPU with 5 GB GPU
memory. Computing times and problem size are as follows.
ICP run including preprocessing per frame: 22 ms; map
update per frame and 1283 voxel sub-map: 1 ms; SLoM iter-
ation: 1.5 s; typically 8 iterations until convergence; SLoM
graph size: 5313 robot poses, 52 sub-map poses, 5312
odometry links, 5313 near-ground links, 28121 frame-to-map
ICP links, and 1 frame-to-frame ICP link.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a method to integrate dense geometric
TSDF maps as used in KinectFusion with a sparse parametric



Fig. 6. Left and Center: 3D mesh export of sub-maps containing the corridor based on odometry plus loop closure (left) and additionally with frame-
to-map ICP links (center), both after graph optimization. While on the left sawtooth-like errors are clearly visible, the frame-to-map ICP links cause the
optimizer to better align sub-maps to one another and to generally straighten the corridor. Right: 2D slice of corridor B before (red) and after (blue)
sub-map re-building (right). Before map-rebuilding overlapping sub-maps disagree slightly about the location of surface so that they appear multiple times
across the whole map.

representation common in graph SLAM. The key idea is to
have local TSDF sub-maps attached to reference nodes in
the SLAM graph and derive graph-SLAM links via ICP. The
graph-SLAM optimizer can then move these reference nodes
and thus the overall map can be deformed without touch-
ing individual sub-maps. Re-building of sub-maps is only
needed in case of significant deformation within a sub-map.
Additionally, we have modified the KinectFusion algorithm
to improve handling of long range data by better respecting
the range-dependent uncertainty. We have implemented our
method in conjunction with a simple odometry model of a
humanoid robot, evaluated it on log data from a loop through
corridors of our lab building and confirmed that the map
deformation in particular works as intended.

With little implementation effort, the system could be
converted from batch optimization to online, incremental
operation. The EM-like iterative sub-map re-building (V-C)
is not difficult either. In future work, we intend to fully
leverage the parametric graph-SLAM capabilities for a more
sophisticated robot model (e.g. elasticities in the kinematics
chain) and fusion of additional sensor data (e.g. IMUs).
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