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Abstract

In this technical report we present a data set, which can be used by researchers to test and compare their
algorithms related to feature-based SLAM and in particular data association. The data set covers a large path
mostly in an indoor office environment with artificial and natural landmarks. It provides odometry and geo-
metrical results from computer vision based landmark detection, as well as raw images and camera calibration
data. The artificial landmarks are white discs on the floor where the position relative to the robot is provided as
measurement. The natural landmarks are vertical lines where only the bearing relative to the robot is provided
and data association is remarkably difficult.

This technical report provides full information about experimental setup, model and measurement functions.
The focus of this data set is on data association and for comparison of different approaches we provide full
ground truth by annotating all features.

1 Introduction

In the research field of mapping and localization working with real data is on the one hand essential and on
the other hand laborious. So most researchers develop their algorithms on recorded data. A lot of data sets
are available on the internet, for instance on the Radish repository [9]. Remarkably, however, for Simultaneous
Localization and Mapping (SLAM) most data sets provide raw laser scan data only, while most researchers work
on feature based algorithms. An exception is the well known Victoria Park data set[3] [6], where trees in a park
are natural features and tree detection code is provided with the data set. As a consequence, Victoria Park is more
or less the only data set used in comparing feature based SLAM algorithms.

The data set we present here evolved also from real experiments in feature based SLAM, which in the first place
have been recorded for a specific use. But we thought it interesting enough to polish it, make it easy to use and
document it for a broader community.

In particular we wanted to provide fully preprocessed data, first, to relieve you, as a user, from implementing
feature detection and second, to make the core SLAM or data association algorithm more comparable.

Our proposed data set is based on sparse features detected by a vision system. The data set is already prepro-
cessed, meaning that you don’t have to write your own feature extraction or do your own vision processing, if
you don’t like to.

As features you can choose between artificial landmarks, namely circles on the ground, and the natural features,
arbitrary vertical lines.

While the circles where already used in experiments and can be considered as a solvable problem and more
as an additional set to the Victoria park sequence, we believe the vertical lines are a major challenge for data
association. They are typical, natural and nice features in an office environment. They are relatively easy to
detect and there are many of them. This, on the other hand is the major challenge of vertical lines that there are
so many, it is hard to say which one is which. We combined near adjacent lines, but they still may be ambiguous,
for example a line far away may split up in two or more lines, when the robots approaches a certain corner. The
bearing-only information, the number o flines, and the phenomon of splitting lines make the data association
difficult.

All information about measurement and odometry is represented in geometric quantities, ready as input for your
algorithms. Our data set focuses on the data association problem therefore we added ground truth values for data
association to be used to evaluate your data association algorithms to others.

The data set also meets other requirements for a interesting data set: The path the robot travels in one run is long.
The field of view is small conditioned by the office building. There are some small and one big loop that make
data association particularly interesting.
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1.1 Related Work and Data Sets

The idea of having publicly available data sets for research is, of course, not new. We will present just a few sets
and sources and will then try to analyze the differences to our set.

1.1.1 Victoria Park

One of the most popular data sets for simultaneous localization and mapping is the Victoria Park Sequence
recorded by Eduardo Nebot et al. at the Australian Centre for Field Robotics and introduced in [3]. This data set
describes a path through a park at the University of Sydney. It covers a region from about 350 meters in square
and uses mostly trees as landmarks. The data is collected from laser range finders and velocity sensors attached
to a car driven by a person. In addition GPS data is recorded and can serve as ground truth for the path.

The data set contains sensor readings from steering and rear-axis wheel (odometry) and laser range finder (360
degrees per second) along with the ground truth position data from GPS. All inputs are fused in a Sensor Manager
which simply sorts the sensor input in their arriving chronology.

The data set is preprocessed for Matlab in the way that all sensor readings are already in Matlab-compatible
formats and you can directly access each sensor reading for a certain time step. For the laser range data a tree
detector provides features with bearing and distance information.

If you cannot or don’t want to use Matlab, then you have to build a feature extractor (usually trees) for the laser
range data yourself.

From the data association point of view the Victoria Park sequence is relatively easy. The trees that are used
as feature landmark usually have a large distance to each other and can be separated or uniquely identified with
commonly used algorithms or tests, like the Mahalanobis distance.

The travelled path of the car doesn’t have any big loops and in the small loops you can usually see all the land-
marks in that region because the range finder has a large coverage (maybe 30m). For SLAM and especially for
the data association problem loops are an important factor. Closing big loops usually increases the requirements
to the underlying algorithms.

The Victoria park sequence contains also ground truth data obtained from a GPS sensor. From the nature of GPS
the path has blackouts as you can see in the figure 1.
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Figure 1: Victoria Park: GPS data
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Pros and cons The Victoria park sequence is a well documented and already widely used data set. It’s
used for feature based SLAM methods even when it actually a laser scan based data set. SLAM on this set is
already solved including the data association problem (see e.g.[8]). It lacks bigger loops and bigger difficulties
in general.

Our proposed data set is based on genuine feature landmarks. It focuses more on the data association problem,
which is particular difficult if you use the line features.

1.1.2 Radish

Beside the very popular Victoria park data set many researcher provide some data from their typical testing
environment. Many such data sets are published at the Radish Repository. The Radish Project (Robotics Data
Set Repository)[9] started to collect useable data for the robotics community in general but until now it’s mostly
focused on localization and mapping.

You will find mostly laser scans from different buildings, often even only the generated map. At time of this
writing (mid 2008) Radish contains about 40 entries with about two third laser range based, a few maps and
also some simulated data. One data set is based on wireless strength measurement. A data set from University
Alberta is one of the few that is feature based.

ualberta-csc-flr3-vision

While most are based on laser range finder sensors. We picked one which is based on vision and features using
the SIFT algorithm.

The data contains images (512) of a small rectangular run through some hall balcony. For each image an extra
file provides SIFT features[4], which are computed with the SIFT Demo from Lowe[5]. As some kind of ground
truth for own localization experiments a localizer using the ceiling tiles was running in parallel augmenting each
image with a global robot state (2D, 3DOF) and a covariance matrix. There is no odometry from the robot aside
computing it from the global robot positions. The information about the camera is not suitable for defining a
measurement model. It misses the extrinsic and intrinsic camera parameters and therefore it’s not possible to
extract landmarks from the SIFT-features and add them to a map in global coordinates.

The path travelled does not include loops or any other special difficulties. It’s a round trip through the upper
corridor of the Computing Science Centre of Alberta.

The data set looks interesting but lacks a lot of information needed to start right away with implementing own
algorithms on this set. The SIFT feature are a nice add-on, but you could compute them yourself easily and they
are not processed further to actually extract track-able landmarks from each image.

2 Experimental Setup

The data set we like to propose evolved from the data used for a PhD Thesis[1] on efficient SLAM. It was
recorded at the DLR (Deutsches Zentrum für Luft und Raumfahrt) Institute of Robotics and Mechatronics build-
ing with a mobile robot controlled by hand. The building covers a region of 60m x 45m and the robot path
consists of three large loops within the building (plus a small outside path) with a total length of 505 meters. On
the way the robot visits 29 rooms. You can see an architectural map in Figure 2.

The robot is equipped with four wheels, each with one motor for steering and another one for moving. Since
wheel axis and steering axis intersect, the robot is able to move omni-directionally but is not holonomic. Internal
robot control estimates the robot’s velocity with corresponding covariance. The estimate is based on the wheels’
angular velocities measured by incremental encoders and the nonholonomic constraint that the wheel moves
perpendicularly to its axis. From the estimated velocity, the robot’s odometric position is integrated with0@ ṗx

ṗy
ṗθ

1A =

0@ cos pθ − sin pθ 0
sin pθ cos pθ 0

0 0 1

1A0@ vx
vy
vθ

1A (1)

The derivation of the covariance is also found in [1](p. 50ff). The Y-axis robot coordinate system points contrary
to straight forward movement of the robot and the X-Axis points to the left. The robot is equipped with a stereo
camera1 mounted on a pan-tilt unit. For the experiments only one camera was used and the pan-tilt unit stayed

1A standard PAL camcorder zoom/iris/auto focus camera module: Sony EVI-371DG
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Figure 2: Sketch of the path the robot travelled through the DLR building

fixed. The camera parameters where calibrated with respect to the floor and it’s position on the robot’s pan-tilt
unit. The robots coordinate system and the camera coordinate system are translated as you can see in figure
4. Calibration results and a reference implementation of the camera model (pinhole with radial distortion) are
included in the data set. The camera images are interlaced, to avoid problems with shifted scan lines only the
even lines from each scan are stored in the image.

The whole path is discretized in 3297 single steps, each with full information on odometry and all measurements
of landmarks in robot-centric coordinates. One particular challenge exists at the left upper corner in the data
set (arrow in figure 2). The short outside path has a different surface than inside the building and therefore
the calculated odometry error is incorrect for the outside path. This is especially important because there are
no overlapping landmark from inside and outside the building and the outside path closes a big loop. This
circumstances make it extra difficult to match landmark observations after re-visiting the corridor again.

The same data set comes with two kinds of landmarks. One can choose between circular disks (fiducial) and
vertical lines (natural features). Each landmark has a unique label (identifier) manually annotated to provide data
association ground truth. Of course since this information would not be available in reality, your own solution is
not supposed to use it except for evaluation.

2.1 Circular Discs

The first class of features are artificial circular disks that were outlaid on the floor throughout the building.
A vision algorithm detects these landmarks and transforms them with the underlying camera model to pure
geometric measurements in robot coordinates. Each circular disk has then a x, y-coordinate and a corresponding
covariance matrix describing the measurement error. (Figure 5)

2.2 Vertical Lines

The second class of features are vertical lines in the office environment which can be door frames, images at the
wall, lockers and so on. Because offices are highly dynamic good heuristic to only detect usable and reliable
landmarks is to require each line to have a certain length and begin above the horizon. This way moveable table
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Figure 3: The DLR Robot
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Figure 4: The robot coordinate system, the translation of the camera and the FOV of the camera on
the ground

chairs etc. are ignored. A vision algorithm detects such features from the natural unaltered environment. Such
lines are often very close to each other or even touch. The algorithm then assembles lines to one and adds a
probability distribution for the resulting line. In Figure 6 you can see an example of detected lines from the data
set. The small red horizontal bars at the bottom of each line are an indicator for the probability distribution. After
this step it is no longer possible to decide which line you really see in the data.

In contrast to circles the line landmarks are not artificial. The detection of vertical lines is easily possible with
todays vision systems and should be considered as an alternative to other approaches. Especially in indoor
environments you can find plenty of these vertical lines, that are usable and also permanent, even when the envi-
ronment is dynamic otherwise. The main problem in using vertical lines as landmarks is a robust data association.
While the circular disks were actually used in experiments, the use of lines as landmarks is still a challenging
subject. Having bearing-only data is already more difficult than full relative coordinates but especially difficult
are the ambiguous annotations. They are necessary because from far away different lines appear in one direction
and only split up later, when you look at them from near enough. So if A and B are very close, from a certain
distance no algorithm can decide whether it is A or B. But you would still want the information, that a feature
could be A or B and not only A if it splits up in A and B later. Information would be lost, since we cannot
decide which feature you would expect.

3 The DLR-Spatial Cognition Data Set

Using foreign or unknown data sets needs integration work. You need all sorts of information regarding the setup
and calibration of all hardware used. We give you an (complete) overview on how the data sets were generated.
And how to interpret certain parts.

You can use the data in three ways, each modality has it’s own section because the format of the data may differ.
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Figure 5: One step from the circular disk data set

Figure 6: One step from the natural line features data set

When you download the data set from [2] and extract the archive, you will find a tree of directories and files.
Included are the four runs (c,d,e,g – a,b,f were broken and removed) with a directory for the single images
(if you downloaded the big archive) and some files. The main part of the data has the endings .circles
or .lines for the run with circular features and respectively with lines landmarks. In the standard setup the
files are called map.circles and map.lines. In these files for each odometry step a list of measurements
are associated. The file dlr-spatial cognition-X.cam contains the camera parameters describing the
camera model. The file dlr-spatial cognition-X.txt contains odometry steps only and should usually
not be used, because the information is also contained in the map-files. The file with suffix assoziation and
assoziation lines are results of our internal tool for labeling the features and can be ignored. If you find,
that you need to re-label some features, we can make the tool available.

Beside the data itself we provide some reference code that shows how you can work with the data, like reading
the data, interpreting the camera model configuration et cetera. A helper script adds noise to the data sets and
several other files give examples how to handle the data sets by implementing for examples a full least-square
calculation and EKF-SLAM. For more detail see section 3.4.

3.1 Circular Landmarks

As described above for this set circular disks were used as artificial features.

3.1.1 Data Format

The files map.circles contain the information about odometry and measurements. The format is line-based.
Lines starting with # are comments, white space lines should be ignored. A odometry step is initiated with the
keyword STEP. After a STEP-Line follow a varying number of LANDMARK C lines (0 − n) each to indicate a
measurement of a feature (landmark). The measurements are made after the STEP took place.

A STEP line is arranged in white space separated parts. After the STEP keyword follow ten more entries.
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Field Meaning Example Units
Keyword First word in the line STEP
Image prefix how the corresponding image is named

in images directory
dlr-spatial cognition-e.0002

dX
Location of the robot after movement
in the coordinate system before moving

0.00088 m
dY -0.15647 m
dφ 0.01153 rad

Cx,x

The entries in the covariance matrix of
(dX, dY, dφ)T

0.000016397281 m2

Cx,y -0.000000002137 m2

Cy,y 0.000014026487 m2

Cx,φ 0.000021731727 mrad
Cy,φ -0.000000042656 mrad
Cφ,φ 0.000261252446 rad2

A measurement line consists of seven entries and is arranged as followed:

Field Meaning Example Units
Keyword First word in the line LANDMARK C
px The coordinate of the landmark observation in

respect to current robot position
-0.775408 m

py -1.89416 m

Quality A measure for how good the detection was (0− 1.0 ) 0.7294
Cx,x The entries in the covariance matrix of

(px, py)T

0.00173244 m2

Cx,y -0.000000002137 m2

Cy,y 0.000014026487 m2

ID The unique identifier for this landmark (ground truth) 123

An example of the data file format is shown in Figure 7.

STEP dlr-spatial_cognition-e.0067 0.00391 -0.15602 -0.00218 0.000014424957 \
0.000000041534 0.000012538057 0.000018179117 0.000000374277 0.000233656364

LANDMARK_C -0.302229 -2.66488 0.962567 0.00169895 0.000127857 0.00293675 26
LANDMARK_C 1.0116 -2.15034 0.951867 0.00175878 -0.000250459 0.00238307 25
LANDMARK_C -0.96104 -1.69011 0.993179 0.00171485 0.000154117 0.00202176 24
STEP dlr-spatial_cognition-e.0068 0.00234 -0.15677 -0.00241 0.000014516278 \

0.000000028754 0.000012599615 0.000018361033 0.000000288615 0.000234812837
LANDMARK_C -0.176652 -3.54651 0.756458 0.00174355 0.000174856 0.00500673 28
LANDMARK_C -0.302829 -2.53982 0.978849 0.0016918 0.000113261 0.00275804 26
LANDMARK_C 1.01062 -2.01621 0.96499 0.00174479 -0.00021812 0.00226073 25

Figure 7: Example of the data file

3.1.2 Measurement Function/Model

To estimate a global position p(t1) at time t1 from the current position p(t0) and odometry dr a model function
is used. To describe the robot motion model for this experiment you can use:

px(t1)
py(t1)
pΦ(t1)

= f1

0@0@ px(t0)
py(t0)
pΦ(t0)

1A ,

0@ dx
dy
dΦ

1A1A =

0@ px(t0)
py(t0)
pΦ(t0)

1A+

0@ cos pΦ − sin pΦ 0
sin pΦ cos pΦ 0

0 0 1

1A0@ dx
dy
dΦ

1A
(2)

For convenience we also provide the Jacobian for the model function (see also Section 3.4):

J1 :=
∂p(t1)

∂p(t0)
=

0@ 1 0 − sin(pΦ)dx − cos(pΦ)dy
0 1 cos(pΦ)dx − sin(pΦ)dy
0 0 1

1A (3)

J2 :=
∂p(t1)

∂dr
=

0@ cos(pΦ) − sin(pΦ) 0
sin(pΦ) cos(pΦ) 0

0 0 1

1A (4)
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For two given global robot positions p(t0) and p(t1) the expected measurement (odometry) is modeled as fol-
lows: 0@ dx

dy
dΦ

1A := f2

0@0@ px(t0)
py(t0)
pΦ(t0)

1A ,

0@ px(t1)
py(t1)
pΦ(t1)

1A1A =

0@ cos pΦ sin pΦ 0
− sin pΦ cos pΦ 0

0 0 1

1A 0@ px(t1)− px(t0)
py(t1)− py(t0)
pΦ(t1)− pΦ(t0)

1A (5)

With the following Jacobian:

J3 :=
∂dr
∂p(t0)

=

0@ − cos(pΦ) − sin(pΦ) − sin(pΦ)(px(t1)− px(t0)) + cos(pΦ)(py(t1)− py(t0))
sin(pΦ) − cos(pΦ) − cos(pΦ)(px(t1)− px(t0))− sin(pΦ)(py(t1)− py(t0))

0 0 −1

1A
(6)

J4 :=
∂dr
∂p(t1)

=

0@ cos(pΦ(t0)) sin(pΦ(t0)) 0
− sin(pΦ(t0)) cos(pΦ(t0)) 0

0 0 1

1A (7)

To transform a global estimated landmark coordinate
„
lx
ly

«
to a local landmark observation coordinate

„
mx

my

«
a measurement model is needed. For the circular disks the following model is applicable:„

mx

my

«
:= f3

0@„ lx
ly

«
,

0@ px
py
pΦ

1A1A =

„
cos(pΦ) sin(pΦ)
− sin(pΦ) cos(pΦ)

«„
lx − px
ly − py

«
(8)

With the Jacobian J5:

J5 :=
∂m

∂pr
=

„
− cos pΦ − sin(pΦ) − sin(pΦ)(lx − px) + cos(pΦ)(ly − py)
sin pΦ − cos(pΦ) − cos(pΦ)(lx − px)− sin(pΦ)(ly − py)

«
(9)

and J6

J6 :=
∂m

∂l
=

„
cos pΦ sin pΦ

− sin pΦ cos pΦ

«
(10)

3.1.3 Detection algorithm

The detection algorithm is sketched in Figure 8. It is based on Hough transform and a gray-level variance
criterion similar to Otsu automatic thresholding[7].

For a given image pixel it is necessary to determine, whether this pixel is the center of a circular landmark: The
key observation is that there is only a single possible circle with that center, since the radius is known and circles
are invariant under rotation in the circle’s plane. Since the camera is calibrated with respect to robot coordinates
and floor plane, the image outline of this circle can be computed: The optical ray corresponding to the considered
pixel is computed in robot coordinates using camera calibration parameters. This ray is intersected with the floor
plane. The result defines the center for two circles, one with a radius slightly smaller than the radius of the
landmark and one with a radius which is slightly larger. Both circles are mapped back into the image. If, in fact,
there is a circular landmark located at the pixel considered, the projection of the smaller circle will be inside the
landmarks image and the projection of the larger circle will be outside the landmarks image. Thus, along the
circumference of each circle the gray-level is basically constant, whereas it is different comparing both circles.

A threshold for checking, gray-level variance statistic is computed along the circumference of the smaller and
larger circle as well as along both circles together. The gray-level variance for both circles is a sum differentiated
into parts: The variance along the inner circle, the variance along the outer circle (intra class variances), and a
term proportional to the squared difference of both means (inter class variance). For an ideal image the intra
class variance should be zero and the overall variance equal to inter class variance. Thus, according to Otsu inter
class variance divided by overall variance is a non dimensional quality measure ∈ [0 . . . 1], invariant under affine
illumination changes.

The projected circles’ outlines for each pixel being the hypothetical center of a landmark are precomputed and
stored. The radius of inner circle, landmarks and outer circle is 6cm, 10cm and 14cm respectively. Each outline
is represented by 16 equally spaced samples to reduce computation time. A pixel is accepted as a landmark if the
quality exceeds a pre-defined threshold (60% in the experiments) and is higher than the quality of all neighbor
pixels. For each accepted pixel the corresponding location relative to the robot is passed as a landmark to the
landmark identification algorithm. Computation time is 8ms for a 768× 288 image on a Intel Xeon, 2.67 GHz.

The implementation is available from the authors upon request in case you plan to use circular fiducials in your
own experiments. It does however need a calibration of the camera with respect to the ground plane.
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inverse perspective

perspective

Figure 8: Landmark detection: For each image pixel the perspective outline of two circles centered
at the corresponding point on the floor is computed and stored in a lookup table. Detected landmarks
are shown by dark crosses together with the computed quality measure.

3.1.4 Experimental Results

The circle-based part of the data set was already used in the experiments of [1] for the treemap-algorithm. We a
added some simple experiments to test the data set and it’s annotation by computing a full least-square estimated
map. We used the Levenberg-Marquardt method to run on the full information and generate a map. In figure 9
the result is shown. The outside path has a relatively large odometry error (see figure 9(a)), so that closing the
loop when the robot enters the building again is one of the main difficulties in this set.
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(a) Map before loops closure
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(b) Final estimated map

Figure 9: Estimated map based on least-square approach (Newton)

To quantify the quality of the provided covariance matrices for landmark measurements and the odometry error
we use the χ2 test. A good measure could be that the minimum χ2 error should be nearly equal to the difference
of the dimension of the measurement vector (dim(z)) and the size of the state vector ( dim(x)). With n landmarks
and p poses in the state vector and m measurements of landmarks and t odometry steps this evaluates to

χ2 ≈ dim(z)− dim(x) (11)
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with
dim(x) = 2n+ 3p, dim(z) = 2m+ 3t (12)

Values and Results
p = 3298
n = 576
t = 3298
m = 14309
χ2-error = 56871.4
Estimated χ2-error = 27466

The χ2-error is the result of nonlinear optimization with Levenberg-Marquardt, whereas the Estimated χ2-error
is the result one should get on average if the covariances were precise. So apparently the dataset is overconfident
by a factor of 56871/27466 = 2.07 on the covariance level or 1.44 on the sigma level. That’s not too bad and
should happen pretty often.

3.2 Line Landmarks

3.2.1 Data Format

The files map.lines is in similar format as the circle-based data set. A odometry step is also initiated with
the keyword STEP after a STEP-Line follow a varying number of LANDMARK L lines (0 − n) each to indicate
a measurement of a feature (landmark). The measurement are made after the STEP took place.

The STEP entries are the same as already described in section 3.1.1.

A LANDMARK L line has at least nine entries after the keyword. The last item in this line is the (ground truth) ID
of the Line, because of the ambiguous nature of the lines (see above) all IDs that correspond to this line in this
particular image this may be several entries. The format is then as follows

Field Meaning Example
Keyword First word in the line LANDMARK L
xtop These values are only for visualization issues.

The y described a normalized line in image
coordinates to draw the line for example in the
viewer

ybottom
xtop
ytop
α Angle of observation in robot coordinates in radians 0.600694
β Angle of observation in respect to the vertical 0.0251159
Quality Old quality (unused) always 0
σα The error of the line (standard deviation of α) 0.00291193
ID[ID..] One or more unique identifier(s) for this landmark (ground truth) 123 34 56

An example of the data file format is shown in Figure 10.

STEP dlr-spatial_cognition-e.0000 0.00088 -0.15647 0.01153 0.000016397281 -0.000000002137\
0.000014026487 0.000021731727 -0.000000042656 0.000261252446

LANDMARK_L -0.80286 -0.625259 -0.694207 -0.273645 0.600694 0.0251159 0 0.00291193 1
LANDMARK_L -0.474484 -0.583026 -0.397523 -0.148873 0.39069 0.0302675 0 0.00574867 4
LANDMARK_L -0.300722 -0.586752 -0.220978 0.0441848 0.255339 0.00867793 0 0.0027596 9
LANDMARK_L -0.169833 -0.58019 -0.147315 -0.254943 0.14735 0.0130423 0 0.00289818 14 681
LANDMARK_L -0.0350638 -0.571825 -0.0321665 -0.22555 0.0318137 0.0194733 0 0.002966 20
LANDMARK_L 0.144026 -0.576694 0.118327 -0.0896802 -0.122526 0.00451754 0 0.00954949 17 18 19
STEP dlr-spatial_cognition-e.0001 -0.00470 -0.18707 0.06820 0.000019834605 -0.000000084074 \

0.000016337711 0.000028153298 -0.000000708950 0.000304450153
LANDMARK_L -0.73896 -0.618702 -0.641319 -0.255913 0.5639 0.040412 0 0.00277288 1
LANDMARK_L -0.518443 -0.592225 -0.469403 -0.325537 0.421207 0.0414013 0 0.00273231 2

Figure 10: Example of the data file

3.2.2 Measurement Function/Model

The measurement model for vertical line feature is not as complete as for the circle case. We only have bearing
information and no distance. It is not possible to convert the bearing information from the camera center to a
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bearing information related to the robot frame without knowing the distance. At most you can make an assump-
tion to get a better initial estimate. In this data set the lines that are detected are usually more then 1m away and
closer than 5m. But an algorithm that exploits this knowledge isn’t generally applicable. If you work with the
data set the following measurement model could be used. This model defines the calculation of an angle of any
landmark seen by the robot from its global estimated coordinate. The translation ∆x and ∆y between the robot
frame and the camera coordinates (as seen in Fig. 4) is part of the camera calibration (shown in detail in the next
paragraph) in the last column of the matrix sensor2World.

The robot motion model from the previous section applies also for the line landmark set and can be re-used.

To transform a global estimated landmark coordinate
„
lx
ly

«
to a local landmark observation angle α, the

following formula must be applied with

0@ p(t)x
p(t)y
p(t)θ

1A being the robot pose:

α = atan2 (−s · (lx − p(t)x) + c · (ly − p(t)y)− cy, c · (lx − p(t)x) + s · (ly − p(t)y)− cx)

with s = sin(p(t)θ) and c = cos(p(t)θ)
(13)

Here (cx, cy) is the position of the camera in robot coordinates (0.0179777m, -0.0808609m). The orientation of
the camera is already included in the measurement α provided in the data-set. However, the derivation of the
Jacobian of this formula is rather complicated and you can re-use the formulas from the circle case to describe

the transformation. Using the measurement model for
„
mx

my

«
for the relative location of one circle landmark

from the previous chapter, α can be rewritten as:

α = atan2(my − cy,mx − cx) (14)

We assume that the line landmarks intersect the ground plane at some point. We use this point to determine the
angle α. The transformation to the camera frame is a simple operation.
The Jacobian of α with respect to m, l and p(t) are:

∂α

∂mx
=

−(my − cy)

(my − cy)2 + (mx − cx)2
(15)

∂α

∂my
=

mx − cx
(my − cy)2 + (mx − cx)2

(16)

J7 :=
∂α

∂m
=

„
cy −my

(my − cy)2 + (mx − cx)2
,

mx − cx
(my − cy)2 + (mx − cx)2

«
(17)

J8 :=
∂α

∂l
=

∂α

∂m
· ∂m
∂l

= J7 · J6 (18)

J9 :=
∂α

∂p
=

∂α

∂m
· ∂m
∂p

= J7 · J5 (19)

The Jacobian J5 and J6 are equations 9 and 10, respectively.

3.2.3 Algorithms

The vertical line detection algorithm2 described in this section detects lines vertical in 3D space from a camera
perspective that is roughly calibrated relative to the ground plane. In particular, the lines need not be vertical and
not even straight in the image, so the algorithm can handle camera distortion and tilted perspectives. Purposely
it detects only lines passing through the horizon. First, this gives more reliable landmarks, because objects as
least as tall as the robot are less likely to be moved around than smaller objects, in particular if the robot is
human-sized. Second, it reduces computation time, since the algorithm first looks on the horizon and only if it
finds a line there tracks the line up and down.

Beforehand the algorithm computes a lookup table from the camera calibration that specifies the shape of the
different vertical lines that are searched for in the image, so for the actual detection algorithm, no computations
using the calibration data are necessary. Specifically, the table contains for each image x-coordinate the y-
coordinate of the corresponding point on the horizon and the vertical line passing through that point. The line in

2The implementation is available upon request.
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turn is defined by an array giving the x-coordinate x(y) for each y-coordinate. This format makes searching for
lines very efficient, but requires, that the lines are very roughly (±45◦) vertical in the image.

When one of these lines is tracked, first the algorithm extracts a small stripe of image data around the precom-
puted line. This is done by taking in each row y of the stripe the point x(y) stored in the precomputed table as
well as some surrounding to the left and right. The effect of this operation is that the hypothesized line is now
exactly vertical in the stripe. Line tracking is based on the response from a contrast normalized differential of
Gaussian filter. The filter is elongated (σx = 2.5 pixel and σy = 7 pixel), making it selective to vertical lines.
The purpose of contrast normalization described in the the following is to be able to detect edges over a wide
range of intensity difference. This is not possible with a hard threshold on the DoG response, because a small
DoG response could be caused by an edge with low intensity difference, but also by any high contrast image
patch where some part of the contrast is in the direction detected by the DoG filter.

The squared DoG response is devided by a Gaussian weighted image variance. This result indicates, which
percentage of the local image contrast looks like an edge. So this is a illumination invariant indicator of edge
quality ∈ [0 . . . 1]. The number 0.4 is chosen as a threshold for an valid edge. The Gaussian weighted image
contrast is computed from the response of the Gaussian filter on the image and the response on the squared
image accoring to the well known formula V (X) = E(X2) − (E(X))2. Additionally a regularizer roughly
corresponding to the image noise variance is added to prevent a 0

0
situation for constant image patches.

The algorithm described so far would require the vertical lines to be exactly vertical within pixel precision.
This is not realistic, since robots pitch and roll when moving. So, while proceeding with the filter along the
precomputed line, the algorithm tracks a horizontal offset from the nominal line. This is done, by evaluating the
filters on 3 adjacent x-coordinates and determining a subpixel optimum from an interpolation parabola through
the filter responses.

The tracking process starts on the horizon going up and down, tolerating some gaps, where the normalized DoG
response falls below the threshold. From the set of y-values and x-offset values, a eigenvalue decomposition is
computed, where the smaller eigenvalue gives an indication of how straight the edge is and the larger eigenvector
gives the direction of the edge. Of course, this direction is mostly vertical, but finding the direction of slightly
non-vertical edges allows to compensate for robot tilt later.

The last step consists of some postprocessing. The algorithm tries to find pitch and roll angles for the robot
that are consistent with the largest number of lines being vertical. Lines not compatible with these angles are
discarded. The horizontal bearing angle derived from the lines image position is annotated with an uncertainty
sigma corresponding initially to one pixel. Images can contain a lot of vertical linessomtimes very close to each
other which are then almost impossible to distinguish. So the detector joins lines closer than a threshold deriving
mean and std. deviation of that line according to the mixture of Gaussian formulas. The effect is, that when lines
are joint the resulting line has an uncertainty corresponding to the extend of the joint lines. This corresponds to
an observation such as ”there is a line somewhere in this area”.

The motivation of this step is that the raw vertical lines are sometimes so close, that even visually it is impossible
to decide, which one is which.

3.2.4 Experimental Results

3.3 Raw Data

Many researchers from the vision community work on pure Visual SLAM without predefined geometric features.
For this scenario the data set is still usable but you cannot benefit from the ground truth annotation of circles and
lines. We provide in this section all important information for the use of the raw data.

The data set has 3297 steps. For each step the robot took an image. To avoid problems with the interlaced PAL
image of the camera only the even scan lines of each image are used. This leads to an image size of 768 × 288
pixel. The images contained are black and white compressed JPEG files (the original files are available upon
request).

3.3.1 Measurement Function/Model

The camera model is based on pinhole-camera with added radial distortion. It provides the mapping from 3D
robot to 2D image coordinates. The four steps of this mapping are transformation to 3D camera coordinates,
perspectivity, distortion and scaling/offset.
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„
xi
yi

«
=

„
xscale

yscale

«
· distort

0BB@persp

0BB@
px
py
pz
1

1CCA
1CCA+

„
xoffset

yoffset

«
(20)

with (xi, yi)
T being the image coordinates and p = (px, py, pz)

T the coordinates in the camera coordinate
system. The distortion equation is defined as follows:

distort
„
x
y

«
=

„
x
y

«
·
„

1 +
a2r

2 + a3r
3

1 + b1r + b2r2 + b3r3

«
, r =

p
x2 + y2 (21)

and perspective equation

persp

0BB@
x
y
z
w

1CCA =

„
x
z
y
z

«
(22)

With a matrix describing offset, scale and transformation (called sensor2World here for software reasons but
actually being camera2Robot) in respect to the world coordinates, which is a result from the calibration process,
the equation can be rewritten as:

distort( persp( sensor2World−1 · [px, py, pz, 1]T ) ) (23)

All parameters (a2, a3, b1, b2, b3, scale, offset, transformation matrices) can be retrieved from the camera cali-
bration file for each run in the sets directories (e.g. dlr-spatial cognition-e.cam). The format should
be self-explanatory (see figure 11) the coef line lists the distortion parameters (a2, a3, b1, b2, b3). The matrix
sensor2World describes the matrix to transform a point from camera coordinates to the robot coordinate
system which is located on the florr in the center of the robot with X pointing left, Y backward and Z up (see
figure 4). Since sensor2World is 4 × 3 you need to add the row [0 0 0 1]. Example code on how to use the
files and how to implement the camera model is also included (see section 3.4).

{ SmRadialDistortedCamera
sensor2Tcp: [ 0.99992, -0.00994383, -0.00778315, -0.0820676 ]
[ 0.00718218, -0.0591054, 0.998226, 0.142944 ]
[ -0.0103862, -0.998202, -0.0590291, 0.0522051 ]
sensor2World: [ -0.99992, 0.00994383, 0.00778315, 0.0179777 ]
[ -0.00211987, 0.475426, -0.879753, -0.0808609 ]
[ -0.0124484, -0.879699, -0.475367, 1.50354 ]
mountIndex: 0
width: 768 height: 288 scaleX: 464.762 scaleY: 232.381 offsetX: 384 offsetY: 144
coef: { -0.0620672 -0.324903 0.314764 1.52524 -0.480806 }
}

Figure 11: The camera calibration file

If needed the raw odometry data is available from the already introduced files. Or alternatively, from the file
in each directory dlr-spatial cognition-x.txt. The STEP line is the same as already presented, the
difference is that no measurements are included in this file.

3.4 Additional material

In addition to the data and information about measurement models, which is all needed to effectively work with
this data set, we also want provide useful example code to show how you could use the data set.

The example code is also a reference on how to load and interpret the data. To show how easy it is to actually
use the data set and implement your own algorithms, we already included a least-square optimizer based on the
Levenberg-Marquardt method, a EKF localizer using the calculated map and an EKF SLAM algorithm. These
small programs may also be used for educational use as the whole set may be useful for teaching and courses.

We also provide a small script to add noise to the data set. The real data per run consists of only one file, which
you can feed to the tool. It then outputs a new file with added noise on all measurements. You can influence the
noise with commandline switches.

Of couse, if code evolves from the community, we are happy to include it in the data set, which will be maintained
on the corresponding web site[2], where you can also get videos, calculated maps and plots.
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4 Recommendations

When using a special data set like the one we presented here you develop an algorithm to compute a solution
for example for the data association problem while constantly checking results on the set. This co-evolution
may lead to a specialized algorithm that works fine with the given set but fails (or gives bad results) with other
data. To avoid this problem we recommend, that you try out all included runs to have different data for a similar
scenario. For the different runs the path may change and the measurements will be different but the environment
will be the same.

To even improve robustness you can add (a lot) noise to the data and re-run your algorithm to compare the
results. As described in section 3.4 we already have a small script that adds random gaussian white noise to the
measurements. (50 % random)
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