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Abstract

This papergrovidestwo contributionsto the prob-
lem of SimultaneouslLocalization and Mapping
(SLAM): First we discusspropertiesof the prob-
lem itself and of the intendedsemanticof an un-

certainmap representationyith the main idea of

“representingcertaintyof relationsdespitethe un-

certaintyof positions”. We proposesomerequire-
mentsanidealsolutionof SLAM shouldhave con-
cerning uncertainty memory spaceand computa-
tion time and discussexisting approachesn the
light of theserequirements.The secondpart pro-
posesarepresentatiobasedn sparsénformation
matricestogetherwith somepropertiesthat moti-

vatethis approach.Thisis shovn to complyto the
uncertaintyand spacerequirements.To derive an
estimatednapfrom therepresentatioa sparsdin-

earequationsystemhasto be solved. However, an
updateof the representatioiitself needsonly con-
stanttime, makingit highly attractve for building

a SLAM algorithm.

1 Intr oduction

Navigationis the"“scienceof gettingships,aircraft, or space-
craft from place to place [Merriam-Websters Collegiate
Dictionary]. It is alsothe scienceof getting mobile robots
from placeto place, a problem that is central to mobile
roboticsandhasbeensubjectto extensive researchin avery
generalsensegvery approachhasto usesomekind of map
first to plan a pathandthento localizethe moving robot by
comparingthe percevedervironmentto the map.

Oftenamanuala-priorimapis used whichis howeverdif-
ficult andexpensve to obtain,makingapproachegavorable,
thatcanbuild their mapautonomouslyFor instanceThrunet
al. [16] report,that obtaininga mapfor a robotictour guide
installationmanuallytook oneweek,whereasuilding amap
autonomouslyook aboutonehour.

In this paperwe discusghe problemof Simultaneoud o-
calizationandMapping (SLAM), which is anonline version
of the mappingproblem. It involvesbuilding, extendingand
improving a mapof the ernvironmentwhile the robotis mov-
ing and simultaneouslylocalizing the robot with respectto
themap.
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The paperconsistsof two parts. The first and larger part
attemptdo “undestandtheintendedsemantic’ of anuncer
tainmaprepresentatioassuggestedy theworkshops main
focus. The key ideais the needto represent certaintyof re-
lations despiteuncertaintyof positions (section2). We try
to addresghe problemby takinganintentionallynaive view,
blinding out its known difficulty. This leadsus to propose
somerequirementsconcerninguncertainty memory space
and computationtime, which anideal solution shouldmeet
(section3). We look at existing approachesn the light of
theserequirementgsectiond4).

The secondpart (section5) proposesa representatiofor
a map that usesinformation matricesto representuncer
tainty. We identify someimportant propertiesof SLAM
which have a counterparin the structureof the information
matrix, therebymotivatingthis approach.

The representatiomeetsthe uncertaintyand memoryre-
quirementsstatedin section3. Updatingthe representation
takesconstantime. This makesit highly attractve to build a
SLAM algorithmbasedn this representation.

2 General Discussion

In this paper we considerSLAM basedon point-shaped
landmarks,which are selectedfeaturesof the ervironment.
Most partsof the discussiorhowever arevalid evenfor non-
landmarkbasedapproachese.g. using evidence-gridsfor
representinghe ervironment(seesubsectiort.2).

Throughoutthe paperwe assumehat the obsened land-
markscanbeidentified,i.e. if alandmarkis obsereda sec-
ondtime, it canberecognizedo bethe very sameasprevi-
ouslyobsened(seesubsectior?.8).

The term “map instance”refersto an assignmenbf co-
ordinatesto the landmarks,whereas'map” refersto an as-
signmenof coordinatesogethemith informationabouttheir
possibly coupleduncertainty A “representation’is a con-
cretedatastructurerepresentinggmap. A “relation” between
asetof landmarkss somepropertylik e distanceangleetc.,
thatdepend®n thelandmarks coordinatedut is invariantto
rigid body movement=f thewhole set. We usethe scenario
shavn in figure 1ato illustratekey ideas.

2.1 Graph of Measurements

SLAM canbeviewedasanestimatiortheoretigproblem.The
parameter$o be estimatedarethe p differentrobot posesat



Figure1: a) The robot startsat the positionindicatedby the triangle - without knowing the building. It movesthroughthe
long oval doorway observingmary landmarksalongtheway. Thenit enterstheroomobservingfour landmarksn theroom’s

cornersandfinally movesbackto thestartposition,re-identifyingbothof the nearbylandmarks.

variouspointsof time andthe positionsof the n landmarks.
The measurementare taken from odometryand landmark
obsenations. A landmarkobsenationyields the position of
the landmarkrelative to the robot’s poseat some point of
time. The odometrydefinesthe relative robot posebetween
two successie pointsof time. We assumeo have ana-priori
modelof the uncertaintyof eachmeasurement.

An importantpropertyis, thatevery measuremerntvolves
only two objects,eachhaving either2 or 3 parametersThus
it is naturalto view thewholesetupasagraphwith therobot’s
posesandthelandmarks positionsbeingnodesandthe mea-
surements$orming edgegfigure 1b).

This representatiogivesa goodintuition for the structure
of the problemby a mechanicabhnalogy:Imaginethe graph
asa trussbuild from bolts as nodesand elasticmetal bars
connectinghe boltsasedges.Let the stiffnessof a bar cor-
respondto the certainty of a measurement.The bolts can
be movedwith respecto eachother whereeasymovement
correspondso uncertainrelationsandhardmovementcorre-
spondgo relationspreciselyknown. Theodometricsequence
canbeviewedasa long thin metalspline,with thelandmark
obsenationbarsconnectedo the spline[7].

2.2 Error Accumulation

If therobotmovesthrougha known ervironment,i.e. by us-
ing an a-priori map, uncertaintyof the robot’'s posecan be
keptlow, aseachobsenation of a landmarkreduceghe un-
certaintydown to the landmarks uncertaintyplusthe uncer
tainty of the obsenation.

However if the robot movesthroughan unknawn region,
the uncertaintyof its posewill getarbitrarily large, because
the odometricerror accumulatesver time (figure 2a). The
uncertaintycanbe reducedy fusingthe odometrywith sev-
eralmeasurementsf anew landmarkasthelandmarkpasses
by (figure 2b). For mostsensorghis producesmuch better
resultsthan using odometryalone[16]. Neverthelessgsti-
matingthe robot’s position after traveling a long distanceis
still subjectto accumulatecerror: dueto the limited sensor
rangethe positionis derived from a chainof severalrelative
landmarkrelations.

For outdoor applicationsthe problemcan be relieved by
usinga compasg11], which is however known not to work
properlyin buildingswhich containlarge amountof steel.

Thefactthaterrorsmayaccumulateo arbitrarily high val-
uesdistinguishesSLAM from mary other estimationprob-
lemsandgivesriseto the problemsdiscussedn sections2.3
and2.6.

b) Graphof measurements

2.3 Representationof Relativity

We believe thatthe dominantaspecbf SLAM is the needto
model “Certainty of RelationsdespiteUncertainty of Posi-
tions”, which we call “representingrelatiity”. In our sce-
nario for instance the poseof the roomwill be quite uncer
tain, while its shapewill bevery certain.

If the robot movesthrougha previously unknowvn region
andobsenesa sequencef landmarksthe precisionof the
relative positionsof thelandmarkslepend®nly onthe mea-
surementerrors of the landmarksby the robot and on the
odometricerror betweenthosemeasurementsSo the most
preciselyknown relationsare thoseconcerningthe relative
locationof adjacentandmarks.

The uncertaintyof the absoluterobot posebeforeobserv-
ing the first landmarkhowever increaseghe uncertaintyof
theabsolutepositionof all landmarksactingasanunknown
rigid bodytransformatioron thewhole setof obseredland-
marks. As the absoluterobot poseis subjectto error accu-
mulation,thecommonsituationis thatrelationsarequitecer
tain, whereasabsolutepositionscanbe arbitrarily uncertain.
In very large mapsthis effect canappearat differentscales:
therelative positionsof somelandmarksn aroomaremuch
more preciselyknown than the position of the roomin the
building, which, seenas a relative position with respectto
otherroomsis in turn much more preciselyknown thanthe
absolutepositionof the building.

Thusa SLAM systemshouldbe ableto representhe cer
tainty of relationsbetweenlandmarksdespitelarge uncer
tainty in the absoluteposition of the landmarks.In particu-
lar, arepresentatiomvhereonly a singleuncertaintyvalueis
assignedo eachlandmarks insufficient.

Although it is theoreticallypossibleto approachabsolute
precisionby repeatingall measurementsften enough(with
the robot’s initial posedefinedto be perfectly known), this
is in generaheitherpracticalnor necessaryasmostapplica-
tionscanbeexclusively basedon relativeinformation: When
navigatingfor instancejt is not necessaryo computetheex-
act trajectoryfrom startto finish in someglobal coordinate
system Pathplanningwill ratherresultin asequencef way-
points. Thelocationof eachwaypointwill beknown relative
to the surroundindandmarks so thatthe robot, knowing its
own poserelative to thoselandmarkswill beableto navigate
from onewaypointto the next.

2.4 ClosingLoops

Let us assumehatthe robot movesalonga closedloop and
returnsto the begin of thatloop, but hasnot yet re-identified
ary landmark,so the latter fact is not known to the robot.
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Figure2: a)Odometricerror
ing theloop by EKF resultsin theroombeingtoo large.

Typically the loop is not closedin the mapdueto the error
accumulateclongtheloop.

Now a landmarkat the begin of the loop is re-identified
andthecorrespondingneasuremerig integratednto themap
causingthe loop to getclosed. To achieve this, the SLAM
systemhasto "deform” the whole loop to incorporatethe
information of a connectionbetweenboth endsof the loop
withoutintroducinga breaksomevhereelse(figure 2c).

This goalis sometimeseferredto asthe mapbeing’topo-
logically consistent” meaningthattwo partsof the mapare
representetb beadjacentf andonly if thiswasobsenedby
therobot. Within alandmarkbasedapproactadjaceng is not
explicitly modeled sotopologicalconsistenyg hasto beinter-
pretedin the sensehattwo landmarksarerepresentetheing
nearto eachother (the distancebeing low with low uncer
tainty), exactly if thiswasobsenedby somemeasurement.

It hasto bestressethatcorrecttreatmentf theuncertainty
containedn the measurementwill implicitly yield the nec-
essarydeformation. More specificallythe preciselyknown
relative location of eachlandmarkwith respectto adjacent
landmarkspreventsary breakin the loop. Becausdf there
wasa break,the relative positionsof the landmarkson both
sidesof the breakwould be highly incorrect,thusbeingin-
consistentwith the measurementmadein thatvicinity. So
the mapestimateconsistentith all measurementautomat-
ically deformssmoothlywhenclosinglargeloops. To retain
this propertyin somemapwhichintegratesall measurements
insteadof storingthemindividually, the representatiomust
beableto “representelativity”.

b) Odometryfusedwith landmarks c)Loopclosedby re-identifyingtwo landmarks d) Clos-

2.5 Maximum Lik elihood Estimation

If we assumendependengaussiamimeasuremergrrorswith

a-priori known covarianceand do not care aboutcomputa-
tion time, SLAM canbe solved in a thoroughbut straight-
forward fashionby leastsquarenonlinearmodelfitting [14,

chapterl5]. Thisis performedby finding the minimum 2 of

thequadraticerrorfunction Q(z):

w() = 3= L@ CR - @), W
Q@) =3 ai(a), & :=argminQ(z), @
Ca= {20 - Q@) <al, @)

with thelandmarkpositionsanddifferentrobotposegorm-
ing theparametevectorz, y; beingthei-th measurement;;
its covarianceand f;(z) beingthe correspondingneasure-
mentequation,i.e. the valuethe measuremenshouldhave
hadif the landmarkand robot poseswere z. Eventhough
fi is nonlinear the minimum & of @ is a maximumlikeli-
hoodestimatorfor the mapinstanceandcanbefoundby the
Levenbeg-Marquard algorithm(figure 2a-chave beencom-
putedthis way). The setC, surroundingz is a confidence
region definingthe map’s uncertaintywith o dependingon
thedesiredevel of confidence.

However, this approachis not a practical solution for
SLAM asit requiresall measurement® be savedandanit-
erationperformedwith severallinear equationsystemgo be
solved eachtime a new measuremeris added.With n land-
marksandp robotposesthistakesO((n + p)*) computation



time. Its invaluablebenefithowever lies in thefactthatit can
provide a referencefor discussionand for comparisorwith
efficientapproaches.

When linearizing the measuremenequationsf;, @ be-
comesquadraticin the parametevector: Q(z) = z¥ Az +
zTb + . Thematrix 4 is calledinformationmatrix. High
entriesin A correspondo preciselyknown relations(seesub-
section2.7).

It is interestingto notethatin the mechanicabnalogyex-
plainedin section2.1thefunction@ correspondso theelas-
tic enegy storedin the system. Finding a maximumlik eli-
hoodsolutionthuscorresponds$o minimizing the elasticen-
ergy, which is just the mechanicabkystems naturalbehaior.
"Closing a loop” canthereforebe interpretediiterally, with
the begin andendof theloop both connectedo the bolt rep-
resentinghere-obseredlandmarkandthe systemsmoothly
deformingto achieve the stateof minimal enegy [7].

2.6 ExtendedKalman Filter

The EKF is the tool most often appliedto SLAM [15] us-
ing the samemeasuremergquationsasfor maximumlik eli-
hood estimation. The EKF integratesall measurementsto
a covariancematrix of the landmarkpositionsandthe actual
robot pose,without having to storeary measurementsfter
wards. For linearmeasuremenmnodelsit neverthelesyields
the maximum likelihood estimate. For nonlinearmeasure-
mentequationswhich appealtin SLAM dueto therobotsro-
tation, the maximality holdsto the extent, that the equation
canbeadequatelyinearized.If aftereachnew measurement
all measurementsould belinearizedat the currentestimate,
theresultwouldbeequialentto thenonlineamaximumlik e-
lihood estimate.With the EKF however, changingthe point
of linearizatiomafterintegratingameasuremeris impossible,
sothe measurementareusuallylinearizedat the estimation
in themomentof thatmeasurement.

As a consequence¢he point of linearizationcan be sig-
nificantly wrong when moving throughan unmappedarea,
since the odometricerror accumulateghereby Especially
therobot's orientationerrorcaneasilyexceed45° in practical
settingsrenderingall linearizationof sin andcos useless.

Theeffectof processinghe examplescenariovith anEKF
insteadof usingmaximumlik elihood estimationis bad (fig-
ure 2d). Startandfinish of the loop do not matchandeven
worse,theroom, althoughpreciselyknown getssignificantly
largerthanbefore. The reasorfor this is the following: The
EKF would have to implicitly move androtatethe room to
male the map consistent.Insteadit performsthis by a rota-
tion linearizingtheangleat O:

) @
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The consequences that the room is larger than beforeand
rotatedby atoo smallangle.
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2.7 Covariancevs. Information Matrix

EKF andleastsquarebecomeequivalent,yielding the same
estimate,when using measuremenequationsthat are lin-
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Figure 3: Relationbetweerthe leastsquareinformationma-
trix A andthe covariancematrix C' usedby the EKF.

earizedattheestimatén themomentof measurementigure
3 shavstherelationbetweerthe EKF’s covariancematrix C
andtheinformationmatrix A usedin linearizedleastsquare,
bothrepresentinghe uncertaintyof the estimate.

Two stochasticallyindependeninformation matricescan
be combinedby simply addingboth. This corresponds$o the
fact, that the information matrix for a setof measurements
is the sumof theinformationmatricesfor eachmeasurement
(2). Integratingtwo independentovariancematricesCt, Cs

is doneby computing(C; ' + 02‘1)_1. Indeedthe EKF can
be seenasa clever way to addthe informationmatrix corre-
spondingo asinglemeasuremerib theinverseof thecovari-
ancematrix, whereactuallyinvertingthe covariancematrixis
avoidedby applicationof theWoodhury formulafor updating
theinverseof a matrix[14, chapter2.7].

The main differencebetweeninformation and covariance
matrix liesin therepresentationf indirectrelations.Assume
thattherobotis atposeP1observingandmarkL1l andmoves
to P2,observingL2. The measurementdirectly definerela-
tionsP1-L1,P1-P2,P2-L2,indirectly constitutinga relation
L1-L2. The covariancematrix explicitly storesthis relation
in the off-diagonalentriescorrespondindo L1-L2, whereas
theinformationmatrix doesnot.

ThusA is sparsehaving non-zerooff-diagonalentriesonly
for thosepairs of parametersvhich areinvolvedin a com-
mon measurementThe inverseA~! is the covariancema-
trix for the positionsof the landmarksand all robot poses.
A~1 representall indirectrelationsexplicitly andis thusnot
sparse. Remwing the rows and columnscorrespondingo
old robot posesyields the covariancematrix C' of the EKF.
Its inverseC 1! is theinformationmatrix of all landmarkpo-
sitionsandthe actualrobotpose.However, the inverseis not
thecorrespondingubmatrixof A4, aseliminatingall old robot
posedrom A requirescomputingtheirimplicit effectonrela-
tionsbetweerthe otherparameterdy the Schurcomplement
which destrgs sparsity



2.8 Landmark ldentification

Throughouthepapemwe assumehattheobsenedlandmarks
canbeidentified. Thisis avery difficult but highly important
problem,sincefor instancetheeventof closingaloopis only
evidentfrom there-identificationof somelandmarks.There
aresomeapproachethattake advantageof tightly integrating
mappingandidentification[1]. Indeedthe uncertaintyinfor-
mation from the map can be usedto supportidentification
[13]. Howeverit is oftena goodideato separatdoth,asthe
SLAM problemcan be formulatedrelatively independently
of the sensoraised,whereadandmarkidentificationusually
depend$eaily onthem.

2.9 Local vs. Global Structure

It canbe obsenred that thereis a qualitative differencebe-
tweenlocal and global structuresof SLAM, i.e. between
relationsof neighboringand of distantlandmarks. Roughly
speakingthe local uncertaintyis small but complex andde-
pendson the actualobsenation, whereasthe global uncer

tainty is large,rathersimpleanddominatedy the map's ge-
ometry We will clarify thisin thefollowing:

The measurementshemseles define independentrela-
tions betweenlandmarksand robot poses. For somesen-
sors(laserrangefinder)the sameuncertaintycanbe assumed
for eachmeasurementHowever for mary sensorghe un-
certaintydependson the distance(stereovision) or is even
infinite in onedimension(monovision).

The covariancematrix of a set of landmarksgenerated
by measurementfrom a single robot pose consistsof an
independenuncertaintyfor eachlandmarkdescribedby a
(block) diagonalmatrix D; plus a correlatedrank 3 uncer
tainty Jz-C,-JiT with J; beingthe measurementacobiarwith
respecto the robot poseand C; the covarianceof the robot
pose.Thelatteris generatedby theuncertairrigid bodytrans-
form on the setof landmarkshat originatesfrom the uncer
tainrobotpose.If asetof landmarkss obsenedfrom several
robotposesheresultingmatrix Cota1 Canbeexpressedising
the Woodhury formula:

C—l

total —

Z (D; + J;C;JF)™t (6)
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Thetermin the secondsumis a symmetricpositive definite
rank 3 matrix with row- / column-spacequalto the column
spaceof D{lJ,-. As in generalthe D; and J; aredifferent,
theoverallsumcanhave upto full rank. This correspond$o
quite comple correlationsbetweenthe differentlandmarks
thatheavily dependbnthe uncertaintieof the differentmea-
surementeindon whetheralandmarkis obsenedfrom acer
tain robotpose. The situationis similar if the differentrobot
posesarerelatedby uncertainodometricmeasurements.

To seethe uncertaintystructureof globalrelations,we as-
sign suitably spacedeferencdramesto the whole mapand
male the plausibleassumptionthat the effect of the local
uncertaintystructurecanbeapproximatedy anuncertairre-
lation betweenadjacentreferenceframes(figure 4). Let us
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Figure4: Globaluncertaintygeneratedy the uncertaintyin
edgee with node0 definedto be the coordinateorigin.

first considera mapcontainingno loop with anarbitraryref-
erenceramedefinedto bethe origin. Theresultinggraphof
relationswill beatree,i.e. containingno circles.Eachedgee
dividesthe graphinto two parts,wherethe uncertaintyof the
edgeaffectsonly thatpartthatdoesnot containthe origin. If
all relationsexcepte were exact, the dominanterror would
be an uncertainrotation arounde combinedwith an uncer
tain but muchsmallertranslation.This effectintroduceshigh
correlationsboth betweendifferentframesand betweenthe
framespositionandorientation.

The total uncertaintyis roughly the sum of theseeffects
for all edges in themap. Thegenerakaseof amapcontain-
ing loops canbe understoody removing one edgeof each
resultingcirclesin the graph. The uncertaintyof the origi-
nal graphequalsthe uncertaintyof the resultinggraphcon-
strainedby the additionalinformationof theremovededges.
We canconcludethatthe globaluncertaintyis dominatedoy
themap'sgeometryandis muchlargerthanthecomplex local
uncertainty This conclusionjustifiesour original assumption
aboutthe approximatiorof local uncertainty

The maintargetof SLAM is modelingglobal uncertainty
but often representatiof local uncertaintyis necessaryo
supportlandmarkidentificationor allow taskplanningbased
on objectsrepresenteth themap.

3 Requirementsfor an Ideal Solution

In this sectionwe postulatesomepropertiesa SLAM solu-

tion shouldhave. They are basedon anintentionally naive

view of the problem,blinding out its apparentifficulty, but

askinghow mappingshouldwork basedon acommonsense
understandingf maps. The intentionis both to clarify the

discussionof existing approache# section4 andto make

themotivationfor our researchmoreexplicit.

R1: Bounded Uncertainty: Theuncertaintywith
which anyrelationis representedn themapshould
not be mud larger than the minimal uncertainty
that could be theoretically derivedfrom the mea-
surements.

Thispostulatds quitegeneralsayingthatif somethingcan
beknown from themeasuremenis shouldatleastroughlybe
representeth the map. Consistentlyapproximatingsomere-
lationsfor the sale of efficiency is acceptabldo the extend,
to which relationsget slightly lessprecise,but not if loos-
ing all or almostall informationaboutcertainrelations.This
includesthe ability to representelatiity, asmary relations
canbeknown preciselyfrom themeasurementspnotrepre-
sentingonewould violate the principle stated.As explained



above,representingelativity impliesto beableto closelarge
loopsachiering topologicallyconsistenmaps.

R2: Linear Memory Size Thememorysizeof a
mapthatcoversalarge areashouldbelinearin the
numberof landmarkg(O(n)).

The soundnessf this postulatecanbe seenfrom the fol-
lowing example: Imaginea building consistingof two parts,
X and ), being connectednly by a few doorways. Then
the map of the whole building consistsof the map of both
partsplus someinformationconcerningthe connectionsaand
shouldthushave a sizeonly slightly largerthanthe sizeof a
mapof X plusthesizeof amapof V.

It is worth notingthatsimply storingall measurementsill
not meet(R2), sincethe memorysizeis proportionalto the
numberof measurementsot to the numberof landmarks.
Thusthe map's sizewould grow evenif repeatedlymoving
throughthe samearea.

R3: Linear Update Cost Incorporating a mea-
surementinto a map covering a large area should
have a computationalcost at mostlinear in the
numberof landmarkg(O(n)).

This postulatds moredifficult to justify thanthe preceed-
ing ones:Let usassumehatthe samesettingasabove holds,
with ameasurememadein X'. At firstthemeasuremeritas
to be incorporatednto the mapof X, taking the known ef-
fect of ) onthe connectionbetweent and} into account.
Thenthe effect of theseconnectiononto ) mustbe com-
puted. This is equivalentto incorporatingseveral measure-
mentsconcerningthe connectionsnto the mapof . How-
ever, the computatiorcanbe deferreduntil therobotactually
enters), sharingthe computationatostwith all othermea-
surementghat generateeffects on the connectionsand have
to beintegrateduntil then.As thenumberof landmarksn the
connectionss small,this shouldtake notmoretime permea-
surementthan incorporatingthe original measuremeninto
themapof X, atleastfor largemaps.

Sothetotal costfor integratinga measuremerinto a map
containingX’ and) shouldnot be largerthanthe costof in-
tegratingit into X' plusthe costfor integratingit into ), thus
beinglinearin the numberof landmarks.

(R1) stateghatthe mapshallrepresennearlyall informa-
tion containedn the measurementshusbindingthe mapto
reality. Theotherpostulatesegardefficiencgy, requiringlinear
spaceandtime consumptionAll asymptoticstatementbave
to beinterpretedwith respecto a mapnot only consistingof
anincreasinghumberof landmarksbut coveringanincreas-
ing largearea.We think thisis essentialbecaus@bove acer
tain scalea map consistsof weakly coupledparts,whereas
below thatscalecouplingis muchstrongerandmorecompli-
catedandwe think not suitableto a O(n) solution (section
2.9). The mostimportantpostulatefrom a practicalpoint of
view is (R3), limiting theamountof time spenton eachmea-
surement.

4 RelatedWork

The problemof Simultaneous ocalizationandMappinghas
found considerablénterestin the mobile robotics commu-

nity for more thana decadewith first works reachingback
to the mid 80s[3]. Two mainideasevolvedwith the funda-
mentalwork of Smith, Self and Cheesemal5] and Elfes
[5]. Thelatteris to representhe ervironmentby an aligned
grid of smallelementssimilar to pixelsin animage.Thefirst
approachs to extractfeaturescalledlandmarksthatarede-
scribedby geometricaparametergusuallyposition).

4.1 Landmark basedApproaches

Most landmarkbasedapproachegemploy a statisticalview.
They treattherobot’s poseandthe positionsof all landmarks
asa statevectorandmaintainanestimatewith corresponding
covariancematrix usingthe EKF equationdor updating[15;
2; 9; 10]. Due to the Kalman filter being sound,doing so
is consistentand representsll information available to the
extentthatlinearizationof the measuremerfunctionis ade-
quate thusmeeting(R1). Thebiggestdravbackis the O (n?)
sizeof thecovariancematrixandthe O(n?) permeasurement
costfor maintainingit. This clearlyviolates(R2-R3).

Several researcherdhave divided the ervironment into
submapswith a fixed numberof landmarksk, executingan
EKF on each[11]. This reducesthe spacerequirementgo
O(nk) = O(n) andthe computationatostto O(k?) = O(1)
per landmark,thus meeting(R2) and (R3). However, not
representingorrelationsbetweensubmapst all, is like not
representingorrelationshetweerlandmarksonly onalarger
scaleandresultsin notbeingableto representelativity or to
closeloopsonthatscale violating (R1).

Recently impressve progresshasbeenmadeby Guivant
and Nebot, with the “CompressedSLAM Algorithm” [8].
This allows to usea small EKF of the currentactive submap
for accumulatingall obsenationsof the submaps & land-
marks,with O(k?) costper obsenation. Whenleaving the
submapthewholeinformationis transferedo a global EKF
with computationatostO (kn?). Theresultis identicalto in-
tegratingevery measuremernhto theglobalEKF. Performing
theupdatein abackgroungrocessieldsO(k? + %nz) cost
if m landmarkobsenationsare madein eachsubmap.With
m > k, thisis muchbetterthanplain EKF, but faraway from
beinglinear Furtherreductionof the computationakostis
achievedby employing a "relative map” with eachlandmark
beingrepresentedy its relative locationto a pair of reference
landmarks This makesall non-referencéandmarkdasically
decoupledcandallows to apply anupdateschemehatconsis-
tently ignoressomeof the correlationsreducingthe costto

O(k?n) pertransferor equivalentlyto O (k2 + ’jn—zn) permea-
surementthusmeeting(R3).

This approachis much less conserative than [11].
Whether(R1)holdsin astrictsensénasto besubjeciof athor-
oughanalysis.Themostcritical cas€for submagpbasedepre-
sentationss anadjacenpairof landmarkswith veryprecisely
known relative locationbelongingto differentsubmaps.

Lu andMilios [12] avoid the O(n?) storagespaceover-
headof the covariancematrix by storinga graphof relations
betweenrobot poses. They estimate“globally consistent”
posesby applying non-linearleastsquare having to solve a
O(p) sizedlinearequationssystemeachtime an estimateof
the mapis desired(p = numberof robot poses)which takes



O(p?). Thiscanbereducedo O(p?) by usingasparsenatrix
solverif the covariancematrix is notrequired.The approach
doesnot satisfy(R2), sinceit permanentlystoresevery robot
posehaving a memoryconsumptiorof O(p). Thisis notlin-
earin the sizeof the map, but grows if the robotrepeatedly
movesthroughthesamearea.

Golfarelli et al. [7] andDuckett et. al [4] build a graphof
relationsbetweercertain‘places”(in [7] called“landmarks”)
insteadof robot posesand landmarks. Using placesas ba-
sic entitieson the one handdoesnot representocal uncer
tainty structure.On the otherhandit allows to immediately
integratemeasurementsetweerthesameplaceshusachie/-
ing linear storagespace(R2). (R1) is metasfar asglobal
uncertaintyis concerned. Duckett et al. employ a relax-
ation schemeequialentto one Gauss-Seideiteration after
eachmeasuremento avoid the O(n?) (by exploiting spar
sity) costof equationsolving. This is a clever way of meet-
ing (R3), sincenormally eachmeasuremerngroducesnly a
smallchangen themap.Howeverwhenclosingaloop asin-
gle measuremerttasa large effect on the whole mapwhich
resultsin mary iterationsnecessargndis presumablsignif-
icantly slower thanutilizing a direct equationsolver, which
areknownto bemuchfastethanGauss-Seideteration. Gol-
farelli etal. applyanupdateprocedurébasedonthe mechan-
ical analogywith parameterizabléradeoff betweencompu-
tationtime andupdateaccurag.

To avoid storing correlationswithout loosing consisteny,
Uhlmanetal. usecovarianceintersection17]. Howeverdue
to assigninga singleindividual uncertaintymeasureo each
landmark their approackcannotrepresentelativity andthus
is not compliantwith (R1).

In previous work [6], we have build a graphlike the one
shawvn in figure 1b with theedgegepresentingelationswith
uncertaintysimilar to covarianceintersection.We employed
a mechanismo keepthe numberof representedobot poses
low andthusachiezedavery compactepresentatiomeeting
(R1) and(R2) andtreatingeven all nonlinearitiesconsera-
tively.

4.2 DenseApproaches

A consequengxtensionof representingmapsby evidence
gridsis to representincertaintyby grid basedprobability dis-
tributions. Eachgrid elementrepresentsin eventand stores
the probability for thatevent. The greatestadvantageof this
approachs beingableto storearbitrary evenmultimodaldis-
tributions,thusfor instancerepresentingambiguousdentifi-
cations.Thecomputationatosthoweveris exponentiain the
numberof dimensionslimiting themto 3 or 4. Representing
a joint distribution of all robot posesor even of all mapin-
stancessin the covariancebasedapproaches notfeasible.

Thrunet al. [1] solve this problemby building the map
from possiblyoverlapping‘patches’eachdescribedy anev-
idencegrid anda distribution of the poseof that patchin the
map. Thedistribution of the differentpatchesareassumedo
be independentWhile the robotmoves,theraw sensomata
(ultrasonic)is integratedinto a new patchevery 5m.

To achieve global consisteny, the grids arealignedby an
Expectation-Maximizatiomlgorithmmodifiedby ananneal-

ing techniqueto avoid local minima. In the E-stepdistribu-

tionsfor therobotposedasedntheactualmapinstanceare
estimatedlike Markov Localization).In the M-stepdistribu-

tionsfor the posef thepatchedasedntheestimatedobot
posesare computed. The resultis modified by an anneal-
ing parameted € [0..1] which performsa smoothtransition
from estimatingdistributionsto maximumlik elihoodestima-
tion (like normally doneby the EM algorithm). The process
is iteratedwith decreasing until convergenceis achieved.

The algorithmexhibits impressve behaior beingableto
construcamapevenfrom verynoisyandlow resolutionrmea-
surementdik e that producedby ultrasonicsonar It doesnot
requireary landmarkor placeto be identified, sinceidenti-
fication is implicitly performedby the E-stepwith ambigu-
ousidentificationyielding multimodaldistributions. This is
a clearbreakthroughsincesonardatais usuallyso bad,that
it is very hardto derive ary reliablelandmarkinformationor
evenidentify alandmarkfrom it.

The drawback of the algorithm is its computationalex-
penseandtheassumptiorof independencbetweertheposes
of differentpatchesthatdoesnotallow to representelativity
above patchscale,which is necessaryor large maps. Al-
togetherthe approachs very differentfrom landmarkbased
SLAM andthusdifficult to compare.

A possibleway of treatingdenseervironmentrepresenta-
tions with a methodologysimilar to landmarkbasedSLAM
is thefollowing accordingto Lu andMilios [12]: Eachrobot
poseis associateavith a singlelaserscarthathasbeentaken
from that pose. If two scanscaover an overlappingregion of
the ervironment,the relationbetweernthetwo corresponding
robotposesanbeestimatedy comparinghem. Theresult-
ing graphof relative poseconstraintanbe treatedjust like
thatappearingn landmarkbasedSLAM.

5 Proposingthe Useof an Information Matrix

As can be seenfrom the discussionabove, thereis a large
discrepang betweenwhat one would think a SLAM solu-
tion should provide and the actual performanceof current
approachesOn the otherhand,at leastthe corerepresenta-
tionsof mostapproachearemuchmoregenerathanactually
needed For instanceEKF canhandlearbitrarymeasurement
equationscovariancematricescanrepresenary linearrela-
tion betweervariablesandmaximumlik elihoodcanbeused
for evenmore generalproblems. Thuswe think that SLAM
hassomespecificpropertieghatarenot utilized yet andthat
couldbeakey in meetingthe proposedequirements.

In whatfollowswe presentisetof propertiesve haveiden-
tified anda representatiothat makesuseof them. The rep-
resentatiormeetsrequirementg¢R1), (R2) andwith somere-
strictions(R3).

Our approachis to achieve memory and time efficiency
by representinghe landmarkuncertaintiesvith a sparsema-
trix. SLAM covariancematricesare seldomsparsewhereas
the informationmatrix A, usedin linearizedleastsquareis
sparse.The problemis however, thatwhenstoringall robot
posesthe dimensionof the matrix will grow unboundedyi-
olating (R1), while eliminatingold robotposesby the Schur
complementlestrys sparsity
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Figure5: “Cutting” the odometricsequencéy duplicating
a robot posewith all correspondindandmarkobsenations.
Eliminating the robot posesof the resultingtwo partsyields
two densebut smallmatrix blocksinsteadof onelargedense
block whennot cutting beforeelimination.

To avoid this dilemma,we make a consistengpproxima-
tion. The sequencef odometricmeasurements “cut” into
piecesconnectedsia sharedandmarkg(figure 5). Eliminat-
ing now therobotposedor asinglepiecedestrysthesparsity
only of the submatrixof involvedlandmarks.Thisintroduces
only asmalldenseblockinto thewholematrix, which overall
remainssparse.

Cutting the odometrysequenceés doneby duplicatinga
robot posetogetherwith all landmarkobsenationstaken at
thatpose.Eachcopy belongsto onepiece. To presere con-
sisteng, the covarianceof the landmarkobsenationis dou-
bled. The resultingsystemwould be equivalentto the origi-
nal onewhenaddingthe information,thatboth copiesof the
robot poseare exactly equal. The error introducedby not
addingthatinformationdepend®n the precisionwith which
thatposeis definedby the landmarkobsenationsalone(fig-
ureb). Usinglargerpiecesesultsin lesserror, but theresult-
ing denseblock will belargerandthusthewhole matrix less
sparse.

After cutting the odometrysequencehe information ma-
trix for a single pieceis computed. Eliminating all robot
posesby the Schurcomplemenintroducesoff-diagonalen-
tries but only betweerthe involvedlandmarks.Thusthe re-
sulting matrix consistsof a small denseblock with 0 every-
whereelse(figure 6). Thereforethe integrationof a piece-
which meando addits informationmatrixto 4 - doesnode-
stroy the sparsityof A andcanbe donein computatiortime
independenfrom the numberof landmarks.This procedure
doesnot sacrificeinformationexceptthatlost dueto cutting.

As canbeseenfrom theabove discussionmaintainingthe
representatiosanbe donevery efficiently. Extractinginfor-
mationlik e estimatinga mapinstancerequiresto solve alin-
earequationsystemwith A. Thisis theremainingchallenge
consideringcomputationaéfficiency.

An effective methodfor maintainingan estimatednapin-
stanceis to usean iterative equationsolver like conjugated
gradients[14, chapter2.7]. As the map estimatenormally
doesnot changerapidly oneiteration per measuremenuill
suffice. More stepsareonly neededf alargeloopis closed.
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Figure6: Matrix operationperformedwhencuttingthe odo-
metric sequencento two pieces. The original matrix is the
informationmatrix of L1-L12 andP1-P8.P4is duplicatedo-
gethemwith its landmarkobsenations cuttingtheinformation
by 2 to maintainconsisteng. Theresultis the sumof two in-
dependeninformationmatricesrepresentindpoth parts. Ap-
plying the Schurcomplemento eachyieldsmatricescontain-
ing asmalldenseblock. The sumof thoseblocksis a sparse
informationmatrix of thelandmarksositions.

In thefollowing we discusghepropertiegshatmotivatethis
approachP1-P3)or thatwe think canbe exploitedto further
speedup equationsolving (P3,P4):

P1: Odometric Scale Thee exists a distance
(“odometric scale”) above which the uncertainty
of odometryis significantlyhigherthan of relocal-
izing with respecto knownlandmarks.

In generathisis clearfrom thefactthatodometryaccumu-
lateserror, whereasletermininga posefrom landmarkobser
vationsdoesnot. For typical mobilerobotstherelocalization
erroris 0.1m and3°, which is comparabldo the odometric
erroraftermoving 2m. Sothe odometricscaleis = 3..6m.

This propertyyields that our approximationis compliant
with (R1). The odometricscaledefinesthe minimum length
for theodometricpieceshatdoesnotintroducetoo muchad-
ditionalerrorcomparedo theaccumulate@dometricakrror.

P2: SparseRelations Thenumberof landmarks
thatcanbeobservedn contet with a certainland-
markis constantandsmall.

For every possiblerobot pose,all landmarksout a few are
eitheroccludedor out of sensorrange. This andthefactthat
therobotmovescontinouslyarethereasondgor this property

PropertiegP1)and(P2)togetherimply thatwhencutting
the whole odometrysequencento pieces,only a constant
numberof landmarkswill appearin the sameblock asa cer
tain landmark. Thusthe whole information matrix remains
sparsecontaininga numberof non-zeroentrieslinearin the
numberof landmarksandmeeting(R2).

This further implies that oneiteration of conjugategradi-
entsneeddineartime, sincethe dominatingoperationof one



stepis computinga matrix vectorproduct. If the application
only needsan estimatednapinstancewithout having easily
accessibleincertaintyinformation,(R3) is met.

P3: Areaof Interest All of thetimetheonlyrele-
vantlandmarksarethosein thevicinity of therobot.
This subsethangesslowly and predictably except
whenclosinglarge circles.

Dueto limited sensorangeandocclusion,only landmarks
in the vicinity of the robotcanbe obsenedandusedfor lo-
calization.Distantlandmarkscould beinvolvedin pathplan-
ning, but with a map that might changeat any moment, it
is desirableto useonly thoserelationsthat are known pre-
cisely Thisis entirely possible,asdiscussedn section2.3,
justifying this property All submapbasedapproacheandes-
peciallycompresse&LAM [8] utilize it, althoughin general
theareaof interestconstitutegathersomethindik e a sliding
window thana setof submaps.

P4: Decomposability Anylarge mapcanbe split
into partswith a smallshaedboundary

This propertyholdsfor ary planarsurface,with theshared
boundariedength being at most proportionalto the square
root of the areaof the surface. For large indoor mapsthe
lengthcanbe madeeven smaller asit suficesto cuta small
numberof doorways.

To speedup equationsolving, one could divide the setof
landmarksnto partsdecomposinghe matrix A accordingly
For ary non-zeroentrya;; thelandmarkscorrespondingo ¢
andj mustberepresenteih a commonsubmatrixof A. So
somelandmarkswill be representedh seseral submatrices,
makingthe decompositionesseffective.

By constructiona;; # 0 holdsonly if the corresponding
landmarkscanboth be obsened with the robot moving less
thanthe odometricscale.Togethemwith (P4),this meanghat
only a smallfraction of the landmarkswill be sonearto the
boundarythatthey canbe involvedin a densematrix block
togethemwith somelandmarkfrom the otherside.

6 Conclusion

In this paperwe have discussedheintendedsemanticof an
uncertainmap representationiogetherwith the structureof
the SLAM problemitself. We have identifiedsomeintuitive
requirementsvhich a SLAM solutionshouldmeet. We con-
jecturedthatthe discrepang betweertheserequirementsand
currentapproachess dueto not exploiting somekey proper
tiesof SLAM andproposed setof propertiesascandidates.

We describean uncertainty representatiorthat utilizes
thesepropertiesto meetthe proposedincertaintyand mem-
ory requirementsTo derive anestimatefrom it, a sparsdin-
earequationsystemmustbe solved. However updatingthe
representatioitself takesonly constantime.

Our currentresearchs addressinghe problemof building
a completeSLAM algorithmusingthe proposedepresenta-
tion. Herethe mostimportantpoint will beto utilize SLAM
propertiedfor efficiently solvingthe appearingequationsys-
tems.As ourrepresentatiohasconstantipdatetime, achiev-
ing lineartime for equationsolving would completelyfulfill
all proposedequirements.
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