Least-Square based SLAM: Linearization, Sparsity, and Manifolds

Udo Frese, 12th May 2008 Zaragoza

Safe and Secure Cognitive Systems

What is Least-Square based SLAM?

- continuously estimate a map from sensor data
- input (yellow):
 - landmark observations
 - odometry
- output (blue):
 - landmark positions
 - robot pose

What is Least-Square based SLAM?

Overview

- least-square based SLAM
- linearization
- sparsity
- least-square on manifolds

×

×

~

22

Simultaneous Localization and Mapping

- invented by C.F. Gauss
 - celestial body prediction
 - surveying the kingdom of Hanover
- contribution
 - probabilistic view as maximum likelihood (Gaussian distribution)
 - reduce to linear(-ized)
 equation system
 - solve that (Gauss-Seidel iteration, Gaussian elimination)

Udo Frese (7)

Udo Frese (8)

$$p(X = x | Z = z)$$

$$= \frac{p(Z = z | X = x)p(X = x)}{p(Z = z)}$$

$$\propto p(Z = z | X = x)p(X = x)$$

$$\propto p(Z = z | X = x)$$

$$= p(N = z - f(X)| X = x)$$

$$= p(N = z - f(x))$$

$$\propto \exp(-\frac{1}{2}(z - f(x))^T Q^{-1}(z - f(x)))$$

$$\hat{x} = \underset{x}{\arg \max} p(X = x | Z = z)$$

$$= \arg \underset{x}{\min} \left(\frac{1}{2} (z - f(x))^T Q^{-1} (z - f(x)) \right)$$

$$\Rightarrow 0 = -(z - f(\hat{x}))^T Q^{-1} \frac{df}{dx_i} (\hat{x}) \quad \forall i$$

$$0 = -(z - f(\hat{x}))^T Q^{-1} \frac{df}{dx} (\hat{x}) \quad \text{gradient of f with respect to } \mathbf{x}_i$$

$$0 = \frac{df}{dx} (\hat{x})^T Q^{-1} (z - f(\hat{x})) \quad \text{Jacobian of f}$$

landmarks poses	I. observation odometry Imarks poses	I. observation odometry Diservation odometry	I. observation odometry
0	$= \frac{df}{dx}(\hat{x})^T$	$\cdot \qquad Q^{-1} \cdot (z -$	$f(\hat{x})$

Udo Frese (12)

 $0 = \frac{df}{dx} (\hat{x})^T Q^{-1} (z - f(\hat{x}))$ $f(x) \approx f(\breve{x}) + \frac{df}{dx}(\breve{x})(x - \breve{x})$ $0 \approx \frac{df}{dx} (\breve{x})^T Q^{-1} \left(z - f(\breve{x}) - \frac{df}{dx} (\breve{x}) (\hat{x} - \breve{x}) \right)$ $= \frac{df}{dx} (\breve{x})^T Q^{-1} \left(z - f(\breve{x}) - \frac{df}{dx} (\breve{x}) \hat{x} + \frac{df}{dx} (\breve{x}) \breve{x} \right)$ $= -\frac{df}{dx}(\bar{x})^T Q^{-1} \frac{df}{dx}(\bar{x})\hat{x} + \frac{df}{dx}(\bar{x})^T Q^{-1} \left(z - f(\bar{x}) + \frac{df}{dx}(\bar{x})\bar{x}\right)$ matrix information vector Udo Frese (13)

 $= -\frac{df}{dx}(\breve{x})^T Q^{-1} \frac{df}{dx}(\breve{x})x + \frac{df}{dx}(\breve{x})^T Q^{-1} \left(z - f(\breve{x}) + \frac{df}{dx}(\breve{x})\breve{x}\right)$ $\Rightarrow x =$ $\left(\frac{df}{dx}(\bar{x})^T Q^{-1} \frac{df}{dx}(\bar{x})\right)^{-1} \frac{df}{dx}(\bar{x})^T Q^{-1} \left(z - f(\bar{x}) + \frac{df}{dx}(\bar{x})\bar{x}\right)$ $= \breve{x} + \left(\frac{df}{dx}(\breve{x})^T Q^{-1} \frac{df}{dx}(\breve{x})\right)^{-1} \frac{df}{dx}(\breve{x})^T Q^{-1}(z - f(\breve{x}))$ $C = \operatorname{cov}(x)$

$$x = \breve{x} + \left(\frac{df}{dx}(\breve{x})^T Q^{-1} \frac{df}{dx}(\breve{x})\right)^{-1} \frac{df}{dx}(\breve{x})^T Q^{-1}(z - f(\breve{x}))$$

- Linearized Maximum Likelihood / SLAM
 solve the above equation
- Nonlinear Maximum Likelihood / SLAM
 - $set x^{\sim} = x$
 - iterate the above equation until convergence
 - non-linear minimum
 - gold-standard

$$0 = \frac{df}{dx} (x)^T Q^{-1} (z - f(x))$$

- iterated least square converges to the non-linear maximum likelihood solution, unless stuck in local minima
- gold-standard to compare with
- slow, except when sparsity based methods are used

Thanks to P. Pinies for contributing to this discussion.

Udo Frese (17)

×

*

2

The (Extended) Kalman Filter from a Least-Square based Perspective

- KF implements rekursive (i.e. incremental) least square
- applies Woodbury formula for updating the inverse of a matrix to the information matrix

$$C^{+} = \left(\frac{df^{+}}{dx}(\bar{x})^{T}Q^{+-1}\frac{df^{+}}{dx}(\bar{x})\right)^{-1}, Q^{+} = \begin{pmatrix}Q^{-}\\Q^{m}\end{pmatrix}, f^{+} = \begin{pmatrix}f^{-}\\f^{m}\end{pmatrix}$$
$$= \left(\frac{df^{-}}{dx}(\bar{x})^{T}(Q^{-})^{-1}\frac{df^{-}}{dx}(\bar{x}) + \frac{df^{m}}{dx}(\bar{x})^{T}(Q^{m})^{-1}\frac{df^{m}}{dx}(\bar{x})\right)^{-1}$$
$$= \left((C^{-})^{-1} + \frac{df^{m}}{dx}(\bar{x})^{T}(Q^{m})^{-1}\frac{df^{m}}{dx}(\bar{x})\right)^{-1}$$
$$\stackrel{\text{Wood-bury}}{=} C - C\frac{df^{m}}{dx}(\bar{x})^{T}\left(\frac{df^{m}}{dx}(\bar{x})C\frac{df^{m}}{dx}(\bar{x})^{T} + Q^{m}\right)^{-1}\frac{df^{m}}{dx}(\bar{x})C$$

• EKF is a KF working on the linearization... $f(x) \approx f(\bar{x}) + \frac{df}{dx}(\bar{x})(x - \bar{x})$

$$x^{+} = x^{-} + K \left(z - \left(f(\breve{x}) + \frac{df}{dx} (\breve{x}) (x^{-} - \breve{x}) \right) \right)$$

$$= x^{-} + K \left(z - f(\breve{x}) - \frac{df}{dx} (\breve{x}) (x^{-} - \breve{x}) \right)$$

- ..at the prior estimate
- you can't change linearization point by changing the Jacobian only
- otherwise a term as in the iEKF appears

Udo Frese (22)

- EKF is a KF working on the linearization at the prior estimate
- iEKF is a KF working on the linearization at the posterior estimate
- \Rightarrow when thinking about linearization
 - only the linearization points count
 - marginalization steps do not matter
 - block/sequential update does not matter,
 except through the linearization point

<u>Question to the Audience</u>: Which linearization points are used for the different observations?

	Z ₁	Z ₂	u ₁	Z ₃	Z ₄	u ₂	z ₅	z ₆
	lm a	lm b	odo	lm a	lm b	odo	lm a	lm b
Batch LS	?????	??????	??????	??????	??????	?????	?????	?????
EKF block	?????	??????	??????	??????	??????	?????	?????	?????
EKF single	?????	??????	??????	??????	??????	?????	?????	?????
iEKF single	?????	??????	·??????	· ? ? ? ? ? ?	??????	??????	?????	?????
iEKF block	?????	??????	??????	??????	?????	?????	?????	?????
Levenb. -Margq.	?????	??????	· ? ? ? ? ? ?	??????	??????	??????	?????	?????

	Z ₁	Z ₂	u ₁	Z ₃	Z ₄	u ₂	Z 5	Z ₆
	lm a	lm b	odo	lm a	lm b	odo	lm a	lm b
Batch LS	x	x	x	x	x	x	x	x
EKF block	x	x	x z _{1,2}	x z _{1,2} ,u ₁	x z _{1,2} ,u ₁	x z ₁₄ , u ₁	x z ₁₄ , u _{1,2}	x z ₁₄ , u _{1,2}
EKF single	x	x z ₁	x z _{1,2}	x z _{1,2} ,u ₁	x z ₁₃ , u ₁	x z ₁₄ , u ₁	x z ₁₄ , u _{1,2}	x z ₁₅ , u _{1,2}
iEKF single	x z ₁	x z _{1,2}	x z _{1,2}	x z ₁₃ , u ₁	x z ₁₄ , u ₁	x z ₁₄ , u ₁	x z ₁₅ , u _{1,2}	x z ₁₆ , u _{1,2}
iEKF block	x z _{1,2}	x z _{1,2}	x z _{1,2}	x z ₁₄ , u ₁	x z ₁₄ , u ₁	x z ₁₄ , u ₁	x z ₁₆ , u _{1,2}	x z ₁₆ , u _{1,2}
Levenb. -Margq.	x z ₁₆ , u _{1,2}	x z ₁₆ , u _{1,2}	x z ₁₆ , u _{1,2}	x z ₁₆ , u _{1,2}	x z ₁₆ , u _{1,2}			

 still, all EKF variants use different, i.e. inconsistent linearization points for different observations, because they cannot change relinearize an observation once it is integrated.

$$x = \breve{x} + \left(\frac{df}{dx}(\breve{x})^T Q^{-1} \frac{df}{dx}(\breve{x})\right)^{-1} \frac{df}{dx}(\breve{x})^T Q^{-1}(z - f(\breve{x}))$$

- robot at $(0,0,\theta)$ observes landmark at (x,y) $\begin{pmatrix} 1\\ 0 \end{pmatrix} = z \approx f \begin{pmatrix} \theta\\ x\\ y \end{pmatrix} = \begin{pmatrix} \cos \theta x + \sin \theta y\\ -\sin \theta x + \cos \theta y \end{pmatrix} \quad \textcircled{}$
- linearized at (0,1,0) and (0,2,0) $1 \approx 1x + \theta y \approx x$ $0 \approx -\theta x + 1y \approx -\theta + y$ $1 \approx 1x + \theta y \approx x$ $0 \approx -\theta x + 1y \approx -2\theta + y$
- by subtracting both right equations it can be seen, that there is "apparent" θ information $0 \approx (-\theta + y) - (-2\theta + y) = \theta$

- inconsistent linearization points lead to apparent absolute orientation information in the covariance/information matrix
- in SLAM the real orientation information becomes smaller and smaller, hence the filter becomes inconsistent
- the problem is more about inconsistent linearization points than about wrong linearization points
- delayed state relinearization or submaps can help

- "which equation is linearized at which point" perspective is helpful
- inconsistent linearization points generate "apparent orientation information" in SLAM
- submaps and delayed state relinearization may help

Sparsity

- huge matrices in LS SLAM
- how can we make computation fast enough?
- understand the block and sparsity pattern for •
- use Tim Davis's csmatrix sparse matrix package* for ()⁻¹

Udo Frese (32)

Question to the audience:

 What information on Q and df/dX is coded in this Bayes net?

 exploit that C is block diagonal, i.e. measurements are independent

$$\frac{df}{dx}(\bar{x})^T Q^{-1} \frac{df}{dx}(\bar{x})$$
$$= \sum_i \frac{df_i}{dx} (\bar{x})^T Q_i^{-1} \frac{df_i}{dx} (\bar{x$$

information "adds up" in the information matrix

Udo Frese (37)

Least Square based SLAM

$$\left(\frac{df}{dx}(\breve{x})^{T}Q^{-1}\frac{df}{dx}(\breve{x})\right)^{-1}\frac{df}{dx}(\breve{x})^{T}Q^{-1}\left(z-f(\breve{x})+\frac{df}{dx}(\breve{x})\breve{x}\right)$$

- how to do the inversion?
- solve an equation instead (MATLAB \)
- use Tim Davis' csparse package
- available for C++ or MATLAB
- selected parts of the inverse can be computed by the Gollub algorithm

Sparsity

- certainly exploit sparsity for multiplications in LS, EKF
- with csparse for inversion, LS becomes competitive concerning computation time
- covariance information is available via Gollub algorithm

Manifolds problem: some states are not vectors

- 2D orientation has 2π periodicity
- 3D orientation has 3-DOF, represented as
 - 3 Euler angles with singularity
 - unit quarternion q, with |q|=1
 - quarternion $q \neq 0$, where |q| does not matter
 - 3×3 matrix, Q with Q^TQ=I
- 3D direction (→inverse depth) has 2-DOF,
 - -2 angles with singularity
 - unit vector v, with |v|=1
 - vector $v \neq 0$, where |v| does not matter

- all these states need special treatment
- look locally like Rⁿ, but globally different
- they are called *manifolds* in mathematics

- observation / dynamic functions view the state S as
 - structured, such as an object oriented class
 - with components that have a specific name, type, and meaning
- generic algorithms (e.g. EKF update equation, LS, etc.) view the state S as
 - a flat vector
 - with as many numbers as DOF
 - without anything additional to consider

<u>Idea</u>

- treat S as a encapsulated black-box data-type and use an operator
 [+]: S×Rⁿ → S to provide flat vector access for the generic algorithm
- [+] applies a local perturbation parameterized by a flat vector to the state
- n corresponds to DOF of the state
- encapsulation as in OO-design
- axiomatization as in mathematics

- motivated by "symmetries and perturbations"¹
- some prior work but without the framework view²
- related to Lie-algebras and manifolds
- but thorough mathematical structure is still unclear to me

- 1 J.A. Castellanos, J.M.M. Montiel, J. Neira, J.D. Tardos The SPmap: A Probabilistic Framework for Simultaneous Localization and Map Building, IEEE Transactions on Robotics and Automation, 1999
- 2 E. Kraft. A quaternion-based unscented kalman filter for orientation tracking, 2003

Example: 3-D Orientations SO(3)

Rot(v) is a rotation around v by an angle of |v|

quarternions:
$$Rot(v) = \left(\cos\left(\frac{|v|}{2}\right), v\frac{\sin(|v|/2)}{|v|}\right)$$

• matrices:

$$Rot(v) = \cos(|v|)I + \frac{\sin(|v|)}{|v|}[v]_{\times} + \frac{(1 - \cos(|v|))}{|v|^2}vv^{T}$$

Question to the audience: Is there a singularity at v=0? Or anywhere else?

$$Rot(v) = \left(\cos\left(\frac{|v|}{2}\right), v\frac{\sin(|v|/2)}{|v|}\right)$$

Question to the audience: Is there a singularity at v=0? Or anywhere else?

$$Rot(v) = \left(\cos\left(\frac{|v|}{2}\right), v\frac{\sin(|v|/2)}{|v|}\right)$$

- not at 0, since sinc(0)=1, and sinc'(0)=0, so Rot(v) ≈(1,v) at v=0
- however, singularity at |v|=2π, since changing the direction of v has no effect then

Example: 3-D Orientations SO(3)

Rot(v) is a rotation around v by an angle of |v|

quarternions:
$$Rot(v) = \left(\cos\left(\frac{|v|}{2}\right), v\frac{\sin(|v|/2)}{|v|}\right)$$

• matrices:

$$Rot(v) = \cos(|v|)I + \frac{\sin(|v|)}{|v|}[v]_{\times} + \frac{(1 - \cos(|v|))}{|v|^2}vv^T$$
$$q[+]v = q Rot(v), \qquad q_2[-]q_1 = aRot(q_1^{-1}q_2)$$

"Axioms"

(I): s[+]_ must be local diffeomorphism for all s
(II): [+] must be locally a "linear approximation"
(III): [-] must be the inverse of [+]

$$[+]: S \times R^{n} \to S$$

(II) $s[+](v_{1} + v_{2}) \approx (s[+]v_{1})[+]v_{2}$
$$[-]: S \times S \to R^{n}$$

(III) $s_{1}[+](s_{2}[-]s_{1}) = s_{2}$

$$p(X = x | Z = z)$$

$$= \frac{p(Z = z | X = x)p(X = x)}{p(Z = z)}$$

$$\propto p(Z = z | X = x)p(X = x)$$

$$\propto p(Z = z | X = x)$$

$$= p(N = z[-]f(X)|X = x)$$

$$= p(N = z[-]f(x))$$

$$\propto \exp(-\frac{1}{2}(z[-]f(x))^T Q^{-1}(z[-]f(x)))$$

$$\begin{aligned} \hat{x} &= \underset{x}{\arg\max} p(X = x \mid Z = z) \\ &= \underset{x}{\arg\min} \left(\frac{1}{2} (z[-]f(x))^T Q^{-1} (z[-]f(x)) \right) \\ &= \underset{\delta}{\arg\min} \left(\frac{1}{2} (z[-]f(\breve{x}[+]\delta))^T Q^{-1} (z[-]f(\breve{x}[+]\delta)) \right) \\ &\Rightarrow 0 = -(z[-]f(\breve{x}[+]\delta))^T Q^{-1} \frac{d([z] - f(\breve{x}[+]\delta))}{d\delta_i} (\hat{\delta}) \qquad \forall i \\ 0 = -(z[-]f(\breve{x}[+]\delta))^T Q^{-1} \frac{d([z] - f(\breve{x}[+]\delta))}{d\delta} (\hat{\delta}) \\ 0 = \frac{d([z] - f(\breve{x}[+]\delta))^T}{d\delta} (\hat{\delta}) Q^{-1} (z[-]f(\breve{x}[+]\hat{\delta})) \end{aligned}$$

 $0 = \frac{df(z[-]f(\bar{x}[+]\delta))}{d\delta} (\hat{\delta})^T Q^{-1} (z[-]f(\bar{x}[+]\hat{\delta}))$ $z[-]f(\breve{x}[+]\delta) \approx z[-]f(\breve{x}) + \frac{d(z[-]f(\breve{x}[+]\delta))}{d\delta}(0)\delta$ $0 = \frac{d(z[-]f(\breve{x}[+]\delta))}{d\delta}(0)^{T}Q^{-1}\left(z[-]f(\breve{x}) + \frac{d(z[-]f(\breve{x}[+]\delta))}{d\delta}(0)\delta\right)$ $\frac{d(z[-]f(\breve{x}[+]\delta))}{d\delta}(0)^{T}Q^{-1}\frac{d(z[-]f(\breve{x}[+]\delta))}{d\delta}(0)\delta$ $(\breve{x}[+]\delta))$ $(0)^T Q^{-1}(z[-]f(\breve{x}))$ information matrix information vector Udo Frese (55)

$$\begin{split} &\delta = -\left(\frac{d(z[-]f(\breve{x}[+]\delta))}{d\delta}(0)^{T}Q^{-1}\frac{d(z[-]f(\breve{x}[+]\delta))}{d\delta}(0)\right)^{-1} \\ &\frac{d(z[-]f(\breve{x}[+]\delta))}{d\delta}(0)^{T}Q^{-1}(z[-]f(\breve{x})) \\ &\hat{x} = \breve{x}[+] - \left(\frac{d(z[-]f(\breve{x}[+]\delta))}{d\delta}(0)^{T}Q^{-1}\frac{d(z[-]f(\breve{x}[+]\delta))}{d\delta}(0)\right)^{-1} \\ &\frac{d(z[-]f(\breve{x}[+]\delta))}{d\delta}(0)^{T}Q^{-1}(z[-]f(\breve{x})) \end{split}$$

<u>Comparison</u>

vectorspace LS

$$\hat{x} = \breve{x} + \left(\frac{df}{dx}(\breve{x})^T Q^{-1} \frac{df}{dx}(\breve{x})\right)^{-1} \frac{df}{dx}(\breve{x})^T Q^{-1}(z - f(\breve{x}))$$

manifolds LS

$$\hat{x} = \breve{x}[+] - \left(\frac{d(z[-]f(\breve{x}[+]\delta))}{d\delta}(0)^{T}Q^{-1}\frac{d(z[-]f(\breve{x}[+]\delta))}{d\delta}(0)\right)^{-1}$$
$$\frac{d(z[-]f(\breve{x}[+]\delta))}{d\delta}(0)^{T}Q^{-1}(z[-]f(\breve{x}))$$

 viewing it as a mapping of perturbations in x to perturbations in f(x)

Comparison simplified (Z is vectorspace)

vectorspace LS

$$\hat{x} = \breve{x} + \left(\frac{df}{dx}(\breve{x})^T Q^{-1} \frac{df}{dx}(\breve{x})\right)^{-1} \frac{df}{dx}(\breve{x})^T Q^{-1}(z - f(\breve{x}))$$

manifolds LS

$$\hat{x} = \breve{x} \Big[+ \Big] \Big(\frac{d(f(\breve{x}[+]\delta))}{d\delta} (0)^T Q^{-1} \frac{d(f(\breve{x}[+]\delta))}{d\delta} (0) \Big]^{-1} \frac{d(f(\breve{x}[+]\delta))}{d\delta} (0)^T Q^{-1} (z - f(\breve{x})) \Big]$$

- <u>Question to the audience:</u> Where is the difference to treating x_0 [+] δ as a parameterization for x and applying VS-LS to δ ?
- vectorspace LS

$$\hat{x} = \breve{x} + \left(\frac{df}{dx}(\breve{x})^T Q^{-1} \frac{df}{dx}(\breve{x})\right)^{-1} \frac{df}{dx}(\breve{x})^T Q^{-1}(z - f(\breve{x}))$$

manifolds LS

$$\hat{x} = \breve{x} \left[+ \left[\frac{d(f(\breve{x}[+]\delta))}{d\delta} (0)^T Q^{-1} \frac{d(f(\breve{x}[+]\delta))}{d\delta} (0) \right]^{-1} \right]$$
$$\frac{d(f(\breve{x}[+]\delta))}{d\delta} (0)^T Q^{-1} (z - f(\breve{x}))$$

Question to the audience:

• vectorspace $\operatorname{LS} \hat{\delta} = \breve{\delta} + \left(\frac{df(x_0[+]\delta)}{\delta}(\breve{\delta})^T Q^{-1} \frac{df(x_0[+]\delta)}{\delta}(\breve{\delta})\right)^{-1}$

$$\frac{df(x_0[+]\delta)}{\delta} (\breve{\delta})^T Q^{-1} (z - f(x_0[+]\breve{\delta}))$$

- manifolds LS $\hat{x} = \bar{x} \left[+ \left[\frac{d(f(\bar{x}[+]\delta))}{d\delta} (0)^T Q^{-1} \frac{d(f(\bar{x}[+]\delta))}{d\delta} (0) \right]^{-1} \frac{d(f(\bar{x}[+]\delta))}{d\delta} (0)^T Q^{-1} (z f(\bar{x})) \right]^{-1}$
- VS-LS would accumulate in δ and might run into singularities, M-LS accumulates in x and only parameterizes each small step

- how to get the Jacobian?
- numerically by evaluating z[-]f(x[+] δ) for small unit vectors $\delta = \pm \epsilon I_i$
- or by evaluating on σ points, such as UKF
- whole UKF can be directly used on manifolds by replacing – with [-] and + with [+]

- 3-D orientations, 3-D directions, ..., pose parameterization problems
- encapsulate the structure of manifolds by defining perturbation operators [+], [-]
- mostly existing formulas work by replacing + with [+] and – with [-] with common sense applied
- iterations are accumulated in the state

Summary

- least square (LS) is the goldstandard approach
- linearization problems come mainly from inconsistent linearization points
- LS can be made efficient by exploiting sparsity
- singularity problems of rotations, directions can be encapsulated by a perturbation operator [+],[-]

