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What is Least-Square based SLAM?

• continuously estimate a 
map from sensor data

• input (yellowyellow):
– landmark observations
– odometry

• output (blueblue):
– landmark positions
– robot pose
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Least Square based SLAM

landmarks

landmark-
observations

odometry
robot poses
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What is Least-Square based SLAM?

Overview
• least-square based SLAM
• linearization
• sparsity
• least-square on manifolds
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LeastLeast--SquareSquare basedbased
SLAMSLAM
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Simultaneous Localization and Mapping

• invented by C.F. Gauss
– celestial body prediction
– surveying the kingdom of 

Hanover
• contribution

– probabilistic view as 
maximum likelihood
(Gaussian distribution)

– reduce to linear(-ized)
equation system

– solve that (Gauss-Seidel iter-
ation, Gaussian elimination)
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Least Square based SLAM

X Z

state observations

Question to the audience
• How do the vectors X and Z look like?
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Least Square based SLAM

landm
arks  poses

X Z

state observations

l. observation  odom
etry
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Least Square based SLAM

X Z

N

Gaussian noise
∼N(0,Q)

state observations

Z=f(X)+N

landm
arks  poses

l. observation  odom
etry
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Least Square based SLAM
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Least Square based SLAM
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l. observation  odom
etry

l. observation  odom
etry

l. observation  odometrylandm
arks  poses

l. observation  odometry

landm
arks  poses
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Least Square based SLAM
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Least Square based SLAM
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Least Square based SLAM

• Linearized Maximum Likelihood / SLAM
– solve the above equation

• Nonlinear Maximum Likelihood / SLAM
– set x∼ = x
– iterate the above equation until convergence
– non-linear minimum
– gold-standard
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Least Square based SLAM

• iterated least square 
converges to the non-linear 
maximum likelihood solution, 
unless stuck in local minima

• gold-standard to compare 
with

• slow, except when sparsity
based methods are used
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LinearizationLinearization**

* Thanks to P. Pinies for contributing to this discussion.
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Linearization

The (Extended) Kalman Filter from a Least-
Square based Perspective

• KF implements rekursive (i.e. incremental) 
least square

• applies Woodbury formula for updating the 
inverse of a matrix to the information 
matrix
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Linearization
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Linearization

• EKF is a  KF working on the linearization…

• ..at the prior estimate
• you can’t change linearization point by 

changing the Jacobian only
• otherwise a term as in the iEKF appears
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Linearization
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Linearization
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Linearization

• EKF is a KF working on the linearization at 
the prior estimate

• iEKF is a KF working on the linearization 
at the posterior estimate

• ⇒when thinking about linearization
– only the linearization points count
– marginalization steps do not matter
– block/sequential update does not matter, 

except through the linearization point
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z1 z2 u1 z3 z4 u2 z5 z6

lm a lm b odo lm a lm b odo lm a lm b

Batch 
LS x| x| x| x| x| x| x| x|

EKF 
block x| x| x|z1,2 x|z1,2,u1 x|z1,2,u1

x|z1..4,
u1

x|z1..4,
u1,2

x|z1..4,
u1,2

EKF 
single x| x|z1 x|z1,2 x|z1,2,u1

x|z1..3,
u1

x|z1..4,
u1

x|z1..4,
u1,2

x|z1..5,
u1,2

iEKF
single x|z1 x|z1,2 x|z1,2

x|z1..3,
u1

x|z1..4,
u1

x|z1..4,
u1

x|z1..5,
u1,2

x|z1..6,
u1,2

iEKF
block x|z1,2 x|z1,2 x|z1,2

x|z1..4,
u1

x|z1..4,
u1

x|z1..4,
u1

x|z1..6,
u1,2

x|z1..6,
u1,2

Levenb.
-Margq.

x|z1..6,
u1,2

x|z1..6,
u1,2

x|z1..6,
u1,2

x|z1..6,
u1,2

x|z1..6,
u1,2

x|z1..6,
u1,2

x|z1..6,
u1,2

x|z1..6,
u1,2

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Question to the Audience: Which linearization points are used 
for the different observations?
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Linearization

z1 z2 u1 z3 z4 u2 z5 z6

lm a lm b odo lm a lm b odo lm a lm b

Batch 
LS x| x| x| x| x| x| x| x|

EKF 
block x| x| x|z1,2 x|z1,2,u1 x|z1,2,u1

x|z1..4,
u1

x|z1..4,
u1,2

x|z1..4,
u1,2

EKF 
single x| x|z1 x|z1,2 x|z1,2,u1

x|z1..3,
u1

x|z1..4,
u1

x|z1..4,
u1,2

x|z1..5,
u1,2

iEKF
single x|z1 x|z1,2 x|z1,2

x|z1..3,
u1

x|z1..4,
u1

x|z1..4,
u1

x|z1..5,
u1,2

x|z1..6,
u1,2

iEKF
block x|z1,2 x|z1,2 x|z1,2

x|z1..4,
u1

x|z1..4,
u1

x|z1..4,
u1

x|z1..6,
u1,2

x|z1..6,
u1,2

Levenb.
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Linearization

• still, all EKF variants use different, i.e. 
inconsistent linearization points for 
different observations, because they 
cannot change relinearize an observation 
once it is integrated.
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Linearization

• robot at (0,0,θ) observes landmark at (x,y)

• linearized at (0,1,0) and (0,2,0)

• by subtracting both right equations it can be 
seen, that there is “apparent” θ information 
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Linearization

• inconsistent linearization points lead to 
apparent absolute orientation information 
in the covariance/information matrix

• in SLAM the real orientation information 
becomes smaller and smaller, hence the 
filter becomes inconsistent

• the problem is more about inconsistent 
linearization points than about wrong 
linearization points

• delayed state relinearization or submaps
can help



Linearization

• “which equation is linearized
at which point” perspective is 
helpful

• inconsistent linearization 
points generate “apparent 
orientation information” in 
SLAM

• submaps and delayed state 
relinearization may help
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SparsitySparsity
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Sparsity

• huge matrices in LS SLAM
• how can we make 

computation fast enough?
• understand the block and 

sparsity pattern for •
• use Tim Davis’s csmatrix

sparse matrix package* 
for ()-1

* Thanks to A. Nuechter and M. Kaess for pointing this out.
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landmarks  poses
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Least Square based SLAM

Question to the audience:
• What information on Q and df/dX is coded in 

this Bayes net?

landmarks

landmark-
observations

odometry
robot poses
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Least Square based SLAM

• exploit that C is block diagonal, i.e. 
measurements are independent

• information “adds up” in the information 
matrix 
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my landmark my pose

landm
arks  poses

landmarks  poses
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my landmark my pose

landm
arks  poses

landmarks  poses
• Compute the Jacobians

without 0 blocks
• Sort the blocks of the result 

into the right blocks of the 
information matrix.
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Least Square based SLAM

• how to do the inversion?
• solve an equation instead (MATLAB \)
• use Tim Davis’ csparse package
• available for C++ or MATLAB
• selected parts of the inverse can be 

computed by the Gollub algorithm
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Sparsity

• certainly exploit sparsity for 
multiplications in LS, EKF

• with csparse for inversion, 
LS becomes competitive 
concerning computation time

• covariance information is 
available via Gollub
algorithm
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ManifoldsManifolds
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Manifolds
problem: some states are not vectors
• 2D orientation has 2π periodicity
• 3D orientation has 3-DOF, represented as

– 3 Euler angles with singularity
– unit quarternion q, with |q|=1
– quarternion q≠0, where |q| does not matter
– 3×3 matrix, Q with QTQ=I

• 3D direction (→inverse depth) has 2-DOF, 
– 2 angles with singularity
– unit vector v, with |v|=1
– vector v≠0, where |v| does not matter
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Manifolds

• all these states need special treatment
• look locally like Rn, but globally different
• they are called manifolds in mathematics
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Manifolds

• observation / dynamic functions view the 
state S as 
– structured, such as an object oriented class
– with components that have a specific name, 

type, and meaning
• generic algorithms (e.g. EKF update 

equation, LS, etc.) view the state S as
– a flat vector
– with as many numbers as DOF
– without anything additional to consider
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Manifolds

Idea
• treat S as a encapsulated black-box 

data-type and use an operator 
[+]: S×Rn → S to provide flat vector access 
for the generic algorithm

• [+] applies a local perturbation parameterized 
by a flat vector to the state

• n corresponds to DOF of the state
• encapsulation as in OO-design
• axiomatization as in mathematics 
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Manifolds

• motivated by “symmetries and perturbations”1

• some prior work but without the framework 
view2

• related to Lie-algebras and manifolds
• but thorough mathematical structure is still 

unclear to me

1 J.A. Castellanos, J.M.M. Montiel, J. Neira, J.D. Tardos The SPmap: A Probabilistic 
Framework for Simultaneous Localization and Map Building,  IEEE Transactions on 
Robotics and Automation, 1999

2 E. Kraft. A quaternion-based unscented kalman filter for orientation tracking, 2003
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Manifolds

Example: 3-D Orientations SO(3)
• Rot(v) is a rotation around v by an angle of |v|

• quarternions: 

• matrices:
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Manifolds

Question to the audience: Is there a singularity 
at v=0? Or anywhere else?
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Manifolds

Question to the audience: Is there a singularity 
at v=0? Or anywhere else?

• not at 0, since sinc(0)=1, and sinc’(0)=0, so 
Rot(v) ≈(1,v) at v=0

• however, singularity at |v|=2π, since changing 
the direction of v has no effect then

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

v
v

v
v

vRot
2sin

,
2

cos



Udo Frese (50)

Manifolds

Example: 3-D Orientations SO(3)
• Rot(v) is a rotation around v by an angle of |v|

• quarternions: 

• matrices:
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Manifolds

“Axioms”
(I): s[+]_ must be local diffeomorphism for all s
(II): [+] must be locally a “linear approximation”
(III): [-] must be the inverse of [+]
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Manifolds

X Z

N

Gaussian noise
∼N(0,Q)

state observations

Z=f(X) [+] N

landm
arks  poses

l. observation  odom
etry

equipped with [+]
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Manifolds
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Manifolds
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Manifolds
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Manifolds
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Manifolds

Comparison
• vectorspace LS

• manifolds LS

• viewing it as a mapping of perturbations in x 
to perturbations in f(x)
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Manifolds

Comparison simplified (Z is vectorspace)
• vectorspace LS

• manifolds LS
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Manifolds

Question to the audience: Where is the diffe-
rence to treating x0[+]δ as a parameterization 
for x and applying VS-LS to δ?

• vectorspace LS

• manifolds LS
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Manifolds

Question to the audience: 
• vectorspace LS

• manifolds LS

• VS-LS would accumulate in δ and might run 
into singularities, M-LS accumulates in x and 
only parameterizes each small step
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Manifolds

• how to get the Jacobian?
• numerically by evaluating z[-]f(x[+]δ) for 

small unit vectors δ=±εIi
• or by evaluating on σ points, such as UKF
• whole UKF can be directly used on 

manifolds by replacing – with [-] and + with 
[+]



Manifolds

• 3-D orientations, 3-D 
directions, …, pose 
parameterization problems

• encapsulate the structure of 
manifolds by defining 
perturbation operators [+], [-]

• mostly existing formulas 
work by replacing + with [+] 
and – with [-] with common 
sense applied

• iterations are accumulated in 
the state



Summary

• least square (LS) is the gold-
standard approach

• linearization problems come 
mainly from inconsistent 
linearization points

• LS can be made efficient by 
exploiting sparsity

• singularity problems of 
rotations, directions can be 
encapsulated by a 
perturbation operator [+],[-]
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