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Abstract— We present a method to simultaneously track
multiple objects which are subject to physical motion and can be
evaluated through raw detector responses in video. Due to their
two-staged design, popular tracking-by-detection approaches
lack precision in the estimated trajectories due to detector
inaccuracies, e.g., lighting, deformation or background clutter.
Instead of separating the tasks of detection and tracking, we
propose to integrate both in a single probabilistic objective
function for determining the object states in a sequence. Both
support each other accounting for detection inaccuracies and
leading to a robust and precise single target tracker. Based on
this, we extend it to multiple targets by solving the problem
of determining trajectory limits and sorting out any multiple
target ambiguities probabilistically. We apply our method to
the task of tracking thrown balls with the goal of accurate
trajectory prediction for the purpose of ball catching with a
humanoid robot. Our results show improved tracking accuracy
with respect to ground truth on average by around 17 %,
which is dominated by increased accuracy at the beginning of
the trajectory.

I. INTRODUCTION

Having a system capable of robustly tracking multiple tar-
gets in image sequences is a prerequisite for many computer
vision and robotic tasks. Usually, such a system consists of
applying an object detector to images and linking the results
to tracks, a task also known as data association. In such a
bottom-up approach, the quality of the resulting trajectories
is mainly governed by two factors. First, the reliability of
the object detector regarding missed, inaccurate and false-
alarm detections, and second, the ability of the ensuing
tracking algorithm to correctly detect and deal with any
errors propagated from the detector.

Because of this error propagation, current efforts in track-
ing reveal weaknesses when confronted with the case of
tracking an object which is subject to physical motion. For
example, vision-based approaches focus on appearance cues,
e.g., HOG descriptors or color histograms, while neglecting
motion characteristics. Besides the rough overall trajectory
approximation, occasional errors in detection further lead to
considerable local deviations (Fig. 1, left). On the other side,
classical tracking approaches use detector peaks to estimate
the parameters of a, e.g., constant velocity, motion model.
While these give smooth trajectories, any detection error
affects the whole trajectory substantially (Fig. 1, middle).
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Fig. 1. Comparison of trajectories resulting from different tracking
paradigms applied on raw detector responses at different time steps. Please
note that the highest detector response (indicated as darker gray levels) is not
necessarily on the actually observed trajectory (indicated as a gray-colored
curve) due to, e.g., lighting variations. Appearance focused tracking (left)
snaps into the detector’s maxima ignoring the overall dynamic properties.
The resulting trajectory is dominated by pairs of detections and loses local
accuracy with wrong ones. Classical single target tracking (middle) fits a
physical motion model to the detector’s maximum responses. Again, wrong
detections impair the quality of the trajectory but this time on a global level.
We propose to integrate the tasks of detection and tracking with a physical
motion model (right). The trajectory is significantly improved as tracking
and detection mutually support each other during estimation.

We argue that the lack of proper inclusion of the motion
model guiding a response-based detector is the limiting
factor. As motion provides substantial context regarding
object locations over time, we suggest to leverage this motion
evidence in a top-down fashion so that both previously
separated tasks are supporting each other (Fig. 1, right).

In detail, we integrate both response-based detection and
tracking using a physical motion model into a single prob-
abilistic objective function for continuous trajectory esti-
mation. Given these, probabilistically modeled trajectory
boundaries and compatibility is determined by discrete opti-
mization. Because of this thorough probabilistic formulation,
we call the resulting tracker the fully probabilistic multiple
target tracker (FPMTT). Please note, that we are not doing
explicit data association (DA) on sets of discrete observations
but work with raw detector responses evaluated in the image
for each state. We only utilize DA for initialization and once
a trajectory is started it is guided by the motion model where
the continuity solely depends on response evidence.

This work is part of the effort in estimating and predicting
multiple balls pitched towards a humanoid robot with the
goal to catch each ball with one arm [1]. Up to now, we
relied on a tracking-by-detection approach using a Multiple



Hypothesis Tracker (MHT) / Unscented Kalman Filter (UKF)
fed by detector maxima [2]. Admittedly, the multiple target
tracking problem is rather simple, but trajectory accuracy
highly depends on the quality of detection and for a faithful
treatment a full multiple target solution had to be integrated.

Our contributions are, (a), a probabilistic framework for
tracking multiple objects based on raw detector responses
and a physical motion model extended by (b), a way for
extracting the trajectory’s boundary from a sequence by using
a modified maximum subarray method and, (c) a formulation
of trajectory compatibility using the generalized independent
set approach. Additionally, we give an instance ((d)) of this
framework for the problem of tracking flying balls, and
evaluate our approach regarding trajectory accuracy using
ground truth.

The rest of the paper is structured as follows. We discuss
related work in the next section. Our proposed method is
introduced in Sec. III. The instance for the task of ball
tracking is presented in Sec. IV with experiments in Sec. V.

II. RELATED WORK

Besides the ongoing effort in developing sophisticated
data association algorithms handling difficult detection sit-
uations [3]–[5], coupling detection and tracking/data asso-
ciation of multiple objects in image sequences became an
active field of research, mostly in computer vision.

Leibe et al. [6] and later Ess et al. [7] were one of
the first to model detection and trajectory estimation in
a combined optimization as a quadratic Boolean problem
(QBP). They multiply the prediction distribution of a Kalman
Filter into the detectors response searching for the maximum
of the product, but still use only that maximum, not the full
response distribution to update the estimate.

Andriyenko et al. [8], [9] formulated multiple target track-
ing as a continuous energy minimization problem with a
constant velocity motion model. However they still use an
analytical distribution around detector maxima and not the
original detector responses.

Wu et al. [10] couple both tasks in a single objective
function, modeled through sparsity driven detection and
network flow data association. Lagrange dual decomposition
is used for optimization, but the state-space is discretized,
so this approach probably does not scale up to, e.g., 3-D
position and velocity as we have.

Recently, Collins [11] suggested to leverage kinematic
motion in cases where appearance is similar and proposes
a spline energy cost function to assess trajectory quality in
challenging multiple target tracking scenarios.

The concept of using independent sets to determine the
global hypothesis without violating any multiple target con-
straints has been subject of prior research. Papageorgiou
and Salpukas [12] establish a maximum weight independent
set (MWIS) formulation for solving the data association
problem in traditional MHT. In computer vision, Brendel et
al. [13] also use MWIS to guide formation and hierarchical
concatenation of targets for tracking pedestrians in video.

Most of this work models analytical distributions around a
set of (pedestrian) detections returned by a detector with the
goal to robustly estimate trajectories and their interactions.
This is reasonable, as motion of people is not reliably
predictable and pedestrian detectors do not have pixel-level
accuracy: robustness is favored instead of accuracy. Instead,
we estimate the states of objects using detector responses
directly, guided by a physical motion model as context. To
our knowledge this is the first work to optimize the state of
moving objects directly on image detector responses, instead
of using local detector maxima as input.

III. PROPOSED TRACKING APPROACH

We define our approach in a Bayesian sense with the goal
of maximizing a likelihood, i.e. arg maxx p(X = x|Z = z).
Instead of using sets of measurements consisting of image
coordinates computed from a preceding detection stage,
we define Z to be the images themselves. Now, detection
becomes part of the probabilistic optimization process and,
guided by a motion model, is able to find out for itself
whether or not the object is located at certain image co-
ordinates. This is central to our contribution and becomes
apparent when compared to the two-staged process, where
the reduction of a detection to image coordinates causes a
considerable information loss. By keeping images in memory
and reevaluation at the corresponding image portions defined
by the states, all available evidence from the images is used
for tracking, greatly benefiting robustness and accuracy.

A. Model

In multiple target tracking, we want to find an unknown
number of tracks na and, between the time of track starting
t
(a)
start and track ending t(a)

term, each track’s states x(a)

t
(a)
start
. . . x

(a)

t
(a)
term

.

With this notation, we model p(X = x|Z = z) as a
product of probabilities where each of them handles a certain
part of the overall problem. As common in these approaches,
we write the function in convenient log-likelihood notation:
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B. Algorithm

As can be seen from the involved parameters, inference
requires to solve a hybrid optimization problem. Estimation
of states x(a)

t along a track is continuous, while the set of
tracks and determining t

(a)
start, t

(a)
term, due to nature of image

recording, are discrete. Our proposed algorithm (Alg. 1) is
therefore constructed around three subproblems of optimiz-
ing (1) regarding different variables.

Trajectory Estimation: We treat trajectory estimation
per track, while holding tstart and tterm fixed. Being one major
contribution of this work, we propose to estimate all states
along a trajectory simultaneously using both raw detector
responses and a motion model:

arg max
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The likelihood of observing an object Ldet is provided by an
evaluation function which looks at that position in the image
zt that corresponds to xt and assesses how much it looks like
the object. Actual modeling of the likelihood might depend
on the type of object and intended task. Please c.f. Sec. IV-A
for our likelihood on radial image contrast for circular shapes
as an example.
Ldyn is modeled as the quadratic error between the map-

ping of a state xt to time t + δt using dynamic function g
and state xt+δt while considering noise ∼ N (0,Σg):

Ldyn
(
xt+δt, xt

)
= −‖xt+δt − g(xt)‖2Σg

(3)

Unfortunately, solving Eq. 2 is not trivial. The tight
coupling of states due to Ldyn leads to bad conditioning, i.e.
some dimensions are stiff while others are not, requiring the
use of a preconditioner for efficient optimization. Established
approaches for this kind of nonlinear optimization prob-
lems are preconditioned conjugate gradient methods such as
PNCG [14].

Track Limits: Determining the time of start tstart and
termination tterm of a hypothetical track is also done per track.
Given the sequence of fixed states, e.g., from a previous time
step (and probably extended using the motion model g), we
are interested in finding arg maxtstart,tterm of
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Here, likelihoods of track appearance and termination are
modeled as

Ls&t
(
tstart, tterm

)
= log pstart +

{
log pterm tterm < tnow

0 tterm = tnow
(5)

where pstart and pend denote the prior probability of target
appearance and termination. The casted problem can be inter-
preted as a maximum subarray problem in a sequence which

Algorithm 1 Fully Probabilistic Multiple Target Tracker
Input: Set of prior tracks A
Output: Most likely set of tracks A′

Set of posterior tracks A

• Insert initial trajectories as new tracks into A, mark them
to do only trajectory estimation

for x(a) ∈ A do
• Extend tracks according to dynamic model g

• Determine track boundaries
Solve arg max

t
(a)
start ,t

(a)
term

of Eq. 4

• Estimate trajectory between boundaries
Solve arg maxx

t
(a)
start
...x

t
(a)
term

in Eq. 2

end
• Ensure mutual exclusivity by stating GIS problem

Solve A′ ← arg maxA⊂{1..n} in Eq. 7

• Prune tracks in A with low likelihood

can be efficiently solved using Kadane’s algorithm [15] in
linear time, even when modified to include log pstart and
log pterm.

Mutual Exclusion: On the one hand, multiple similar
tracks are generated by the same object during tracking. On
the other hand, real objects may naturally occlude each other.
We want to define an exclusion mechanism in a way that
prevents the first and allows the latter.

The idea is to state a prior that objects occlude with
a probability pO, i.e. sometimes but not too often. Two
states are assigned this prior as a penalty term when their
projections into the image overlap.
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We then extend this to the set of all tracks and model track
interaction as a Generalized Independent Set (GIS) prob-
lem [16] where each track’s likelihood (Eq. 4) contributes
to its existence while overlap between two tracks penalizes
both. The goal is then to obtain the optimal subset of tracks
(while holding all other parameters fixed):
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The resulting subset is the set of tracks likely to be existent
given the evidence in the image. Please note, that the
GIS problem is NP-complete and approximation has to be
performed for large tracking scenarios.
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Fig. 2. Concept of the used circle detector [2]: a) Evaluation of gradient
vector at a circle pixel to measure radial contrast, b) vector image after filter
application, c) response (Eq. 8) at pixels along a fixed size circle, d) circle
response (Eq. 9) for r = 3 and different center xc, yc.

Track Management: The set of tracks A in Alg. 1
needs to be maintained over time, i.e. new tracks must be
added as well as terminated and unlikely tracks removed to
prevent growing computation time. Both has been realized in
an application specific way (Sec. IV-C). In general, pruning
should make use of the GIS solution to determine which
tracks to discard.

IV. BALL TRACKING INSTANCE

We now describe our instance of the proposed algorithm
for the task of tracking multiple balls in image sequences.
This includes the detection likelihood Ldet, the dynamic
function g of Ldyn as well as several implementation details
for track management.

A. Observation Likelihood

Circle Response: We detect balls in gray scale images by
their appearance as circles. For increased robustness in low
contrast areas, we use an enhanced Sobel gradient filter C
which normalizes for local image variance (see Fig. 2 a-b)
and [2] for details). Intuitively speaking, instead of indicating
gradient intensity as classical gradient filters do, the output
of C indicates how perturbed a linear gradient is. Here, a
value of 1 points to an unperturbed linear gradient where
gradually lower values indicate a deviation from that.

The radial contrast of a local image can then be defined
as a function of a point (x, y) along the circle and radial
direction α (see Fig. 2c))

R(x, y, α) =

((
cosα
sinα

)
· C(x, y)

)2

(8)
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Fig. 3. Log of likelihood ratio as defined in Eq. 10 as a function of circle
response (Eq. 9) for various circle radii. Please note how larger circles are
favored at the same response value. This is due to the fact that it is more
likely that the response of a small circle is incidentally high than the one
from a large circle.

and the overall response for a circle at xc, yc, r is obtained
by integrating along the circle (Fig. 2d):

CR(xc, yc, r)=
1

2π

∫ 2π

α=0

R(xc+r cosα, yc+r sinα, α)dα (9)

Likelihood Model: To use (9) as Ldet, it needs to be
converted to a log-likelihood. We obtain this by considering
the ratio between the probability that a certain response and
radius combination is generated by an actual ball and the
probability that it is generated by the background [17]:

LR(xc, yc, r) =
Pball(CR(xc, yc, r))

Pbg(CR(xc, yc, r), r)
(10)

Here, likelihood ratios indicating a ball are generated when
the statistics for a ball are better matched than these of the
background. Similarly, when the ball model cannot explain
a response better than the background model, low ratios
are generated. In detail, we use the heavier-tailed Laplace
distribution to prevent unreasonable probabilities at extreme
responses. To better capture the background distribution at
different circles sizes, the radius is included in the model.
Furthermore, we approximate the distribution slightly to
realize a linear function for the log likelihood-ratio (Fig. 3).

Pball(cr) =
1

2b
exp(−µball − cr

bball
) (11)

Pbg(cr, r) =
1

2b rγ
exp(−cr − µbg

bbg rγ
) (12)

Distribution parameters haven been obtained by closed form
maximum likelihood fitting to histogram data. Histograms
were created from responses of patches containing a ball
and image sequences containing random scenes.

The mapping of a ball state xball to a circle (xc, yc, r)
is achieved through projection h (including pinhole-model
camera calibration) leading to Ldet(xball) = logLR(h(xball)).

B. Physical Motion Model
The dynamic of the ball during flight is modeled by

classical mechanics including gravitation g and air drag α.

ẋ = v, v̇ = g − α · |v| · v (13)

The dynamic function g is then the Euler integration of
Eq. 13 over δt.



Fig. 4. Sequence of clipped images, recorded during throwing a ball towards the robot, showing the predicted trajectory over time as computed by
MHT/UKF (red) and our approach (green). It can be seen that the green trajectory is already quite accurate at the beginning while the red trajectory
suffers from early detection inaccuracies and recovers over time to reach the same final accuracy. This impressively illustrates the increased performance
at an early tracking stage. Please see the supplemental video for the full sequence.

C. Implementation Details

For the task of ball catching, the robot is equipped with
stereo cameras and an inertial measurement unit (IMU). The
latter provides the camera’s orientation regarding gravity for
proper tracking and prediction of the ball’s trajectory.

Both cameras provide valuable information through im-
plicit triangulation, so Ldet becomes Lleft

det +Lright
det . We keep a

history of the processed vector images in memory for 1 s so
that ball trajectories are contained in their entirety. For each
state and image, we buffer a 32× 32× 32 px volume of the
log-likelihood ratio in memory and use the tricubic approach
by Lekien and Marsden [18] for interpolation. This ensures
that Ldet is smooth at subpixel-level which is required for
proper operation of the optimizer.

Trajectory estimation is performed using PNCG where the
preconditioner matrix should be the inverse of the Hessian
of Eq. 2. To obtain this matrix we approximate Ldet as a
Gaussian with a vague uncertainty making Eq. 2 quadratic.
From there the Hessian can be computed straightforwardly.
Please note that we are using this only for the construction
of the preconditioner matrix, which only affects the rate of
convergence, not the optimization result.

In most approaches, track initialization is a special case
handled in an application specific way. In our approach,
trajectory estimation is dependent on good initial tracks as
convergence with states far off the local maxima is not
guaranteed. Therefore, we used the existing MHT/UKF and
whenever a track started there, we also initialized a new track
in the FPMTT.

Trajectories are extended at most one step into the past
and two steps into the future in every iteration. The former
allows to include possible measurements missed by track
initialization. This greatly benefits early tracking precision,
when the track initialization mechanism missed measure-
ments. The latter allows the tracker to revise the decision
of a track having ended in light of new evidence.

As the number of tracks we need to handle (two for the
case of two-handed catching and a couple more for evalu-
ation) is moderate, the GIS problem is solved exhaustively
in combination with smart pruning in each iteration. While
solving, we maintain a list of the k-best subsets of tracks
and keep only the included ones up to a threshold.

V. EXPERIMENTS

As the joint optimization for trajectory estimation is the
key of our approach, we are mainly interested in single-target

performance and defer multiple target evaluation to future
work.

To validate our algorithm we compare its prediction to
ground truth (possible catch point) obtained by a 3-D track-
ing system. We chose to compare this to the state’s prediction
using the physical motion model, as this corresponds to the
intended application of catching thrown balls. This sensitive
task requires accurate predictions for reliable catching and
its success depends on early tracking quality.

An image sequence indicating the aforementioned benefits
of our approach compared to MHT/UKF is given in Fig. 4.
Guided by the physical motion model, global evaluation of
the trajectory allows to lock in at the real circle evidence,
especially in the early stage of tracking.

Figure 5 quantifies this as the average error ratio over a set
of 48 trajectories from different throwing sessions. As shown
in the individual plots, FPMTT outperforms our previous
approach most of the times and on average by 16.5 %.

Detector inaccuracies for ball detections (see Fig. 6) are
mainly caused by low contrast due to varying lighting or
background interaction. Circles determined by detector max-
ima share some part of radial contrast of the ball’s projection
resulting in a smaller circle detection. Up to our inspection,
our approach is able to resolve almost all of these and lock
in on the partial circular shape of the projected ball.

Due to focus on proper convergence, real time perfor-
mance is not achieved yet, but intended for the future. Cur-
rent average computation time is a multiple of the allowed
time per frame (single core, no high level optimizations).

VI. CONCLUSION

In this paper we presented a new algorithm, called the
fully probabilistic multiple target tracker, for tracking objects
which are subject to physical motion and can be evaluated
through raw detector responses in video sequences. The
algorithm breaks down to solving the three subproblems of
trajectory estimation, determining the trajectory boundaries
and handling mutual exclusion for which we proposed effi-
cient solutions for the task of ball tracking.

After evaluation on recorded data sets, we want to achieve
real time performance and integrate our algorithm into the
actual robotic ball catching framework. Here, we are espe-
cially interested how much the planning stage in the robotic
catching system benefits from the improved prediction ac-
curacy. It is expected that it leads to smoother and more
visually appealing arm trajectories.
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Fig. 5. (1st row) Excerpt of typical prediction accuracy results (in m) after
track start. FPMTT (green line) is able to outperform MHT/UKF (red line)
by a great margin. (2nd row) Examples where FPMTT is outperformed by
MHT/UKF but achieves still reasonable performance. (3rd row) Geometric
mean of the error ratio between FPMTT and MHT/UKF at each time step
after track start. As expected, in the beginning the error can be reduced
almost 50 % until it both perform the same at frame 10. The also slightly
improved accuracy at the end is likely due to better treatment of circles at
the image’s border (ball leaves image) of our approach. (4th row) Average
prediction improvement after track start of FPMTT (solid line) and 1σ
deviation (dashed line) to give and indication what range of improvement
in the beginning we can expect for our accuracy dependent task.

Leaving the field of ball tracking we want to generalize
our approach to different tracking applications in image se-
quences. In detail, we want to investigate how more complex
geometrical appearance models (e.g., from 3-D models) can
be integrated. Furthermore, we are interested in finding out
how loose the motion model can be while tracking with our
method is still feasible.
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