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Abstract

In recent decades, the only impact of robotics on real-world applications has been con-
fined to the execution of predetermined, repetitive tasks in controlled industrial environ-
ments. Although recent advances in all fields of robotics research have led to the devel-
opment of a first generation of highly actuated, multi-sensory equipped machines, they
still fall short of the range of activities humans are capable of. With the goal of having
robots operate autonomously in everyday domestic environments, it is certainly neces-
sary that human-like dynamics can be performed to a certain degree. To foster research
in this direction, it is therefore often proposed to engage robots in sporting benchmark
activities as these dynamic tasks are demanding for the robot’s mechanical, sensory and
computational capabilities and also require a high quality of integration.

This dissertation is part of the work in making a humanoid robot perform such a dy-
namic task, namely enabling DLR’s mobile humanoid robot Rollin’ Justin to catch up to
two simultaneously thrown balls, where each ball is caught with one of its hands. To
be more specific, this thesis is concerned with the perception system. Despite being a
clearly defined task with easily assessable performance even for non-specialists, it is still
demanding and underlines the challenges for realizing dynamic tasks in general. The
challenges are: Obtain the trajectory of the thrown balls with the necessary accuracy to
move the arms to the right position at the right time; handle unmodeled shaking of the
robot caused by the dynamic nature of the task; avoid computational latencies while pro-
cessing sensor signals to ensure proper execution within the short duration of the ball
flight.

From a perception point of view, this requires solving two separate problems. Firstly,
for meaningful evaluation of the input data, the geometric relationships between all sens-
ing and actuation components of the robot have to be determined through calibration.
Secondly, detection, tracking, and prediction of the ball during flight have to be per-
formed in an accurate manner while considering that the robot’s cameras also move. Of
course, this has to be performed in real-time.

Based on these requirements, this thesis contributes an automatic and self-contained
method for calibrating all relevant sensors involved in the task. The highlights of the
developed procedure are that it requires no external tools and no human assistance while
achieving an accurate calibration. Furthermore, besides implementation of state-of-the-
art approaches for tracking balls, a general tracking scheme is proposed that integrates
detection and tracking in a fully probabilistic manner. Finally, besides contributions to
the task of robotic catching, this thesis further covers the work of porting the obtained
methods to a ball playing entertainment robot and additional calibration problems.

All presented methods and algorithms have been evaluated on the respective robots
and were presented at trade fairs, public institute events and numerous lab demonstra-
tions. Thus the methods have contributed to the development of sporting activities with
humanoid robots and in doing so have extended the state of the art in service robotics.



iv



Zusammenfassung

Der praktische Einfluss von Robotern beschränkte sich in den vergangenen Jahrzehnten
weitestgehend auf das Ausführen von vordefinierten, sich wiederholenden Tätigkeiten in
beaufsichtigten, industriellen Umgebungen. Trotz des rasanten Fortschritts in allen Teil-
gebieten der Robotik und der Entwicklung einer ersten Generation von vielseitig aktuier-
ten, mit verschiedensten Sensoren ausgestatteten Maschinen sind diese noch weit entfernt
davon, die Breite der menschlichen Aktivitäten abzubilden.

Um jedoch autonom in alltäglichen, z.B. häuslichen, Umgebungen zu agieren, ist es
sehr wahrscheinlich notwendig, dass die Roboter menschenähnliche Eigenschaften hin-
sichtlich der Bewegungsdynamik aufweisen. Ein häufiger Vorschlag, um Forschung in
diese Richtung zu lenken, ist es, Roboter in sportliche Aktivitäten einzubeziehen, da
diese besondere Anforderungen an die mechanischen, sensorischen und rechnerischen
Fähigkeiten stellen sowie eine hohe Qualität der Integration erfordern.

Die vorgelegte Dissertation ist Teil der Bemühungen mit einem humanoiden Roboter
solch eine dynamische Aufgabe zu realisieren, nämlich mit dem mobilen humanoiden
Roboter Rollin’ Justin des DLR bis zu zwei gleichzeitig geworfene Bälle zu fangen, jeden
jeweils mit einer Hand. Dabei konzentriert sich diese Arbeit auf die Wahrnehmungskom-
ponente. Diese klar festgelegte Aufgabe erlaubt es nicht nur Laien die erbrachte Leis-
tung auf einfache Weise zu beurteilen, sie ist zugleich anspruchsvoll und unterstreicht in
unmittelbarer Weise die Herausforderungen für dynamische Aufgaben: Berechnung der
Flugbahn der geworfenen Bälle mit der notwendigen Genauigkeit, um die Bälle an der
richtigen Position zum richtigen Zeitpunkt zu fangen; Berücksichtigung von nicht mo-
dellierten Schwingungen des Roboters aufgrund der Dynamik; Vermeidung von rechne-
risch verursachten Verzögerungen während der Verarbeitung der Sensordaten, um eine
einwandfreie Durchführung während der kurzen Flugdauer zu garantieren.

Für die Wahrnehmung des Ball fangenden Roboters bedeutet dies die Entwicklung
von Lösungen zu zwei Problemen. Zum einen müssen für eine aussagekräftige Auswer-
tung der Eingangsdaten die geometrischen Zusammenhänge aller Sensor- und Aktua-
torkomponenten des Roboters durch eine Kalibrierung bestimmt werden. Zum ande-
ren ist es notwendig, die Bälle während des Fluges mit der nötigen Genauigkeit unter
Berücksichtung der Bewegung des Roboters zu erkennen, zu verfolgen und vorherzusa-
gen. Dabei muss letzteres in Echtzeit geschehen.

Angelehnt an diese Anforderungen legt diese Arbeit ein automatisches und in sich
abgeschlossenes Verfahren vor, um alle benötigten Sensoren und Aktuatoren zu kalibrie-
ren. Bei dieser Prozedur ist besonders hervorzuheben, dass keine zusätzlichen Hilfsmittel
und keine menschliche Hilfestellung für eine sorgfältige Kalibrierung benötigt werden.
Des Weiteren wird das Verfolgen von Bällen mit aktuellen Verfahren realisiert und ein
neues Verfahren vorgestellt, welches Erkennen und Verfolgen in einer probabilistischen
Art und Weise integriert. Neben den Beiträgen zum Ballfangen behandelt diese Arbeit
auch den Transfer der Verfahren auf einen ballspielenden Unterhaltungsroboter sowie
die Behandlung weiterer Kalibrierungsprobleme.

Die vorgestellten Verfahren und Algorithmen wurden mit den verwendeten Robotern
experimentell evaluiert und auf Messen, öffentlichen Veranstaltungen sowie Laborde-
monstrationen der Öffentlichkeit vorgeführt. Die Verfahren haben zur Realisierung einer
sportlichen Aktivität mit einem humanoiden Roboter beigetragen und auf diese Weise
den Stand der Technik für Serviceroboter im Allgemeinen erweitert.
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Chapter 1

Introduction

For centuries, humans have been fascinated by the idea of creating machines similar to
existing life. Although robots have replaced the human worker at repetitive tasks in in-
dustrial scenarios for many years, they do not have yet reached the capability and auton-
omy to accomplish everyday human tasks. This becomes even clearer when considering
what variety of dynamic activities humans are able to perform, e. g. when doing sports.

In this thesis, parts of the work in making a humanoid robot perform such a dynamic
activity are studied. In detail, DLR’s mobile humanoid robot Rollin’ Justin is instructed
to catch a thrown ball with one of his arms and is even instructed to catch two balls at
the same time, one with each of his arms. The latter is even difficult for humans and
underlines the main challenges which will be considered in this thesis: keeping track of
multiple balls robustly and accurately (object tracking), distinguishing robot motion and
motion of the thrown balls (tracking of egomotion), and to be aware of the perception and
actuation setup (robot calibration).

1.1 Dynamic Tasks as a Challenge for Robotics

The development of autonomous systems that share the same physical space as humans
is an active field in robotics research. As an alternative to constructing special machines,
which are only able to fulfill one dedicated task, the development of a robot, which is
able to handle any given task like humans, is desired. Currently, humanoid robots have
become the form of choice and have been successfully deployed for basic operation in
domestic settings. Despite this remarkable progress, the developed systems still do not
match the broad range of activities humans are capable of. As these robots are likely to
use human driven machinary and tools, and engage in physical interaction with humans,
it is advisable to also have, at least up to a certain degree, human-like dynamics. For
this to be achieved, several open challenges in robotics still exist such as the development
of powerful mechatronic hardware allowing dynamical motion or the ability to process
relevant data at high rates for reactive behavior in complex scenarios, just to name two.

To address these challenges, contests emerged which embed humanoid robots in com-
petitive environments. Although these contests usually require the accomplishment of
a series of specialized tasks in standardized testbeds, they, by their design, are expected
to benefit research broadly. A popular example of such a contest is the RoboCup initia-
tive which was founded with the idea in mind “to pursue and analyze technical issues
involved in a humanoid to play soccer” [KITANO and ASADA, 1998] and its extension
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Chapter 1 Introduction

Figure 1.1: Sketch of DLR’s Rollin’ Justin catching two balls which were thrown towards the robot,
each ball with one of his hands. This work focuses on tracking multiple balls, distin-
guishing own motion and motion of the balls, and calibrating the robot’s setup.

RoboCup@Home [VAN DER ZANT and WISSPEINTNER, 2006] with the goal of promoting
domestic service robots. Others include, although for driverless vehicles, the series of
DARPA Grand Challenges [BUEHLER et al., 2007, BUEHLER et al., 2010] and the upcoming
DARPA Robotics Challenge where humanoid robots will operate in disaster scenarios.

1.2 Ball Catching as a Robotic Testbed

To help robots establish themselves in dynamic activities, a similar specialized task is
pursued in this thesis, namely the catching of thrown balls. In detail, a mobile humanoid
robot is instructed to catch up to two thrown balls with his arms. See Fig. 1.1 for an
illustration of this dynamic task using DLR’s Rollin’ Justin.

Being able to reliably catch a ball is not an easy task, neither for humans nor for robots.
While humans spend a reasonable amount of time in their early life to master catching,
realizing this dynamic and skillful manipulation task for a robot requires careful imple-
mentation of perception, control and planning algorithms. While for most robotic tasks
implementing one of these is already challenging in itself, the required integration of all
three makes this task particularly demanding. Hence, robotic ball catching qualifies to be
an appropriate testbed for the evaluation of different key robotic technologies.
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1.2 Ball Catching as a Robotic Testbed

In addition, the value of realizing a ball catching robot is not limited to roboticists. In
contrast to other research topics, every human has experience in ball catching. Therefore,
everyone is also able to assess the performance of the robot and compare it to human
capabilities. This gives even non-specialists the ability to assess the current state of the art
of robotics and allows them to see for themselves how much work is still left for robotics
research to match human capabilities.

It should not be left unmentioned that ball catching is currently one of the few opportu-
nities for humans to interact with a robot. In general, human robot interaction, especially
physical interaction, is still in its early stages of development which is mostly caused by
the lack of safety mechanisms. The proposed ball catching activity therefore provides a
safe and entertaining way to directly engage humans with a robot.

Engaging robots in such kinds of activities has a long history. In 1989, Andersson [AN-
DERSSON, 1989] introduced a ping-pong playing robot based on stereo vision and a robot
arm. Although limited by the vision system’s predictive capabilities and the robot’s dy-
namics, it was fully functional on a small table and is considered to be one of the first
robots in such a dynamic activity. Robotic ball catching was first successfully studied by
Hove and Slotine for a two degree of freedom (DOF) robot arm [HOVE and SLOTINE,
1991] and later for a four DOF arm [HONG and SLOTINE, 1995] using actively controlled
stereo vision. While these approaches made extensive use of special hardware for vision,
the seminal work of Frese et al. [FRESE et al., 2001] introduced a system for using com-
mon computing hardware for stereo vision processing and catching with a seven DOF
lightweight robot arm. The complementary work on optimal trajectory optimization was
studied by Bäuml et al. [BÄUML et al., 2010] for an arm of this kind. Ball catching was re-
alized in a non-prehensile way by using a balancing controller to keep the ball on a plate
instead of utilizing a gripper or catching tool such as a basket [BÄTZ et al., 2010].

So far, ball catching using a humanoid robot has been implemented twice. The hu-
manoid robot Saika [NICHIWAKI et al., 1997, KONNO et al., 1997] equipped with twelve
DOF was able to catch a ball thrown from around 2 m away with a basket attached to
one of its arms. A stereo vision system mounted in the robot’s head detected the colored
ball and the robot was rigidly mounted to the ground. Riley and Atkeson [RILEY and
ATKESON, 2002] presented ball catching experiments using a 30 DOF humanoid robot
equipped with a baseball glove. Here, an external stereo vision system with a rather wide
baseline was looking for color-coded balls. The work presented here differs from these
two as it makes use of both available humanoid arms, employs robotic hands instead of
catching tools, handles the moving cameras while the robot moves, allows arbitrary col-
ored balls to be used, and enables vision processing on an embedded system in the robot
instead of relying on unlimited external computing resources.

Furthermore, the sole task of detecting and tracking the ball has been established for
broadcast or umpire purposes. In 1997, the FoxTrax hockey puck tracking system was
presented by Cavallaro [CAVALLARO, 1997]. An infrared emitting puck is tracked using
multiple cameras allowing the viewers to easily follow the fast moving puck in an aug-
mented TV image. Similarly, Guéziec [GUÉZIEC, 2002] introduced a vision-based baseball
tracking system. It gives the audience an indication whether a pitched ball qualified as
regular thrown ball or not. In recent years, the Hawk-Eye system [OWENS et al., 2003] for
tracking the ball in cricket or tennis games has become popular. It is used in cricket’s ad-
judication process by helping the umpire resolve difficult decisions or by tennis players to
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Chapter 1 Introduction

challenge perceived erroneous calls by line judges. Usually, a computer generated replay
of the scene is given, showing the tracked trajectory of the ball and the resulting computer
generated decision. For the sport of soccer, Beetz et al. [BEETZ et al., 2006, BEETZ et al.,
2007] developed a camera-based observation system, called ASPOGAMO, that tracks the
ball and the players and is used for the analysis of matches and multi-agent activity. Fi-
nally, the author of this thesis conducted prior work [9]. Here, a human observed flying
balls on a soccer field while wearing a helmet equipped with a camera and an inertial
measurement unit with the goal of accurately predicting the ball’s trajectory.

1.3 Challenges

Based on this setup, a set of challenges has been identified in [2]. These need to be ad-
dressed properly in order to successfully perform the catching of balls. These challenges
are:

1. Low Latency: The flight time of a thrown ball is around 1 s from a distance of
around 5 m. Combined with the limited dynamic performance of the robot, this
leaves no room for complicated methods but rather demands low latency imple-
mentations. Only these enable a reactive catching behavior that covers most of the
robot’s workspace. This is not only true for the perception module but also holds
for the ensuing planning stage.

2. High Precision in Space and Time: For successful catching, the robot configuration
must match the catch point along the trajectory at the intended time of catch pre-
cisely. This is especially true for the hand closing command. Any deviation from
the actual time of catch would lead to the ball hitting the outside of the hand or a
ball bouncing out of the hand.

3. Moving Camera System: The vision system’s challenge is to track the ball and pre-
cisely predict its upcoming trajectory. This has to happen in two modes. First, when
the robot is inactive the cameras are static. Second, once a trajectory is projected
to be catchable, the robot follows the ball due to controlled head movement such
that the object stays in the field of view as long as possible to obtain the precise
measurements near the robot.

4. Not Completely Cancelable Vibrations: Unfortunately, unwanted vibrations prop-
agating through the whole structure are excited during robot movement, as a result
of elasticities in the lightweight design of DLR’s Rollin’ Justin. This affects the head-
mounted cameras and negatively impacts the perception’s system performance if
not appropriately considered. Furthermore, because these vibrations are only par-
tially cancelable by control algorithms, the precision with which the hand can be
positioned is impaired as the planning stage cannot anticipate these in time.

5. Partly Observable Kinematic State: In addition to these observable vibrations, the
robot also encounters partly observable states. Appearing at the torso and the mo-
bile platform, these have mechanical origins and show up as dynamic movements.
Special care must be taken in handling these phenomena.

4



1.4 Used Robotic Platforms

Arm Torso Head
Control / 1 kHz

Platform Control
60 Hz

Hand Control
1 kHz

Ball Tracker
25 Hz

Circle Detector
25 Hz

Circle Detector
25 Hz

Pose Estimator
512 Hz

State Machine
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View Control
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QNX / 32 Cores
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USB

WiFi

Sercos

SpaceWire
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Figure 1.2: Architecture of the ball catching system. The robot’s sensors and actuators are cou-
pled (shown as colored arrows) to the robot’s embedded computing hardware (two
left light blue boxes). The involved components and their interactions are depicted
as yellow boxes and arrows, respectively. Every component’s processing cycle rate is
given where the ones receiving sensor data correspond to the readout rate and the ones
passing data to actuators correspond to the control cycle rate. The rightmost box is a
remote computing resource comprising the planning stage.

6. Limited Computing Resources and Communication Bandwidth: As illustrated in
Fig. 1.2, attention is required what data to compute at which stage and what kind
of information needs to be exchanged between components. To operate completely
wirelessly, it is required that all computations that demand high bandwidth or low
latency have to be performed on the robot’s embedded hardware.

7. No Globally Synchronized Clocks and Communication Latencies: The system
consists of various sensors and actuators running at their respective readout rate.
These are connected by various bus architectures to the system’s different comput-
ing entities, each of which has its own clock. For proper integration of measurement
data, a consistent time synchronization is required to correctly assign all physical
sensor and actuator events with a high precision time stamp that is valid system-
wide.

The latter two challenges address system integration requirements. As this thesis fo-
cuses on perception, the focus will be on the challenges one to five throughout this work.

1.4 Used Robotic Platforms

The main robotic platform used for task of ball catching is DLR’s mobile humanoid robot
Rollin’ Justin. It consists of an omnidirectional platform based on four individually move-
able wheels [BORST et al., 2009]. The upper body consists of a torso with four degrees
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Chapter 1 Introduction

Figure 1.3: In-game snapshot of a ball playing entertainment robot. The robot perceives the ball
using a pair of cameras hidden in in the eyes and is able to return balls thrown towards
the robot using a bat.

of freedom (DOF), of which one is passive, and two LWR-III arms [HIRZINGER et al.,
2002] with seven DOF each. Each arm is equipped with a DLR-Hand-II [BUTTERFASS
et al., 2001] which has twelve DOF distributed over four fingers. Completing the robot’s
anthropomorphic design, the head is controlled by a pan-tilt unit.

The head is equipped with a pair of Prosilica GC1600 GigE cameras at a rather short
baseline of 20 cm. These cameras provide a synchronized pair of 1616⇥ 1220 px sized
images at a frame rate of 25 Hz, each exposed for a period of 1.5 ms to reduce motion blur.
Each camera is equipped with an 8 mm lens (Schneider Kreuznach CNG 1.4/8) allowing a
field of view of 47� horizontally and 36� vertically, which ensures that the angular extent
of the scene is sufficient for a variety of ball trajectories. The robot is further equipped
with a head-mounted XSens MTi inertial measurement unit (IMU) which provides linear
acceleration and angular velocity information at a rate of 512 Hz.

The complete system including the robot and all involved computing resources is de-
picted in Fig. 1.2. All sensor readings arrive at a quad-core embedded system running
Linux. Processing is performed at the point of arrival and includes extraction of circle fea-
tures from camera images, pose filtering from IMU data, and, based on this data, tracking
of the ball trajectory. Each time new trajectory information is obtained, this data is passed
to a pair of embedded dual-core systems running QNX. These machines share the task of
keeping track of the system’s catching state, provide communication channels between
components through the agile Robot Development (aRD) concept [BÄUML and HIRZINGER,
2008], provide tools for visual inspection of catching experiments and contain the control
components. From there, data is passed wirelessly to a remote 32-core cluster, which per-
forms elaborate planning of the catching configuration based on the current robot state
through parallelized sequential quadratic programming (SQP) optimization. Once a so-
lution has been found, it is passed back, the robot’s catching state is adjusted and the
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1.5 Contributions

obtained configuration is commanded to the actuators through their respective transfer
buses.

Beyond ball catching, the developed methods have been transferred to a minimal ball
playing entertainment robot which is shown in Fig. 1.3. Here, a bat with an approximate
length of 0.85 m is used to return balls thrown towards the robot. Although a pair of
synchronized cameras is used for tracking, no IMU is required due to the immobility of
the robot. The bat is actuated by only two DOF. This setup allows motion to be computed
in an ad hoc fashion based on the obtained ball trajectories.

1.5 Contributions

The realization of a perception system for a ball catching humanoid robot is central to this
dissertation. Therefore, the main contributions are the following:

• A novel tracking algorithm called fully probabilistic multiple target tracking (FPMTT)
is proposed that integrates tracking and response-based detection for continuous
trajectory estimation. Being formulated as a batch-mode Bayesian approach, it per-
forms global estimation of the trajectory given all collected image evidence so far.
For handling of multiple targets, track limit determination and a method for assur-
ing mutual exclusion are presented. Experimental evaluation is performed with
respect to ground truth and results are compared to other tracking approaches.
While the realized task is ball tracking, the algorithm itself is generic and is the first
approach integrating response-based object localization from images and tracking
based on a physical motion model for trajectory estimation. This contribution deals
with challenges one and two.

• A calibration approach for determining all relevant parameters of the setup intro-
duced in Sec. 1.4 is presented. The novelty of this approach is that the robot collects
all necessary sensor data by itself through automated motion and evaluates it in
an automated manner. No external calibration tools are employed and therefore
no human assistance is required. A co-developed least squares estimation frame-
work is introduced that allows the direct setup and efficient solving of this class of
problem. This contribution addresses the second challenge and, to the knowledge
of the author, is the first procedure to calibrate a robot in such an automated and
self-contained manner.

• The extension of IMU-based head pose estimation to not only complement the cam-
eras, but also to obtain the unobservable torso and platform motion is discussed.
The concept of a self-contained catching device is introduced, which corresponds to
an isolated head-arm system which is somehow moved by the robot. This contribu-
tion deals with challenges three to five.

• The realization of ball tracking using classical multiple hypothesis tracking (MHT)
in combination with the unscented Kalman filter (UKF) and a single target tracking
model. In addition, a Gaussian mixture probability hypothesis density filter (GM-
PHD) is implemented in combination with a prior initialization routine for solving
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a specific problem of initializing uncertain states from measurements. Both algo-
rithms are compared to each other and to ground truth. This work is the first to
employ the PHD filtering scheme in robotics.

Further contributions include derivative work of the above, or constitute contributions
outside of ball catching:

• Tracking and calibration approaches have been realized for the ball playing enter-
tainment robot. While the MHT/GM-PHD has been ported directly, the calibration
approach is greatly simplified to account for the entertainment robot’s reduced com-
plexity.

• Initial work and results of optimal experimental design of the automatic and self-
contained calibration approach is presented.

• Two additional calibration procedures are introduced concerned with the problem
of determining a camera’s pose relative to a RoboCup soccer field and recovering
the parameters of a Microsoft Kinect sensor.

1.6 Outline

In this thesis by publication, the following chapters summarize the previously published
work in a concise manner. This summary consists of the following chapters:

Chapter 2 discusses multiple-target tracking methods and their application to robotic
ball catching. The underlying single target model for tracking a ball is introduced includ-
ing the approach of estimating the head pose through the employed IMU. The presented
tracking methods include multiple hypothesis tracking (MHT), probability hypothesis
density (PHD) filtering, and the proposed approach called fully probabilistic multiple
target tracking (FPMTT).

Chapter 3 addresses the problem of calibrating multiple sensors mounted on a hu-
manoid robot. In detail, a textbook-style and an automatic self-contained approach will
be employed for calibrating the setup illustrated in Fig. 1.2. Furthermore, additional cali-
bration work outside of ball catching will be presented briefly.

Chapter 4 concludes this dissertation by summarizing the presented work and giving
an outlook on potential future work based on the insights from this thesis.

Chapters 2 and 3 follow the same structure. Each of these chapters starts with a general
introduction followed by a chapter-related motivation. An elaborate review of related
work is conducted before a summary of the compiled publications is presented. Finally,
the chapters close with a summary reiterating the contributions and giving an outlook on
the transferability of the proposed approaches.

After the summary, a list of the publications of the author and the references follows.
The appendix is composed of a list of released software before the compiled publications
are reprinted.
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Chapter 2

Multiple Target Tracking

Multiple target tracking (MTT) has the goal of estimating individual states of an unknown
number of possibly moving objects from sensor input. Depending on the sensing setup
and observation features, observations might be noisy, missing, or be false-alarms. Fur-
thermore, handling of creation and deletion of targets is desired. This chapter presents
work on multiple target tracking as part of a computer vision application for the task
of robotic ball catching. After a discussion of the state of the art tracking methods, it is
shown how a classic MTT approach, namely multiple hypothesis tracking (MHT), and a
newly emerged technique known as probability hypothesis density (PHD) filtering have
been employed for the above mentioned task. In the final section, a novel tracking ap-
proach is presented where detection and tracking are not considered as separate stages
but are combined in a single optimization stage.

2.1 Motivation

Admittedly, tracking multiple balls using stereo cameras does not pose an inherently dif-
ficult multiple target tracking problem. Due to the known dynamics (and thus good pre-
dictability) of the ball trajectory, association of measurements to the ball, even when con-
sidering clutter, is rarely ambiguous.

As can be directly derived from the challenges listed in Sec. 1.3, the difficulty for the
algorithm focuses on accuracy of the estimated trajectory (Challenge 2), keeping compu-
tational latency low (Challenge 1), and handling of the unavoidable vibration of the robot
(Challenges 3 through 5).

One might argue that using separate single-target trackers initialized by a heuristic
track starting mechanism would solve the problem efficiently. While such an ad hoc solu-
tion might be feasible, it was discarded and instead full-fledged multiple target solutions
were sought as these thoroughly cover all aspects of common tracking problems in a me-
thodically sound way.

2.2 Related Work

Multiple target tracking has found widespread use in multiple disciplines which has re-
sulted in a vast amount of published work. To keep this section concise, only methods
that are closely related to approaches addressed in this dissertation will be listed. After
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Chapter 2 Multiple Target Tracking

a review of classical recursive Bayesian filtering and its siblings, so-called batch-mode
(Bayesian) tracking approaches, where some kind of global tracking approach is estab-
lished, will be considered. Finally, work addressing tracking of flying balls from camera
images is presented which includes approaches employed in other robotic ball catching
setups.

2.2.1 Recursive Bayesian Filtering

The concept of Bayesian filtering has become the standard procedure when confronted
with the problem of estimating the state of an unobservable system over time through
measurements. The goal of the filtering process is to recursively update the system’s
state estimate x̂t at time t through (usually noisy) measurements z1 . . . zt, starting from
an initial state x0. Unfortunately, the ideal Bayes filter is computationally intractable as
computation of the update requires costly evaluation of integrals depending on the class
of the chosen distributions.

To tackle this problem, approaches approximating the underlying distribution have
been established for quite some time. Instead of analytical modeling, the use of a weighted
set of samples that approximates the posterior distribution in combination with impor-
tance sampling gave rise to the particle filter (PF), initially proposed in [GORDON et al.,
1993] as the bootstrap filter. The number of samples in this approach serves as a trade
off between computational cost and accuracy of estimation making it suitable for wide
range of applications, e. g. in computer vision [ISARD and BLAKE, 1998] or mobile robot
localization [FOX et al., 1999]. See also Arulampalam et al. [ARULAMPALAM et al., 2002]
and Cappé et al. [CAPPÉ et al., 2007] for introductory texts.

Another approximation is the Kalman filter [KALMAN, 1960], see also Ho’s and Lee’s
Bayesian formulation [HO and LEE, 1964], which is a closed form solution for one spe-
cial case of the underlying model: the dynamic and the measurement model are now as-
sumed to be linear transformations with additive independent zero-mean Gaussian noise.
Based on these assumptions, Kalman recursion generates an updated Gaussian posterior
at time t from a Gaussian posterior of the previous step t � 1. While this is only valid
for linear Gaussian systems, nonlinearity can be handled through further approximation.
The extended Kalman filter (EKF) [ANDERSON and MOORE, 1979] is an approximation
acquired through (usually first order) Taylor series expansion. The unscented Kalman
filter [JULIER and UHLMANN, 2004, WAN and VAN DER MERWE, 2000] generates a set
of so-called sigma points from mean and covariance of the state, which are recombined
to a Gaussian after propagation through the nonlinear functions. The Kalman filter is a
recursive implementation of Gauss’ method of least squares and their relationship was
reviewed by Sorenson [SORENSON, 1970].

While these two major approaches allow estimation of the state from noisy measure-
ments, special care has to be taken for tracking a target in the presence of false alarms
and non-existent measurements. The key problem here is to decide which measurements
should be integrated with a target’s state, a task known as data association. In the case
of considering a varying number of objects, a sophisticated approach known as multi-
ple hypothesis tracking (MHT) [REID, 1979] became popular in multiple target tracking.
As the name suggests, the tracker maintains a set of hypotheses, where each hypothe-

10



2.2 Related Work

sis represents a unique mapping of measurements to targets or false alarms. When new
measurements arrive at each time step, these hypotheses are systematically expanded by
updating its states in a Kalman filtering framework. As this leads to exponential growth,
elaborate strategies have to be employed to limit the number of hypotheses and keep the
tracker computationally feasible, such as the approach of Cox and Hingorani employing
Munkre’s algorithm [COX and HINGORANI, 1996], or the MCMC data association ap-
proach in [OH et al., 2009]. Besides its use in the tracking community, applications of
MHT in robotics include tracking of people using a laser range finder by Luber et al. [LU-
BER et al., 2011b, LUBER et al., 2011a]. See also [BLACKMAN, 2004] for an introductory
text to MHT and confer Sec. 2.5 for a more detailed explanation of MHT as it is applied to
the case of ball tracking.

Also, particle filters capable of tracking multiple targets have been developed, where
two classes of approaching such an algorithm have to be distinguished: separate or joint
representation of the target configurations in the posterior distribution. One of the first
approaches was realized by Cai et al. [CAI et al., 2006] where particle sets for each target
are generated and data association to measurements is achieved through finding the most
likely nearest neighbor assignment. Such a separate approach is prone to errors when ob-
ject interaction occurs, which can be handled by keeping the target configuration in one
joint particle set such as presented in [KHAN et al., 2005]. For successful sampling in a
possibly high-dimensional state space, traditional sampling turned out to be inefficient
and a MCMC sampling step was introduced. Von Hoyningen-Huene and Beetz [VON
HOYNINGEN-HUENE and BEETZ, 2009] provide a Rao Blackwellized resampling particle
filter where the posterior is approximated as a Gaussian and hence use Kalman filter-
ing in the prediction step. Data association is achieved through smart resampling while
robustness is increased through a fixed-lag target estimation scheme.

In recent years, a conceptually different approach to Bayesian filtering of multiple tar-
gets emerged. Instead of explicitly modeling associations between measurements and
objects through hypotheses, states and measurements are modeled as random finite sets
(RFS) which then allow formulation of a Bayesian approach directly. Again, computa-
tional infeasibility of the involved integrals make it unsuitable for most applications, but a
first moment approximation known as the PHD filter was proposed by Mahler [MAHLER,
2003, MAHLER, 2007b], which recursively updates a posterior multiple target intensity
over time. This intensity behaves like a distribution in state space as its peaks indicate
the objects of interest, but unlike a distribution, the integral is not one but the number
of expected objects. As these filters make use of particle filtering and Kalman filtering as
the underlying single-target filter, implementations of the PHD filter exist and represent
the intensity as particles known as the SMC-PHD filter [MAHLER, 2007b], or as a mixture
of Gaussians known as the GM-PHD filter [VO and MA, 2005, VO and MA, 2006]. While
these filters still enumerate associations of measurements to states, they do not enumerate
the different possibilities to select a subset of states as a hypothesis such as MHT does and
are therefore regarded as computationally attractive. So far, the use of this concept out-
side the tracking community is rather limited and the filtering scheme has been mostly
employed in computer vision applications for tracking feature points [IKOMA et al., 2004],
people [WANG et al., 2006, WANG et al., 2007], faces, people and vehicles [MAGGIO et al.,
2007] or for tracking objects in aerial images [POLLARD et al., 2009]. For a derivation of
the PHD filter using infinitesimal sized bins instead of random finite sets, see Erdinc’s

11



Chapter 2 Multiple Target Tracking

and Bar-Shalom’s article on the bin-occupancy filter [ERDINC et al., 2009]. Please confer
Sec. 2.6 for detailed treatment of this filter applied to ball tracking.

2.2.2 Batch-Mode (Bayesian) Tracking

As the success of these recursive approaches depends on the detector’s ability to handle
difficult detection situations, recent efforts in tracking have focused on global tracking
schemes, mostly employing a batch-mode Bayesian approach. Originating from the com-
puter vision community, these approaches try to resolve ambiguities, such as temporary
occlusions, at a global level, i. e. by looking at measurements from multiple time steps
at once. In [YAN et al., 2006] single target trajectories were generated as the concatena-
tion of so-called tracklets containing true positive measurements for the case of tracking
a tennis ball from broadcast video. Approaches tracking multiple pedestrians include
the approach in [ZHANG et al., 2008] where the data association problem was encoded
in a cost-flow network and solved by finding the min-cost flow using the push-relabel
method. Using an equivalent representation, Pirsiavash et al. [PIRSIAVASH et al., 2011]
provide greedy solutions by means of dynamic programming. By hierarchical linking of
measurements to trajectories Brendel et al. [BRENDEL et al., 2011] ensure mutual exclu-
sivity through a maximum weight independent set formulation.

Going one step further, approaches coupling detection and tracking/data association
have become an active field of research. Leibe et al. [LEIBE et al., 2007] and Ess et al. [ESS
et al., 2009] achieve combined detection and trajectory estimation through optimization
by means of a quadratic boolean problem (QBP). Modeled as a continuous energy mini-
mization problem, Andriyenko [ANDRIYENKO and SCHINDLER, 2011, ANDRIYENKO et al.,
2012] combined tracking of multiple targets with a constant-velocity dynamic model. The
latter approaches have in common that they introduce an analytical distribution based on
the detector output. Wu et al. [WU et al., 2012] coupled the same two tasks in a joint ob-
jective function, which includes data association based on network flows and sparsity
driven detections. Leveraging motion in cases where appearance-based detection is em-
ployed was proposed by Collins [COLLINS, 2012].

As it will be seen later, a similar idea going one step further will be pursued: Using
detector responses available directly at image-level, the states of the ball linked through
the known physical motion model over time will be estimated.

2.2.3 Tracking Approaches Specific to Flying Balls

In the past, other robotic ball catching systems did not employ any multiple target ap-
proaches as catching was limited to one arm. Using either color information [RILEY and
ATKESON, 2002, SMITH and CHRISTENSEN, 2007, BÄTZ et al., 2010] or segmentation with
respect to a reference image [FRESE et al., 2001], measurements were extracted from the
camera images. Estimating the ball’s position and velocity from image features is per-
formed either using an EKF [FRESE et al., 2001, SMITH and CHRISTENSEN, 2007] or by
fitting a parabola to camera measurements [HOVE and SLOTINE, 1991, RILEY and ATKE-
SON, 2002, BÄTZ et al., 2010].
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Figure 2.1: Components of a bottom-up ball tracker and flow of data between components. Track-
ing is performed by maximizing the likelihood, which the inverse of the sum of squared
errors between detector peaks and the image position obtained from the state propa-
gated through the measurement model and the sum of squared errors due to the dy-
namic model. As detection is not included in this optimization process (depicted as a
gray box), detection results remain fixed.

Other work in tracking balls includes Ribnick et al. [RIBNICK et al., 2007], who were
able to detect regions of rapid motion in image space and associate these measurements to
a parabolic trajectory using an expectation-maximization algorithm. A system for track-
ing a soccer ball from broadcast image data was introduced by Ren et al. [REN et al.,
2004] with the ability to classify the ball’s state over time (e. g. flying, rolling). Using high
speed cameras, Shum and Komura [SHUM and KOMURA, 2005] presented experimental
results of estimating position and rotation of a pitched baseball. Furthermore, although
not relevant for this work, a comprehensive theoretical analysis including determination
of conditions for a unique solution of estimating 3D position and velocity of balls from a
single view was given by Ribnick et al. [RIBNICK et al., 2009].

To summarize this related work, current state of the art single-target tracking methods
for flying balls employ a bottom-up approach such as illustrated in Fig. 2.1. Detection
of the ball is handled at a stage preceding the actual tracking algorithm. Tracking itself
concentrates on adjusting the sequence of states such that they match the detections and
the dynamic model of a ball flight. Therefore, the performance of trajectory estimation
depends on the quality of the results from the detector stage, which makes these bottom-up
approaches likely to not make the most out of the information available from the images.
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Chapter 2 Multiple Target Tracking

2.3 Single Target Model

The basis for all implemented multiple target tracker algorithms is a single target model
capturing the ball’s flight properties and its appearance in sensor readings. Additionally,
as the camera is not stationary but moving while the robot reaches for the ball, inertial
pose estimation has to be performed for determining the changing extrinsic camera pa-
rameters.

2.3.1 Dynamic and Measurement Model

Let the state of a ball be its position x and velocity v. The motion of a flying ball can then
be described using Newton’s laws of motion including gravity. Unfortunately, depending
on the ball or flight properties, additional forces might influence the trajectory consider-
ably. De Mestre [DE MESTRE, 1990] and Armenti [ARMENTI, 1992] compiled such effects
affecting ball flight in the context of sport science and showed how to formally treat them.

Since the ball has a relatively large cross-section, the only major non-gravitational force
to be considered is the drag force. This is important as air drag has a major impact on the
predicted catching position. The motion is therefore described by the following two first
order differential equations:

ẋ = v (2.1)
v̇ = g0 � a · kvk · v (2.2)

with ball position x, ball velocity v, gravity due to free fall g0 and the air drag coefficient
a, which is a scalar and determined in advance for the specific ball. Furthermore, process
noise sQ is considered. The corresponding measurement function is denoted as g and is
obtained through Euler integration.

The measurement function h maps a ball state x to a calibrated camera image position
and radius. For this, the cross of four points on the ball centered at x with spacing d/2
orthogonal to the line of sight is computed, where d is the predetermined ball diameter.
Projecting these points into the image plane, the center and radius are determined by
computing the mean and standard deviation:
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The measurement uncertainties sx,y for the circle center and sr for the radius of the circle
need to be defined. While the uncertainty for the circle center is absolute, sr is modeled
relative to the circle radius. This helps in capturing the actual uncertainty occurring in
detection and avoids linearization problems with distant balls.

2.3.2 Inertial Pose Tracking

As mentioned in the introduction the cameras are not static but move when the robot
moves and even vibrate when the arms move due to the reaction forces, see Challenges
three to five in Sec. 1.3. Although these effects were reduced by the controller, they were
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Figure 2.2: Overall rotational and translational movement (a) and the corresponding error (b) of
the estimated 6D head pose. The latter was obtained by comparing IMU integration
with respect to ground truth during a catch.

neither completely cancelable nor fully observable by the joint sensors and neglecting
these effects would drastically impair the tracking precision.

The proposed solution to this problem is to isolate the head-arm system from the rest
of the robot and treat it as a self-contained catching device. It is somehow moved by the
rest of the robot and the catching device’s motion is exclusively obtained from the head-
mounted IMU. The estimated displacement of the catching device is used for the tracking
and the planning stage.

For easy applicability of Eq. 2.2, a fixed world coordinate system for representing the
ball state (x, v) is assumed. Based on the IMU pose on start up, the orientation is defined
to point opposed to measured gravity, with zero translation. Depending on the catch-
ing state, two modes were deployed to account for different catching phases which are
available from the robot’s operating state:

1. Orientation estimation: Orientation estimation is performed when the robot is
known to be stationary. For this, the linear velocity is set to zero while gyroscope
bias and orientation are estimated. A UKF based orientation estimation scheme in-
spired from [KRAFT, 2003, MARINS et al., 2001, KIM and GOLNARAGHI, 2004] was
employed for this task.

2. Full pose estimation: When the robot starts to move, both orientation and trans-
lation relative to the world frame are tracked. This is realized by integrating mea-
sured angular velocity once and linear acceleration twice over time after subtract-
ing gravity. The integration causes drift which is however reduced by including
the estimated bias. Sufficient precision is achieved for typical ball flights, please see
Fig. 2.2 for a plot of the typical movement of the head and the corresponding error
in estimation over time.

2.4 Circle Detection

The circle detection scheme will be described concisely for completeness, although it is
not the work of the author. In each of the cameras’ gray scale images balls are detected
by their appearance as circles when projected into the image plane. An enhanced Sobel
gradient filter C, which performs local image variance normalization, allows evaluation
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(a) (b) (c) (d)

Figure 2.3: Different stages of the circle detector’s method of operation: (a) example of evaluating
gradient information at a circle pixel to measure radial contrast, (b) vector image after
applying filter to image, (c) radial response (Eq. 2.4) at pixels along a fixed size circle,
(d) circle response (Eq. 2.5) for a fixed radius (r = 3) but different circle center xc, yc.

of how perturbed a linear gradient is, see Fig. 2.3(a–b), instead of indicating gradient
intensity as achieved by the classical Sobel filter.

How much the linear gradient of a local image contributes to a circle can then be de-
fined as a function of a point (x, y) and radial direction a along the circle, see Fig. 2.3(c).

R(x, y, a) =

✓✓
cos a
sin a

◆
· C(x, y)

◆2
(2.4)

By integration along the circle, the overall response CR for a circle at xc, yc, r is determined
as illustrated in Fig. 2.3(d) for a fixed size circle:

CR(xc, yc, r) =
1

2p

Z 2p

a=0
R(xc + r cos a, yc + r sin a, a)da (2.5)

Exhaustive evaluation of complete images at the circle radii of interest is computation-
ally expensive. To allow real-time operation, two enhancements were made. First, detec-
tion starts not directly at the original scale but at lower scales with hierarchical refinement
up to the original scale. This allows detection of large circles in repeatedly downsampled
images while smaller circles are usually detected at half the original resolution. Second,
all equations above were implemented using SIMD (single instruction, multiple data, i. e.
SSE) instructions and parallelized for multiple cores for efficient computation. Please see
[5] and [8] for detailed information on the circle detection scheme.

2.5 Multiple Hypothesis Tracking

At each time step, the circle detector returns a set of the most circular features of the
camera images as measurements. Unfortunately, this set obviously contains clutter and
does not necessarily include a measurement which originates from the ball. The task is
therefore to associate measurements from ball over time such that a UKF can estimate the
trajectory’s state using the introduced single-target model. The first method applied to
this task is multiple hypothesis tracking (MHT) introduced by Reid [REID, 1979]. This
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algorithm systematically generates as set of hypotheses to account for the different as-
signments of measurements to targets. These assignments are constrained such that a
measurement can only originate from one target and vice versa. The core of the algorithm
is the recursive computation of a probability for each hypothesis, which is the product of
single probabilities explaining the current state of a hypothesis. One way to compute the
probability of each hypothesis is the approach by Cox and Hingorani [COX and HINGO-
RANI, 1996]:
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Normalized by a factor c, the computed probability is an extension of the parent hy-
pothesis P(wk�1

l(m)|Z
k�1) computed in the previous time step. Nti(zi(k))ti represents how

well the measurement zi at time k matches a given target ti which is available from an
integrated Kalman filter. The rest of the parameters constitute the model encoding the
various events involving multiple targets that are expected to happen. The density of the
appearance of new targets lN and the density of false alarm measurements lF are expo-
nentiated by the number of new targets u and the number of false alarms f, respectively.
Pt

D is the probability of detecting a measurement for track t, while Pt
c is the probability

that track t ends. Finally, the three indicator variables tt, dt, ct are 1 if zi(k) is assigned
to an existing track; if track t, known at time k� 1, is also detected at time k; and if track
t known at time k� 1 is terminated at time k. In all other cases, these variables are zero,
switching off the corresponding subterms.

Unfortunately, an optimal MHT is not feasible due to the exponential complexity of
the growing hypotheses tree. The obvious approach is to approximate the entire space
by considering only a subset of hypotheses. This is usually achieved in three ways: (1)
Ratio pruning removes any hypothesis whose ratio to the best hypothesis falls below a
threshold; (2) Generate only the k-best hypotheses right from start which can be real-
ized efficiently by Murty’s algorithm as proposed in [COX and HINGORANI, 1996]; (3)
N-scan-back pruning removes older hypotheses based on the idea that any ambiguities
are resolved after N time steps.

2.5.1 Adaptation to Ball Tracking

For tracking balls the available MHT implementation by Cox and Hingorani [COX and
HINGORANI, 1996] was used. A standard UKF employing the single-target model as pre-
sented in Sec. 2.3 was implemented for the required underlying single-target propagation.

Measurements obtained from each camera were integrated directly in a sequential man-
ner, i. e. measurements of the left camera are integrated first before measurements of the
right camera are considered. This means that MHT is executed twice per time step, but
ensures that correspondences from stereo and over time are faithfully considered from
the measurements. Alternatively, by matching circle detections from image pairs at each
time step, one could simply fed the resulting 3D positions into MHT. While this filter-
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Figure 2.4: Two camera images and corresponding tracking results from an outdoor ball tracking
scene where four persons (one outside the image) threw balls towards each other. De-
tected flying balls are visible by their predicted trajectories, while their recent circle
detection is highlighted and annotated by their track number.

ing at circle level would reduce the actual number of integrated 3D features radically, an
increased number of features might be missed due to detector inadequacy, which might
impair tracking performance.

New tracks are initialized at every frame from every available measurement for which
an appropriate method needed to be devised. Using the inverse of the measurement
function, a position can be recovered from a single measurement through triangulation
along the ball diameter. This is not the case for a ball’s initial velocity as at least two
measurements are required to properly define velocity. Therefore, while initializing, the
ball’s velocity is set to zero along with a large prior covariance to account for typical
velocities of thrown balls. When new measurements are associated with the track in the
next iteration, a reasonable velocity is then implicitly computed through the UKF update.

Such a ball tracking system was initially presented in [5], although for a stereo cam-
era system (1024 ⇥ 768 px @ 30 Hz) without using an IMU and therefore intended for
stationary use only. For proper tracking, the gravity vector relative to the cameras was
integrated as a parameter in the system’s state and estimating by throwing a couple of
balls during setup.

The system was successfully employed in an outdoor scenario, where four people
threw up to three balls simultaneously towards each other. Please see Fig. 2.4 for snap-
shots of this scene including tracking results. Real-time performance was achieved with
an average computation time of 22.5 ms per frame where MHT contributed 10 ms per
frame on a Intel Dual Xeon Quad-Core @ 2.5 GHz.

2.5.2 Adaptation to Robotic Ball Catching

For robotic ball catching the approach was refined in two ways. First, two probabilities
from the multiple target model are adjusted depending on the state of the target: The
probability of detection is set to zero, PD = 0, if the projection of the target’s state is out-
side the image. Additionally, if the target state indicates that the ball has hit the ground,
the track is terminated by setting Pc to 1, while assumed to continue if above ground level
(Pc = 0).
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Figure 2.5: (a) Image sequence recorded during a ball catch. Circle detections are depicted as red
circles while the detected track is highlighted by its predicted trajectory. The IMU-
based head pose estimation is indicated as a colored artificial horizon, where yellow
corresponds to orientation estimation and green depicts combined orientation and
translation estimation. (b) Prediction error with respect to ground truth over time since
track creation. Ground truth has been obtained from an external 3D tracking system.

Second, prior information is leveraged at the track initiation phase to rule out detec-
tions that do not match the start of a typical thrown ball. For this, a 6D Gaussian is fitted
to initial states from trajectories of simulated throws that hit the robot’s work space. This
encodes information from where (position) and where to (velocity) the ball is typically
thrown towards the robot. This is integrated into the track initiation phase where a track
is started from each measurement. An initial state and a likelihood of how well this mea-
surement fits the prior Gaussian are computed based on a Kalman filter update. This
helps to discard false alarm measurements efficiently and rarely produces unwanted tra-
jectories. Please see Sec. 2.6.2 for elaborate treatment as it was introduced in detail with
the GM-PHD filter.

The complete ball tracking approach was first presented in [8] and later included in [2]
as part of the complete ball catching system. As a performance indicator, the catch rate
was about 80%. Catching failure had been attributed to tracking either due to detection
problems or when the ball’s predicted trajectory is tangential to the robot’s workspace.
In the latter, situations arise where the initial imprecise trajectory prediction indicated a
catching position within the work space, while the ball actually flew past. This gave the
impression that the robot missed the catch.

Figure 2.5 presents visual and numerical results on the tracking quality. This single
sample illustrates how the accuracy of predicting the trajectory of the catch point im-
proves as more measurements are integrated. Although the final accuracy is 0.5 cm,
measurements obtained 0.16� 0.2 s before the time of the actual catch have to be con-
sidered due to delays. Therefore, the last available prediction for the planning stage has
an accuracy of about 1.5 cm at the catching position, which is enough for catching a ball.

As mentioned in Sec. 1.4, the vision system runs on the robot on an embedded Intel
Core 2 Quad Q9000 @2.00GHz, where processing of stereo images takes about 25 ms per
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Chapter 2 Multiple Target Tracking

frame while MHT runs between 5 and 10 ms depending on whether the system is idling
or tracking.

2.6 Probability Hypothesis Density Filtering

Besides MHT, a conceptually different approach was implemented, namely probability
hypothesis density (PHD) filtering which was initially proposed by Mahler [MAHLER,
2003, MAHLER, 2007b]. Instead of explicitly constructing associations between measure-
ments and objects through hypotheses as in MHT, this algorithm unifies all available
measurements with all considered targets in a composite-hypothesis manner. This is fa-
vorable for real-time applications, as it allows a lower-level control over computational
cost than in the hypothesis driven MHT approach.

Being an approximation to the multiple target Bayes filter, the filter recursively prop-
agates the first-order moment statistic of the multiple target posterior in state space. In-
stead of representing a probability distribution, the posterior PHD denotes an intensity
with the important property that integration of it over any region in state space indicates
the expected number of targets in the considered region.

The PHD recursion makes use of the well known predicting/updating approach for
propagating the intensity. Based on the representation of the intensity, two types of fil-
ters have emerged. First, the use of particles gave rise to the SMC-PHD filter [MAHLER,
2007b], and second, a mixture of Gaussians resulted in the GM-PHD filter [VO and MA,
2005, VO and MA, 2006]. For the ball catching application the latter was chosen where
the density is constructed from a mixture of weighted Gaussians.

2.6.1 Gaussian Mixture Probability Hypothesis Filter

Similar to MHT, the GM-PHD filter makes use of an underlying Kalman Filter with the
single-target model. In fact, the same unscented Kalman filter that was already used in
MHT including the model from Sec. 2.3 was reused here. Furthermore, both MHT and
GM-PHD share the same multiple-target model parametrization having only differences
in naming. To illustrate the working principle of this approach, its recursion will be in-
troduced concisely.

Prediction. Based on a prior GM-PHD composed of nk|k weighted Gaussian compo-
nents

Dk|k(x|Zk) =
nk|k

Â
i=1

wi
k|k · N (x; xi

k|k, Pi
k|k) (2.7)

the predicted GM-PHD is again a mixture distribution where each Gaussian is predicted
according to the single-target motion model and its corresponding weight is scaled by pS,
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2.6 Probability Hypothesis Density Filtering

the probability of target survival, which is 1� Pc. Additionally, components are added
which correspond to the intensity of target creation. The complete intensity is

Dk+1|k(x) =
ak

Â
i=1

bi
k · N (x; bi

k+1|k, Bi
k+1|k)

+
nk|k

Â
i=1

pS · wi
k|k · N (x; xi

k+1|k, Pi
k+1|k) (2.8)

where bi
k, bi

k+i|k, and Bi
k+1|k define a Gaussian mixture birth intensity with ak components.

This mixture accounts for possible initial target locations in state space. The prediction
of existing targets, N (x; xi

k+1|k, Pi
k+1|k), is computed using the unscented Kalman filter’s

prediction step.
Update. When writing the predicted intensity as a single sum of Gaussians

Dk+1|k(x) =
nk+1|k

Â
i=1

wi
k+1|k · N (x; xi

k+1|k, Pi
k+1|k). (2.9)

the update intensity is

Dk+1|k+1(x) =
nk+1|k

Â
i=1

(1� PD)wi
k+1|kN (x; xi

k+1|k, Pi
k+1|k) (2.10)

+
mk+1

Â
j=1

nk+1|k

Â
i=1

si,j

s⇤,j + Â
nk+1|k
k=i sk,j

N (x; xi,j
k+1|k+1, Pi,j

k+1|k+1).

The sum is separated into two parts. The first one contains only components not up-
dated at all and simply scales their weight by (1� PD). The second one is a double sum
and is the result of fusing the nk+1|k Gaussians from the predicted intensity with mk+1
detections. For this, a regular Kalman filter update is performed resulting in a Gaussian
and a factor qi,j which reflects how well the detection matched the prediction based on the
Mahalanobis distance. The first defines the updated component N (x; xi,j

k+1|k+1, Pi,j
k+1|k+1).

The latter is used to compute the support si,j of a detection with respect to a component.
This is then normalized by dividing by the overall support of this measurement towards
other Gaussian mixture components plus clutter. The two types of support are

si,j = wk+1|k PD(xi
k+1|k) qi,j, s⇤,j = lc(zj), (2.11)

where l is the false alarm density (known as lF in the MHT model), eventually spatially
distributed according to c(z).

In practice, two distinctive cases can be distinguished. If a detection matches a mixture
component, the support of the component in the nominator dominates normalization
such that the weight is approximately 1. On the other side, if a component matches no
detection significantly, the normalization is dominated by the support s⇤z for clutter in the
denominator reducing the component’s importance in the intensity considerably.
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(a) (b)

(c) (d)

Figure 2.6: PHD as a mixture of Gaussians projected (only position) into image space (left) and its
projection onto the floor (right) for a ball throwing sequence. The projected space on
the floor is 4 m in width and 6 m depth direction. Four stages can be distinguished
during such a sequence. (a) When no ball is pitched, only low weighted components
recently initialized from false-alarm measurements emerge. (b) Detections from ac-
tual balls generate components which become peaked as these are supported by mea-
surements in the following images (c). After the integration of several detections, two
strong weighted and highly peaked Gaussians denoting the two thrown balls dominate
the mixture (d).

Similar to the hypotheses pruning in MHT, a procedure for managing the growing
number of fused mixture components must be established. This was done either by gating
where the fused Gaussian i, j isn’t created due to the Mahalanobis distance exceeding a
fixed threshold. Furthermore, Gaussians were merged until the number falls under a
certain level [VO and MA, 2006]. This was done by merging pairs with similar states first,
i. e. that they have a low mutual Mahalanobis distance, in a way which preserves mean
and covariance of the mixture.

2.6.2 Prior-Based Track Initialization

Due to the use of a non-linear model, initializing a track through a rough prior such as
suggested in Sec. 2.5.1 or by injecting this rough prior in the GM-PHD’s prediction step
(Eq. 2.8) leads to linearization problems when integrating a measurement. Performing a
UKF update linearizes the measurement model at the 1s-range of the vague Gaussian. As
this usually has a high covariance to cover the variety of throws, the mapping of a ball to
a circle radius is poorly approximated. This is especially true for the depth mapping and
leads to erroneous initial state estimates impairing initial trajectory estimation severely.
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Figure 2.7: Comparison of the GM-PHD filter and MHT for a sequence of thrown balls (four
throws, two balls per throw). (a) Cardinality statistics, i. e. estimated number of tar-
gets, compared to ground truth (GT) over time. (b) Measured computation time on an
Intel CoreTM2 Quad Q9000 embedded system on the robot.

To alleviate this issue a special update routine that integrates nicely into the GM-PHD
framework was developed. Instead of performing linearization on the vague prior in state
space, it is performed on the much more precise 1s-range of the detection. The procedure
consists of two steps: First, the ball’s 3D position and its covariance are determined by
propagating the noisy detection through the inverse measurement function h�1. In the
second step, the resulting 3D Gaussian (position only) is now fused with the initial prior
6D Gaussian (position and velocity) by a linear Kalman filter update. The obtained 6D
Gaussian and the factor qi,j are used as the initial state and as a measure of how well
the detection matched the prior based on the Mahalanobis distance for proper inclusion
in Eq. 2.10. The latter is further used for gating, i. e. rejecting measurements to be fused
when they do not match the prior.

Integration into the GM-PHD filter was done by exclusively fusing the birth Gaussian
with measurements using the just mentioned method. This functionality was also inte-
grated into MHT to initialize targets from measurements as mentioned in Sec. 2.5.2.

Figure 2.6 depicts the mixture intensity during tracking of a pair of thrown balls. It
can be seen how two highly peaked components representing the two detected targets
emerge from initially low weighted components created from the special update using
the prior.

One drawback of the PHD filter is its unfavorable behavior when confronted with miss-
ing detections. When a target has no corresponding measurement, the corresponding
Gaussian is only propagated by the first term in Eq. 2.10, effectively scaling its weight
by 1� PD. As PD is usually quite high, this component is not lost but it has a negative
impact on the intensity and the cardinality of detected targets. Although the cardinalized
PHD filter [MAHLER, 2007a] and its Gaussian mixture instance [VO et al., 2006, VO et al.,
2007] were proposed to resolve this problem, these solutions come at the cost of increased
complexity as the entire probability distribution of the number of targets is propagated
in addition to the intensity. For the application here missing detections do not pose a
problem, as a missed target is usually picked up in the next time step and all available
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Chapter 2 Multiple Target Tracking

data is retained for proper tracking. Nonetheless, it is clearly an undesirable behavior for
a tracking algorithm.

This effect is visible when comparing tracking performance of MHT and GM-PHD in
terms of number of detected targets as shown in Fig. 2.7(a). For both approaches, the
same UKF and multiple target parametrization has been used. Further, both methods
employ the same track initialization scheme using a Gaussian prior as introduced above.
While MHT robustly detects any track start after a few measurements and determines the
ending of a track accurately, the latter cannot be observed for the GM-PHD filter. This is
due to the aforementioned problem of the filter when confronted with missing detections
which are common at the image border. This terminates tracks prematurely long before
they actually reach the ground, which is no problem in practice as it happens beyond the
catch point.

On the other hand, the desired deterministic tracking run time is achieved as can be
seen in Fig. 2.7(b). Due to a limitation of the involved components in GM-PHD instead
of limiting the number of hypothesis as in MHT, a more fine grained control is achieved.
To be precise, GM-PHD only needed 4.3 ms while MHT needed 8.2 ms in the worst case,
including Kalman filter evaluation within both trackers. Although no explicit compari-
son of prediction accuracy between GM-PHD and MHT was performed, comparison of
trajectory predictions from GM-PHD to ground truth revealed roughly the same quality
in prediction accuracy as with MHT. This is due to the use of the same underlying single-
target tracking model. In fact, both filters would estimate the exact same state over time
if the number of Gaussians in the GM-PHD filter and the number of hypotheses in MHT
were not limited.

2.7 Fully Probabilistic Tracking

Both approaches discussed so far as well as all of the related work in Sec. 2.2 are based on
a dedicated detection phase preceding the actual tracking stage. Please refer to Fig. 2.1
for an illustrative explanation. Because of this bottom-up approach, the accuracy of the
resulting trajectory depends on the object detector’s performance regarding missed, inac-
curate and false-alarm detections. In fact, most of recent work focused on these artifacts
and elaborate tracking algorithm were developed that try to deal with the errors propa-
gated from the detection phase.

When interested in determining an object’s trajectory accurately over time, the afore-
mentioned approaches reveal weaknesses. Figure 2.8 illustrates this for vision-based ap-
proaches which focus on appearance cues neglecting motion characteristics on the left,
and for classical tracking approaches which estimate the parameters based on a motion
model in the middle. Relying solely on the position of detector peaks leads to a trajectory
with either poor local accuracy or poor global accuracy, respectively. To alleviate these
issues, a tracking algorithm was suggested [1] that integrates single-target tracking using
a physical motion model with response-based detection allowing continuous trajectory
estimation. This was implemented in [7] and extended by probabilistically modeled tra-
jectory boundaries and trajectory compatibility for handling multiple targets.

Much in the like of the batch Bayesian approaches listed in Sec. 2.2.2, the developed
approach searches for the maximum likelihood solution, i. e. arg maxx p(X = x|Z = z),
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2.7 Fully Probabilistic Tracking

Figure 2.8: Illustration of three different trajectory estimation results when applied on the same
raw detector responses over time. Higher detector responses are indicated as darker
gray levels and the peak does not necessarily lie on the actual trajectory (gray line) due
to detector failure. The three trajectories result from appearance focused tracking (left),
classical single target tracking (middle) and the developed fully probabilistic tracking
approach which integrates the tasks of detection and tracking using a physical motion
model (right).

with one major difference: Z is now a sequence of images instead of sets of measure-
ments extracted from images. This allows the task of detection to be integrated directly in
the probabilistic optimization process. By keeping images in memory and reevaluating
them at the corresponding image portions as suggested by the states along the trajectory
defined by a physical motion model, all available evidence from the images is used for
tracking, not only the detector peaks. See Fig. 2.8 on the right for an illustration of the
expected behavior and Fig. 2.9 for an outline of the components and the flow of data.

In detail, given these images, the goal is to recover the unknown number of tracks na

and each track’s states x(a)
t(a)
start

. . . x(a)
t(a)
term

between the time of track starting t(a)
start and track

ending t(a)
term, all this together being called x = {(tstart, tterm, xtstart . . . xtterm)}.
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Figure 2.9: Components of the proposed tracker and flow of data between components. The in-
tegration of detection into the optimization process (enclosed by a gray box) is central
to this approach, as opposed to the bottom-up approach depicted in Fig. 2.1 where de-
tection is performed once and the result is held fixed. Tracking is again peformed by
maximization of the likelihood, which is the negative sum of squared errors due to the
dynamic model and the detector response at the states along the trajectory.

Here, p(X = x|Z = z) is modeled as the product of likelihoods, i. e. sum of log-
likelihoods

p(X = x|Z = z) µ exp L(x), where

L(x) =
a=na,t=t(a)

term

Â
a=1,t=t(a)

start

Ldet
�
zt, x(a)

t
�
+

a=na,t=t(a)
term�dt

Â
a=1,t=t(a)

start

Ldyn
�
x(a)

t+dt, x(a)
t

�
+

a=na

Â
a=1

Ls&t
�
t(a)
start, t(a)

term
�
+

a,a0=na,
t=min(t(a)

term,t(a0)
term)

Â
a,a0=1,a>a0

t=max(t(a)
start,t

(a0)
start)

Lexc
�
x(a)

t , x(a0)
t

�

(2.12)

where

• Ldet
�
zt, x(a)

t
�

indicates support of object x(a)
t in image zt,

• Ldyn
�
x(a)

t+dt, x(a)
t

�
indicates the likelihood that an object transitions from x(a)

t to x(a)
t+dt,

• Ls&t
�
t(a)
start, t(a)

term
�

is a prior indicating how likely an object emerges at t(a)
start and dis-

appears at t(a)
term and

• Lexc
�

x(a)
t , x(a0)

t
�

indicates how likely objects are subject to occlusion.
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2.7 Fully Probabilistic Tracking

Due to this thorough probabilistic formulation, the approach was given the name fully
probabilistic multiple target tracker (FPMTT).

2.7.1 Algorithm

Algorithm 1 was developed to optimize Eq. 2.12 with respect to all the variables and is
constructed around three subproblems, namely trajectory estimation, track limit determi-
nation, and assurance of mutual exclusion.

Trajectory Estimation: All states along a trajectory from tstart to tterm are estimated
simultaneously using both raw detector responses and a motion model:

arg max
xtstart ...xtterm

t=t(a)
term

Â
t=t(a)

start

Ldet
�
zt, xt

�
+

t=t(a)
term�dt

Â
t=t(a)

start

Ldyn
�
xt+dt, xt

�
(2.13)

The first part is the likelihood Ldet of observing an object in image zt at xt and is provided
by the circle detector introduced in Sec. 2.4. Given a state xt, the corresponding image
position is computed using the measurement model and evaluated with Eq. 2.5. Actual
modeling of this likelihood is done by considering the ratio between the probability that
the obtained response and radius combination is generated by an actual ball Pball and
the probability that it is generated by the background Pbg inspired by Sidenbladh and
Black [SIDENBLADH and BLACK, 2001]:

LR(xc, yc, r) =
Pball(CR(xc, yc, r))
Pbg(CR(xc, yc, r), r)

(2.14)

Ldyn is the quadratic error between propagating the state xt to time t + dt using the
dynamic function and state xt+dt and considers Gaussian noise as defined in the dynamic
model.

Ldyn
�
xt+dt, xt

�
= �kxt+dt � g(xt)k2

sQ
(2.15)

For optimization of this combined objective function, the preconditioned nonlinear con-
jugate gradient (PNCG) method [SHEWCHUK, 1994] is used.

Track Limits: Determining the limits of trajectories is also done individually. Based
on the trajectory’s sequence of states, the goal is to obtain arg maxtstart,tterm of

L
�
{(tstart, tterm, xtstart . . . xtterm)}

�
=

t=t(a)
term

Â
t=t(a)

start

Ldet
�
zt, xt

�
+

t=t(a)
term�dt

Â
t=t(a)

start

Ldyn
�
xt+dt, xt

�
+ Ls&t

�
tstart, tterm

�
.

(2.16)
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Algorithm 1 Fully Probabilistic Multiple Target Tracker

Input: Set of prior tracks A
Output: Most likely set of posterior tracks A0

Set of all posterior tracks A

• Insert initial trajectories as new tracks into A,
mark them to do only trajectory estimation

for x(a) 2 A do

• Extend tracks according to dynamic model g

• Determine track boundaries
Solve arg max

t(a)
start,t

(a)
term

of Eq. 2.16

• Estimate trajectory between boundaries
Solve arg maxx

t(a)
start

...x
t(a)
term

in Eq. 2.13

end

• Ensure mutual exclusivity by stating GIS problem
Solve A0  arg maxA⇢{1..n} in Eq. 2.19

• Prune tracks in A with low likelihood

The likelihood of track appearance and termination is modeled as

Ls&t
�
tstart, tterm

�
= log pstart +

(
log pterm tterm < tnow

0 tterm = tnow
(2.17)

where pstart and pend denote the prior probability of target appearance and termination,
respectively. The problem can be solved using Kadane’s algorithm [BENTLEY, 1984] in
linear time.

At each time step, already existing tracks are extended at most one step into the past
and two steps into the future. The first helps including image information which might
be missed by the initialization mechanism. The latter is not only required to keep up with
incoming images but also allows revision of tracking decisions in the light of new image
evidence.

Mutual Exclusion: Further, an exclusion mechanism has to be established that pre-
vents existence of similar trajectories originating from the same object but allows occa-
sional occlusion of different objects.

For this, a prior probability PO is employed and is assigned to any two states as a
penalty when their projections into the image overlap.

Lexc
�

x(a)
t , x(a0)

t
�
=

(
log pO if x(a)

t and x(a0)
t overlap

0 otherwise
(2.18)
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Figure 2.10: Image sequence showing a ball thrown towards the robot augmented by the predicted
trajectory over time as computed by MHT/UKF (red) and FPMTT (green). It can be
seen that the green trajectory is already quite accurate at the beginning while the red
trajectory suffers from early detection inaccuracies and recovers over time to reach
the same final accuracy. This impressively illustrates the increased performance at
the early tracking stage.

When extended to all states this interaction is the basis for modeling a Generalized Inde-
pendent Set (GIS) problem [HOCHBAUM, 2000] where each track’s likelihood from image
evidence as defined in Eq. 2.16 contributes to its existence while an overlap between two
tracks penalizes both. The goal of GIS is then to extract the optimal subset of tracks:

x̂ = arg max
A⇢{1..n}

L({x(a)|a 2 A})

= arg max
A⇢{1..n}

⇣
Â

a2A
L({x(a)})

+ Â
a,a02A,a<a0

t=min(t(a)
term,t(a0)

term)

Â
t=max(t(a)

start,t
(a0)
start)

Lexc
�
x(a)

t , x(a0)
t

�⌘
(2.19)

Unfortunately, GIS is an NP-complete problem. As the number of tracks to consider while
tracking is generally low an exhaustive solution is employed. The resulting subset is the
most likely hypothesis of tracks given the evidence in the images and can then be passed
to the next stage.

Instead of employing an ad-hoc solution for track starting, a MHT/UKF tracker was
running in the background and whenever it detected a starting track, a new track was
created in the FPMTT. Limiting the number of trajectories to consider is done while solv-
ing GIS. A list of the k-best subsets of tracks is maintained and only the tracks from likely
subsets are kept up to a fixed threshold. Instead of keeping each response image in mem-
ory, only 32 ⇥ 32 ⇥ 32 px buffer of the circle response was stored in memory and the
tricubic approach by Lekien and Marsden [LEKIEN and MARSDEN, 2005] was used for
subpixel evaluation through interpolation.

Due to the properties of the tracking problem multiple-target evaluation is non-trivial.
As the joint detection and tracking optimization for trajectory estimation is central to the
developed approach, single target tracking with respect to tracking accuracy was only
evaluated. A proper validation of the multiple-target features is deferred for future in-
vestigation.
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Figure 2.11: (a) Geometric mean of the error ratio between FPMTT and MHT/UKF since track start
(top). The error is reduced to almost 50 % at the beginning of the trajectory until both
methods perform almost the same after seven frames. Average absolute prediction
improvement and standard deviation since track start shown as solid and dashed line,
respectively (bottom). (b) Four examples of erroneous detections and their handling
in the developed approach. (1st row) Region of image containing the ball where a
red circle denotes the detector maxima and a green one shows the circle determined
after FPMTT convergence. (2nd row) Corresponding LR volume at detected radius
from detector maxima and (3rd row) volume of found circle radius after trajectory
estimation. (4th row) LR as a function of ball radius over the complete volume for
both circles.

Figure 2.10 shows an image sequence comparing the predicted trajectory of FPMTT
with MHT/UKF from Sec. 2.5. At the beginning of flight, the trajectory of MHT/UKF
is varying due to erroneous circle detections. The global approach of FPMTT allows ac-
counting for that and achieves a more consistent trajectory prediction over the course of
the ball’s flight. Furthermore, the ability to look back at past frames facilitates refinement
as previously unnoticed or discarded detections are considered accordingly.

From a set of 48 recorded trajectories from different throwing sessions Fig. 2.11(a)
shows the average error ratio between both approaches since track start on the top. FPMTT
halves the important error at track start by roughly 50 % and outperforms MHT/UKF on
average by 16.5 %. Absolute error reduction is given in the plot below to give an indica-
tion for the performance gain for ball catching. Please see Fig. 2.11(b) for four examples
where the detector maxima used as input to MHT are compared to image evidence used
by FPMTT. The first have the problem that the found maxima shares only some part of
radial contrast of the actual ball resulting in a erroneous circle detection. In contrast,
because of the integration of tracking and detection into a joint optimization, detector
inaccuracies are resolved using the ball’s flight dynamics as context in FPMTT.
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Figure 2.12: Sequence of a ball tracked indoors using the entertainment robot depicted in Fig. 1.4.
The prediction (green circles) was computed from the results of MHT/UKF intro-
duced in Sec. 2.5, which was fed by circle detections (red circles).

Real time performance has yet to be achieved as focus was on proper convergence. Us-
ing only a single core and exploiting no high level optimizations the average computation
time was around 400 ms per frame.

2.8 Summary and Transferability

This chapter presented techniques for tracking multiple balls thrown towards a humanoid
robot using head mounted visual cameras for the purpose of catching. Although the diffi-
culty of this tracking problem lies more in accurate tracking and prediction, fully-fledged
multiple target solutions were implemented such that every aspect of tracking is consid-
ered in a faithful and methodically sound solution.

Based on a UKF single target tracking model, classical MHT was successfully employed
for resolving the association between states and measurements for the task of tracking [5]
and catching [8, 2] thrown balls. Although the initial accuracy is impaired by the inaccu-
racy of the circle detection scheme, overall tracking accuracy proved to be sufficient for
robotic ball catching including real-time operation through careful tracker parametriza-
tion.

Further effort in real-time operability was spent by implementing a GM-PHD filter [6].
As this filter does not enumerate the different combinations of associating measurements
to states, more deterministic computational behavior is achieved due to control over the
number of tracks (i. e. single target states instead of hypotheses as in MHT) to retain.
Although being affected by the missed detection problem, roughly identical tracking ac-
curacy is achieved which is due to the same underlying UKF single target tracking model.

It was further analyzed that the accuracy of these approaches is mainly governed by
the accuracy of the used circle detection scheme. To alleviate this issue, the core idea
of a fully probabilistic tracking algorithm (FPMTT) was specified in [1] and actually in-
troduced in [7]. It integrates both tracking and response based detection for continuous
trajectory estimation. With the use of a physical motion model, this global approach al-
lows reevaluation of the whole past trajectory within the stored images in the light of
new information. Results on recorded datasets reveal a roughly 50 % reduced error for
the important first estimate when compared to MHT.

The realized ball catching system gained respectable attention resulting in an award
nominated video contribution [3], which has more than 350000 views on an internet video
website.
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Chapter 2 Multiple Target Tracking

Besides porting the tracking methods from the ball catching system to the ball return-
ing entertainment robot (see also Fig. 2.12), the extension of these approaches to further
applications is subject to future research. Precise tracking of balls using FPMTT benefits
greatly from the rigid motion model paired with the availability of raw detector responses
at pixel level. While other objects, e. g. available through CAD models, could be located
using response based detection, it has yet to be investigated how much this motion model
can be relaxed while the benefits of this approach remain valid. It is especially not well
suited for the important class of pedestrian tracking, as pedestrians are not reliably pre-
dictable and currently available detectors are concentrating on versatility not accuracy.
Nonetheless, one could try to determine the skeletal state of an articulated person from
its contour visible in camera images.
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Chapter 3

Robot Calibration

When robots are required to perform complex manipulation tasks, possibly in dynamic
environments, an accurate interplay of actuation and perception is desired. This is usu-
ally accomplished by calibration with the goal of determining geometric and temporal
relationships between the perception and actuation components, as well as determining
the intrinsic parameters of the components themselves. This chapter focuses on the cali-
bration of a humanoid’s head-mounted sensors and their relationship to the robot’s com-
plex kinematic chain. Although developed for it, the obtained calibration is not limited
to ball catching but is applicable to vision-based manipulation in general. To accomplish
the calibration, a textbook style approach is first presented, which combines a series of
established practices in sensor calibration. After that, a new approach is introduced that
calibrates all relevant parameters in an automated and integrated manner. Finally, addi-
tional calibration procedures, which have been developed apart from ball catching, are
presented at the end of this chapter.

3.1 Motivation

The goal of this calibration is to resolve the transformation between inertial and visual
frames, which allows tracking of balls while moving, and, for actual catching, the deter-
mination of the relationship between the frames of the sensing setup and the kinematic
chain. Please see Fig. 3.1 for an illustration of the sensor frames involved and parameters
to be calibrated.

In robotic systems intended for research both the software and the hardware change
over time, requiring frequent (re-)calibration. Furthermore, due to regular maintenance,
an invalid state after a collision or worn out components, a previously obtained set of
calibration parameters may become invalid and the robotic system has to undergo recal-
ibration.

Such a recalibration is often considered a necessary evil, as it is viewed as the precon-
dition to the actual task the robot was designed for. Therefore, calibration routines often
lack the necessary carefulness. For mastering the task of ball catching, a calibration has to
be devised that complies with the challenges two (high precision in space and time) and
three (moving camera system) from Sec. 1.3. To further motivate the necessity of a precise
calibration, major failure modes caused by inaccuracies in the (individual or combination
of) calibration parameters of the robot introduced in Sec. 1.4 have been identified:
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Chapter 3 Robot Calibration

Figure 3.1: View of DLR’s Rollin’ Justin from behind, including frames of the cameras L & R, the
IMU I and the last link of the head H as involved in the calibration process. The goal of
the calibration is to resolve the cameras’ spatial relationship TL

R and their intrinsic pa-
rameters (focal length fL/R, principal point CL/R, radial distortion kL/R, not illustrated)
as well as the transformations with respect to the IMU TL

I and to the last link of the
head TL

H.

• Stereo TL
R, including intrinsic parameters (focal length fL/R, principal point CL/R

and radial distortion kL/R): While a random rotational deviation between both cam-
eras leads obviously to a failure in tracking right from the start, a change in the cam-
eras’ baseline or a divergence in the cameras’ vertical axes leads to subtle estimation
errors regarding the ball’s depth and velocity. When passed to the motion planner,
the robot is likely to move to the wrong position in space and grasp at the wrong
point in time.

• Camera (Stereo) – IMU TL
I : When using a rigidly attached IMU to estimate a cam-

era’s motion, inaccuracies in their geometric relationship influence the performance
considerably. As the estimated motion does not match the actual motion, measure-
ments appear at implausible image locations, impairing tracking accuracy and de-
cline even more with increased rotational speed (e. g., due to rapid head movement).
Additionally, the gravity acting on the ball as defined in the ball’s dynamic model
is derived from the result of the IMU’s orientation estimation. Therefore, any ro-
tational deviation affects trajectory estimation making the predicted trajectory drift
away from the actual one.

• Camera (Stereo) – Kinematic TL
H: Being the interface between perception and ac-

tuation, any calibration error between the cameras and the kinematic chain of the
robot directly maps to an error in the catching position. This is especially true for
catching positions which are not close to the robot (e. g. stretched out arm), as the
distance from the robot acts as a lever worsening the error of rotational inaccuracies
between the cameras and the kinematic chain.

In robotics, calibration is usually performed by comparing actual sensor measurements
with predicted sensor measurements generated from a model given the to be identified
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parameters and reference data (e. g. a checkerboard for camera calibration). Thus, the
quality of the calibration result is governed by two things. First, the overall structure
of the calibration procedure (e. g., static or dynamic) and, second, the ability to generate
measurements defining a well-conditioned estimation problem within the procedure.

3.2 Related Work

Camera calibration, introduced to computer vision in Tsai’s seminal article [TSAI, 1987]
and robustly solved by Zhang [ZHANG, 2000], has become a well understood problem.
See [HARTLEY and ZISSERMAN, 2004, SZELISKI, 2010] for a summary of the state of the
art techniques. Although it is possible to retrieve the changing pose from a single moving
camera (up to a scale factor) and achieve impressive results, adding an IMU is beneficial
for two reasons. Either, estimation of the pose using the camera is not the focus and it
will be estimated by the IMU solely, or both camera and IMU measurements are used to
complement each other for pose estimation. In both cases, geometric calibration between
the two sensors is mandatory.

Early work on determining the transformation between a camera and an IMU frame
includes the decoupled approach of Lobo and Dias [LOBO and DIAS, 2005, LOBO and
DIAS, 2007]. By observing a vertically aligned checkerboard (camera) and gravity (IMU’s
accelerometer), Horn’s method [HORN, 1987] was used to determine the rotational differ-
ence between these vertical features and thus the rotational difference between both types
of sensors. Translation was then obtained by rotating the IMU’s center on a turntable,
recording static images of a checkerboard pattern and applying hand-eye calibration tech-
niques. In a dynamic approach [LANG and PINZ, 2005], the rotation was determined
using measured visual and inertial rotational differences (assuming no translation) and
nonlinear optimization.

In a more elaborated approach [MIRZAEI and ROUMELIOTIS, 2007, MIRZAEI and ROUME-
LIOTIS, 2008] the full six degree of freedom (DOF) transformation was calibrated simul-
taneously using an extended Kalman filter. By including time-varying sensor parameters
influencing measurements (e. g. gyro bias) and obtaining sensor readings from a setup
observing a checkerboard (arbitrarily aligned) in motion, a calibration with a high de-
gree of quality was achieved. On top of that, an observability analysis of the nonlinear
camera-IMU calibration system was carried out, revealing that only two of the rotational
degrees of freedom need to be excited for successful calibration. Going one step further,
Kelly and Sukhatme [KELLY and SUKHATME, 2011] used an Unscented Kalman filter to
estimate camera-IMU transformation, metric scene structure and sensor motion without
relying on a special calibration object. Further, recent approaches include employment of
a passive complimentary filter for rotation estimation under motion [SCANDAROLI et al.,
2011] and the determination of the full six DOF calibration by explicit modeling of the
trajectory using B-splines and batch optimization [FLEPS et al., 2011].

While classical robotic calibration has the goal of improving the robot’s accuracy by
identifying deviations in the robot’s mechanical structure and using appropriate mod-
els in software (please see [ROTH et al., 1987] for a compilation of early approaches
and [KLODMANN et al., 2011] for a recent approach), the integration of sensors into
robotic systems requires calibration methods to accurately determine the geometric re-
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lationship between the actuating and sensing components. In particular, the use of com-
puter vision in robotics raised demand for hand-eye calibration where a visual sensor
(usually a camera) is rigidly mounted on a robot’s end effector with the goal of cali-
bration being to recover the transformation between these. In general, solutions to this
problem are obtained by observing a fixed object from different views in the actuator’s
workspace. This can be done in many ways, such as sequentially solving the rotational
and translational component in a linear least squares manner [SHIU and AHMAD, 1989]
or by nonlinear maximum likelihood estimation [STROBL and HIRZINGER, 2006], just to
name two.

For the specific case of cameras mounted on moderately actuated platforms (e. g. a pan-
tilt unit like it is on the robot’s head) the active vision community named this type of cali-
bration head-eye or neck-eye calibration. Obtaining the geometric relationship by observ-
ing a reference object was studied by Li and Betsis [LI and BETSIS, 1995, LI, 1998], which
is very similar to classic hand-eye calibration. Recovering only the intrinsic parameters
was performed through controlled motion [YANG and HU, 1998]. Similarly, the relation-
ship between both geometric and intrinsic camera parameters was recovered in an auto-
calibration approach [MA, 1996]. In a more analytical study, Knight and Reid [KNIGHT
and REID, 2006] determined the alignment of a camera mounted on a pan-tilt unit by con-
trolled rotation about the actuation axes. In [UDE and OZTOP, 2009] a calibration routine
for such an active vision system integrated into the head of the humanoid robot CB-i was
provided. The routine consisted of two steps. First, the intrinsic and stereo camera cali-
bration was determined using a checkerboard. Second, the camera-eye relationship was
obtained by observing a static checkerboard pattern from different views using the active
vision platform.

Besides these head-centric approaches, calibration of more complex robotic systems,
such as humanoids, became an active field of research. Garcia [GARCIA, 1999] presented
a calibration procedure for the JANUS robot prototype to manipulate objects which are
perceived by cameras. The calibration routine consisted of three consecutive steps: (1)
Calibration of the cameras’ intrinsic parameters (but without considering lens distortion)
from line and point correspondences and nonlinear optimization; (2) neck-eye calibration
by solving the corresponding hand-eye problem (similar as above); and (3), an arm-eye
calibration for recovering the relationship between the arms and the camera frame. By
placing a visual calibration target at the end effector of each arm the relationship between
the arms and the cameras was recovered by applying hand-eye calibration techniques.

For the robot Robonaut Nickels [NICKELS, 2003] provided a closed-loop kinematic-
visual calibration procedure. Based on predetermined stereo (and intrinsic camera) cal-
ibration, a spherical visual feature mounted on a stick was grasped by the robot and
observed in a variety of different arm positions. Calibration data was obtained in an
automated way and from the resulting joint angle data, visual measurements and the
kinematic model the transformation between the chest and the eye coordinate systems
was estimated by nonlinear optimization. On top of that, Denavit-Hartenberg (DH) pa-
rameters for non-zero components were included to account for kinematic deviations.

Recently, Pradeep et al. [PRADEEP et al., 2010] presented an extensive calibration of
Willow Garage’s PR2 robot. Based on a priori calibrated cameras, the robot’s joint angle
offsets and poses of cameras and laser rangefinders were determined. Again, a visual fea-
ture, namely a small checkerboard, was gripped by the robot to close the kinematic-visual
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3.3 Calibration of a Humanoid Robot’s Upper Body

(a) (b)

Figure 3.2: The two stages of the static calibration approach. (a) In the first stage, the robot ob-
serves vertical features (light blue), i. e. accelerometer readings from the IMU I and a
leveled checkerboard C, which is also used for intrinsic camera calibration, through the
cameras L & R at different body poses (only one shown here). (b) In the second stage,
the robot observes a point-feature pasted on its wrist W with its two cameras L & R for
both arms at different positions enabling hand-eye calibration. Again, only one arm
position is shown.

loop. The required data was collected automatically in different arm configurations. Op-
timization was then done in multiple steps, where in each step the number of parameters
was increased to avoid local minima.

3.3 Calibration of a Humanoid Robot’s Upper Body

3.3.1 Static Textbook-Style Approach

For the initial operation of the ball catching setup, a simple calibration routine had to
be devised. Based on the methods of pair-wise calibration of sensors from literature,
an approach consisting of two steps for calibrating relevant parameters of a humanoid’s
upper body was chosen, as introduced in [8, 12].

The first stage combines classical checkerboard calibration with Lobo and Dias’ static
approach [LOBO and DIAS, 2005, LOBO and DIAS, 2007] using vertical features, i. e. ac-
celerometer (IMU) readings and a vertical aligned checkerboard (cameras), see Fig. 3.2 (a).
This allows calibration of the cameras’ intrinsic parameters, stereo offset TL

R and rotational
difference with respect to the IMU RL

I . The missing translational difference is measured
by hand.

The second stage establishes the relationship between the sensor setup and the actua-
tion components. This is done similar to hand-eye calibration approaches. As in [GAR-
CIA, 1999, NICKELS, 2003] a visual feature is placed immediately after the last link along
the kinematic chain of each arm, see Fig. 3.2 (b). By locating the feature in the cameras’
images, the unknown transformation between the cameras and the last head-link TL

H is
recovered. See Fig. 3.3 (b) for samples of this data (camera images highlighting the visual
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Figure 3.3: (a) Illustration of first stage’s calibration result showing the checkerboard and the
computed extrinsic camera parameters (in m). The cluster on the right corresponds
to views of the horizontally aligned checkerboard, while the others belong to freely
placed views. (b) Example of two arm configurations (as performed in the second
stage) observing the visual marker on the robot’s hands (left). Corresponding calibra-
tion result (in m) including all relevant sensor frames (both cameras, IMU above the
cameras) and actuator links as computed by forward kinematics are depicted (right).

feature are depicted on the left). The other of the two unknown transformations (as in tra-
ditional hand-eye calibration), is the one from the last arm link to the feature itself. Since a
point feature is used, the problem reduces to determine the 3D translation between these.

On top of that, the built-up approach was refined in three ways:

1. Instead of using a vertically aligned checkerboard as originally proposed, a horizon-
tally aligned one is employed. This increases robustness in the estimation of vertical
direction: Both DOF available are now employed when observing verticality using
a horizontally aligned checkerboard instead of only one DOF through a vertically
aligned checkerboard.

2. By using the checkerboard pattern not only for camera-IMU rotation RL
I estimation

but also for stereo calibration TL
R, both initially separate procedures can now also

be combined during estimation. Here, Lobo and Dias’ approach [LOBO and DIAS,
2007, LOBO and DIAS, 2005] together with Zhang’s method [ZHANG, 2000] is used
to obtain the initial guess for an iterative nonlinear optimization.

3. Contrary to previous work [PRADEEP et al., 2010, GARCIA, 1999, NICKELS, 2003],
where calibration is performed as a sequence of estimations, the calibration here is
performed by joint estimation of all parameters. This avoids propagation of errors
from one stage to the other. Furthermore, any parameters that are influenced by
two or more classes of measurements (e. g. the camera’s intrinsic parameters are
determined by the checkerboard and by the hand-eye calibration) make use of all
data at once for estimation.
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3.3 Calibration of a Humanoid Robot’s Upper Body

Table 3.1: Calibration Results of the Static Textbook-Style Approach

Intrinsic left Intrinsic right
fL (px) CL (px) kL fR (px) CR (px) kR

µ 1872.6 857.6,618.5 0.09 1862.6 813.3,615.6 0.10
s 0.57 0.67, 0.75 6.7·10�4 0.56 0.37, 0.73 7.0·10�4

Transformation TL
H

Translation (m) Rotation (axis angle)
x y z x y z

µ 0.062 0.104 0.129 -1.328 1.315 -1.142
s 0.0005 0.0007 0.0006 0.0007 0.0007 0.0009

Transformation TL
R

Translation (m) Rotation (axis angle)
x y z x y z

µ -0.200 0.002 -0.005 0.012 -0.002 -0.009
s 0.0001 0.0001 0.0004 0.0004 0.0004 <0.0001

Transformation TL
I

Translation (m) Rotation (axis angle)
x y z x y z

µ 0.0 0.0 0.0 -1.342 1.332 -1.159
s n/a n/a n/a 0.0037 0.0010 0.0102

Estimation of parameters is usually done using (nonlinear) least squares optimization.
When confronted with such a kind of calibration problem, nontrivial difficulties may
arise. First, depending on the structure and scale it might become complicated to encode
the problem by hand. This is especially true when parameters have impact on different
kinds of measurements (as mentioned in the third refinement) or when the sparse struc-
ture of the Jacobians, which are required for nonlinear least squares, should be exploited
(e. g. for computational efficiency). Second, when non-vectors, such as singularity free
parametrization of 3D rotations (e. g. rotation matrices in SO(3)), become part of the pa-
rameters, special care must be taken while optimizing them.

For this type of calibration a newly developed framework for solving least squares
problems, called the Manifold Toolkit for MATLAB (MTKM) [12], is employed. It pro-
vides an interface that allows easy setup of problems by defining measurement functions
and the parameter variables the functions depend on. After feeding the measurements
into the framework, the structure of the overall problem is detected and utilized in the op-
timization phase to obtain rapid results. Furthermore, besides the ability to use regular
(Euclidean) vectors as parameters, it provides types for handling rotations in a singular-
ity free way. By providing a local vector view of a manifold type, classical optimization
algorithms assuming regular vectors, such as Levenberg-Marquardt, can be employed.

Despite this advanced framework, actual convergence is dependent on the input data
and whether or not they represent a well-conditioned optimization problem. Because
all sensors are mounted onto the head, sensor movement and therefore the possibility to
generate varying views is limited. It is expected that this limited view of the cameras
observing the horizontally aligned checkerboard impairs the estimation of the intrinsic
camera parameters. Therefore, a certain number of freely aligned checkerboard images
was added. See Fig. 3.3 (a) for a graph showing the camera poses typically used, including
the two types of checkerboard views. All data was acquired with human assistance. The
freely aligned checkerboard had to be placed manually in front of the robot while the
horizontally aligned one had to be manually leveled beforehand. Arm configurations in
the second stage were acquired through manual positioning (see Fig. 3.3 (b), left images).

Results of such a calibration (from 11 leveled and 7 freely observed checkerboards,
21 views of both arms) are given in Fig. 3.3 depicting the different camera views and
two arm configurations, and in Tab. 3.1 listing actual parameter values. Here, the ob-
tained values and the corresponding 1s bound are given as reported by the estimator.
The required measurement uncertainties were determined in a prior combined estima-
tion routine. Analysis reveals that camera parameters, stereo transformation TL

R, and their
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Figure 3.4: Sketch of the automatic self-contained calibration showing DLR’s Rolling Justin from
the rear including the relevant frames. A visual point-feature pasted on the robot’s
wrist W is observed (magenta dotted line) by its two cameras (L & R) while moving
the head H. Furthermore, measurements from the IMU I and the robot’s joint angle
and torque sensors are logged. This allows poses of the left camera and the IMU to be
calibrated with respect to the head frame, TL

I and TI
H respectively. Also, stereo TL

R , the
cameras’ intrinsic parameters and joint angle offsets and elasticities of the arms’ joints
are obtained at the same time.

transformation with respect to the head TL
H are recovered with a high degree of precision,

while the rotation between them and the IMU RL
I is poorly determined. Combined with

manually obtained translation, the IMU’s relation to other components poses a weak link
in the setup. This precludes rapid head movement (e. g. when the robot follows the ball
visually) as it is expected to cause missed catches.

The calibration method given above is part of the examples showing the use of the
optimization toolbox MTKM for calibration purposes. Please cf. App. A.3 for details.

3.3.2 Automatic Self-Contained Approach

Based on the experiences from the above mentioned approach and from further analysis
of prior literature the calibration of a humanoid’s upper body is a rather complex task.
Different components contributing to this complexity can be identified:

• Multiple calibration stages driven by the use of pair-wise calibration techniques are
common. As a consequence, sequential estimation of parameters is used, making
the overall estimation results inconsistent.

• External tools, such as the checkerboard or the level presented in the method above,
are often part of the calibration routine. This leads to less flexibility as these tools
have to be carried along when the robot is moved to a different location (e. g. other
lab, trade fair). This is especially true for mobile robots.

• Human assistance might be required. This is not only the case while obtaining the
calibration measurements but also during processing of the data (e. g. extracting
features in images manually). Furthermore, negligence of the operator might limit
the quality of the calibration result.

40



3.3 Calibration of a Humanoid Robot’s Upper Body

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5
−4
−3
−2
−1

0
1
2
3
4
5

Measurement residual x in px

M
ea

su
re

m
en

t r
es

id
ua

l y
 in

 p
x

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5
−4
−3
−2
−1

0
1
2
3
4
5

Measurement residual x in px

M
ea

su
re

m
en

t r
es

id
ua

l y
 in

 p
x

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5
−4
−3
−2
−1

0
1
2
3
4
5

Measurement residual x in px

M
ea

su
re

m
en

t r
es

id
ua

l y
 in

 p
x

(a) (b)

Figure 3.5: (a) Snapshots from a calibration process. (Top) External view of calibration procedure
observing one arm while moving the head. (Middle) Corresponding view from the left
camera. The point feature is highlighted with a red circle. (Bottom) Close-up picture of
feature and detected center (red cross ⇥) and predicted center (green cross +). (b) Vi-
sion measurement residuals (left camera depicted by red crosses, right camera by green
crosses) from estimations considering all (top left), all but joint angle deviations (top
right), all but joint elasticities (bottom left) and all but offsets and elasticities (bottom
right) components from the complete set of calibration parameters.

To alleviate these issues, a new calibration approach was developed in [4]. By using the
robot’s automation abilities all data is recorded by the robot itself in one run. Furthermore,
only one model fitting stage including all models is used where all data are processed at
the same time for the corresponding parameters that are part of the calibration process
(as already performed in the previous approach). During recording, no external tools
are employed other than the robot itself or features related to itself. The only human
interaction required is one button press to initiate the calibration procedure.

In detail, the developed method records two kinds of data automatically (see also
Fig. 3.4 for an illustrated explanation).

First, camera images and joint angle positions while the head is observing a visual fea-
ture on the robots arm at different arm postures are recorded. Instead of capturing a
checkerboard from one view, a single point feature is now registered from many views
differing in head rotation, see Fig. 3.5 (a). The scale is not defined through the spacing
of the features, but through the robot’s forward kinematics. Although not realized here,
such an approach would allow using robot properties (e. g. the distance of a stretched
out arm) instead of explicit physical units for scale. One drawback of the point feature
approach is that the limited workspace does not allow the capture of distant points. Fur-
thermore, as the robot’s head movement is only rotational, the distance of the observed
feature with respect to the cameras is roughly the same. These two limitations make it
hard to distinguish between focal length fL/R and object distance during camera calibra-
tion. To compensate for this, several different arm positions are recorded and observed
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Figure 3.6: Angular velocity (a) and linear acceleration (b) as measured by the IMU (w, a) and
predicted by the model (w0, a0) using the measured head joint angles over time.

from most of the image space of the camera during head movements. This also allows
determination of joint angle offsets and joint elasticities in the estimation process to ac-
count for kinematic deviations. For this, not only the joint angle positions but also the
measured torque signal is recorded.

Second, IMU sensor readings and joint angle positions are logged while the head is
moving. Here, the corresponding measurement function simply differentiates motion
over time to compute angular velocity and linear acceleration that should be measured
by the IMU. In this dynamic approach it is now possible to not only recover its orientation
but also its position in the robot’s head. Please note, that now TI

H is estimated and the
desired parameter TL

I is now determined indirectly from TL
H (i. e. TL

I = TI�1
H TL

H).
The automated recording process actuates around one dozen configurations (taught in

advance) for each arm which corresponds to 5 minutes of actual movement of the robot.
The maximum velocity of the head movement is limited to 24�/s to avoid motion blur
in the camera images. While this movement could also be used to perform IMU calibra-
tion, a special run of head movement with higher velocities (60�/s) is performed. This
invokes higher accelerations and angular velocities and allows making use of the com-
plete workspace of the robot’s pan tilt unit. To accommodate for structural vibrations, the
IMU and joint angle signal are low pass filtered with a cutoff frequency of 5 Hz. Because
different sensor measurements are compared during motion, the temporal relationship
between these has to be established before the geometric calibration can be performed.
This has to be done only once and has been determined by hand in advance, but could
also be done automatically by, e. g. correlation, in the future.

Estimation is conducted using MTKM. Once the recorded data is fed into the frame-
work, all parameters are estimated concurrently. Analysis is again performed by re-
viewing the estimator’s output. An analysis of the visual marker residuals is given in
Fig. 3.5 (b). It can be seen that the inclusion of both joint angle offsets and joint elas-
ticities as parameters considerably helps the consistency of the residuals. Excluding the
joint angle offset leads to inaccurate wrist positions in different arm configurations visi-
ble as increased noise, while not considering joint angle elasticities leads to a dominant
displacement in the cameras’ y-axis caused by the gravity dragging the arm down.

Figure 3.6 compares actual and predicted IMU measurements given the estimated pa-
rameters and the measured joint angles showing no substantial deviations. Actual param-
eter values are listed in Tab. 3.2, where the obtained estimate µ and the corresponding 1s
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Table 3.2: Calibration Results of the Automatic Self-Contained Approach

Intrinsic left Intrinsic right
fL (px) CL (px) kL fR (px) CR (px) kR

µ 1869.4 839.7,619.5 0.10 1860.8 817.3,619.3 0.10
s 0.53 0.54, 0.66 7.2·10�4 0.52 0.58, 0.66 7.6·10�4

Transformation TL
H

Translation (m) Rotation (axis angle)
x y z x y z

µ 0.066 0.100 0.130 -1.329 1.316 -1.127
s 0.0002 0.0001 0.0001 0.0001 0.0003 0.0002

Transformation TL
R

Translation (m) Rotation (axis angle)
x y z x y z

µ -0.201 0.001 -0.002 0.012 -0.006 -0.009
s 0.0001 0.0001 0.0003 0.0005 0.0004 0.0001

Transformation TI
H

Translation (m) Rotation (axis angle)
x y z x y z

µ -0.002 0.006 0.236 0.026 -0.014 0.006
s 0.0007 0.0012 0.0009 0.0006 0.0005 0.0007

bound are given (the required uncertainty of the measurements where determined in a
prior estimation). Fortunately, camera intrinsic parameters and stereo accuracy results
are comparable to the static checkerboard method (which is considered best practice for
this type of problem) from the previous calibration routine. Also, hand-eye calibration
is improved benefiting from the ability to generate a large amount of single point data.
Most interestingly, the location of the IMU within the robot’s head is now determined
accurately not only for rotational component but also for the translation.

Since initial publication of the calibration routine in [4], it has been improved in two
ways. First, due to the use of a local visual marker detector, only moderate deviations
were allowed for the calibration routine such that the wrist-mounted feature is reliably
detected in every camera image. A global feature search is now employed based on gra-
dient features. For this the HOG (histogram of oriented gradients) descriptor [DALAL
and TRIGGS, 2005], trained from detections of earlier calibration runs, was found to be
suitable for detecting the distinctive pattern of the marker. Second, MATLAB’s general
overhead in evaluating functions combined with MTKM’s property of evaluating Jaco-
bians numerically leads to inefficient computation. The estimation was therefore ported
to SLoM [HERTZBERG et al., 2013], a framework with the same functionality that short-
ened the optimization time considerably. In fact, this allows performing a calibration of
the robot in less than ten minutes, including recording of all arm configurations as well
extracting the visual features from the camera images. Besides the fact that all parameters
are now properly determined, this calibration method is a tremendous improvement in
time and human assistance when compared to the prior static calibration method.

3.3.3 Designing Optimal Calibration Experiments

As mentioned in the motivation, the quality of the calibration result depends on the ob-
tained measurements. A common approach to determine which measurements to obtain
is to design the experiments in a way that the variance as reported by the underlying
estimator becomes minimal, a technique known as optimal design. For the specific case it
is of interest how to select the set of arm configurations such that calibration time (i. e.
the number of configurations) and estimator variance (from the information matrix after
convergence) becomes minimal. In a recent paper [10] experiments for an optimal cali-
bration design were carried out. The major contribution is the proposal of a task oriented
selection criterion which encodes the mean squared error of the robot’s TCP (tool center
point) from the covariance reported by the estimator. This is contrary to other common
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(a) (b)

Figure 3.7: (a) Stereo-IMU system used for experimental evaluation of the visual SLAM system
built from open source components which was calibrated using the method introduced
in Sec. 3.3.1. (b) Two images from the cameras of the entertainment robot, see Sec. 1.4,
during the calibration procedure. The sphere at the end of the bat was used as the
calibration feature and the modeled bat is shown as an overlay in the image to verify
calibration results.

criteria which combine components of the covariance matrix resulting in a metric which
has no physical interpretation. Hence the emphasis is on task, as it directly corresponds
to the desired behavior of precise manipulation.

Using this criterion a greedy algorithm was devised which generates an optimized set
from a large set of randomly sampled configurations. Although this greedy algorithm
is subject to sub-optimal selection of configurations, experimental evaluation shows that
this is still considerably better than the taught positions used initially.

3.4 Further Calibration Problems

The calibration methods for the task of robotic ball catching have also been applied to
other calibration problems. The stereo-IMU system depicted in Fig. 3.7 (a) used for ex-
perimental evaluation of a visual SLAM system built from open source components [11]
was calibrated using the static approach from Sec. 3.3.1. Similarly, the calibration between
the actuator and the vision system of the entertainment robot introduced in Sec. 1.4 was
performed in the same manner as proposed in Sec. 3.3.1, but instead of using a point fea-
ture, the sphere at the end of the bat was used as a feature, see also Fig. 3.7 (b). It would
also be possible to integrate the detection of the sphere into the calibration process similar
to the proposed tracking algorithm introduced in Sec. 2.7. This is considered future work.

Furthermore, two routines for dealing with conceptually different calibration problems
have been proposed and will be presented concisely.
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3.4 Further Calibration Problems

Figure 3.8: Result of camera calibration using SSL-Vision. The field lines, the principal point (as
a cross) and a grid are projected to the image plane for visual inspection. The labeled
boxes depict the manually selected field corners required for the initialization of the
optimization routine.

3.4.1 SSL-Vision Calibration

RoboCup’s Small Size Robot League (SSL) distinguishes itself from the other leagues in
that it allows the participating teams to use global vision. In practice, every team set up
their own hardware and developed their own computer vision software for recognizing
robots and the ball on the field. Despite this expanded organizational effort, the software
converged mostly to the same set of methods. The organizers therefore proposed a shared
vision system, mandatory for all teams since 2010. This software, SSL-Vision [13], was
introduced and combined best practice methods.

As a part of this software, a new calibration technique which determines the camera’s
intrinsic and extrinsic parameters with respect to the playing field (see Fig. 3.8) was devel-
oped. In the previous approaches of the individual teams, it was common to use special
calibration tools, such as a foldable checkerboard pattern spread on the field. This might
not only lead to inaccurate and error-prone procedures but is also costly in terms of time
and blocks the field for other teams. In the new approach, the known dimensions of the
field’s line features which are defined in the rules and the easily measurable height of
the camera have been used. Usually, as each half of the field is observed by one camera,
each camera’s image provides sufficient features which is important for a well-defined
solution, especially regarding the pose of the cameras.

Initialized by defining the corners of the field through the user and a rough estimate of
the camera height, edge detection is used to find field lines in the images. From these and
the known field dimensions, a least squares problem is formulated which is solved by
using the Levenberg-Marquardt algorithm, enabling fast and accurate calibration. Please
see Fig. 3.8 for a visualization of the calibration result.
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(a) (b) (c)

Figure 3.9: Kinect sensor output including feature points (highlighted as red crosses) employed for
calibration: (a) RGB (already converted to grayscale), (b) infrared, (c) disparity image.
For the latter, the data on the black squares was missing and the center of the white
ones was used instead.

Besides its designated use in the Small Size Robot League, SSL-Vision is also used in
other RoboCup league’s as a ground-truth system for evaluation of self-localization algo-
rithms, see Laue [LAUE and RÖFER, 2009, LAUE et al., 2009] and Burchardt et al. [BUR-
CHARDT et al., 2011], and is even used as the basis of a global vision based humanoid
league as proposed by Naruse et al. [NARUSE et al., 2011].

This calibration routine has been released as open source as part of the SSL Vision
project. Please see App. A.1 for more information.

3.4.2 Kinect Calibration

Recently, combining color (RGB) and depth information gained a lot of attraction. For
example, Du et al. [DU et al., 2011] used a Microsoft Kinect/PrimeSense sensor for regis-
tration in indoor environments resulting in detailed and accurate 3-D models including
texture. Furthermore, Lai et al. [LAI et al., 2011] employed the same type of sensor for
object categorization and recognition, concluding that integrating both geometric and vi-
sual features from depth and color sensor achieves higher performance than using one
of the cues alone. Similarly, Spinello and Arras [SPINELLO and ARRAS, 2011] proposed a
detector, named Combo-HOD, that combines depth and color data for the task of tracking
people, outperforming traditional vision based detectors.

As with most setups involving multiple (possibly different) sensors, a calibration of
these sensors themselves and between them is mandatory. In [12], a calibration for such
a setup was presented, namely for a Microsoft Kinect sensor.

For this, the method for jointly calibrating a stereo-IMU setup from Sec. 3.3.1 above was
employed (without the need to calibrate these sensor relative to robot). This approach
defines the intrinsic parameters of the RGB and infrared (IR) cameras, their geometric
displacement (stereo) and the rotation from the cameras to the integrated accelerometer
(see Fig. 3.9 (a) and (b) for images of the observed leveled checkerboard pattern). The
parameters defining the mapping from depth to disparity are estimated using well per-
ceived points in the disparity image of the checkerboard (Fig. 3.9 (c)) and the depth to the
board available from the extrinsic parameter estimate. Again, the Manifold Toolkit for
MATLAB (MTKM) was used for modeling the problem and performing calibration.
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The developed calibration routine has been released as open source and is included
with the release of MTKM, as described in App. A.3.

3.5 Summary and Transferability

This chapter presented two different approaches for calibrating the upper body of a hu-
manoid robot and its mounted sensors. Calibration is considered a precondition for the
task the robot was initially designed for and is required due to maintenance, collision or
wear over time.

The first approach [8, 12] relied on methods from literature where static measurements
acquired from manual positioning were taken. Although a calibration sufficient for robotic
catching is generally achieved the approach lacks definition of certain parameters (i. e.
translation with respect to IMU) due to its static design. Furthermore, the manual posi-
tioning made the calibration costly in terms of time and human resources.

An automatic calibration was therefore proposed in [4]. All necessary data was col-
lected through automated motion, where the moving head observes different configu-
rations of the robot’s arm. The ensuing preprocessing and optimization stage are also
automated, resulting in a one button press calibration. All degrees of freedom of the cali-
bration are defined and an accurate calibration is obtained.

For both of these calibrations MTKM [12] was employed for the task of estimating the
calibration parameters from measurement functions defined in the model and the actual
measurement data. Due to MTKM’s design stating such kind of calibration problems is
simplified, as one has only to link measurements and parameters through measurement
functions, and let the framework do the rest.

Furthermore, initial experiments for an optimal calibration design [10], the calibration
of a stand-alone stereo-IMU system for a visual SLAM system built from open source
components [11] and the calibration of the entertainment robot were reported. Finally,
two additional calibration problems were introduced in slightly more detail. First, the
calibration of a RoboCup soccer field with global vision by using the field lines as fea-
tures [13], and second, a calibration of the Kinect sensor parameters using the MTKM
framework [12].

As for transferability, both presented humanoid calibration routines are not limited to
the used robot in the experiments mentioned in this dissertation. In fact, the only notable
component that is subject of adaption is, obviously, the forward kinematics of the robot
the calibration is intended for. As the interface of forward kinematics is well defined,
replacing this should be considered a rather straightforward modification regarding the
underlying model for calibration. This is also true for the used visual feature to obtain the
hand-eye relationship. By replacing the corresponding measurement function the calibra-
tion routine can be matched to use the features proposed in [PRADEEP et al., 2010, GAR-
CIA, 1999, NICKELS, 2003]. Furthermore, because of the flexibility and extendability of
the underyling least squares framework (MTKM) the number of sensors can be adjusted
with little effort to the additionally installed hardware of the designated robot, such as
Kinect sensors or laser range finders.
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Chapter 4

Conclusion

This thesis has presented insights into a computer vision system for the dynamic task of
ball catching using a humanoid robot. In detail, insight into two components for making a
robot successfully locate a ball in its environment was given, namely tracking of a thrown
ball and calibration of a humanoid’s sensing and actuating components.

Based on sets of discrete circle detections and head position estimation from IMU mea-
surements, it was shown how established techniques (MHT) and recent advances (GM-
PHD) from the tracking community combined with a UKF can be employed for this real-
time task. Compared to these recursive tracking approaches, a new global tracking algo-
rithm was presented: By leveraging the parabolic motion as context to evaluate the ball’s
states using the filter response directly from the image, an improved prediction accuracy
is achieved. This is especially true at the beginning of the trajectory, which is a critical
phase for successful catching.

For the corresponding calibration, an automated and self-contained approach for de-
termining the relation between a variety of sensors on a humanoid’s upper body was
presented. This procedure consists of one automated data recording run followed by one
framework-based model fitting process, employs no external tools such as a checkerboard
and is initiated by a single button press. Compared to previous calibration routines, this
eliminates the need for human interaction and increases availability of the robot for its
originally intended purpose.

The presented work gained respectable attention with two publications becoming award
finalists at major robotic conferences and presentation of the developed methods (except
the new tracking method) at the Automatica (2010 and 2012) and CeBit 2012 trade fairs,
public institute events and numerous lab demonstrations. This is mainly due to the robot
performing a benchmark task giving non-specialists the ability to compare the achieve-
ments with human performance and to assess the current state of the art in robotics re-
search. Therefore, besides the aforementioned technical contributions the outcome of this
work also includes an exhibiting component.

The potential of the proposed tracking algorithm is promising due to the integration of
a physics-based motion model in a global fashion. It turns out that this integration of mo-
tion as context in detection-based tracking is a powerful tool, and it is assumed that this
approach is the way to go when confronted with the task of precise tracking using vision.
While this can be generalized to other tracking instances, the efficiency of the algorithm
is mainly governed by the stiffness of the underlying motion, as this limits the search
space and therefore trajectory convergence. Therefore, it has yet to be determined, how
much this motion can be relaxed such that the proposed tracking method still performs
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as intended. This is especially true for one important class of motion, namely articu-
lated human motion, where tracking over time considerably helps in resolving kinematic
ambiguities and occlusions. Based on a limb/skeletal model, feasible scenarios include
tracking short-term regular movements (e. g. walking, waving or mixing dough by hand)
and simple cooperative tasks, such as passing a bowl, that require accurate prediction for
a responsive behavior of the robot.

While the developed approach is efficient in terms of time and human resources, cali-
bration is still regarded a dedicated task performed only when an inconsistency is recog-
nized. This separation from the main task of the robot is mostly due to reserving the (of-
ten limited) computational resources for proper operation. This might be a valid solution
for research robots, where calibration is overseen by an expert after the robot undergoes
maintenance. Unfortunately, once autonomous service robots have gained maturity and
start operating in real world settings, these robots are likely to break, witness an unex-
pected change in structure or experience wear during regular operation. This naturally
raises the question: Why not integrate calibration into regular operation? This is not too
far-fetched, as a human’s cerebral cortex possesses the ability to adapt the motor signal
while the body is subject to long-term changes, e. g. when growing during infancy. In
fact, this continuously observation of the robot components contributes to the goal of
long-term autonomy and, from a safety standpoint, allows the robot to detect any severe
defects preventing potentially harming situations, either for itself or for its environment,
at an early stage. Furthermore, such an integrated procedure benefits economical opera-
tion of autonomous systems.

One can even combine tracking and calibration, using one unified representation so
that future robots are not only aware of their surroundings but also of themselves in a
consistent manner.
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[FRESE et al., 2001] FRESE, UDO, B. BÄUML, S. HAIDACHER, G. SCHREIBER, I. SCHAEFER,
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Appendix A

Released Software

During the course of time, parts of the work discussed in this dissertation were not only
published as texts but the corresponding software was also made publicly available. This
not only extends and supports the text publications but also gives other researchers the
possibility of using the software in their work with the possibility of extending it. In all
cases, the software was released as open source.

A.1 SSL Vision

In RoboCup’s Small Size League (SSL) a shared vision hardware has been introduced
using a publicly available vision software, namely SSL Vision. It provides the same set of
well established perception features for all teams. The contribution of the author is the
specification and development of a new calibration technique, requiring no additional
calibration tools (e. g. checkerboard pattern). The software is available at http://code.
google.com/p/ssl-vision/.

A.2 A Visual SLAM System from Open Source
Components

This software release presents the results of building a visual SLAM system from com-
ponents of open source software, namely OpenCV for feature detection, FLANN for data
association, and SLOM for solving the sparse bundle adjustment problem. The software
framework and the calibration of the used sensor setup (camera pair and IMU) were pro-
vided by the author. The software is available at http://informatik.uni-bremen.de/
agebv/en/pub/hertzbergicra11.

A.3 MTKM: Manifold Toolkit for MATLAB

The Manifold Toolkit for MATLAB is a framework to define and solve least squares prob-
lems in a general and easy way. Furthermore, it provides a way to handle 3D rotations. It
is used to solve elaborate problems, such as the calibration of cameras and an IMU rela-
tive the kinematic chain of a service robot or operating successfully on SLAM benchmark
datasets. The software is available at http://openslam.org/MTK.html.
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