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Abstract. We believe it is possible to create the visual subsystem
needed for the RoboCup 2050 challenge – a soccer match between hu-
mans and robots – within the next decade. In this position paper, we
argue, that the basic techniques are available, but the main challenge
will be to achieve the necessary robustness. We propose to address this
challenge through the use of probabilistically modeled context, so for
instance a visually indistinct circle is accepted as the ball, if it fits well
with the ball’s motion model and vice versa.
Our vision is accompanied by a sequence of (partially already conducted)
experiments for its verification. In these experiments, a human soccer
player carries a helmet with a camera and an inertial sensor and the
vision system has to extract all information from that data, a humanoid
robot would need to take the human’s place.

1 Introduction

Soon after establishing the RoboCup competition in 1997, the RoboCup Feder-
ation proclaimed an ambitious long term goal (depicted in Fig. 1).

“By mid-21st century, a team of fully autonomous humanoid robot soccer
players shall win the soccer game, comply with the official rule of the
FIFA, against the winner of the most recent World Cup.”

Hiroaki Kitano, Minoru Asada [2]

Currently, RoboCup competitions take place every year. Within a defined set
of different sub-competitions and leagues, incremental steps towards this big
goal are made [3]. Although a rapid and remarkable progress has been observed

1 This paper is an extended version of [1] presented at the celebration of the 60th

birthday of Bernd Krieg-Brückner.



Fig. 1. Illustration of the RoboCup vision: An autonomous humanoid robot playing
soccer.

during the first decade of these robot competitions, it is not obvious, if and how
the final goal will be reached. There exist rough roadmaps, e.g. by [4], but in
many research areas, huge gaps must be bridged within the next 40 years.

While this is obvious for several areas, e.g. actuator design and control, we
claim that the situation is surprisingly positive for vision:

Within the next decade, it will be possible to develop a vision system that
is able to provide all environmental information necessary to play soccer
on a human level.

Annual RoboCup competitions are always bound to strict rule sets (defined for
the state of the art of the competing robots) and demand competitive robot
teams. Thus only incremental progress adapting to actual rule changes (which
continuously raise the level of complexity) is fostered. By developing the afore-
mentioned vision system independently of these competitions, we hope to set a
new landmark which could guide the incremental development.

Because a real human level soccer robot will not be available for a long time,
our vision is accompanied by a (partially already conducted) set of experiments
that verify our claim without needing a robot.

This paper is organized as follows: Section 2 roughly identifies the challenges
for playing robot soccer and compares them to the state of the art in robotics. In
Sect. 3 we explain, why the basic techniques for the vision system are available.
We argue, why the remaining challenge is robustness, for which we present our
idea of a solution in Sect. 4. Finally, a sequence of experiments to verify our
claim is described in Sect. 5.



Fig. 2. The Sense-Think-Act cycle roughly depicting major tasks for playing soccer
with a humanoid robot.

2 Challenges for Playing Soccer

The global task of playing soccer consists of several different, interdepending
challenges. We roughly categorize them according to the Sense-Think-Act cycle
(see Fig.2). This should be considered as a possible architecture for illustra-
tion. In the following, the challenges are described in reverted order but with
decreasing degree of difficulty.

2.1 Challenges for Actuation

The hugest obvious gap may be observed in the field of actuation. Nowadays, the
probably most advanced humanoid robot, Honda’s ASIMO, is capable of running
at a top speed of six kilometers per hour [5]. This is an impressive result, but
still more than five times slower than the top speed of a human soccer player.
A similar gap regarding kicking velocity has been pointed out by [6, 7]. They
showed that a state-of-the-art robot arm (with a configuration comparable to
a human leg) is six times slower than required to accelerate a standard soccer
ball to an adequate velocity. It is still an open issue whether today’s motor
technology could be developed further on enough, or if more efficient actuators,
e.g. artificial muscles, will be needed. Since soccer is a contact sport leading to
physical human-robot interaction [6], not only direct position control but also
approaches for compliant motion, such as impedance control, need to be taken
into account. As pointed out by [7], joint elasticity appears to be a crucial aspect
for velocity as well as for safety.

Additionally, the problems of energy efficiency and power supply need to be
solved. The ASIMO robot for example is, according to [5], capable of walking
(with a speed of less than three kilometers per hour) for 40 minutes.

2.2 Challenges for Thinking

In this area, two different levels may be distinguished: motion planning and high-
level multi-agent coordination. The latter is a research topic in the RoboCup



Soccer Simulation League since a while and has reached a remarkable level.
Dealing with the offside rule as well as playing one-two passes are standard
behaviors, complex group tasks as playing keep-away soccer serve as a test bed
for learning algorithms [8]. This area could be considered to be already quite
close to human capabilities.

On the other hand, when playing with real humanoid robots, sophisticated
methods for motion planning are needed. The current research frontier on hu-
manoid motion control is balancing and dynamic foot placement for walking
robots. Algorithms for full-body motion planning exist [9], but are subject to
restrictions that make them inapplicable to tasks as playing soccer.

Here is a big gap to human level soccer. As an example consider volley-
kicking. The player has to hit the ball exactly at the right time, position, and
velocity, with a motion compatible to the step pattern, allowing balancing, and
considering opponents. Last but not least, all this must happen in real-time.

2.3 Challenges for Sensing

According to [2], it is evident that the robots’ sensorial capabilities should resem-
ble the human ones. Thus, we could assume to deal with data from cameras and
inertial sensors emulating the human eyes and vestibular system. The required
information are estimates of the own position and the positions of the ball and
of other players. In case of tackles or dribbling, the latter will be needed to be
recognized in more detail (e.g. the positions of the feet and limbs).

Current solutions for these tasks and our idea how to bridge the remaining
gap are presented in the following section.

3 The Vision System

Our main thesis is that the “sense” part of the RoboCup 2050 challenge can be
realized within a decade starting from the current state of the art in computer
vision. This is remarkable, since the “act” and “think” parts are apparently light-
years away from reaching human level performance and for computer vision in
general, this is also true. The reason, why we believe such a vision system can
be realized, is that unlike a household robot for instance, a soccer robot faces a
rather structured environment.

3.1 State of the Art

The objects relevant in a soccer match are the ball, the goals, the line markings,
and, of course, the players as well as the referees. Ball, goal, and line markings are
geometrical features, i. e. circles and lines. There is a large number of algorithms
for detecting them in images, from the classical Hough transform [10] up to a
range of more elaborate methods [11].

Recognizing other players is more challenging. It is particularly difficult be-
cause we will probably need not only the general position but the detailed state



Fig. 3. Tracking sportsmen and their limbs: Three persons which are running and
passing a ball (left image), one person performing jumping jacks (right image). Both
images are results of [13] and are used with permission of Deva Ramanan.

of motion for close range tackling and to infer the player’s action for tactical
purposes. Fortunately, people tracking is an important topic in computer vision
with a large body of literature [12]. An approach which is capable of tracking the
body as well as the limbs of sportsmen (see Fig. 3) has been presented by [13].

Furthermore, soccer scenes are lightly colored with green lawn and the players
wearing colored clothes of high contrast. In the RoboCup competition, this idea
is taken to an extreme, where most teams rely on color segmentation on a pixel-
per-pixel basis as their primary vision engine (see Fig. 4). This will not be
possible for real-world soccer, mainly due to changing lighting conditions. Still,
color can provide a valuable additional cue, at least when looking below the
horizon, where objects are in front of green lawn.

The background above the horizon, including the stadium and the audience
is of course also visible and unfortunately rather undefined. However, if it is
relevant for the soccer robot at all, then not for recognition, but only in the
sense of a general landmark. For this purpose there are nowadays well working
techniques, such as the Scale Invariant Feature Transform (SIFT) [14].

Overall, understanding a soccer scene from the player’s perspective seems
much easier than for instance understanding an arbitrary household, traffic, or
outdoor scene. Indeed there are already half-automatic systems in the related
area of TV soccer scene analysis, for example the ASPOGAMO system by [15,
16], proofing that soccer scene understanding in general is on the edge of being
functional.

3.2 Open Problems

So, is a vision system for the RoboCup 2050 challenge an easy task? We believe
it is not. It is surprisingly a realistic task but well beyond the current state of
the art. The first problem is that the camera is moving along with the head
of the humanoid soccer robot. To predict a flying ball, the orientation of the



Fig. 4. Two images taken and processed by a humanoid soccer robot on a standard
RoboCup field [17]. The colored dots and lines indicate perceived parts of goals and
field lines; the recognized ball is bordered by an orange circle.

camera must be known very precisely. It seems unrealistic that the necessary
precision can be obtained from the robot’s forward kinematic, since unlike an
industrial robot, a humanoid robot is not fixed to the ground. So our solution
is to integrate an inertial sensor with the camera and fuse the complementary
measurements of both sensors in a probabilistic least-square framework.

The second problem is the player’s perspective. It is much more difficult than
the overview perspective used in TV soccer scene analysis. In the TV perspective
the scale of an object in the image varies by a factor of about 3 [15, Fig. 5]
whereas in the player’s perspective it can vary by a factor of 250 assuming the
distance to an object ranging from 0.5m to 125m. Hence, for instance the people
detection algorithm must handle both extreme cases, a person only the size of a
few pixels, where an arm or a leg maybe thinner than a single pixel and a person
much larger than the camera’s field of view, only partially visible. Furthermore,
in an image from the player’s perspective, other players will extend beyond the
green lawn of the field into the general background. Hence it is not possible to
search for non-green blobs as an easy first processing step. This can also happen
for a flying ball, which is then particularly difficult to detect.

However, the third and most severe problem is, that from our experience,
most of the academic computer vision systems perform on the level of lab demon-
strators requiring nicely setup scenes and lighting conditions and usually consid-
erable parameter tweaking. So, to summarize, for the vision part of the RoboCup
2050 challenge, we do not need a new level of functionality as for many other
grand challenges, but we need a new level of robustness.

4 Robustness Through Context

We propose to address the question of robustness by utilizing probabilistically
modeled context information, formulating the overall scene understanding and
prediction problem as a global likelihood optimization task. Using contextual



associations is not entirely new [18, 19] and recent progress has shown that ex-
ploiting context leads to promisingly robust results. Recent work worth noting
includes modeling of object to object relations as done by [20]. Here, the authors
improved the object categorization accuracy by integrating a post-processing
step that maximizes the object categorization agreement based on contextual
relevance. More generally, [21] proposed a hierarchical framework allowing inter-
action between objects and regions within the image plane.

Leaving the image plane and therefore 2D models behind, [22] propose a
mechanism for estimating rough 3D scene geometry from a single image which
is then used as an additional input to the object detection methods. Therefore,
detections which fail to fit into the estimated scene geometry at the detected
position are rejected from the global scene interpretation (e. g. pedestrians who
do not stand on the ground plane). This idea is taken one step further by [23]
and [24] where the relationships between objects and scene geometry is modeled,
allowing suitable recognition of objects for a mobile robot application.

These promising results show that exploiting context within the image and
the scene is particularly well suited to the task of creating a vision system for
RoboCup 2050 and also that this task is well suited to study this methodology.

4.1 Data-Driven Bottom-Up Processing

Most current vision systems use a data-driven bottom-up approach [25, 26, 16,
as examples]. Usually, low level features are extracted from the image and then
aggregated through several stages to high level information. Each stage may
incorporate background knowledge at its own level but does not take information
from higher levels into account. It simply takes some input from the previous
lower level and passes the result of the computation to the next higher level.

As an example, a classical Hough transform starts by classifying pixels as
edge or not by thresholding the result, for instance, of a Sobel filter. Similarly,
the system by [16] starts by classifying pixels as lawn or not on the basis of
their color. This is a hard decision taken on the lowest level without any higher
level knowledge, such as the fact that we are looking for a ball or the ball’s
motion model. Such a pixel-wise classification can be very ambiguous. Often we
could, for instance, classify a borderline pixel correctly as belonging to the ball,
although it looks rather greenish, if we considered the context of the ball or its
motion model. However, in conventional vision systems, on the low level this
knowledge does not exist and on the higher level, the fact, that this pixel was
borderline in the classification, is lost due to committing to a hard decision on
the lower level.

To make this idea more concrete, we will now describe a ball tracking system
in the conventional data-driven design (Fig. 5). We will later discuss how it
would look like in the context based design we propose in this paper.

In a data-driven approach, a ball finder algorithm is executed on every image
yielding the 2D image circle (position, radius) corresponding to the ball (or
several hypotheses thereof). These circles are passed to a probabilistic estimator,
such as Gaussian-Maximum-Likelihood that finds the mostly likely states, i. e.



Fig. 5. Information flow in a ball tracker based on the conventional data-driven
paradigm (see text). The ball finder is not part of the optimization loop (gray box).

ball positions and velocities. Such an estimator is based on model likelihoods,
i. e. functions with uncertainty, that specify the following:

1. A camera model defines when the ball was at a certain position, where it
would be in the image. This links 3D positions to 2D circles.

2. A ball motion model defines when the ball was at a certain position having
a certain velocity, where it would be and which velocity it would have after
one timestep. This links 3D positions and velocities over time.

The estimator then finds the most likely states by minimizing a sum of squared
differences, which indicates how likely an assumed sequence of states is. It con-
sists of 1. the squared differences between where the ball has been observed by
the ball finder and where the ball model would expect it to be observed if the
assumed state sequence was true and 2. the squared difference between the states
predicted by the ball model and the assumed corresponding states.

The models 1. and 2. are Gaussian likelihoods, i. e. formulas with uncertainty,
so there is a wealth of algorithms for handling this kind of problems. In partic-
ular, figure 5 is a conceptual description. Most actual implementations do not
minimize over the whole state sequence in every step but instead use an in-
cremental estimator, such as the Extended or Unscented Kalman Filter [27–29].
However, this changes only the computation not the result. The key point of this



approach is that the ball finder, more general the computer vision, is outside the
optimization loop and there is no information flow from the estimator back to
the ball finder. Hence the ball finder cannot take the high level context of the
ball’s motion into account when deciding on the low level, whether something is
accepted as a ball or not.

4.2 Global Likelihood Optimization

We believe that much of the brittleness of current vision systems originates from
this way of committing to hard decisions on an early level of processing. So our
approach for increased robustness is an overall likelihood optimization.

The problem is to understand an image sequence, i. e. estimating over time.
Indeed, successive images are linked by a motion model and this provides most of
the context we want to build upon. However, we propose not to use incremental
filters, such as EKF, but to look back into the raw images of the last few seconds
at least. This approach has surprising advantages. Imagine the ball is kicked, but
during the first 100ms there is too little contrast to the background so it is not
detected. Now when it is detected, there is new information on where the ball
has been before from the ball’s motion model. The old images are still in memory
and tracking the ball back in time is much less ambiguous than finding the ball
without context and will probably succeed. Paradoxically, once the system has
detected the ball, it has already observed it for 100ms. The first useful prediction
is not delayed at all, because prior to that the ball must have been observed for
some time anyway. In the example above, we would realize this (Fig. 6) by
replacing the ball finder by

3. a ball appearance model that indicates for a given circle in the image plane
how much it looks like a ball. This links the 2D image circle to the actual
image.

In the data-driven approach the ball finder determines where the ball is and the
camera model computes where the ball should be according to the state. Then
both are compared with the difference indicating the likelihood of the state. In
the global likelihood optimization approach, instead the camera model computes
where the ball should be and then the ball appearance model computes how
“ball-like” the image looks there. The difference is, that now the ball appearance
model, i. e. the computer vision, is inside the optimization loop. Now the lower
layer does not have to commit early to a single image circle, but instead it
gradually assesses different circles in the image as requested by the minimization
algorithm. In this approach, an indistinct ball would get a lower likelihood in 3.
but this could be compensated by 1. and 2. if it fits well to the context of a flying
ball. This mechanism allows the now implicit ball finder to utilize the context
provided by the ball motion and implement the behavior described above.

As a final remark, the provided functionality greatly resembles the priming
mechanism known from psychology [30]. This makes us even more believe that
the approach of a global likelihood optimization directly in the images is an
elegant way to greatly increase robustness of computer vision algorithms.



Fig. 6. Information flow in a ball tracker based on the global likelihood optimization
paradigm (see text). Here, computer vision, i.e. the ball finder, is part of the optimiza-
tion loop (gray box).

4.3 Exploiting Semantic Context

Doubtless, if the goal is to track a flying ball, the ball’s motion model provides
the most valuable context. However, there is other, more semantic information
that could be incorporated to increase robustness. Figure 7 illustrates how a
broader context could help distinguishing the real ball from false responses of
the computer vision. We have constructed this example to illustrate what we
believe could happen. It is not based on real computation.

In a) only the first image I1 is considered (p(ball1|I1)). The computer vi-
sion gives varying responses for different image circles. After applying the nec-
essary threshold needed to give a final result, there are five possible ball lo-
cations in the example, namely the true ball and the player’s head, hands,
and both feet together. The same happens in b), where in the example the
9th image I9 is considered alone (p(ball9|I9)). Now in c) all images I1...9 are
considered together (p(ball9|I1...9,ball model)). The link between the images
is provided by the ball motion model as described in the previous section. In
the example, the player’s head and feet could be ruled out, because their mo-
tion does not correspond to the ball motion model. However, in this exam-
ple, the two hands remain valid hypotheses, because their side-swinging mo-
tion would actual correspond to a distant flying ball. In d), the additional con-



a) p(ball1|I1) b) p(ball9|I9)

c) p(ball9|I1...9, ball model) d) p(ball9|I1...9, ball model, field geometry)

e) p(ball9|I1...9, ball model, field geometry, f) p(ball1|I1...9, ball model, field geometry,
game semantics) game semantics)

Fig. 7. An illustration, how different types of context information could help to dis-
tinguish the real ball from things that look like a ball to the computer vision (see
text).



text of the field geometry is added (p(ball9|I1...9,ball model,field geometry)).
This context makes the player’s right hand being a ball very unlikely, be-
cause from the image position and radius of the circle, the ball would be out-
side of the field. In e), additional information about game semantics is added
p(ball9|I1...9,ball model,field geometry, game semantics). From the game situa-
tion, the system expects the player to kick the ball towards the camera. A ball
flying sideward as the falsely detected left hand is implausible with this con-
text and can be ruled out. Of course, as explained above, once the system has
found a unique ball in image 9, it already knows backwards, via the ball mo-
tion model, which was the correct ball in image 1. This situation is shown in
f) (p(ball1|I1...9,ball model,field geometry, game semantics)). So the system has
already observed the ball for 9 images and can immediately provide a prediction.

How could this example be realized? First of all, using game semantics re-
quires to detect the players, lines and goals to have information about the game
situation. But how could the semantics of soccer be modeled? The classical AI
approach would be to use logic, for instance ontologies to describe a soccer
match. However, typical ontologies, such as OWL [31] express crisp knowledge
in some sort of logic and are difficult to combine with the probabilistic and vague
knowledge discussed in the previous section.

While in the long run modeling a rich and complex semantics, as ontologies
provide, is desirable, probably the first step would be to start with a shallow
semantics that is more easily integrated with probabilistic motion and perception
models. A candidate would be to run a Hidden Markov Model (HMM) [32] for
each player to model the different actions (kicking, running, tackling, etc.) a
player may take, maybe subdivided into different phases. Then one could define
how each phase would affect the players motion and the motion of the ball.
The advantage is that easy algorithms for inference in HMM exist and even
more important that HMM can be well combined with continuous probabilistic
estimation by the Interacting Multiple Model Filter (IMM) [33, §11.6.6].

Overall, it is obvious that modeling the player’s behavior is essential for
understanding a soccer match as a whole and is helpful even for tracking the
ball. However, it is still rather unclear how the required background knowledge
can be modeled in a way that can effectively help a computer vision system.

5 Proposed Experiments

For a vision to become reality, realistic intermediate steps are necessary. It would
not help, if we build a vision system now but then had to wait until a human
level soccer robot is available. So we propose a sequence of experiments that,
without a humanoid robot, ultimately allows to verify that the proposed system
is appropriate for human level soccer (Fig. 8).



Fig. 8. Our proposed experiment: Mount a camera and an inertial sensor on the head
of a human soccer player and use them to extract all the information, a humanoid
soccer robot would need to take the human’s place.

5.1 Helmet Camera with Inertial Sensor

The basic idea is to let a human soccer player wear a helmet with a camera and
an inertial sensor and verify, that the information extracted by the vision system
from the sensor data, would allow a humanoid robot to take the human’s place.

As a first experiment, we propose to record data from a soccer match and
run the vision system on that data offline. Since it is hard to obtain ground-
truth data, we would use our expert’s judgment to assess, whether the result
would be enough for a humanoid robot to play soccer. It is very advantageous to
work on recorded data allowing to reproduce results for debugging and analysis
and to run the system even if it is still not real-time. Overall, it allows to first
concentrate on functionality and robustness instead of computation time and
integration.

We have already conducted a very first experiment [29, 28], where the ball
and the field lines are manually extracted from the recorded images (available
on request). The ball’s trajectory is predicted by least-square estimation using
the likelihood functions 1. and 2., as well as corresponding equations for how
the inertial sensor observes the free motion of the camera (Fig.9). The results
indicate that if the ball can be detected in the image with about one pixel
precision, the prediction would be precise enough. We believe that these kinds
of studies which deliberately discard essential aspects, such as integration, real-
time computation, or autonomy are undervalued by the community who favors
full system approaches. But even from a full system perspective, it is much more
valuable to obtain an extensive result on a subsystem which then can guide the
full system design than to do another increment on a full system.
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Fig. 9. Predicting the trajectory of a flying ball from a moving camera-inertial system.
As an initial study, the ball, the lines, and the goal corners have been manually ex-
tracted from the images. From this data, the trajectory of the ball is predicted (left).
The right plot shows the error of the predicted touchdown point varying over time. It
shows, even though the camera is moving, the prediction is roughly precise enough for
interception.

5.2 Motion Capture Suit

Departing from the experiment above, one might ask whether more sensors are
needed than just camera and inertial. Both human and humanoid robot can
derive their motion from the joint angles. This provides the horizontal motion
(odometry) and the height over ground. The horizontal motion facilitates lo-
calization and the height derived from vision is much less precise. Indeed, we
experienced that the uncertain height is a major part of the error in Fig. 9.

An intriguing idea is to equip the human player with a tracker-less motion
capture suit [34] measuring joint angles. Apart from providing the kinematic
information discussed above, it also provides the trajectory of both feet. If the
player hits the ball, one can compare the predicted ball trajectory with the real
foot trajectory and evaluate the precision. This is important since in such an
experiment, ground truth is not available.

5.3 Virtual Reality Display

The experiments above have the drawback that they are evaluated by an expert
looking at the vision system’s output. The most direct proof that this is all you
need for playing soccer would be to give a human just that output via a head
mounted display and see whether s/he can play.

The approach is of course fascinating and direct, but we have some concerns
regarding safety. Anyway, this experiment becomes relevant only after we are
convinced in principle, that the system is feasible. So this is something to worry
about later.



6 Conclusion

In this position paper, we have outlined the road to a vision system for a human-
robot soccer match. We claim that, since soccer is a structured environment, the
basic techniques are available and the goal could be reached within a decade. The
main challenge will be robustness, which we propose to address by optimizing a
global likelihood function working on a history of raw images. We have outlined
a sequence of experiments to evaluate such a vision system with data from a
camera-inertial system mounted on the head of a human soccer player.

The reason for being confident such a system can be realized within a decade
is the insight that it does not need general common-sense-reasoning AI. This is
good news for the RoboCup 2050 challenge. But it suggests that, even when we
meet that challenge, it does not imply we have realized the dream of a thinking
machine, the whole challenge had started with.

That would not be the first time.
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