Treemap: Closing a Million-Landmarks Loop

Udo Frese
Simultaneous Localization and Mapping

- continuously estimate a map from sensor data
- input (yellow):
 - landmark observations
 - odometry
- output (blue):
 - landmark positions
 - robot pose
Simultaneous Localization and Mapping
Simultaneous Localization and Mapping

n landmarks
p robot poses
k local
$=O(1)$ landmarks
Simultaneous Localization and Mapping

Udo Frese (16)
Simultaneous Localization and Mapping
Simultaneous Localization and Mapping

• problem: accumulated error
Simultaneous Localization and Mapping

SLAM Uncertainty 1

• accumulated error affects position not shape

„Certainty of Relations despite Uncertainty of Positions“

Simultaneous Localization and Mapping

• closing a loop by re-identifying a landmark
• „bending“ the map
Simultaneous Localization and Mapping

- implicitly done by proper statistical evaluation
Simultaneous Localization and Mapping

- closing the loop: single measurement drastically reduces the overall error
Simultaneous Localization and Mapping

• optimal solution: (nonlinear) least square estimation following C.F. Gauss
• nonlinear maximum likelihood estimation
• linear equation system
• problem: computation time
Simultaneous Localization and Mapping

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Quality</th>
<th>Storage</th>
<th>Computation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Likel.</td>
<td>optimal</td>
<td>$n+kp$</td>
<td>$(n+p)^3$</td>
</tr>
<tr>
<td>EKF</td>
<td>linear</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>CEKF</td>
<td>linear</td>
<td>$n^{3/2}$</td>
<td>k^2</td>
</tr>
<tr>
<td>Treemap</td>
<td>nonlin.</td>
<td>kn</td>
<td>k^2</td>
</tr>
</tbody>
</table>

- n: landmarks (725)
- p: robot poses (3297)
- k: local landmarks (15)

EKF
- Linear
- n^2 storage
- n^2 computation time

CEKF
- Linear
- $n^{3/2}$ storage
- k^2 computation time

Treemap
- Nonlinear
- kn storage
- k^2 computation time

- Same region
- New region
- Global
Simultaneous Localization and Mapping

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Quality</th>
<th>Storage</th>
<th>Computation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Likel.</td>
<td>optimal</td>
<td>(n+kp)</td>
<td>((n+p)^3)</td>
</tr>
<tr>
<td>EKF</td>
<td>linear</td>
<td>(n^2)</td>
<td>(n^2)</td>
</tr>
<tr>
<td>CEKF</td>
<td>linear</td>
<td>(n^{3/2})</td>
<td>(k^2)</td>
</tr>
<tr>
<td>Treemap</td>
<td>nonlin.</td>
<td>(kn)</td>
<td>(k^3 \log n)</td>
</tr>
</tbody>
</table>

- \(n\) landmarks (725)
- \(p\) robot poses (3297)
- \(k\) local landmarks (15)
Simultaneous Localization and Mapping

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Quality</th>
<th>Storage</th>
<th>Computation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Likel.</td>
<td>optimal</td>
<td>$n+kp$</td>
<td>$(n+p)^3$</td>
</tr>
<tr>
<td>EKF</td>
<td>linear</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>CEKF</td>
<td>linear</td>
<td>$n^{3/2}$</td>
<td>k^2</td>
</tr>
<tr>
<td>Treemap</td>
<td>nonlin.</td>
<td>kn</td>
<td>k^2</td>
</tr>
</tbody>
</table>

- **n**: landmarks (725)
- **p**: robot poses (3297)
- **k**: local landmarks (15)
The Hierarchical Treemap Algorithm

The Hierarchical Treemap Algorithm

- General idea
- Probabilistic propagation along the tree
- Linearization, integration, marginalization, sparsification
- Bookkeeping and hierarchical tree partitioning
- Closing a million-landmarks loop
Treemap Algorithm

- If the robot is in part A, what is the information needed about B?
- Only the marginal distribution of landmarks observable from A conditioned on observations in B.
Treemap Algorithm
Udo Frese (32)

Treemap Algorithm

landmarks
landmark-observations
odometry
robot poses
Treemap Algorithm

landmarks

landmark-observations

odometry

robot poses
Treemap Algorithm

landmarks

landmark-observations

odometry

robot poses
Treemap Algorithm

\[
p(X[n: \downarrow \uparrow] | z[n: \downarrow])
\]

\[
p(X[n: \uparrow \downarrow \uparrow] | z[n: \downarrow])
\]

\[
p(X[n: \uparrow \downarrow \uparrow] | z[n: \downarrow]) =
\]

\[
p(X[n: \downarrow \uparrow \downarrow] | z[n: \downarrow])
\]

\[
p(X[n: \downarrow \uparrow \downarrow] | z[n: \downarrow]) =
\]

Udo Frese (43)
\[p(X[n_L: \downarrow \uparrow]|z[n_L: \downarrow]) = p(X[n_V: \downarrow \uparrow]|z[n_V: \downarrow]) = p(X[n: \uparrow \vee \downarrow \uparrow]|z[n: \uparrow]) = p(X[n: \downarrow \uparrow \vee \downarrow \uparrow]|z[n: \downarrow]) } \]
\[p(X[n: \downarrow \uparrow \vee \downarrow \uparrow] \mid z[n \downarrow]) \]
\[p(X[n: \downarrow \uparrow \vee \wedge \uparrow \downarrow] | z[n \downarrow]) \]
\[p(X[n: \land \uparrow] | X[n: \downarrow \uparrow], z) \quad p(X[n: \downarrow \uparrow] | z[n: \downarrow]) \]
Treemap Algorithm

\[p(X[n: \downarrow \uparrow] | z[n: \downarrow]) \]

\[p(X[n: \downarrow \uparrow \lor \downarrow \uparrow] | z[n: \downarrow]) \]

\[p(X[n: \downarrow \uparrow] | z[n: \downarrow], z) \]

\[p(X[n: \downarrow \uparrow \lor \downarrow \uparrow] | z[n: \downarrow], z) \]

\[p(X[n\downarrow: \downarrow \uparrow] | z[n\downarrow: \downarrow]) = \]
\[p(X[n\downarrow: \uparrow \lor \downarrow \uparrow] | z[n\downarrow: \downarrow]) = \]
\[p(X[n: \uparrow \lor \downarrow \uparrow] | z[n: \downarrow]) \]
Treemap Algorithm

\[p(X[n: \downarrow \uparrow]\mid z) \]

\[p(X[n: \downarrow \uparrow \downarrow \uparrow]\mid X[n: \downarrow \uparrow], z) \]

\[p(X[n: \downarrow \uparrow \vee \downarrow \uparrow]\mid z) \]
Treemap Algorithm

Actual Implementation

- Gaussians defined by square-root information matrix.
- Upwards (●) by stacking.
- (M) by QR-decomposition
- Downwards (●) by back-substitution, i.e. solving a triangular equation system
\[\chi^2(x) = x^T A x + x^T b + \gamma \]
\[= (\begin{pmatrix} x \\ 1 \end{pmatrix})^T \begin{pmatrix} A & b/2 \\ b^T/2 & \gamma \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix} \]
\[= \|R x'\|_2^2, \quad A' = R^T R \]

\[\chi^2(x') = \chi_1^2(x') + \chi_2^2(x') \]
\[= \|R_1 x'\|_2^2 + \|R_2 x'\|_2^2 \]
\[= \|(R_1 \begin{pmatrix} R_1 & R_2 \end{pmatrix} x')\|_2^2 \]
\[= \|R x'\|_2^2, \quad \begin{pmatrix} R_1 \\ R_2 \end{pmatrix} = QR \]
\[\chi^2 \left(\begin{pmatrix} y' \\ z' \end{pmatrix} \right) = \left\| \begin{pmatrix} C & D \\ 0 & E \end{pmatrix} \begin{pmatrix} y' \\ z' \end{pmatrix} \right\|_2^2 \]
\[= \left\| \begin{pmatrix} C & D \\ 0 & E \end{pmatrix} \begin{pmatrix} y' \\ z' \end{pmatrix} \right\|_2^2 + \left\| \begin{pmatrix} 0 & E \end{pmatrix} \begin{pmatrix} y' \\ z' \end{pmatrix} \right\|_2^2 \]
\[= \left\| \begin{pmatrix} C & D \\ 0 & E \end{pmatrix} \begin{pmatrix} y' \\ z' \end{pmatrix} \right\|_2^2 + \left\| Ez' \right\|_2^2 \]
\[\chi^2 \left(\begin{pmatrix} y' \\ z' \end{pmatrix} \right) = \left\| C(y - C^{-1}Dz') \right\|_2^2 + \left\| Ez' \right\|_2^2 \]

\[y_i = -\frac{1}{R_{ii}} \sum_{j=i+1}^{\dim y} R_{ij} y_j \]
Treemap Algorithm

Why is it fast?

- Many small matrices instead of one large matrix.
- Update only $O(\log n)$ nodes upwards.
- Downwards (●) operation is extremely fast.
- Requires topologically suitable building.
Treemap Algorithm

A „topologically suitable“ building
Experiments
Experiments

SLAM Video (uncut)

SLAM Video (abridged)
Experiments

Udo Frese (59)
Experiments

building: 60m × 45m
rooms: 29
distance traveled: 505m
large loops: 3
landmarks: $n = 725$
measurements: $m = 29142$
robot poses: $p = 3297$
local landmarks: $k \approx 16$
Experiments

Navigation Video
Linearization, Integration, Marginalization and Sparsification
Different Levels of Approximation

- keep all non-linear measurements
 - recompute Jacobians every time you need.
- linearize
 - integrate a whole region into one matrix
- marginalize
 - marginalize out old poses inside a region
- sparsify
 - duplicate some old poses and marginalize out
 - cutting odometry (like ESDS-Filter)
Different Levels of Approximation

- keep all non-linear measurements
 - recompute Jacobians every time you need.

- linearize
 - integrate a whole region into one matrix

- marginalize
 - marginalize out old poses

- sparsify
 - duplicate some old poses and marginalize out
 - cutting odometry (like ESDS-Filter)
Closing a Million-Landmarks Loop

landmarks

landmark-observations

odometry

robot poses
Closing a Million-Landmarks Loop

A: Nonlinear distributions
Closing a Million-Landmarks Loop

B: Linearize
Closing a Million-Landmarks Loop

C: Marginalize out inner poses

Udo Frese (69)
Closing a Million-Landmarks Loop

D:
Sparsify,
1: sacrifice
pose
equality
constraint
Closing a Million-Landmarks Loop

D:
Sparsify,
1: sacrifice pose equality constraint
2: marginalize out all poses
Bookkeeping and Hierarchical Tree Partitioning
Bookkeeping and HTP

• Which nodes to recompute?
• Rearrange the tree to improve computation time.
• NP-hard
• Multilevel Khernighan and Lin heuristics established in the field of graph partitioning
• Do some Khernighan and Lin runs after each update
• Optimize worst-case update time
Bookkeeping and HTP

- Choose a node r from a queue
- Consider moving a single subtree s from one side of r to the other
Bookkeeping and HTP

- Choose a node \(r \) from a queue
- Consider moving a single subtree from one side of \(r \) to the other
Bookkeeping and HTP

- Try to move every subtree that shares a feature (KL) on the left of s to move to the right of s and vice versa (O(k log² n))
- Choose the best
- Try it for some steps even if it makes things worst (KL)
- Consider integration, marginalization when moving
- Consider sparsification as a last resort
Closing a Million-Landmarks Loop

Our homage our response
Application → Treemap Driver → Treemap Backend

- Observations
- Control policy
- Map estimate
- Gaussian mean
- Gaussians
The Experiments

Video: Closing a Million-Landmarks Loop
(http://www.informatik.uni-bremen.de/~ufrese/slammillionlandmarks/freemillionlandmarks.avi)

Video: Using Treemap for a Generic Least Square Backend for 6-DOF SLAM
(http://www.informatik.uni-bremen.de/~ufrese/slammillionlandmarks/avi)
Landmarks [1M]
time [ms]
global downward estimation
upward update
book-keeping
downward estimation
book-keeping
• 1000 Landmarks
upward update

[Graph showing time in milliseconds against a scale with values 0 to 250, with curves indicating upward update, book-keeping, and downward estimation.]
Treemap
- closes a loop over 1032271 features in 21ms (local) or 442ms (global)
- O($k^3 \log n + k^2 \log^2 n + kn$)
- generic backend & specific driver
- open source soon
- driver has to implement
 - measurement function, initial estimate, Jacobian
 - approximation policy
 - 2-D, 3-DOF: 690 lines of C++ code
 - 3-D, 6-DOF: 410 lines of C++ code