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Chapter 1

Introduction

1.1 Motivation and Aim of Work
Nowadays, robots are no more just machines in factory production lines and grad-
ually entering in human everyday life taking part in their activity. Having intuitive
and natural interaction is one of the key challenges for robots.
Robots that interact with humans not only need to detect humans in their environ-
ment but also need to keep tracking of their movement to avoid collision and also
detect their attitude to allow them to follow human and make proper decision for
interaction. Human detection, tracking and activity recognition is a highly active
area of research not only in robot vision but generally in computer vision due to
its necessity in applications such as video surveillance and advanced driver assis-
tance systems. However, though significant work has been done in recent years a
number of challenges have not yet been fully met.
To find out and recognize the difficulties and obstacles that a robot would face
while having interaction with human in everyday life, a game that involves in-
teraction between human player and robot has been designed and developed as a
pilot application. In this game (Figure 1.1) the robot is located in the center of
two imaginary concentric circles. The players in team A stand on inner circle and
players of team B stand on the outer circle. The players in team B try to pass
the ball to the robot. The robot is equipped with stereo cameras which enable him
to track the ball and also the players. The robot has a mechanical arm on his top
which enables him to kick back the coming ball. The cameras and the arm can
rotate around vertical pivot during the game so robot can respond properly. The
players in team A would try to intercept the ball. Therefore the robot should be
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able to track the ball and predict the path of ball and also the location of players
in both teams and estimate their body pose to find free players. Figures 1.2, 1.3
and 1.4 illustrate the images captured by the camera on the robot during the game.
Figure 1.6 illustrates the robot during the game from an external camera.

Figure 1.1: Schema of the game (graphic by Prof. Dennis Paul).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.2: Screen shots from camera mounted on robot, the player in team A (the
player in yellow shirt) tries to intercept the ball
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.3: Screen shots from camera mounted on robot, the player in team B
throw the ball back to the robot and the player in team A tries to intercept the ball
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 1.4: Screen shots from camera mounted on robot, the player in team A
finally intercept and catch the ball
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Figure 1.5: The Piggy robot (Photo by R. Wagner).
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Figure 1.6: The Piggy robot during the game, kicking back the flying ball (Photo
by R. Wagner)

1.2 Contribution of Thesis
The aim followed in this work is not only a building system for estimating the pose
of the human in video as many approaches stated in the literature review already
doing that, but the main focus is mainly equipping HOG (Histogram of Oriented
Gradient) with Kalman filter to improve the performance of human detection on a
mobile robot and also evaluation of CNS (Contrast Normalized Sobel) for human
motion analysis in the form of estimating a 2D contour of human and testing it’s
performance for human pose estimation.
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Chapter 2

Literature review and similar works

Understanding of human activity and motion analysis is a rising research area in
computer vision which has gained a lot of attention in recent years. It is a mul-
tidisciplinary research area, involving various fields including image processing,
computer vision, machine learning, pattern recognition, artificial intelligence, hu-
man kinematics, cognitive science, and even psychology.
Human motion analysis consist of following steps[1]:

• Body Structure Analysis: Which could be model based or non-model based.

• Tracking Moving Human: Either from a single view or multiple camera
perspectives.

• Human Activity Recognition : Which could be based on state space model
or template matching.
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Figure 2.1: Steps in human motion analysis and different approaches for each
step, graph retrieved from [1].

2.1 Motion Analysis of Human Body Parts
Aggarwal and Cai [1] have classified human motion analysis from different per-
spective of representation and also the model that has been used as well. Here we
follow the same structure.
In computer vision reviews human bodies are mainly represented by Stick Fig-
ures, 2D Contours or Volumetric Models. [2] With this representation body
segments can be approximated as lines, 2D ribbons, and 3D volumes.
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(a) Stick Figure (b) 2D Contour

(c) Volumetric Model

Figure 2.2: Model representation for human body in motion analysis, images de-
rived from work in [3] [4] [5] respectively.

Based on deploying a priori knowledge regarding shape models there are are two
methods for motion analysis model based and non model based.
The complexity for representing the human body model changes from stick fig-
ures to 2D contours to 3D volumes In both model-based and nonmodel-based
approaches.
The main idea of modeling human body with stick figures is based on the fact that
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human body motion can be seen as movement of the supporting bones.
2D contours are projection of human body from 3D world into 2D image. 3D
modeling of human body with volumetric models, such as elliptical cylinders,
spheres and cones are able to describe the human body with more detail but require
more parameters [6].
Both approaches have the similar procedure:

• feature extraction.

• feature correspondence.

• high-level processing.

The main difference between the two model based and non model based approach
is in feature correspondence between consecutive frames. In model based meth-
ods there is an assumption that a priori shape models match in the images into a
predefined model.
After model matched into the real images, feature correspondence would auto-
matically be done.
In the case that there is no a priori shape models, correspondence between succes-
sive frames is based upon prediction or estimation of features related to position,
velocity, shape, texture, and color. However these two approaches can also be
combined at various levels to verify the matching between consecutive frames
and, finally, to accomplish more complex tasks [1].

2.2 Non Model Based Motion Analysis
As Aggarwal and Cai stated in [1], ”Most approaches to 2D or 3D interpretation of
human body structure focus on motion estimation of the joints of body segments.
When no a priori shape models are assumed, heuristic assumptions are usually
used to establish the correspondence of joints between successive frames. These
assumptions impose constraints on feature correspondence, decrease the search
space, and eventually, result in a unique match”. [1]

2.2.1 Stick Figures
Stick figures developed initially by Johansson [7], consist of line segments which
are linked by joints. It is one the simplest form for representing human body. An
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example of a stick figure can be seen in 2.2(a). In stick figures, motion estimation
and activity recognition is based on motion of joints. In [7], Johansson marked
joints as moving light displays (MLD). Afterward in a work by Rashid [8], he
tried to use projected MLD to recover a connected human structure. Stick figures
developed to 3D structure by [3] and [9].
”In a work by Webb and Aggarwal, they imposed the fixed axis assumption, which
assumes that the motion of each rigid object (or part of an articulated object) is
constrained so that its axis of rotation remains fixed in direction. Therefore, the
depth of the joints can be estimated from their 2D projections. All of these ap-
proaches inevitably demand a high degree of accuracy in extracting body seg-
ments and joints. The segmentation problem is avoided by directly using MLDs
that implies their restrictions to human images with natural clothing” [1], [3] and
[9].

2.2.2 2D Contours
2D contours are also used for representing the human body. In 2D contours, the
human body segments are comparable to 2D ribbons or blobs. An example of 2D
contours can be seen in 2.2(b).
Shio and Sklansky [5] worked on 2D translational motion of human blobs. In this
work they relied on motion for body decomposition. A method alike to optical
flow used to compute magnitude and direction of the pixel velocity of blobs and
then blobs were grouped based on that. After few frames, the velocity of each part
converges to a global average.
In [10] Kurakake and Nevatia find correspondences between extracted ribbons
to locate the joints of walking humans. Correspondences were conducted using
various geometric constraints. Joints were labeled the center of the area of two
overlapped ribbons .
Kakadiaris [11] used a physics-based framework for body segmentation and joint
location from image sequences of the moving subject. In this work joints are
identified when the body segments connected to it have motion.
Rowley and Rehg [12] worked on segmentation of optical flow fields of articulated
objects. They add kinematic motion constraints to each pixel data to extend the
work in [13]. In this work they have used EM (expectation maximization) in a
way that segmentation is done in the E-step and motion analysis in the M-step.
These two steps are computed iteratively. The motion addressed in the paper is
restricted to 2D affine transforms.
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2.3 Model-Based Approaches
In the previous section I reviewed non model based methods. In non model based
methods no a priori shape models available therefore feature correspondence be-
tween consecutive frames is difficult. To overcome this problem predefined mod-
els for feature correspondence and body structure recovery is being used. In the
following we review model based approaches.

2.3.1 Stick Figures
Chen and Lee [14] proposed a model 2.2(a) that represent the head, torso, hip,
arms, and legs. The model consists of 14 joints and 17 lines connecting them.
Physical constraints were employed in order to analysis the gait. With this model
they recovered the 3D configuration of a moving human from a projected 2D im-
age. The need to accurate extract 2D stick figures and brute forcing all possible
combinations of 3D configurations from 2D projection made the method compu-
tationally expensive [1].
Bharatkumar, Daigle, Pandy, Cai, and Aggarwal [15] in their work tried to con-
struct a general kinematic model for gait analysis for walking humans. They used
stick figures to model the lower limbs of the moving human body. ”Stick figures
were obtained from ordinary images of persons dressed in tight fitting clothes
without any markers by using the medial axis transformation. The body segment
angle and joint displacement were measured and smoothed from real image se-
quences, and then a common kinematic pattern was detected for each walking
cycle. A high correlation was found between the real images and the model” [1].
Being sensitive to the perspective angle that image has been acquired and view-
based dependency is the main drawback of this work.
Iwasawa [16] in his paper introduces a new real-time method for estimating the
posture of a human (in thermal images) regardless of the background and lighting
conditions. Images were acquired by an infrared camera. The height of the human
image and the distance between the subject and the camera were precalibrated.
The orientation of the upper half of the body was obtained as the principle axis
of inertia of the human silhouette. After that, significant points such as the top
of the head, the tips of the hands and foot are heuristically located. The position
of elbow and knee were detected by using a genetic algorithm. This work has a
similar drawback like [15] and the model depends on the view.
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2.3.2 2D Contours
Leung and Yang [17] developed a vision system ”First Sight” for labeling the
outline of a moving human body and applied that to estimate human subjects
performing gymnastic movements. Two main processes are implemented in First
Sight. The first process extracts the outline of a moving human body from an
image sequence by subtracting consecutive frames and finding moving blobs and
then finding edges. ”Next, a sophisticated 2D ribbon model 2.2(b) is applied to
explore the structural and shape relationships between the body parts and their
associated motion constraints.
A spatial-temporal relaxation process was proposed to determine if an extracted
2D ribbon belongs to a part of the body or that of the background. In the end, a
description of the body parts and the appropriate body joints is obtained, based on
the structure and motion. Extensive knowledge of the structure shape, and posture
of the human body is used in the model” [1].

2.3.3 3D Volumes
Sensitivity to the angle between camera and subject (view dependency) is the main
drawback for any 2D model. To overcome this problem 3D volumetric models
have been proposed. 3D volumetric models are computationally more expensive
and require more parameters. Pioneering works for 3D modeling was done by
Badler [18] and also Yamamoto [19].
In [18] Badler and O’Rourke applied a volumetric model for 3D model-based hu-
man motion analysis that consists of 25 joints and 24 segments while taking into
account motion constraints for human body parts. This work involves four major
steps: prediction, simulation, image analysis, and parsing. In the prediction
step the image analysis phase based on the previous prediction tries to find the
body segments. After the search space for 3D location of body segment is nar-
row down, the parser tries to fit the location-time relationships into certain linear
functions. In the following in the prediction phase, the predictor deploys the de-
termined linear functions to estimate the position of the parts in the next frame.
In the end a simulator with extensive knowledge of the human body translates the
prediction data into corresponding 3D regions, which in the next iteration will be
used by the image analysis phase.
Another way to represent human body in 3D volumes is elliptical cylinders.
For an elliptical cylinder the length of the axis and the major and minor axes of
the ellipse cross section is needed so it needs fewer parameters in comparison with
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[18],
Hogg [20] used the cylinder model and developed a computer program (WALKER)
based on that which recovers the 3D structure of a walking person.
Rohr [21] used the 14 elliptical cylinders to represent the human body with the
origin of the coordinate system at the center of the torso. Rohr used eigenvector
line fitting to outline the human image and then fitted the 2D projections into the
3D human model using a similar distance measure. Both works [20] and [21] tried
to generate 3D descriptions of a human walking by modeling.

2.4 Human Detection
In all 2D or 3D approaches and model based or non model based methods, the very
first thing that any of them needs is an automatic methods for detecting the human
from a visual input which could be an image or a video. Once this step done,
depending on the application, the system can go further into processing details of
understanding the human activity. In the following we discuss the techniques for
human detection in visual input.

2.4.1 Classification of Human Detection
There are mainly two approaches for the problem of detecting human in an image
or video (sequence of images).
The first one is based on background subtraction techniques and requires a fixed
background. These method subtract frames from previous frame or from a fixed
frame and finds the foreground objects from that. Afterward based on some char-
acteristics such as shape, color, or motion the algorithm would classify these ob-
jects into like human, animal, vehicle, etc. Ogale [22] compiled most recent works
based on background subtraction and the feature that is being used to detect hu-
mans in foreground objects and summarized in Table 2.1.
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Authors Subtraction technique Feature for finding human
Wren et al.[23] Color/Ref. image Color,contour

Beleznai et al.[24] Color/Ref. image Region model
Haga et al.[25] Color/Ref. image F1-F2-F3
Eng et al.[26] Color/Ref. image Color

Elzein et al.[27] Motion/Frame diff. Wavelets
Toth and Aach[28] Motion/Frame diff. Fourier shape

Zhou and Hoang[29] Motion/Frame diff. Shape
Yoon and Kim[30] Motion + Color diff. Geom. Pix. Val.

Xu and Fujimura[31] Depth Motion
Han and Bhanu[32] Infrared IR+color

Jiang et al.[33] Infrared IR+color

Table 2.1: Methods for human detection based on background subtraction with
feature for finding human [22].

2.4.2 Human detection based on features extracted from image
The second group of approaches for human detection doesn’t require a fixed back-
ground but tries to detect humans based on features such as shape (in the form of
contours or other descriptors), color (skin color detection), motion, or combina-
tions of these. Ogale [22] compiled some widely cited works for human detection
based on finding and matching features (without need for background subtrac-
tion). Table 2.2 gives an overview of different methods for human detection based
on extracted features that will be discussed in the following section.
Due to the nature of the game and because the camera moves, the background
is not fixed so human detection based on background subtraction could not be
applied. Furthermore the background subtraction methods are designed for in-
doors application and not outdoors where situation such as light condition might
changes. Therefore our attention is on the second group specially on the HOG
(Histogram of Oriented Gradient).

21



Authors Model for Human Classifier
Cutler and Davis[34] Periodic Motion Motion similarity

Utsumi and Tetsutani[35] Geom. Pix. Val. Distance
Gavrila and Giebel[36] Shape template Chamfer dist.

Viola et al.[37] shape+motion Adaboost cascade
Sidenbladh[38] Optical flow SVM (RBF)

Dalal and Triggs[39] Hist. of gradients SVM (Linear)

Table 2.2: Methods for human detection based on extracted features [22].

Robust Real-Time Periodic Motion Detection [34]

Cutler and Davis [34] have developed a new technique to detect and analyze peri-
odic motion such as walking.
The video from a camera is first stabilized and then frame differencing and thresh-
olding is performed to detect independently moving regions. Next morphological
operations are applied to obtain a set of tracked objects. By tracking objects of
interest, an object’s self-similarity is computed as it evolves during the time. Each
segmented object is aligned along the time axis. By using similarity measures
such as correlation for each object, a self-similarity matrix is computed which is
periodic for periodic motions.
To track and classify objects a real-time system has been implemented which uses
periodicity to classify objects. Cutler and Davis showed that their method can dis-
tinguish the motion of a human from a dog. The system is not only able to detect
human periodic motion, but it also able to provide other information regarding
gait analysis such as stride length [34],[22].

Detecting human motion with support vector machines [38]

Sidenbladh [38] in his work presented a method for detection of humans in video
sequences. The main application of the method is outdoor surveillance.
The appearance of humans varies hugely due to shading, different light condition
(amount and direction of light), clothing, weather, etc.
The idea in this work is to detect patterns of human motion which are relatively
independent of appearance and environmental factors. The authors also observed
that it is harder for a person to camouflage motion but easier to change appearance
[38], [22].
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In this work, a training set of examples of human and non-human motion optic
flow is used. The subjects are moving in different angles to the camera plane,
on different image scales. Then a support vector machine (SVM) with a radial
basis function (RBF) kernel is trained with the training set to create a human
classifier. The trained SVM searches for human-like motion patterns on optical
flow of images. In images which humans are partially occluded this method may
not be suitable for detection [22].

Detecting pedestrians using patterns of motion and appearance [37]

This work is about a pedestrian detection system that combines image intensity
information with motion information while previous works have built detectors
based on motion information or detectors based on appearance information.
This method detect pedestrian in the input video which mostly have upright poses.
Viola et al. used a detection that take advantage of both motion (scanning over two
consecutive frames) and appearance (using an AdaBoost classifier) information to
detect a walking person. The training data set consists of images and videos of
human and non-human examples. The implemented code can analyze 4 frames
per second, capable of detecting pedestrians with very small scale (20×15 pixels).
This work builds on the detection work of Viola and Jones.
The Main contributions of this method is:

• Development of a representation of image motion which is extremely effi-
cient

• Implementation of a state of the art pedestrian detection system which op-
erates on low resolution images under difficult conditions (such as rain and
snow).

The static detector uses images as inputs and efficiently extracts simple rectangu-
lar features using integral images. A cascade of classifiers is created to achieve
superior detection and low false positives. Each stage of the classifier is trained
on true and false positives from the previous stage using Adaboost to select weak
classifiers (which are the simple rectangular features mentioned earlier).
Similarly the dynamic detector is trained with combination of static and motion
rectangular features. Both detectors are fast on a large pedestrian data set with
good result on detection. [22]
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Human detection based on histogram of oriented gradient [39]

Dalal and Triggs in this work used a histogram of gradients as the feature space
for making a classifier. The work is based on the fact that shape of a object can be
well represented by a distribution of local intensity gradients or edge directions.
For that purpose the image is divided into small spatial parts (cells) and then the
histograms of edge orientations computed over all the pixels of the cell.
Several parameter for orientation, spatial binning resolutions and normalization
schemes tested for finding the maximum performance. A linear SVM classifier
trained on the gradient histogram features from a dataset of human and non-human
examples is used. New input images can be classified by the trained classifier for
detecting humans. In section 3.1.1 we discuss this approach more in detail.

2.4.3 Summary
Several methods in the recent works for human detection from visual input have
been reviewed in this section. The reviewed literatures classified in two main
category. Methods in first category work based on the background subtraction
technique. These methods either subtract two consecutive frames or they subtract
each frame from a fixed frame (a background frame). They also use various ap-
proaches for detecting humans in the regions remained from subtracting like color
of region, shape of region, infrared scan, etc. These method are widely used for
static cameras. Methods in the second category work based on extracting features
from image and training a classifier for human/ non human images. These method
could be used for both static cameras and mobile robots. Overall, there seems to
be an increasing trend towards methods which extract features from image and
directly operates on that rather than background subtracting. Due to the nature of
the game which requires a moving camera the method in the first category are not
applicable in this work. Among the methods in the second category, ”Histograms
of Oriented Gradients” has been used for human detection due to following crite-
ria:

1. Very high rank of referencing in recent publication and literature (4782
times).

2. Support in computer vision groups.

3. Very good rate of success in human detection.

4. Robustness against cluttered backgrounds different illumination condition.
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5. Widely support in open source community.

6. Various implementations and support in OpenCV.
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Chapter 3

Detection of Human and Tracking of
Multiple Targets

The very first step to estimate the pose of the player is detecting the human player
in the video. Detecting humans in images is a challenging task due to the wide
range of poses and appearance that human can have, in cluttered backgrounds
under difficult illumination. In this work HOG has been used for human detection
due to its characteristic such as robustness to light condition, shading and cluttered
backgrounds, high performance speed in run time. In OpenCV 2.3 and later HOG
has been implemented as part of ”Object Detection” namespace. In this work
codes from OpenCV has been used and details of algorithm and parameters for
the codes has been discussed in the following sections.

3.1 Human Detection

3.1.1 Histograms of Oriented Gradients for Human Detection
Dalal and Triggs [39] in their study showed that using locally normalized His-
tograms of Oriented Gradient (HOG) as descriptors provides excellent perfor-
mance in comparison to other existing feature sets including wavelets [41], [42],
edge orientation histograms [43], SIFT descriptors [44] and shape contexts [45].
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3.1.2 Overview of the Method
The main idea in HOG is that distribution of local intensity gradients or edge
directions can be used as good descriptor for shape and appearance of object,
even without precise knowledge of the corresponding gradient or edge positions.
In HOG this idea has been done by dividing the image window into small spatial
regions which is called ”cells” and afterward calculating a local 1-D histograms
of edge orientations over the pixels of each cell. In order to make it robust to
different conditions of illumination, shadowing, etc, local responses have been
contrast-normalized. This has been achieved by making a block of cells and then
accumulating a measure of local histograms over each blocks. This value has
been used for normalizing all of the cells in the block. Dalal and Triggs [39]
referred to this normalized descriptor blocks as Histogram of Oriented Gradient
(HOG) descriptors. The use of orientation histograms is not a novel concept and
has been applied for hand gesture recognition and for automatic face and gesture
recognition [43] or for pattern recognition. It reached the full state of development
in in Lowes Scale Invariant Feature Transformation (SIFT)[44] when combined
with local spatial histogramming and normalization.

Figure 3.1: Feature extraction and object detection in HOG, Tiling the detection
window in an overlapping grid of HOG descriptors and then using a SVM based
window classifier gives the human detection chain. Image acquired from [39].

3.1.3 Gradient Computation
The performance of the detector is very sensitive and depended on the way in
which gradients are computed.
Dalal and Triggs tested gradients using different masks with different parameters
for smoothing functions.
Various mask were tested including 1-D point derivatives, cubic-corrected, 3 × 3
Sobel masks and 2× 2 diagonal ones

(
0 1
−1 0

)
,
(
−1 0
0 1

)
.

Gaussian smoothing function were used for smoothing. Several smoothing scales
were tested including σ =0 (none). Dalal and Triggs showed that the simple 1-D
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[−1, 0, 1] masks at σ =0 work best. Larger masks decrease the performance, and
smoothing declines it significantly. In colorful images, at first a gradient for each
channel is calculated and then the one with the largest norm used as the pixel’s
gradient.

Figure 3.2: Effect of gradient scale sigma, false positives per window. Image
acquired from [39]

Details of gradient computation for HOG

The details of the HOG computation are illustrated as follows.
If H is our gray scale image and and H(x, y) is the gray value of H in pixel (x,y):
Horizontal gradient px(x, y):

px(x, y) = H(x+ 1, y)−H(x− 1, y) (3.1)

Vertical gradient py(x, y):

py(x, y) = H(x, y + 1)−H(x, y − 1) (3.2)

Magnitude of gradient for each pixel:

G(x, y) =
√
px2(x, y) + py2(x, y) (3.3)
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Orientation of gradient for each pixel:

Orientation(x, y) = arctan(px(x, y)/px(x, y)) (3.4)

3.1.4 Weighted Vote into spatial and Orientation cells
In the next step a histogram of the angles of the gradient of each pixel within a
cell should be formed. The orientation bins are evenly divided over 0-180 degree
(9 bins). Each pixel adds a vote to the respective bin that it falls in. The vote is a
function of the gradient magnitude at the pixel. It might be the followings:

• The gradient magnitude itself.

• The gradient magnitude square.

• The gradient magnitude square root

• A clipped form of the magnitude representing soft presence/absence of an
edge at the pixel.

It has been shown by [39] that magnitude itself gives the best results.
The vote of each pixel in the bin is: Vx(x, y)

Vx(x, y) =

{
G(x, y) if Orientation(x, y) ∈ bink
0 Otherwise (3.5)

3.1.5 Normalization of Descriptor Block
Variations in illumination in different parts of image change the gradient strengths
over a wide range. In order to suppress these variations and also make it less
sensitive to illumination condition a local contrast normalization is necessary for
good performance. Dalal and Triggs evaluated different schemes for normaliza-
tion. Most of these schemes group cells into larger blocks and contrast normalize
each block. The final descriptor is then a vector formed from the normalized cell
responses of all the blocks in the detection window.
During normalization, blocks typically overlapped the other blocks so that each
scalar cell response contributes several components to the final descriptor vector.
This overlapping dramatically increases the performance. [39]
Dalal and Triggs evaluated four different block normalization schemes. Let v
be the unnormalized descriptor vector and ‖v‖1 and ‖v‖1 1-norm and 2-norm
respectively and ε be a small constant. The schemes are:
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1. L2-norm: v −→ v/
√
‖v‖2

2 + ε2

2. L2-Hys: which is L2-norm while limiting the maximum values of v to 0.2.

3. L1-norm: v −→ v/
√
‖v‖1 + ε

4. L1-sqrt: v −→
√
v/(‖v‖1 + ε)

Dalal and Triggs in their work showed that L2-Hys, L2-norm and L1-sqrt all per-
form equally well but L1-norm reduces performance by 5% and omitting normal-
ization reduces it by 27% [39].

Figure 3.3: 3 × 3 blocks of 6 × 6 pixel cells perform best. Image acquired from
[39]

3.1.6 Detector Window
Dalal and Triggs showed that detection window with size of 64 × 128 and about
16 pixels of margin around the person on all four sides, would provide the best
result. Decreasing it from 16 to 8 pixels (48 × 112 detection window) decreases
performance. Same detection (64×128) has been used for detecting player in this
work.

3.1.7 Classifier
Dalal and Triggs trained a linear SVM with a soft margin of 0.01 (C=0.01). Same
configuration (linear SVM with soft margin of 0.01) has been used in this work
for detection players.
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Figure 3.4: Overview of HOG, The detector window is tiled with a grid of over-
lapping blocks, Each block contains a grid of spatial cells. For each cell, the
weighted vote of image gradients in orientation histogram is accumulated. These
are locally normalized and collected into one big feature vector. Images acquired
from [46].
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3.2 Tracking of Target by Kalman filter
Despite the robustness of HOG for detecting humans, it still fails in some images.
Furthermore in cases that a player is behind of an other player and his/her body
is occluded, HOG is unable to find that particular player. In the following, we
introduce a Kalman filter for tracking humans to sole this problem.

3.2.1 Introduction
For the first time, In 1960, R.E. Kalman published his paper describing a recursive
solution to the discrete-data linear filtering problem[47]. The Kalman filter is a
set of mathematical equations that provides a recursive mean to estimate the state
of a process, in a way that error is minimized statistically. Kalman filter combines
all information including:

• knowledge of the system and measurement.

• Statistical description of the noise in system and measurement errors and
uncertainty in the dynamics models.

• initial conditions of states.

The word recursive means that, the Kalman filter does not require all previous
data to be kept in storage and reprocessed every time a new measurement is taken.
The filter is robust in estimating states of system in past, present and future. [48]
There are two main assumption in the Kalman filter:

• Underlying system has linear dynamics.

• All error terms and measurements have a Gaussian distribution.

When the system is non-linear, typically it is linearized by approximating the sys-
tem between small intervals [49]. Kalman filter has two main groups of equations:

1. Time update equations

2. Measurement update equations.

The time update equations project forward the current state and error covariance
estimates to obtain the a priori estimates for the next time step. They can also be
thought of as predictor equations.
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The measurement update equations incorporate the new measurements into the a
priori estimate to obtain an improved a posteriori estimate. Measurement update
equations can be thought of as corrector equations [50].

3.2.2 Kalman Equation
Equations 3.6 and 3.7 express the Time update and equations 3.8, 3.9 and 3.10
express Measurement update respectively.

Time Update ”Prediction”

1) Projecting State:

x−k = Fxk−1 +Buk−1 + wk (3.6)

2) Projecting Error Covariance:

P−k = FPk−1F
T +Qk−1 (3.7)

Measurment Update ”Correction”
1) Computing Kalman Gain:

Kk = P−k H
T
k (HkP

−
k HkT +Rk)

−1 (3.8)

2) Updating Estimation with Measurment:

xk = x−k +Kk(z
−
k −Hkx

−
k ) (3.9)

3) Updating Error Covariance:

Pk = (I −KkHk)P
−
k (3.10)

Here xk is an n× 1 dimensional matrix of system state. F is an n− by−n matrix
and which sometimes called the transfer matrix.
uk is a control inputs vector which allows external controls on the system.
B is an n-by-c matrix that relates these control inputs to the state change.
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wk is the process noise, associated with random events or forces that directly affect
the actual state of the system. The assumption is components of wk are unknown
and have Gaussian distribution N(0, Qk) for some n − by − n covariance matrix
Qk. Q can change during the time, but often it does not.
zk m-dimensional vector and is the measurements that may or may not be direct
measurements of the state variable xk.

zk = Hkxk + vk (3.11)

Hk is an m − by − n matrix which connects measurement and state space. vk
is the measurement error, which is also assumed to have Gaussian distributions
N(0, Rk) for some m− by −m covariance matrix Rk

3.2.3 Model and State Spaces
OpenCV 2.2 and later comes with classes for implementing Kalman filter. In this
work I have used the OpenCV classes and codes for creating the Kalman tracker
and the contribution is designing the model and the state space. Our space Xk is:

Xk =


xk
yk
x′k
y′k


Where xk and yk are the center of gravity of player in the x, y axis and x′k , y′k
are derivative with respect to time (velocity in x, y axis) and transfer matrix F is:

F =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1


We measure only position of player, therefore the observation vector Zk is:

Zk =

[
zx
zy

]
zx and zy are the center of gravity of player in the x, y axis.
This implies that H is:
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H =


1 0
0 1
0 0
0 0


In our case we supposed that the velocity of the players is constant. We would
chooseRk based on our estimate of how accurately we have measured the player’s
position.

3.2.4 Data Association
For our experiment we limit the number of player to two (but it could be any
arbitrary number bigger than two) depending the position and location players
HOG might detect zero, one or two player. Furthermore HOG is memory-less
which means the algorithm doesn’t provide any information regarding the de-
tected player is related to which player in the previous frame. In the other words,
Player A might be the first detected human in video and player B the second per-
son detected by HOG, but in the next frame player B detected first and player A
be the second human detected by HOG. Thus there should be a mechanism for
data association. To overcome this problem, we calculate the Euclidean distance
between found players in current frame and detected players in previous frames.
Then player A in current frame is one with minimum distance to player A in pre-
vious frame, the same is true for player B.
In the case that the number of detected players by HOG is less than the expected
number of players (which is two in our experiment) then we use Kalman filter to
estimate the location of the player.

3.2.5 Color Tracker for Evaluation of HOG and Kalman Filter
In order to evaluate the accuracy of prediction of the developed Kalman filter,
there is a need for ground truth. There are two possibilities for labeling and veri-
fying the result of Kalman filter :

• Manually labellings players in images for each frame and check if COG of
person falls in the bounding box predicted by Kalman filter.

• Automatically detect players accurately and then check if COG of person
falls in the bounding box predicted by Kalman filter. In this approach in all
the frames human should be detected without missing any frame.
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Due to the large number of frames, the second approach has been favored. For
that purpose a color tracker has been developed and the result of color tracker
has been used as ground truth. Players are being distinguished by two different
colors, in this case one player has a red shirt and the other one yellow shirt. RGB
color format can represent any standard color or brightness. In RGB color format
colors produced by mixing red, green and blue. These are called RGB additive
primary colors. Usually this is stored as a 24-bit number, using 8-bits for each
color component (0 to 255). For example, White is: 255 of Red + 255 of Green +
255 of Blue.
The resulting mixtures in RGB color space can reproduce a wide variety of colors
But the relationship between the amount of each color and the resulting color
is not intuitive. furthermore RGB values will vary a lot depending on strong or
dim lighting conditions and shadows, etc. To track our player based on color, an
other color model space which has better interface between input parameters and
generated color was needed. in following we introduce better alternate for RGB
color model in determining players based on color.

3.2.6 HSV Color Model
The HSV color model (Smith [51]) was developed in the 1970s and is a represen-
tation of points in an RGB color model which provides better understanding of
output color. HSV stands for Hue, Saturation and Value. HSV color model has
cylindrical coordinate model.
Figure 3.5 illustrate the Hue, Saturation, and Value in cylindrical coordinate.

Figure 3.5: HSV color cylinder.

1. In HSV cylinder, ”Hue” is the angle around the central vertical axis. In the
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other words, one could say Hue is the color. Hue is often represented as a
circular angle and has angular dimension, Which mean value at 0◦ is equal
to value at 360◦. In HSV, the red color starts at 0◦, green color starts at 120◦

and by going forward the blue would be visited at 240◦, and then wrapping
back to red at 360◦.

2. ”Saturation” is the distance from the axis. In the other words saturation
means the amount of greyness, therefore a saturation value around 1.0 is a
very strong color and saturation value of 0 means it is grey looking.

3. ”Value” corresponds to the distance along the axis and in means the bright-
ness of the pixel, therefore value near 0.1 is black and near 0.9 is white.
[52]. 1

1OpenCV’s HSV color model is different to the more common HSV color models in graphics
software. In OpenCV, Hue varies between 0 to 179 , and a Saturation and Values vary between 0
and 255. In other software Hue varies between 0 to 360 and Saturation and Values vary between 0
to 100.

37



3.2.7 Viewing OpenCV’s HSV color space
ColorWheelHSV

Figure 3.6: A HSV color selector.

The following range for detecting yellow color has been:

• Hue highest value =24

• Hue lowest value=20

• Saturation highest value= 255

• Saturation lowest value =140

• Value highest value=255

• Value lowest value=102
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Because red color is located on 0 degree it cloud have two range values, one
starting from 0

• Hue highest value =10

• Hue lowest value=0

• Saturation highest value= 255

• Saturation lowest value =40

• Value highest value=255

• Value lowest value=40

and the other one ending to 0 degree.

• Hue highest value =179

• Hue lowest value=160

• Saturation highest value= 255

• Saturation lowest value =150

• Value highest value=255

• Value lowest value=200

3.2.8 Thresholding and Binarizing
After finding proper parameters for yellow and red, raw input image is being
blurred by a Gaussian filter. Then we convert image into HSV color model. Af-
terward we threshold and binarized image by color value range for yellow and red
respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 3.7: a,b and c: Raw input image. d, e and f are thresholded images for
yellow color and g, h and i are tracked person.

As it can be seen in the figure 3.7 d,e and a lot of sporadic noise formed after
thresholding.This happens because a lot of points in the image have values close
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to red or yellow. Many solutions could be used to get rid of these points such as
clustering. One fast and efficient solution used here is finding the biggest compo-
nent in the binary image. The result can be seen in the figure 3.7 g, h and i.

3.2.9 Experiments
To evaluate the performance and accuracy of developed Kalman filter, we try to
predict the location of yellow player and red player by using HOG and and track
them by our Kalman filter. Meanwhile we know the exact location of them from
our color tracker.
The video recorded by a camera of 1920 × 1088 and later of resized to one sixth
(new Width: 320 pixels, Height: 181 pixels) and 30 frames per second.
In the experiment we have checked if the predicted location by Kalman filter falls
in the bounding box detected by color tracker.

Total Number of Frames 1590 In Percent %
Number of Frames HOG Detected Red player 947 0.5955
Number of Frames HOG Detected Yellow player 483 0.30377
Number of Frames Kalman correctly predicted Red player 1545 0.97169
Number of Frames Kalman correctly predicted Yellow player 1327 0.83459
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8: The bounding box shows the Kalman filter prediction while the letter
1 or 2 indicate the human detection by HOG and letter R and Y are location of
player detected by color tracker.
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Chapter 4

2D Body Pose Estimation

In previous chapters we developed a method for detecting and tracking the players.
In the next, we are interested to estimate the pose of the players in the image. In
order to estimate the pose, we need a system that can generate 2D contours of
the human body in different poses and then evaluate the generated contours on
the image to see which one of the generated contours can describe the pose of the
player in the image. Figure 4.1 illustrates the steps for pose estimation.

Figure 4.1: Step in Estimating Pose of Player
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4.1 Generating 2D Contour of Human Body
A 2D contour is a set of points connected to each other. By changing the relative
position of these point we can generate contours that can describe a human, car,
tree or any arbitrary shape in 2D space. In this work first we need a system that
can generate 2D contour of a human in different pose. Our approach for such a
system will be discussed in Sections 4.2, 4.3 and 4.4. After this step we need
a system for evaluating the generated contour on an image to see how close is
the contour to the pose of player in image. The solution for this problem will be
discussed in Section 4.7.1.
We considered 44 points on the human body to create a contour. These points are
pointing prominent part on human body like top of the head, ears, neck, shoulder,
elbow, wrist, knee, ankle and feet. There are several ways to connect these points
to each other i.e. straight lines, pronominal, different kind of curve fitting. In
order to make the contour smooth in a way it could describe human body curva-
tures meanwhile keep it computationally inexpensive we used cubic splines for
connecting these point. A cubic splines is a spline constructed of piecewise third-
order polynomials. In this method a third-order polynomials is fitted to every three
consecutive points. In this work, GSL (GNU Scientific Library) has been used for
generating interpolated points. GSL is a free numerical library for C and C++
under the GNU General Public License [53].
Figure 4.2 illustrates the difference between connecting points with straight line
vs connecting them with cubic spline method.

Figure 4.2: Four point connected with straight line in red and
with third order pronominal in black, image acquired from
http://mathworld.wolfram.com/CubicSpline.html

Now by changing the location of any these 44 points, the interpolated points would
also change and a new contour would be formed. But creating the contour by this
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method is pretty complicated and computationally expensive. We don’t know
how should we move these points to generate a contour of a human, furthermore
searching through 44 dimensions is computationally expensive.
To make an automatic way for generating human contours we created a training
set of several images of a player in different poses. Then we manually registered
these 44 key points on the body of the player in each individual image. Based on
the items in the training set, we can generate contours of human in different pose
in detection phase.
We also tried to reduced the dimensions of our problem from 44 to some smaller
meaningful number. For that purpose we used dimensionality reduction by PCA
(Principal component analysis).
We put the data regarding the x and y position of the point in these contours plus
the interpolated point as a raw entry in a matrix of data. In the next step we tried to
find principal components of these data by finding the eigenvalue and eigenvector
of these data. After calculating the eigenvalues of these data in the matrix, we
sort them from largest value to smallest one and we pick those who contribute
90%. In the other words we sum up all the eigenvalues and then from sorted
eigenvalues in descending order (largest first) we contribute eigenvalues until the
sum of them is less than 90% of total eigenvalues. In the following sections we
discuss more about the software which has been developed for selecting key points
on the image and also interpolation process, dimensionality reduction, automatic
contour generator and evaluating the contour on the image to find human body
pose.

4.2 Principal Component Analysis
Principal Component Analysis (PCA) is a statistical procedure that allows us to
identify the principal directions in which the data varies.
By calculating eigenvectors and eigenvalues of covariance matrix of our data prin-
cipal components could be found.
This process is equivalent to finding the axis system in which the co-variance
matrix is diagonal.
By ordering the eigenvectors descending based on their eigenvalues (largest first),
we can establish an ordered orthogonal basis in which the first eigenvector (the
eigenvector with the largest eigenvalue) is the direction of greatest variation and
the second eigenvector is the direction of next highest variation and so on.
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Let’s assume that we have N observations in our data set and our data has n di-
mensions. Let A be covariance matrix of our data which has the dimension of
n×n and x1, x2, ..., xn are eigenvectors and λ1, λ2, ..., λn are respective eigenval-
ues, therefore we have:

µx = 1
N

N∑
i=1

P
(i)
x

A =
∑

(P
(i)
x − µx)(P (i)

x − µx)T
A× x1 = λ1 × x1

A× x2 = λ2 × x2

....
A× xn = λn × xn

writing:
Φ =

(
x1, x2, ..., xn

)
(4.1)

and

∧ =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 (4.2)

gives us the the equation:
AΦ = Φ∧

4.3 Dimensionality Reduction Using PCA
By multiplying our data by a subset of the eigenvector matrix (the Φ matrix) we
transform our data into a new space which has less dimension. Obviously we
would loose some information about our data but by selecting the principal direc-
tions in which the data varies the most, this loss in the is minimized.
If our original data has n dimensions and we want to reduce it to p dimension
we select only first p top eigenvectors and put them in a new matrix (in column
order), obviously the dimension of this matrix is n × p. To project our data into
new space we subtract our data from mean vector and then multiply it by the first
p column of the eigenvector matrix (Φpca):

pΦ = (px − µx)× Φpca (4.3)
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To transform back our data from this new space to the old one, we use:

px = pΦ × ΦT
pca + µx (4.4)

4.4 Creating the Training Set
To create a training set for the PCA (principal component analysis) we recorded
the activity of a player in different poses and we manually labeled these 44 key
points on head, ears, neck, shoulder, elbow, wrist, knee, ankle and feet. For that
purpose a software has been developed. The software works in a way that after
selecting three points it will immediately generate interpolated points and allow
the user to modify the points so that selected points could fit the curves of human
better.
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(a)

(b)

Figure 4.3: In figure (a) two points are selected, after selecting the third point in
figure (b), intermediate interpolated point are generated and drawn

48



(a)

(b)

Figure 4.4: By selecting 44 points over the player body a contour is created

By selecting 44 points on each image and generating 3 interpolated points for each
pair of points and considering the (x,y) coordinates of each point our data would
have 44 × 2 × 4 = 352 dimension. To calculate PCA we have used OpenCV.
OpenCV (Open Source Computer Vision Library) is a library of for real-time
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computer vision, developed by Intel, and now supported by Willow Garage [54].
By taking into account the 90% rule that was mentioned in 4.1 ,we found that
optimal number of dimensions is 4 and we reduce our problem into 4 DOF. By
assigning a value for these four parameters in new space and applying the equation
(4.4) and back projecting the data we would get data with 352 dimension which
is our contour. In order to visualize the generated contour with these 4 principal
component a software has been developed which is discussed in next section.

4.5 Developed Software for Generating Human Con-
tours

To visualize the generated contour with these 4 parameters a software has been
designed with four sliders for each principal component respectively. By chang-
ing the position of each slider, a new value would be set for respective principal
component and by doing a back projecting with PCA, a new contour would be
generated and displayed on the image. Figure 4.5 illustrates the designed GUI.

Figure 4.5: Developed GUI for generating human contour.
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If we set zero for all these four variables (by leaving the slider position in the
center) according to equation 4.4 we would have:

px = pΦ × ΦT
pca + µx

and

pΦ = [0, 0, 0, 0]

result in:

px = µx

which is average contour of our data. Figure 4.6 illustrates the average contour
while all the four principal components are set zero.

Figure 4.6: Average contour of our data, respective values for principal component
are pΦ = [0, 0, 0, 0]

By changing the value of the first principal component, arms would move in op-
posite directions in the generated contour. Figure 4.7 demonstrates the generated
contour by assigning positive and negative value for the first principal component.
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(a)

(b)

Figure 4.7: In figure a principal component values are set to pΦ = [143, 0, 0, 0]
and In figure b principal component values are set to pΦ = [−149, 0, 0, 0].

As a result, By choosing positive values for first principal component right hand
goes up and left hand goes down and by choosing negative value left hand goes
up and right hand goes down.
By changing the value of the second principal component and keeping other prin-
cipal component at zero, hands would move in same direction. Figure 4.8 demon-
strates the generated contour by assigning positive and negative value for the sec-
ond principal component.
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(a)

(b)

Figure 4.8: In figure a principal component values are set to pΦ = [0, 143, 0, 0]
and In figure b principal component values are set to pΦ = [0,−109, 0, 0].

Changing in the third principal component would open or fold both hands in op-
posite direction. Figure 4.9 shows how positive and negative values for the third
slider would change the position of hand.
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(a)

(b)

Figure 4.9: In figure a principal component values are set to pΦ = [0, 0,−140, 0]
and In figure b principal component values are set to pΦ = [0, 0, 140, 0].

The last principal component would extend (stretch) both hands to the left or to
the right (depending on positive or negative value). Figure 4.10 illustrate changes
in the fourth slider and respective contour.
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(a)

(b)

Figure 4.10: In figure a principal component values are set to pΦ = [0, 0, 0, 98]
and In figure b principal component values are set to pΦ = [0, 0, 0,−140].

4.6 Discussion of The Model and Interpretation of
Principal Components

In previous section we discussed the proposed method for creating the training
set and the method for dimensionality reduction. In this section we discuss the
observed results from the model.
Due to the fact that in the training set only up right poses has been visited, so the
proposed method generates only human contours in up right poses.
In the majority of poses, the hands of the players moves against each others in
opposite direction so the first principal component successfully captured these

55



changes. Thus in back projection of PCA, changing the value of the first principal
component (while keeping other principal component fixed) generates contours in
which if the right hand goes up the left hand would goes down and if the left hand
goes up, the right hand goes down.
The second largest group of poses in the training set are the poses where hands
are going up and down together simultaneously (for blocking and intercepting the
ball). The second principal component successfully captured these changes and
by changing the value of the second principal component (while keeping other
principal components fixed) the hands are going up and down together in the gen-
erated contours.
The last group of poses in the training set are poses in which hands are folding
or stretchering (either simultaneously or against each other). The third and fourth
principal component captured these changes and generate respective poses in back
projection of the PCA. All in all the model is able to generate the contours in the
training set with 4 DOF. In the following we discuss our approach for evaluation
the generated contours.

4.7 CNS Contour Response
So far we have introduced a method for generating a 2D contour in different poses
by restricting the problem using PCA into 4DOF. In the next we have to evaluate
the generated contour on an image to see how well it matches. For that purpose
we have used a library called CNS (Contrast Normalized Sobel)[55].

4.7.1 Contour Response
In the CNS filter, the contour response ∈ [0, 1] is defined as an integral over all
the contour points:

ContourResponse(p) =

∫ 1

0

response(p(λ), 6 p
′
(λ) + π/2)dλ (4.5)

The response(p(λ), 6 p
′
(λ) + π/2) on an arbitrary contour point p(λ) indicates,

how much the local image at p(λ) looks like the a contour in direction of 6 p′
(λ).

The response function is the function of two parameters, the size of the gradient
on the image and the angle between the normal of the contour and the gradient
vector. Figure 4.11 illustrates the relation between parameters of response func-
tion and its output value. As it can be seen the response output is maximized
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when the size of the gradient vector is maximized (maximum size of the gradi-
ent vector is one due to normalization) and the angle between gradient vector and
normal of contour is zero (δ = 0).

δ = θ − 6 cns(x, y) (4.6)

Figure 4.11: Plot of the response as a function of CNS norm |cns(x, y)| and angu-
lar mismatch between contour normal and gradient vector, Image acquired from
[56].

Equation 4.7 shows how the value of the response function on an arbitrary (x, y)
point on the image is calculated.

response(x, y, θ) =
(
(
(
cosθ
sinθ

)
)TCNS(x, y)

)2
(4.7)

And Equation 4.8 shows how CNS is calculated.

CNS =

√
2
[
X ∗

( 1 0 −1
2 0 −2
1 0 −1

)
, X ∗

( 1 2 1
0 0 0
−1 −2 −1

)]T√
X2 ∗ 16

( 1 2 1
2 4 2
1 2 1

)
−
(
X ∗

( 1 2 1
2 4 2
1 2 1

))2
(4.8)

Equation 4.8 can be seen as:

CNS =
SobelX, SobelY

NormalizationFactor
(4.9)

57



The denominator (Normalization Factor) is a weighted image variance that fol-
lows from illumination invariance. Equation 4.10 is formed by rewriting equation
4.7 and 4.8

response(x, y, θ) =
2(X ∗ [cosθ

( 1 0 −1
2 0 −2
1 0 −1

)
+ sinθ

( 1 2 1
0 0 0
−1 −2 −1

)
])2

X2 ∗ 16
( 1 2 1

2 4 2
1 2 1

)
− (X ∗

( 1 2 1
2 4 2
1 2 1

)
)2

(
x
y

)
(4.10)

More about the CNS could be found at [56] and [55]. It’s more efficient to com-
pute the response of contour on an array of 16× 16 rather than a single (x,y) point
on image.
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Chapter 5

Experiments and Analysis

To evaluate the robustness and efficiency of the proposed method, a series of ex-
periments has been done. In the first type of experiments, we calculate the CNS
response on our image set by calling the respective contour (labeled contour) of
that image from our data set. This experiment has been done on images contami-
nated with clutter noise and also on images with clear background. In the second
type of experiments we tried to find the contour that can describe the pose of the
player in image by searching all possible values for all four principal components
(brute forcing).
The purpose of the experiments is to investigate the answer for the following ques-
tions:

• What should be the range of values for principal components?

• Whats should be the step size in increasing values for the principal compo-
nents?

• How robust is the CNS against clutter noise?

• On what bases should the estimated contour be labeled as a successful one?

• What is the success rate of the proposed method?

• In the case of failure in estimating the pose, CNS did the mistake or did the
contour generator based on PCA, or both?

• What is the computational time for estimating a pose?

59



• What can be done to improve the efficiency and reduce the computation
time?

In the following, the experiments will be discussed and in the next chapter the
results of the experiments are analyzed.

5.1 CNS response from labeled contour on images
with clutter noise

In this experiment we first used HOG to locate the person in the image. Then by
knowing the id number of the image we loaded the labeled contour and afterward
we calculated the CNS response on every image.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 5.1: Labeled contours loaded and CNS response for the contour on the
image calculated and written on the top left of the image.

61



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 5.2: The CNS images of the experiment with clutter noise in background
. Highlighted part on the image indicate the magnitude of gradient on the image
(the more highlighted, the greater gradient magnitude)
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5.2 CNS response from labeled contour on image
with clear background

In this experiment a mask generated from the labeled contour has been fitted to
the image and the image has been clipped based on that. Similar to the previous
experiment CNS response has been calculated and written on the top left of the
image.
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(a) (b) (c)

(d) (e) (f)
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(p) (q) (r)

Figure 5.3: cns response for labeled contour on images with clear background.64



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 5.4: The CNS images of the experiment with clear background. High-
lighted part on the image indicate the magnitude of gradient on the image (the
more highlighted, the greater gradient magnitude)
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5.3 CNS response from optimal contour on image
with clutter noise

In this experiment for each image, several contours have been generated by brute
forcing all the four principal components in PCA space and the CNS response for
them has been calculated. The contour with the highest CNS response has been
selected. It should be remembered that the variance of each component is equal
to the corresponding eigenvalue. In other words, the standard deviation of the
component is equal to the square root of the eigenvalue. To determine the range
of values for each principal component, first we calculate the square root of each
eigenvalue. Then the range of the search space for each principal component is
set to two times of the standard deviation. The maximum and minimum value for
each principal component observed in the labeled contour also endorses this range
and falls within this interval range.

Order of Principal Component Eigenvalue Square Root Search Range
First principal component 15095 122 [−250, 250]
Second principal component 7853 88 [−150, 150]
Third principal component 2351 48 [−100, 100]
Fourth principal component 1655 40 [−100, 100]

The step size for increasing value of each principal component is set to 10. This
value for step size has been derived from observing the changes in generated con-
tour by changing the position of sliders in the developed GUI (changing value of
principal component). Values larger than 10 would cause big changes in the gen-
erated contour and any smaller number would increase the size of search space.
For example if we set the step size of the first principal component on 5 instead of
10, the search space would be increased to double and the algorithm would need
two times more for estimating the pose.

5.3.1 Accepting and Rejecting the Estimated Contours
Estimated contour from brute force has been labeled rejected if at least one of the
limbs of player (arms, hands, legs or feet) has been wrongly estimated otherwise
it has been labeled as accepted. Figure 5.5 and 5.6 demonstrates some examples
of the estimated contours which has been labeled as accepted and Figure 5.7 illus-
trates some examples of estimated contours which has been labeled as rejected.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 5.5: CNS response for optimal contour on images with clutter background.
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5.4 CNS response from optimal contour on image
with clear background

In this experiment first a mask generated from labeled contour has been fitted to
the image and image has been clipped based on that. Then several contour has
been generated by brute forcing all the four variable in PCA space and CNS re-
sponse for them has been calculated. The contour with the highest CNS response
has been selected.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 5.6: CNS response from optimal contour on image with clear background.
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: Example of contours labeled as rejected contours.
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Chapter 6

Results Analysis and Conclusion

6.1 Analysis of Human Detector and Kalman Tracker
The first part of this thesis focused on detecting human players and tracking them
with Kalman filter. HOG human detector algorithm correctly detected players
with accuracy of 0.59% and 0.30% for first and second player respectively. This
varies due to many factors including pose of players, relative angle of player and
camera (camera point of view), clutter noise, etc. By utilizing a Kalman filter the
accuracy of detection increased to 0.97% and 0.83% for first and second player
respectively which is roughly 100% increase (numbers retrieved from Table 3.2.9).
The algorithm for human detection and tracking can process nearly 30 frames per
second so it can be used for real time application.
HOG is a memoryless algorithm, which means the algorithm doesnt provide any
information regarding the relation between detected player in current frame and
previous frame. In other words, Player A might be the first detected human in
video and Player B the second person detected by HOG, but in the next frame
Player B might be detected first and Player A be the second human detected by
HOG. To deal with that, calculating the Euclidean distance between players found
in the current frame and detected players in the previous frames and connecting
players with minimum distance from previous frame successfully overcame the
problem.
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6.2 Analysis of Contour Generator and Pose Esti-
mator

The second part of the thesis focused on estimating a 2D contour for the player
in the video. As it has been mentioned earlier in Section 5.3.1, estimated contour
from brute force has been labeled rejected if at least one of the limbs of player
(arms, hands, legs or feet) has been wrongly estimated otherwise it has been la-
beled as accepted. Overall 0.75% of estimated contours labeled as accepted con-
tours.
The software platform for conducting the experiments is a 32 bit Linux (kernel
version 3.5.0-25) and the CPU is Intel Core i3 @ 2.27GHz with 64 bit architecture.
The computation time for estimating the pose on such a platform is around 30
minute which is not suitable for real time applications.

6.2.1 Analysis of Accepted Contours
To verify the effect of clutter noise on CNS response four different experiments
have been done and the CNS response of contours from these experiment illus-
trated in Figure 6.1. As it can be seen there is not much significant difference
between CNS response from contour on images with clear background and con-
tour on images with clutter noise and one can conclude CNS is robust to clutter
noise.
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Figure 6.1: CNS response of labeled and estimated contours on images with clear
and cluttered background.

Comparing number of pixels that contours must be shifted from center of gravity
in x and y axes is relatively similar in brute force contour estimation and also on
the labeled contour with clear or noisy background. Figure 6.2 and 6.3 illustrate
the number of pixels that the contours must be shifted.
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Figure 6.2: Number of pixels to shift the contour in x axes from COG.
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Figure 6.3: Number of pixels to shift the contour in y axes from COG.

Comparing values of first principal component from four different experiments
described in Chapter 5 shows correspondences between real values acquired from
labeled contours and estimated values from brute force.
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Figure 6.4: Values corresponding to first principal component in four experiments.

Similar pattern can be seen in the second, third and fourth principal component,
although differences between estimated values and real values are relatively bigger
in comparison with values of first principal component.
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Figure 6.5: Values corresponding to second principal component in four experi-
ments.
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Figure 6.6: Values corresponding to third principal component in four experi-
ments.
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Figure 6.7: Values corresponding to fourth principal component in four experi-
ments.

All in all, the proposed method for generating 2D contours by reducing the dimen-
sionality to 4 variables and evaluating the contour with CNS can estimate the 2D
pose of the player with accuracy of 75% but it is relatively slow and may not be
used for real time applications. Effort for optimization the brute force for finding
the optimal contour by using gradient descent function didn’t succeed due to the
local maximum problem in the search space. CNS is more suitable for detection
of rigid objects as it has been used in [55] for finding and grabbing a mug, al-
though it could be used for non rigid object like human body but not for real time
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applications.

6.2.2 Analysis of Rejected Contours
As it has been discussed earlier, an estimated contour from brute force has been
labeled as rejected one if at least one of the limbs of the player (head, arms, hands,
legs or feet) has been wrongly estimated. The question that tried to be investigated
in this section is: what has caused the failure? Is that CNS which can’t properly
evaluate the contour or it is because of the method for generating the contour with
PCA, or both?
As it can be see in Figure 6.8, the CNS response of estimated contours on images
with clutter noise in background (green line) is either very close or higher than the
CNS response of the labeled contours (blue line).
The CNS response of the estimated contour on images with clear background
(yellow line) is either very close or higher than the CNS response of the labeled
contours (red line). So in both cases, CNS has given a higher response to the
wrong contour than the correct contour.
By paying attention to the differences between values of first principal component
in labeled contours and estimated contours in Figure 6.9 a big difference can be
seen (the difference between values of red line and green line or red line and yel-
low line). This big difference can be seen in second and third and fourth principal
component as well in Figure 6.10, 6.11 and 6.12 respectively.
As it has been discussed in 5.3, the search range of values for principal compo-
nents in brute forcing is large enough to generate the poses in the training. The
step size also has been selected small enough to distinguish between different
pose. In conclusion, the contour generator is able to generate all possible contours
from training set but CNS in 25% of image wrongly estimated the pose.
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Figure 6.8: CNS response of labeled and estimated contours on images with clear
and cluttered background for rejected contour.
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Figure 6.9: Values corresponding to first principal component in four experiments
for rejected contours.
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Figure 6.10: Values corresponding to second principal component in four experi-
ments for rejected contours.
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Figure 6.11: Values corresponding to third principal component in four experi-
ments for rejected contours.
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Figure 6.12: Values corresponding to third principal component in four experi-
ments for rejected contours.

6.3 Future Work
In this work a training set has been created manually by clicking on 44 conspic-
uous points on human body on the training set images. This process is slow,
time consuming and may not be accurate. One can make this process automati-
cally done by using software like SCAPE (Shape Completion and Animation for
PEople) [57] to generate a human shape model in different shapes and poses and
automatically label the joints. By using software like SCAPE a very big training
set can be created easily and very rapid.
In the proposed method, 2D contour for the whole body is being estimated at once.
Estimating the contour can be done for each limb (head, torso, hands, arms, legs,
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feet) separately and independent of each other. This may decrease the range of the
search space for principal components and therefore shorter execution time.
Due to the fact the pose of the player smoothly changes from one frame into the
next frame, after estimating the pose of the player in one frame by brute force, in
the next frame range of the search space could be limited around the values of the
previous one and make the pose estimation faster.
Using GPU specially CUDA (Compute Unified Device Architecture) is very pop-
ular in computer vision and image processing nowadays. This could decrease the
execution time and make the algorithm runs faster.
In this work a method has been proposed and implemented for detecting of players
and tracking and estimating their body pose. During the game, the robot still
needs to be able to make decision which player should receive the ball. An other
development for this work might be setting proper policies and making the robot
able to make such decisions during the game.
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