

What is Least-Square based SLAM?

- continuously estimate a map from sensor data
- input (yellow):
- landmark observations
- odometry
- output (blue):
- landmark positions
- robot pose

Least Square based SLAM

landmarks

landmarkobservations
odometry robot poses

What is Least-Square based SLAM?

Overview

- least-square based SLAM
- linearization
- sparsity
- least-square on manifolds

Least-Square based SLAM

Simultaneous Localization and Mapping

- invented by C.F. Gauss
- celestial body prediction
- surveying the kingdom of Hanover
- contribution
- probabilistic view as maximum likelihood (Gaussian distribution)
- reduce to linear(-ized)
 equation system
- solve that (Gauss-Seidel iteration, Gaussian elimination)

Least Square based SLAM

Question to the audience

- How do the vectors X and Z look like?

Least Square based SLAM

state
observations

Kıəшopo uo!̣e^ıəsqo 'I

Least Square based SLAM

state

Gaussian noise $Z=f(X)+N$ ~N(0,Q)
observations

Kıəшоро	uo!̣e^ıəsqo `

Least Square based SLAM

$$
\begin{aligned}
& p(X=x \mid Z=z) \\
& =\frac{p(Z=z \mid X=x) p(X=x)}{p(Z=z)} \\
& \propto p(Z=z \mid X=x) p(X=x) \\
& \propto p(Z=z \mid X=x) \\
& =p(N=z-f(X) \mid X=x) \\
& =p(N=z-f(x)) \\
& \propto \exp \left(-\frac{1}{2}(z-f(x))^{T} Q^{-1}(z-f(x))\right)
\end{aligned}
$$

Least Square based SLAM

$\hat{x}=\arg \max p(X=x \mid Z=z)$
$=\arg \min \left(\frac{1}{2}(z-f(x))^{T} Q^{-1}(z-f(x))\right)$
$\begin{array}{lc}\Rightarrow 0=-(z-f(\hat{x}))^{T} Q^{-1} \frac{d f}{d x_{i}}(\hat{x}) & \forall i \\ 0=-(z-f(\hat{x}))^{T} Q^{-1} \frac{d f}{d x}(\hat{x}) & \text { gradient of } \mathrm{f}\end{array}$ with respect to x_{i}
$0=\frac{d f}{d x}(\hat{x})^{T} Q^{-1}(z-f(\hat{x})) \quad$ with respect to \quad Jacobian of f

$\bar{\sim}$ I. observation odometry
 səsod syıempl

I. observation odometry

Kıəəسоро uo!̣елıəsqo •I
$0 \quad=\frac{d f}{d x}(\hat{x})^{T} \quad . \quad Q^{-1} \cdot(z-f(\hat{x}))$

Least Square based SLAM

$$
0=\frac{d f}{d x}(\hat{x})^{T} Q^{-1}(z-f(\hat{x}))
$$

$$
f(x) \approx f(\breve{x})+\frac{d f}{d x}(\breve{x})(x-\breve{x})
$$

$$
0 \approx \frac{d f}{d x}(\breve{x})^{T} Q^{-1}\left(z-f(\breve{x})-\frac{d f}{d x}(\breve{x})(\hat{x}-\breve{x})\right)
$$

$$
=\frac{d f}{d x}(\breve{x})^{T} Q^{-1}\left(z-f(\breve{x})-\frac{d f}{d x}(\breve{x}) \hat{x}+\frac{d f}{d x}(\breve{x}) \bar{x}\right)
$$

$$
=-\frac{d f}{d x}(\breve{x})^{T} Q^{-1} \frac{d f}{d x}(\breve{x}) \hat{x}+\frac{d f}{d x}(\breve{x})^{T} Q^{-1}\left(z-f(\breve{x})+\frac{d f}{d x}(\breve{x}) \bar{x}\right)
$$

information matrix information vector

Least Square based SLAM

$$
\begin{aligned}
& =-\frac{d f}{d x}(\breve{x})^{T} Q^{-1} \frac{d f}{d x}(\breve{x}) x+\frac{d f}{d x}(\breve{x})^{T} Q^{-1}\left(z-f(\breve{x})+\frac{d f}{d x}(\breve{x}) \bar{x}\right) \\
& \Rightarrow x= \\
& \left(\frac{d f}{d x}(\breve{x})^{T} Q^{-1} \frac{d f}{d x}(\breve{x})\right)^{-1} \frac{d f}{d x}(\breve{x})^{T} Q^{-1}\left(z-f(\breve{x})+\frac{d f}{d x}(\breve{x}) \breve{x}\right) \\
& =\breve{x}+\underbrace{\left(\frac{d f}{d x}(\breve{x})^{T} Q^{-1} \frac{d f}{d x}(\breve{x})\right)^{-1} \frac{d f}{d x}(\breve{x})^{T} Q^{-1}(z-f(\breve{x}))}_{C=\operatorname{cov}(x)}
\end{aligned}
$$

Least Square based SLAM

$$
x=\breve{x}+\left(\frac{d f}{d x}(\breve{x})^{T} Q^{-1} \frac{d f}{d x}(\breve{x})\right)^{-1} \frac{d f}{d x}(\breve{x})^{T} Q^{-1}(z-f(\breve{x}))
$$

- Linearized Maximum Likelihood / SLAM
- solve the above equation
- Nonlinear Maximum Likelihood / SLAM
- set $x^{\sim}=x$
- iterate the above equation until convergence
- non-linear minimum
- gold-standard

$$
0=\frac{d f}{d x}(x)^{T} Q^{-1}(z-f(x))
$$

Least Square based SLAM

- iterated least square converges to the non-linear maximum likelihood solution, unless stuck in local minima
- gold-standard to compare with
- slow, except when sparsity based methods are used

Linearization*

Thanks to P. Pinies for contributing to this discussion.

Linearization

The (Extended) Kalman Filter from a LeastSquare based Perspective

- KF implements rekursive (i.e. incremental) least square
- applies Woodbury formula for updating the inverse of a matrix to the information matrix

Linearization

$$
\begin{aligned}
& C^{+}=\left(\frac{d f^{+}}{d x}(\breve{x})^{T} Q^{+-1} \frac{d f^{+}}{d x}(\breve{x})\right)^{-1}, Q^{+}=\left(\begin{array}{l}
Q^{-} \\
\\
=\left(\frac{d f^{-}}{d x}(\breve{x})^{T}\left(Q^{-}\right)^{-1} \frac{d f^{-}}{d x}(\breve{x})+\frac{d f^{m}}{d x}(\breve{x})^{T}\left(Q^{m}\right)^{-1} \frac{d f^{m}}{d x}(\breve{x})\right)^{-1} \\
f^{m}
\end{array}\right) \\
& =\left(\left(C^{-}\right)^{-1}+\frac{d f^{m}}{d x}(\breve{x})^{T}\left(Q^{m}\right)^{-1} \frac{d f^{m}}{d x}(\breve{x})\right)^{-1}
\end{aligned}
$$

$$
\stackrel{\substack{\text { Woud. } \\ \text { bury }}}{=C-C \underbrace{C \frac{d f^{m}}{d x}}(\breve{x})^{r}\left(\frac{d f^{m}}{d x}(\breve{x}) C \frac{d f^{m}}{d x}(\breve{x})^{T}+Q^{m}\right)^{-1} \frac{d f^{m}}{d x}(\breve{x}) C}
$$

Linearization

- EKF is a KF working on the linearization...

$$
\begin{aligned}
& f(x) \approx f(\breve{x})+\frac{d f}{d x}(\breve{x})(x-\breve{x}) \\
& x^{+}=x^{-}+K\left(z-\left(f(\breve{x})+\frac{d f}{d x}(\breve{x})\left(x^{-}-\breve{x}\right)\right)\right) \\
& =x^{-}+K\left(z-f(\breve{x})-\frac{d f}{d x}(\breve{x})\left(x^{-}-\breve{x}\right)\right)
\end{aligned}
$$

- ..at the prior estimate
- you can't change linearization point by changing the Jacobian only
- otherwise a term as in the iEKF appears

Linearization

Maximum Likelihood

${ }^{2 m}$ Frese (21)

Linearization

Udo Frese (22)

Linearization

- EKF is a KF working on the linearization at the prior estimate
- iEKF is a KF working on the linearization at the posterior estimate
- \Rightarrow when thinking about linearization
- only the linearization points count
- marginalization steps do not matter
- block/sequential update does not matter, except through the linearization point

Question to the Audience: Which linearization points are used for the different observations?

	z_{1}	z_{2}	u_{1}	z_{3}	Z_{4}	u_{2}	Z_{5}	Z_{6}
	Im a	Im b	odo	Im a	Im b	odo	Im a	Im b
Batch LS	? ?							
EKF block	? ?							
EKF single	? ?							
iEKF single	? ?							
iEKF block	? ?							
Levenb. -Margq.	? ?							

Udo Frese (24)

Linearization

	z_{1}	z_{2}	u_{1}	z_{3}	Z_{4}	u_{2}	Z_{5}	z_{6}
	Im a	Im b	odo	Im a	Im b	odo	Im a	Im b
Batch LS	x\|							
EKF block	x\|	x\|	$x \mid z_{1,2}$	$x \mid z_{1,2}, u_{1}$	$x \mid z_{1,2}, u_{1}$	$\begin{aligned} & x \mid z_{1.4} \\ & u_{1} \end{aligned}$	$\begin{aligned} & x \mid z_{1.4}, \\ & u_{1,2} \\ & \hline \end{aligned}$	$\begin{aligned} & x \mid z_{1.4}, \\ & u_{1,2} \end{aligned}$
EKF single	x\|	$x \mid z_{1}$	$x \mid z_{1,2}$	$x \mid z_{1,2}, u_{1}$	$\begin{aligned} & x \mid z_{1.3}, \\ & u_{1} \end{aligned}$	$\begin{aligned} & x \mid z_{1.4} \\ & u_{1} \end{aligned}$	$\begin{aligned} & x \mid z_{1.4} \\ & u_{1,2} \end{aligned}$	$\begin{aligned} & x \mid z_{1.5}, \\ & u_{1,2} \end{aligned}$
iEKF single	$\mathrm{x} \mid \mathrm{z}_{1}$	$x \mid z_{1,2}$	$x \mid z_{1,2}$	$\begin{aligned} & x \mid z_{1.3} \\ & u_{1} \end{aligned}$	$\begin{aligned} & x \mid z_{1 . .4} \\ & u_{1} \end{aligned}$	$\begin{aligned} & x \mid z_{1.4}, \\ & u_{1} \end{aligned}$	$\begin{aligned} & x \mid z_{1.5}, \\ & u_{1,2} \\ & \hline \end{aligned}$	$\begin{aligned} & x \mid z_{1.6}, \\ & u_{1,2} \end{aligned}$
iEKF block	$\mathrm{x} \mid \mathrm{z}_{1,2}$	$x \mid z_{1,2}$	$x \mid z_{1,2}$	$\begin{aligned} & x \mid z_{1.4} \\ & u_{1} \end{aligned}$	$\begin{aligned} & x \mid z_{1.4} \\ & u_{1} \end{aligned}$	$\begin{aligned} & x \mid z_{1.4} \\ & u_{1} \end{aligned}$	$\begin{aligned} & x \mid z_{1.6}, \\ & u_{1,2} \end{aligned}$	$\begin{aligned} & x \mid z_{1.6} \\ & u_{1,2} \end{aligned}$
Levenb. -Margq.	$\begin{aligned} & x \mid z_{1.6} \\ & u_{1,2} \\ & \hline \end{aligned}$	$\begin{aligned} & x \mid z_{1.6} \\ & u_{1,2} \\ & \hline \end{aligned}$	$\begin{aligned} & x \mid z_{1.6}, \\ & u_{1,2} \\ & \hline \end{aligned}$	$\begin{aligned} & x \mid z_{1.6} \\ & u_{1,2} \\ & u_{1} \end{aligned}$	$\begin{aligned} & x \mid z_{1.6}, \\ & u_{1,2} \\ & \hline \end{aligned}$	$\begin{aligned} & x \mid z_{1.6}, \\ & u_{1,2} \end{aligned}$	$\begin{aligned} & x \mid z_{1.6} \\ & u_{1,2} \\ & \hline \end{aligned}$	$\begin{aligned} & x \mid z_{1.6}, \\ & u_{1,2} \\ & \hline \end{aligned}$

Linearization

- still, all EKF variants use different, i.e. inconsistent linearization points for different observations, because they cannot change relinearize an observation once it is integrated.

$$
x=\breve{x}+\left(\frac{d f}{d x}(\breve{x})^{T} Q^{-1} \frac{d f}{d x}(\breve{x})\right)^{-1} \frac{d f}{d x}(\breve{x})^{T} Q^{-1}(z-f(\breve{x}))
$$

Linearization

- robot at $(0,0, \theta)$ observes landmark at (x, y)

$$
\binom{1}{0}=z \approx f\left(\begin{array}{l}
\theta \\
x \\
y
\end{array}\right)=\binom{\cos \theta x+\sin \theta y}{-\sin \theta x+\cos \theta y} \bigcirc
$$

- linearized at $(0,1,0)$ and $(0,2,0)$

$$
\begin{array}{ll}
1 \approx 1 x+\theta y \approx x & 0 \approx-\theta x+1 y \approx-\theta+y \\
1 \approx 1 x+\theta y \approx x & 0 \approx-\theta x+1 y \approx-2 \theta+y
\end{array}
$$

- by subtracting both right equations it can be seen, that there is "apparent" θ information

$$
0 \approx(-\theta+y)-(-2 \theta+y)=\theta
$$

Linearization

- inconsistent linearization points lead to apparent absolute orientation information in the covariance/information matrix
- in SLAM the real orientation information becomes smaller and smaller, hence the filter becomes inconsistent
- the problem is more about inconsistent linearization points than about wrong linearization points
- delayed state relinearization or submaps can help

Linearization

- "which equation is linearized at which point" perspective is helpful
- inconsistent linearization points generate "apparent orientation information" in SLAM
- submaps and delayed state relinearization may help

Sparsity

Sparsity

- huge matrices in LS SLAM
- how can we make computation fast enough?
- understand the block and sparsity pattern for •
- use Tim Davis's csmatrix sparse matrix package* for ($)^{-1}$

Thanks to A. Nuechter and M. Kaess for pointing this out.

$\frac{d f}{d x}(\breve{x})^{T} \quad . \quad Q^{-1} . \quad \frac{d f}{d x}(\breve{x})$

Least Square based SLAM

Question to the audience:

- What information on Q and $\mathrm{df} / \mathrm{dX}$ is coded in this Bayes net?

landmarks

landmarkobservations
odometry robot poses

Udo Frese (33)

$\frac{d f}{d x}(\breve{x})^{T} \quad \cdot \quad Q^{-1} \quad . \quad \frac{d f}{d x}(\breve{x})$

Least Square based SLAM

- exploit that C is block diagonal, i.e. measurements are independent

$$
\begin{aligned}
& \frac{d f}{d x}(\breve{x})^{T} Q^{-1} \frac{d f}{d x}(\breve{x}) \\
& =\sum_{i} \frac{d f_{i}}{d x}(\breve{x})^{T} Q_{i}^{-1} \frac{d f_{i}}{d x}(\breve{x})
\end{aligned}
$$

- information "adds up" in the information matrix

my landmark my pose

	poses
(
$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	

$$
\frac{d f_{i}}{d x}(\tilde{x})^{T} \cdot Q_{i}^{-1} \cdot \frac{d f_{i}}{d x}(\tilde{x})
$$

my landmark my pose

- Compute the Jacobians without 0 blocks
- Sort the blocks of the result into the right blocks of the information matrix.

Least Square based SLAM

$x=$
$\left(\frac{d f}{d x}(\breve{x})^{T} Q^{-1} \frac{d f}{d x}(\breve{x})\right)^{-1} \frac{d f}{d x}(\breve{x})^{T} Q^{-1}\left(z-f(\breve{x})+\frac{d f}{d x}(\breve{x}) \bar{x}\right)$

- how to do the inversion?
- solve an equation instead (MATLAB
)
- use Tim Davis' csparse package
- available for C++ or MATLAB
- selected parts of the inverse can be computed by the Gollub algorithm

Sparsity

- certainly exploit sparsity for multiplications in LS, EKF
- with csparse for inversion, LS becomes competitive concerning computation time
- covariance information is available via Gollub algorithm

Manifolds

Manifolds

problem: some states are not vectors

- 2D orientation has 2π periodicity
- 3D orientation has 3-DOF, represented as
- 3 Euler angles with singularity
- unit quarternion q, with $|q|=1$
- quarternion $q \neq 0$, where $|q|$ does not matter
-3×3 matrix, Q with $Q^{\top} Q=1$
- 3D direction (\rightarrow inverse depth) has 2-DOF,
-2 angles with singularity
- unit vector v, with $|v|=1$
- vector $\mathrm{v} \neq 0$, where $|\mathrm{v}|$ does not matter

Manifolds

- all these states need special treatment - look locally like R^{n}, but globally different - they are called manifolds in mathematics

Manifolds

- observation / dynamic functions view the state S as
- structured, such as an object oriented class
- with components that have a specific name, type, and meaning
- generic algorithms (e.g. EKF update equation, LS, etc.) view the state S as
- a flat vector
- with as many numbers as DOF
- without anything additional to consider

Manifolds

Idea

- treat S as a encapsulated black-box data-type and use an operator [+]: $\mathrm{S} \times \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{S}$ to provide flat vector access for the generic algorithm
- [+] applies a local perturbation parameterized by a flat vector to the state
- n corresponds to DOF of the state
- encapsulation as in OO-design
- axiomatization as in mathematics

Manifolds

- motivated by "symmetries and perturbations"1
- some prior work but without the framework view ${ }^{2}$
- related to Lie-algebras and manifolds
- but thorough mathematical structure is still unclear to me

1 J.A. Castellanos, J.M.M. Montiel, J. Neira, J.D. Tardos The SPmap: A Probabilistic Framework for Simultaneous Localization and Map Building, IEEE Transactions on Robotics and Automation, 1999
2 E. Kraft. A quaternion-based unscented kalman filter for orientation tracking, 2003

Manifolds

Example: 3-D Orientations $\mathrm{SO}(3)$

- Rot (v) is a rotation around v by an angle of $|\mathrm{v}|$
- quarternions: $\operatorname{Rot}(v)=\left(\cos \left(\frac{|v|}{2}\right), v \frac{\sin (|v| / 2)}{|v|}\right)$
- matrices:

$$
\operatorname{Rot}(v)=\cos (|v|) I+\frac{\sin (|v|)}{|v|}[v]_{\times}+\frac{(1-\cos (|v|))}{|v|^{2}} \nu v^{T}
$$

Manifolds

Question to the audience: Is there a singularity at $\mathrm{v}=0$? Or anywhere else?

$$
\operatorname{Rot}(v)=\left(\cos \left(\frac{|v|}{2}\right), v \frac{\sin (|v| / 2)}{|v|}\right)
$$

Manifolds

Question to the audience: Is there a singularity at $\mathrm{v}=0$? Or anywhere else?

$$
\operatorname{Rot}(v)=\left(\cos \left(\frac{|v|}{2}\right), v \frac{\sin (|v| / 2)}{|v|}\right)
$$

- not at $0, \operatorname{since} \operatorname{sinc}(0)=1$, and $\operatorname{sinc}^{\prime}(0)=0$, so $\operatorname{Rot}(v) \approx(1, v)$ at $v=0$
- however, singularity at $|v|=2 \pi$, since changing the direction of v has no effect then

Manifolds

Example: 3-D Orientations $\mathrm{SO}(3)$

- Rot (v) is a rotation around v by an angle of $|\mathrm{v}|$
- quarternions:

$$
\operatorname{Rot}(v)=\left(\cos \left(\frac{|v|}{2}\right), v \frac{\sin (|v| / 2)}{|v|}\right)
$$

- matrices:

$$
\begin{aligned}
& \operatorname{Rot}(v)=\cos (|v|) I+\frac{\sin (|v|)}{|v|}[v]_{火}+\frac{(1-\cos (|v|))}{|v|^{2}} v v^{T} \\
& q[+] v=q \operatorname{Rot}(v), \quad q_{2}[-] q_{1}=a \operatorname{Rot}\left(q_{1}^{-1} q_{2}\right)
\end{aligned}
$$

Manifolds

"Axioms"

(I): s[+]_ must be local diffeomorphism for all s (II): [+] must be locally a "linear approximation" (III): [-] must be the inverse of [+]

$$
[+]: S \times R^{n} \rightarrow S
$$

(II) $s[+]\left(v_{1}+v_{2}\right) \approx\left(s[+] v_{1}\right)[+] v_{2}$
[-]: $S \times S \rightarrow R^{n}$
(III) $\quad s_{1}[+]\left(s_{2}[-] s_{1}\right)=s_{2}$

Manifolds

state

observations

Gaussian noise $Z=f(X)[+] N$ ~N(0,Q)

Manifolds

$$
\begin{aligned}
& p(X=x \mid Z=z) \\
& =\frac{p(Z=z \mid X=x) p(X=x)}{p(Z=z)} \\
& \propto p(Z=z \mid X=x) p(X=x) \\
& \propto p(Z=z \mid X=x) \\
& =p(N=z[-] f(X) \mid X=x) \\
& =p(N=z[-] f(x)) \\
& \propto \exp \left(-\frac{1}{2}(z[-] f(x))^{T} Q^{-1}(z[-] f(x))\right)
\end{aligned}
$$

Manifolds

$\hat{x}=\arg \max p(X=x \mid Z=z)$
$=\arg \min \left(\frac{1}{2}(z[-] f(x))^{T} Q^{-1}(z[-] f(x))\right)$
$=\underset{\delta}{\arg \min \left(\frac{1}{2}(z[-] f(\bar{x}[+] \delta))^{T} Q^{-1}(z[-] f(\bar{x}[+] \delta))\right)}$
$\Rightarrow 0=-(z[-] f(\bar{x}++\hat{\delta}))^{r} Q^{-1} \frac{d([z]-f(\bar{x}[+] \delta))}{d \delta_{i}}(\hat{\delta})$
$0=-(z[-] f(\bar{x}[+] \delta))^{\tau} Q^{-1} \frac{d([z]-f(\bar{x}[+] \delta))}{d \delta}(\hat{\delta})$
$0=\frac{d([z]-f(\tilde{x}[+] \delta))^{T}}{d \delta}(\hat{\delta}) Q^{-1}(z[-] f(\bar{x}[+] \hat{\delta}))$

Manifolds

$$
\begin{aligned}
& 0=\frac{d f(z[-] f(\bar{x}[+] \delta))}{d \delta}(\hat{\delta})^{T} Q^{-1}(z[-] f(\bar{x}[+] \hat{\delta})) \\
& z[-] f(\bar{x}[+] \delta) \approx z[-] f(\bar{x})+\frac{d(z[-] f(\bar{x}[+] \delta))}{d \delta}(0) \delta \\
& \left.0=\frac{d(z[-] f(\bar{x}[+] \delta))}{d \delta}(0)^{T} Q^{-1} z z[-] f(\bar{x})++\frac{d(z[-] f(\bar{x}[+] \delta))}{d \delta}(0) \delta\right) \\
& =\frac{q(z[-] f(\bar{x}++] \delta))}{d \delta}(0)^{T} Q^{-1} \frac{d(z[-] f(\bar{x}[+] \delta))}{d \delta}(0) \delta \\
& -\frac{d(z[-] f(\bar{x}[+] \delta))}{d \delta}(0)^{T} Q^{-1}(z[-] f(\bar{x}))
\end{aligned}
$$

Manifolds

$$
\begin{aligned}
& \delta=-\left(\frac{d(z[-] f(\breve{x}[+] \delta))}{d \delta}(0)^{T} Q^{-1} \frac{d(z[-] f(\breve{x}[+] \delta))}{d \delta}(0)\right)^{-1} \\
& \frac{d(z[-] f(\breve{x}[+] \delta))}{d \delta}(0)^{T} Q^{-1}(z[-] f(\breve{x})) \\
& \hat{x}=\breve{x}[+]-\left(\frac{d(z[-] f(\breve{x}[+] \delta))}{d \delta}(0)^{T} Q^{-1} \frac{d(z[-] f(\breve{x}[+] \delta))}{d \delta}(0)\right)^{-1} \\
& \frac{d(z[-] f(\breve{x}[+] \delta))}{d \delta}(0)^{T} Q^{-1}(z[-] f(\breve{x}))
\end{aligned}
$$

Manifolds

Comparison

- vectorspace LS

$$
\hat{x}=\widetilde{x}+\left(\frac{d f}{d x}(\breve{x})^{T} Q^{-1} \frac{d f}{d x}(\breve{x})\right)^{-1} \frac{d f}{d x}(\breve{x})^{T} Q^{-1}(z-f(\breve{x}))
$$

- manifolds LS

$$
\begin{aligned}
& \hat{x}=\bar{x}[+]-\left(\frac{d(z[-] f(\bar{x}[+] \delta))}{d \delta}(0)^{T} Q^{-1} \frac{d(z[-] f(\bar{x}[+] \delta))}{d \delta}(0)\right)^{-1} \\
& \frac{d(z[-] f(\bar{x}[+] \delta))}{d \delta}(0)^{T} Q^{-1}(z[-] f(\breve{x}))
\end{aligned}
$$

- viewing it as a mapping of perturbations in x to perturbations in $\mathrm{f}(\mathrm{x})$

Manifolds

Comparison simplified (Z is vectorspace)

- vectorspace LS

$$
\hat{x}=\breve{x}+\left(\frac{d f}{d x}(\breve{x})^{T} Q^{-1} \frac{d f}{d x}(\breve{x})\right)^{-1} \frac{d f}{d x}(\breve{x})^{T} Q^{-1}(z-f(\breve{x}))
$$

- manifolds LS

$$
\begin{aligned}
& \hat{x}=\bar{x}\left[+\left(\frac{d(f(\bar{x}[+] \delta))}{d \delta}(0)^{T} Q^{-1} \frac{d(f(\bar{x}[+] \delta))}{d \delta}(0)\right)^{-1}\right. \\
& \frac{d(f(\bar{x}[++\delta))}{d \delta}(0)^{T} Q^{-1}(z-f(\bar{x}))
\end{aligned}
$$

Manifolds

Question to the audience: Where is the difference to treating $x_{0}[+] \delta$ as a parameterization for x and applying VS-LS to δ ?

- vectorspace LS

$$
\hat{x}=\breve{x}+\left(\frac{d f}{d x}(\breve{x})^{T} Q^{-1} \frac{d f}{d x}(\breve{x})\right)^{-1} \frac{d f}{d x}(\breve{x})^{T} Q^{-1}(z-f(\breve{x}))
$$

- manifolds LS

$$
\begin{aligned}
& \hat{x}=\bar{x}\left[++\left(\frac{d(f(\bar{x}[++\bar{\delta}))}{d \delta}(0)^{T} Q^{-1} \frac{d(f(\bar{x}[+] \delta))}{d \delta}(0)\right)^{-1}\right. \\
& \frac{d(f(\bar{x}++\bar{\delta}))}{d \delta}(0)^{T} Q^{-1}(z-f(\bar{x}))
\end{aligned}
$$

Manifolds

Question to the audience:

- vectorspace LS $\hat{\delta}=\bar{\delta}+\left(\frac{d f\left(x_{0}[+] \delta\right)}{\delta}(\breve{\delta})^{\tau} Q^{-1} \frac{d f\left(x_{0}[+] \delta\right)}{\delta}(\breve{\delta})\right)^{-1}$

$$
\frac{d f\left(x_{0}[+] \delta\right)}{\delta}(\widetilde{\delta})^{r} Q^{-1}\left(z-f\left(x_{0}[+\bar{\delta})\right)\right.
$$

$$
\frac{d(f(\bar{x}[+] \delta))}{d \delta}(0)^{T} Q^{-1}(z-f(\bar{x}))
$$

- VS-LS would accumulate in δ and might run into singularities, M-LS accumulates in x and only parameterizes each small step

Manifolds

- how to get the Jacobian?
- numerically by evaluating $z[-] f(x[+] \delta)$ for small unit vectors $\delta= \pm \varepsilon I_{i}$
- or by evaluating on σ points, such as UKF
- whole UKF can be directly used on manifolds by replacing - with [-] and + with [+]

Manifolds

- 3-D orientations, 3-D
directions, ..., pose parameterization problems
- encapsulate the structure of manifolds by defining perturbation operators [+], [-]
- mostly existing formulas work by replacing + with [+] and - with [-] with common sense applied
- iterations are accumulated in the state

Summary

- least square (LS) is the goldstandard approach
- linearization problems come mainly from inconsistent linearization points
- LS can be made efficient by exploiting sparsity
- singularity problems of rotations, directions can be encapsulated by a perturbation operator [+],[-]

