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Abstract

Thispapersprovidestwo contributionsto theprob-
lem of SimultaneousLocalization and Mapping
(SLAM): First we discusspropertiesof the prob-
lem itself andof the intendedsemanticsof an un-
certainmap representation,with the main ideaof
“representingcertaintyof relationsdespitetheun-
certaintyof positions”. We proposesomerequire-
mentsanidealsolutionof SLAM shouldhavecon-
cerninguncertainty, memoryspaceand computa-
tion time and discussexisting approachesin the
light of theserequirements.The secondpart pro-
posesa representationbasedon sparseinformation
matricestogetherwith somepropertiesthat moti-
vatethis approach.This is shown to complyto the
uncertaintyandspacerequirements.To derive an
estimatedmapfrom therepresentationasparselin-
earequationsystemhasto besolved. However, an
updateof the representationitself needsonly con-
stanttime, makingit highly attractive for building
a SLAM algorithm.

1 Intr oduction
Navigationis the“scienceof gettingships,aircraft, or space-
craft from place to place” [Merriam-Webster’s Collegiate
Dictionary]. It is also the scienceof getting mobile robots
from place to place, a problem that is central to mobile
roboticsandhasbeensubjectto extensiveresearch.In a very
generalsense,every approachhasto usesomekind of map
first to plan a pathandthento localizethe moving robot by
comparingtheperceivedenvironmentto themap.

Oftenamanuala-priorimapis used,which is howeverdif-
ficult andexpensive to obtain,makingapproachesfavorable,
thatcanbuild theirmapautonomously. For instanceThrunet
al. [16] report,thatobtaininga mapfor a robotic tour guide
installationmanuallytookoneweek,whereasbuilding amap
autonomouslytook aboutonehour.

In this paperwe discusstheproblemof SimultaneousLo-
calizationandMapping(SLAM), which is anonlineversion
of themappingproblem.It involvesbuilding, extendingand
improving a mapof theenvironmentwhile therobot is mov-
ing andsimultaneouslylocalizing the robot with respectto
themap.

The paperconsistsof two parts. The first and larger part
attemptsto “understandtheintendedsemantics” of anuncer-
tainmaprepresentationassuggestedby theworkshop’smain
focus. Thekey ideais theneedto represent“certaintyof re-
lations despiteuncertaintyof positions” (section2). We try
to addresstheproblemby takinganintentionallynaiveview,
blinding out its known difficulty. This leadsus to propose
somerequirements,concerninguncertainty, memoryspace
andcomputationtime, which an ideal solutionshouldmeet
(section3). We look at existing approachesin the light of
theserequirements(section4).

The secondpart (section5) proposesa representationfor
a map that usesinformation matricesto representuncer-
tainty. We identify some important propertiesof SLAM
which have a counterpartin the structureof the information
matrix, therebymotivatingthisapproach.

The representationmeetsthe uncertaintyandmemoryre-
quirementsstatedin section3. Updatingthe representation
takesconstanttime. This makesit highly attractive to build a
SLAM algorithmbasedon this representation.

2 GeneralDiscussion
In this paper, we considerSLAM basedon point-shaped
landmarks,which are selectedfeaturesof the environment.
Most partsof thediscussionhoweverarevalid evenfor non-
landmarkbasedapproaches,e.g. using evidence-gridsfor
representingtheenvironment(seesubsection4.2).

Throughoutthe paperwe assumethat the observed land-
markscanbe identified,i.e. if a landmarkis observeda sec-
ond time, it canberecognizedto be the very sameasprevi-
ouslyobserved(seesubsection2.8).

The term “map instance”refersto an assignmentof co-
ordinatesto the landmarks,whereas“map” refersto an as-
signmentof coordinatestogetherwith informationabouttheir
possiblycoupleduncertainty. A “representation”is a con-
cretedatastructurerepresentingamap.A “relation” between
a setof landmarksis somepropertylike distance,angle,etc.,
thatdependson thelandmark’scoordinatesbut is invariantto
rigid bodymovementsof thewholeset.We usethescenario
shown in figure1ato illustratekey ideas.

2.1 Graph of Measurements
SLAM canbeviewedasanestimationtheoreticproblem.The
parametersto be estimatedarethe � differentrobot posesat
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Figure1: a) The robot startsat the position indicatedby the triangle- without knowing the building. It movesthroughthe
long oval doorwayobservingmany landmarksalongtheway. Thenit enterstheroomobservingfour landmarksin theroom’s
cornersandfinally movesbackto thestartposition,re-identifyingbothof thenearbylandmarks. b) Graphof measurements

variouspointsof time andthe positionsof the � landmarks.
The measurementsare taken from odometryand landmark
observations. A landmarkobservationyields the positionof
the landmarkrelative to the robot’s poseat somepoint of
time. The odometrydefinesthe relative robot posebetween
two successivepointsof time. Weassumeto haveana-priori
modelof theuncertaintyof eachmeasurement.

An importantpropertyis, thateverymeasurementinvolves
only two objects,eachhaving either2 or 3 parameters.Thus
it is naturalto view thewholesetupasagraphwith therobot’s
posesandthelandmark’spositionsbeingnodesandthemea-
surementsformingedges(figure1b).

This representationgivesa goodintuition for thestructure
of theproblemby a mechanicalanalogy:Imaginethegraph
as a trussbuild from bolts as nodesand elasticmetal bars
connectingthe boltsasedges.Let the stiffnessof a barcor-
respondto the certaintyof a measurement.The bolts can
be movedwith respectto eachother, whereeasymovement
correspondsto uncertainrelationsandhardmovementcorre-
spondsto relationspreciselyknown. Theodometricsequence
canbeviewedasa long thin metalspline,with thelandmark
observationbarsconnectedto thespline[7].

2.2 Err or Accumulation

If therobotmovesthrougha known environment,i.e. by us-
ing an a-priori map, uncertaintyof the robot’s posecan be
kept low, aseachobservationof a landmarkreducesthe un-
certaintydown to the landmark’s uncertaintyplus theuncer-
tainty of theobservation.

However if the robot movesthroughan unknown region,
the uncertaintyof its posewill get arbitrarily large,because
the odometricerror accumulatesover time (figure 2a). The
uncertaintycanbereducedby fusingtheodometrywith sev-
eralmeasurementsof anew landmarkasthelandmarkpasses
by (figure 2b). For mostsensorsthis producesmuchbetter
resultsthan usingodometryalone[16]. Nevertheless,esti-
matingthe robot’s positionafter traveling a long distanceis
still subjectto accumulatederror: dueto the limited sensor
rangethepositionis derivedfrom a chainof several relative
landmarkrelations.

For outdoorapplicationsthe problemcan be relieved by
usinga compass[11], which is however known not to work
properlyin buildingswhichcontainlargeamountof steel.

Thefactthaterrorsmayaccumulateto arbitrarilyhighval-
uesdistinguishesSLAM from many other estimationprob-
lemsandgivesriseto theproblemsdiscussedin sections2.3
and2.6.

2.3 Representationof Relativity

We believe that thedominantaspectof SLAM is theneedto
model “Certainty of RelationsdespiteUncertaintyof Posi-
tions”, which we call “representingrelativity”. In our sce-
nario for instance,the poseof the room will be quite uncer-
tain,while its shapewill beverycertain.

If the robot movesthrougha previously unknown region
andobservesa sequenceof landmarks,the precisionof the
relativepositionsof thelandmarksdependsonly on themea-
surementerrorsof the landmarksby the robot and on the
odometricerror betweenthosemeasurements.So the most
preciselyknown relationsare thoseconcerningthe relative
locationof adjacentlandmarks.

The uncertaintyof the absoluterobot posebeforeobserv-
ing the first landmarkhowever increasesthe uncertaintyof
theabsolutepositionof all landmarks,actingasanunknown
rigid bodytransformationon thewholesetof observedland-
marks. As the absoluterobot poseis subjectto error accu-
mulation,thecommonsituationis thatrelationsarequitecer-
tain, whereasabsolutepositionscanbe arbitrarily uncertain.
In very large mapsthis effect canappearat differentscales:
therelative positionsof somelandmarksin a roomaremuch
more preciselyknown than the position of the room in the
building, which, seenas a relative position with respectto
otherroomsis in turn muchmorepreciselyknown thanthe
absolutepositionof thebuilding.

Thusa SLAM systemshouldbeableto representthecer-
tainty of relationsbetweenlandmarksdespitelarge uncer-
tainty in the absolutepositionof the landmarks.In particu-
lar, a representationwhereonly a singleuncertaintyvalueis
assignedto eachlandmark,is insufficient.

Although it is theoreticallypossibleto approachabsolute
precisionby repeatingall measurementsoften enough(with
the robot’s initial posedefinedto be perfectly known), this
is in generalneitherpracticalnor necessary, asmostapplica-
tionscanbeexclusively basedonrelative information:When
navigatingfor instance,it is notnecessaryto computetheex-
act trajectoryfrom start to finish in someglobal coordinate
system.Pathplanningwill ratherresultin asequenceof way-
points.Thelocationof eachwaypointwill beknown relative
to thesurroundinglandmarks,so that the robot,knowing its
own poserelativeto thoselandmarks,will beableto navigate
from onewaypointto thenext.

2.4 ClosingLoops

Let us assumethat the robot movesalonga closedloop and
returnsto thebegin of that loop, but hasnot yet re-identified
any landmark,so the latter fact is not known to the robot.
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Figure2: a)Odometricerror b)Odometryfusedwith landmarks c) Loopclosedby re-identifyingtwo landmarks d)Clos-
ing theloop by EKF resultsin theroombeingtoo large.

Typically the loop is not closedin the mapdueto the error
accumulatedalongtheloop.

Now a landmarkat the begin of the loop is re-identified
andthecorrespondingmeasurementis integratedinto themap
causingthe loop to get closed. To achieve this, the SLAM
systemhas to ”deform” the whole loop to incorporatethe
informationof a connectionbetweenboth endsof the loop
without introducinga breaksomewhereelse(figure2c).

Thisgoalis sometimesreferredto asthemapbeing”topo-
logically consistent”,meaningthat two partsof the mapare
representedto beadjacentif andonly if this wasobservedby
therobot.Within alandmarkbasedapproachadjacency is not
explicitly modeled,sotopologicalconsistency hasto beinter-
pretedin thesensethat two landmarksarerepresentedbeing
nearto eachother (the distancebeing low with low uncer-
tainty),exactly if this wasobservedby somemeasurement.

It hasto bestressedthatcorrecttreatmentof theuncertainty
containedin the measurementswill implicitly yield thenec-
essarydeformation. More specificallythe preciselyknown
relative location of eachlandmarkwith respectto adjacent
landmarkspreventsany breakin the loop. Becauseif there
wasa break,the relative positionsof the landmarkson both
sidesof the breakwould be highly incorrect,thusbeingin-
consistentwith the measurementsmadein that vicinity. So
themapestimateconsistentwith all measurementsautomat-
ically deformssmoothlywhenclosinglargeloops. To retain
thispropertyin somemapwhich integratesall measurements
insteadof storingthemindividually, the representationmust
beableto “representrelativity”.

2.5 Maximum Lik elihood Estimation
If we assumeindependentgaussianmeasurementerrorswith
a-priori known covarianceand do not careaboutcomputa-
tion time, SLAM canbe solved in a thoroughbut straight-
forward fashionby leastsquarenonlinearmodelfitting [14,
chapter15]. This is performedby finding theminimum �� of
thequadraticerrorfunction ��� ��� :	�
 � ���
���� ��� 
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with thelandmarkpositionsanddifferentrobotposesform-
ing theparametervector � , � 
 beingthe E -th measurement,� 

its covarianceand ��
 � ��� being the correspondingmeasure-
mentequation,i.e. the value the measurementshouldhave
had if the landmarkand robot poseswere � . Even though� 
 is nonlinear, the minimum �� of � is a maximumlikeli-
hoodestimatorfor themapinstanceandcanbefoundby the
Levenberg-Marquardt algorithm(figure2a-chavebeencom-
putedthis way). The set

6 7
surrounding �� is a confidence

region defining the map’s uncertaintywith A dependingon
thedesiredlevel of confidence.

However, this approachis not a practical solution for
SLAM asit requiresall measurementsto besavedandanit-
erationperformedwith several linearequationsystemsto be
solvedeachtime a new measurementis added.With � land-
marksand� robotposes,this takes FG���H�JI �5��K�� computation



time. Its invaluablebenefithowever lies in thefactthatit can
provideL a referencefor discussionand for comparisonwith
efficientapproaches.

When linearizing the measurementequations� 
 , � be-
comesquadraticin the parametervector: �=� �����M� �;N � I� �PO IRQ . The matrix N is calledinformationmatrix. High
entriesin N correspondto preciselyknown relations(seesub-
section2.7).

It is interestingto notethat in themechanicalanalogyex-
plainedin section2.1 thefunction � correspondsto theelas-
tic energy storedin the system. Finding a maximumlikeli-
hoodsolutionthuscorrespondsto minimizing theelasticen-
ergy, which is just themechanicalsystem’s naturalbehavior.
”Closing a loop” can thereforebe interpretedliterally, with
thebegin andendof theloop bothconnectedto thebolt rep-
resentingthere-observedlandmarkandthesystemsmoothly
deformingto achievethestateof minimal energy [7].

2.6 ExtendedKalman Filter
The EKF is the tool most often appliedto SLAM [15] us-
ing thesamemeasurementequationsasfor maximumlikeli-
hoodestimation.The EKF integratesall measurementsinto
a covariancematrix of the landmarkpositionsandtheactual
robotpose,without having to storeany measurementsafter-
wards.For linearmeasurementmodelsit neverthelessyields
the maximumlikelihood estimate. For nonlinearmeasure-
mentequations,which appearin SLAM dueto therobotsro-
tation, the maximality holds to the extent, that the equation
canbeadequatelylinearized.If aftereachnew measurement
all measurementscouldbelinearizedat thecurrentestimate,
theresultwouldbeequivalentto thenonlinearmaximumlike-
lihood estimate.With the EKF however, changingthepoint
of linearizationafterintegratingameasurementis impossible,
so themeasurementsareusuallylinearizedat theestimation
in themomentof thatmeasurement.

As a consequencethe point of linearizationcan be sig-
nificantly wrong when moving throughan unmappedarea,
since the odometricerror accumulatesthereby. Especially
therobot’sorientationerrorcaneasilyexceedSUT-V in practical
settingsrenderingall linearizationsof W 132 and X%YZW useless.

Theeffectof processingtheexamplescenariowith anEKF
insteadof usingmaximumlikelihoodestimationis bad(fig-
ure 2d). Startandfinish of the loop do not matchandeven
worse,theroom,althoughpreciselyknown getssignificantly
larger thanbefore.The reasonfor this is the following: The
EKF would have to implicitly move androtatethe room to
make the mapconsistent.Insteadit performsthis by a rota-
tion linearizingtheangleat0:[ �]\ �0�_^ X&YZW�\ � W 132 \W 132 \ X&YDW`\ba (4)[ �c\ �edgf�h�5i ^ � � \\ � a �kj � Il\5mon [ � *p, Xrq *p2 \ � (5)

The consequenceis that the room is larger thanbeforeand
rotatedby a too smallangle.

2.7 Covariance vs. Inf ormation Matrix
EKF andleastsquarebecomeequivalent,yielding the same
estimate,when using measurementequationsthat are lin-
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Figure3: Relationbetweenthe leastsquareinformationma-
trix N andthecovariancematrix � usedby theEKF.

earizedattheestimatein themomentof measurement.Figure
3 shows therelationbetweentheEKF’s covariancematrix �
andtheinformationmatrix N usedin linearizedleastsquare,
bothrepresentingtheuncertaintyof theestimate.

Two stochasticallyindependentinformationmatricescan
becombinedby simply addingboth. This correspondsto the
fact, that the informationmatrix for a set of measurements
is thesumof theinformationmatricesfor eachmeasurement
(2). Integratingtwo independentcovariancematrices� �  !� m
is doneby computing s ������ I �����mMt ��� . Indeed,theEKF can
beseenasa clever way to addthe informationmatrix corre-
spondingto asinglemeasurementto theinverseof thecovari-
ancematrix,whereactuallyinvertingthecovariancematrix is
avoidedby applicationof theWoodbury formulafor updating
theinverseof a matrix [14,chapter2.7].

The main differencebetweeninformationandcovariance
matrix lies in therepresentationof indirectrelations.Assume
thattherobotis atposeP1observinglandmarkL1 andmoves
to P2,observingL2. Themeasurementsdirectly definerela-
tions P1-L1,P1-P2,P2-L2, indirectly constitutinga relation
L1-L2. The covariancematrix explicitly storesthis relation
in the off-diagonalentriescorrespondingto L1-L2, whereas
theinformationmatrix doesnot.

Thus N is sparse,having non-zerooff-diagonalentriesonly
for thosepairsof parameterswhich are involved in a com-
mon measurement.The inverse N ��� is the covariancema-
trix for the positionsof the landmarksand all robot poses.N ��� representsall indirectrelationsexplicitly andis thusnot
sparse. Removing the rows and columnscorrespondingto
old robot posesyields the covariancematrix � of the EKF.
Its inverse� ��� is theinformationmatrix of all landmarkpo-
sitionsandtheactualrobotpose.However, theinverseis not
thecorrespondingsubmatrixof N , aseliminatingall old robot
posesfrom N requirescomputingtheir implicit effectonrela-
tionsbetweentheotherparametersby theSchurcomplement
which destroyssparsity.



2.8 Landmark Identification
Throughoutthepaperweassumethattheobservedlandmarks
canbeidentified.This is averydifficult but highly important
problem,sincefor instance,theeventof closingaloopis only
evident from there-identificationof somelandmarks.There
aresomeapproachesthattakeadvantageof tightly integrating
mappingandidentification[1]. Indeedtheuncertaintyinfor-
mation from the map can be usedto supportidentification
[13]. However it is oftena goodideato separateboth,asthe
SLAM problemcanbe formulatedrelatively independently
of thesensorsused,whereaslandmarkidentificationusually
dependsheavily on them.

2.9 Local vs. Global Structur e
It can be observed that thereis a qualitative differencebe-
tween local and global structuresof SLAM, i.e. between
relationsof neighboringandof distantlandmarks.Roughly
speaking,the local uncertaintyis smallbut complex andde-
pendson the actualobservation, whereasthe global uncer-
tainty is large,rathersimpleanddominatedby themap’sge-
ometry. We will clarify this in thefollowing:

The measurementsthemselves define independentrela-
tions betweenlandmarksand robot poses. For somesen-
sors(laserrangefinder)thesameuncertaintycanbeassumed
for eachmeasurement.However for many sensorsthe un-
certaintydependson the distance(stereovision) or is even
infinite in onedimension(monovision).

The covariancematrix of a set of landmarksgenerated
by measurementsfrom a single robot poseconsistsof an
independentuncertaintyfor eachlandmarkdescribedby a
(block) diagonalmatrix u 
 plus a correlatedrank 3 uncer-
tainty v 
w�@
 v �
 with v 
 beingthemeasurementJacobianwith
respectto the robot poseand � 
 the covarianceof the robot
pose.Thelatteris generatedby theuncertainrigid bodytrans-
form on thesetof landmarksthatoriginatesfrom theuncer-
tainrobotpose.If asetof landmarksis observedfrom several
robotposestheresultingmatrix �"x�y�xcz�{ canbeexpressedusing
theWoodbury formula: �����xcy�x�z|{ � # 
 ��u 
 IBv 
]�@
 v �
 � �}� (6)� # 
 u �}�
 � # 
 ��u ���
 v 
 � � � 
 IBv �
 u �}�
 v 
 � �}� �cu ���
 v 
 � � (7)

The term in the secondsumis a symmetricpositive definite
rank3 matrix with row- / column-spaceequalto thecolumn
spaceof u �}�
 v 
 . As in generalthe u 
 and v 
 aredifferent,
theoverall sumcanhave up to full rank. This correspondsto
quite complex correlationsbetweenthe different landmarks
thatheavily dependon theuncertaintiesof thedifferentmea-
surementsandonwhethera landmarkis observedfrom acer-
tain robotpose.Thesituationis similar if thedifferentrobot
posesarerelatedby uncertainodometricmeasurements.

To seetheuncertaintystructureof globalrelations,we as-
sign suitablyspacedreferenceframesto the whole mapand
make the plausibleassumption,that the effect of the local
uncertaintystructurecanbeapproximatedby anuncertainre-
lation betweenadjacentreferenceframes(figure 4). Let us

e0

Figure4: Globaluncertaintygeneratedby theuncertaintyin
edge~ with node � definedto bethecoordinateorigin.

first considera mapcontainingno loop with anarbitraryref-
erenceframedefinedto betheorigin. Theresultinggraphof
relationswill beatree,i.e. containingnocircles.Eachedge~
dividesthegraphinto two parts,wheretheuncertaintyof the
edgeaffectsonly thatpart thatdoesnot containtheorigin. If
all relationsexcept ~ wereexact, the dominanterror would
be an uncertainrotationaround ~ combinedwith an uncer-
tainbut muchsmallertranslation.Thiseffect introduceshigh
correlationsboth betweendifferent framesandbetweenthe
framespositionandorientation.

The total uncertaintyis roughly the sum of theseeffects
for all edges~ in themap.Thegeneralcaseof amapcontain-
ing loopscanbe understoodby removing oneedgeof each
resultingcircles in the graph. The uncertaintyof the origi-
nal graphequalsthe uncertaintyof the resultinggraphcon-
strainedby theadditionalinformationof theremovededges.
We canconclude,thattheglobaluncertaintyis dominatedby
themap’sgeometryandis muchlargerthanthecomplex local
uncertainty. Thisconclusionjustifiesouroriginalassumption
abouttheapproximationof localuncertainty.

Themain targetof SLAM is modelingglobaluncertainty,
but often representationof local uncertaintyis necessaryto
supportlandmarkidentificationor allow taskplanningbased
on objectsrepresentedin themap.

3 Requirementsfor an Ideal Solution
In this sectionwe postulatesomepropertiesa SLAM solu-
tion shouldhave. They arebasedon an intentionallynaive
view of theproblem,blinding out its apparentdifficulty, but
askinghow mappingshouldwork basedon a commonsense
understandingof maps. The intention is both to clarify the
discussionof existing approachesin section4 and to make
themotivationfor our researchmoreexplicit.

R1: Bounded Uncertainty: Theuncertaintywith
which anyrelationis representedin themapshould
not be much larger than the minimal uncertainty
that could be theoretically derivedfrom the mea-
surements.

Thispostulateis quitegeneral,sayingthatif somethingcan
beknownfrom themeasurementsit shouldat leastroughlybe
representedin themap.Consistentlyapproximatingsomere-
lationsfor the sake of efficiency is acceptableto theextend,
to which relationsget slightly lessprecise,but not if loos-
ing all or almostall informationaboutcertainrelations.This
includesthe ability to representrelativity, asmany relations
canbeknown preciselyfrom themeasurements,sonot repre-
sentingonewould violate theprinciplestated.As explained



above,representingrelativity impliesto beableto closelarge
loops� achieving topologicallyconsistentmaps.

R2: Linear Memory Size: Thememorysizeof a
mapthatcoversa largeareashouldbelinear in the
numberof landmarks( FG�H� � ).

The soundnessof this postulatecanbe seenfrom the fol-
lowing example: Imaginea building consistingof two parts,�

and � , being connectedonly by a few doorways. Then
the map of the whole building consistsof the map of both
partsplussomeinformationconcerningtheconnectionsand
shouldthushave a sizeonly slightly largerthanthesizeof a
mapof

�
plusthesizeof a mapof � .

It is worthnotingthatsimplystoringall measurementswill
not meet(R2), sincethe memorysizeis proportionalto the
numberof measurementsnot to the numberof landmarks.
Thusthe map’s sizewould grow even if repeatedlymoving
throughthesamearea.

R3: Linear Update Cost: Incorporating a mea-
surementinto a mapcoveringa large area should
have a computationalcost at most linear in the
numberof landmarks( FG�H� � ).

This postulateis moredifficult to justify thanthepreceed-
ing ones:Let usassumethatthesamesettingasaboveholds,
with ameasurementmadein

�
. At first themeasurementhas

to be incorporatedinto the mapof
�

, taking the known ef-
fect of � on the connectionbetween

�
and � into account.

Then the effect of theseconnectionsonto � must be com-
puted. This is equivalent to incorporatingseveral measure-
mentsconcerningthe connectionsinto the mapof � . How-
ever, thecomputationcanbedeferreduntil therobotactually
enters� , sharingthecomputationalcostwith all othermea-
surementsthat generateeffectson the connectionsandhave
to beintegrateduntil then.As thenumberof landmarksin the
connectionsis small,thisshouldtakenotmoretimepermea-
surementthan incorporatingthe original measurementinto
themapof

�
, at leastfor largemaps.

Sothetotal costfor integratinga measurementinto a map
containing

�
and � shouldnot be larger thanthecostof in-

tegratingit into
�

plusthecostfor integratingit into � , thus
beinglinearin thenumberof landmarks.

(R1) statesthatthemapshallrepresentnearlyall informa-
tion containedin themeasurements,thusbindingthemapto
reality. Theotherpostulatesregardefficiency, requiringlinear
spaceandtimeconsumption:All asymptoticstatementshave
to beinterpretedwith respectto a mapnot only consistingof
an increasingnumberof landmarksbut coveringan increas-
ing largearea.Wethink this is essential,becauseaboveacer-
tain scalea mapconsistsof weakly coupledparts,whereas
below thatscalecouplingis muchstrongerandmorecompli-
catedandwe think not suitableto a FG�H� � solution(section
2.9). Themostimportantpostulatefrom a practicalpoint of
view is (R3), limiting theamountof time spenton eachmea-
surement.

4 RelatedWork
Theproblemof SimultaneousLocalizationandMappinghas
found considerableinterestin the mobile roboticscommu-

nity for more thana decadewith first works reachingback
to the mid 80s[3]. Two main ideasevolvedwith the funda-
mentalwork of Smith, Self and Cheeseman[15] and Elfes
[5]. The latter is to representtheenvironmentby analigned
grid of smallelementssimilar to pixelsin animage.Thefirst
approachis to extract featurescalledlandmarks,thatarede-
scribedby geometricalparameters(usuallyposition).

4.1 Landmark basedApproaches
Most landmarkbasedapproachesemploy a statisticalview.
They treattherobot’sposeandthepositionsof all landmarks
asastatevectorandmaintainanestimatewith corresponding
covariancematrix usingtheEKF equationsfor updating[15;
2; 9; 10]. Due to the Kalman filter being sound,doing so
is consistentand representsall informationavailable to the
extent that linearizationof themeasurementfunction is ade-
quate,thusmeeting(R1). Thebiggestdrawbackis the FG��� m �
sizeof thecovariancematrixandthe FG��� m � permeasurement
costfor maintainingit. This clearlyviolates(R2-R3).

Several researchershave divided the environment into
submapswith a fixed numberof landmarks� , executingan
EKF on each[11]. This reducesthe spacerequirementstoFG�H��� �"� FG�H� � andthecomputationalcostto FG�]� m �"� FG� � �
per landmark,thus meeting(R2) and (R3). However, not
representingcorrelationsbetweensubmapsat all, is like not
representingcorrelationsbetweenlandmarksonly ona larger
scaleandresultsin notbeingableto representrelativity or to
closeloopson thatscale,violating (R1).

Recently, impressive progresshasbeenmadeby Guivant
and Nebot, with the “CompressedSLAM Algorithm” [8].
This allows to usea smallEKF of thecurrentactive submap
for accumulatingall observationsof the submap’s � land-
marks,with FG�c� m � costper observation. When leaving the
submap,thewholeinformationis transferedto a globalEKF
with computationalcost FG�c�8� m � . Theresultis identicalto in-
tegratingeverymeasurementinto theglobalEKF. Performing
theupdatein abackgroundprocessyields FG�c� m I��� � m � cost
if � landmarkobservationsaremadein eachsubmap.With����� , this is muchbetterthanplainEKF, but farawayfrom
being linear. Furtherreductionof the computationalcost is
achievedby employing a ”relative map” with eachlandmark
beingrepresentedby its relativelocationto apairof reference
landmarks.Thismakesall non-referencelandmarksbasically
decoupledandallows to applyanupdateschemethatconsis-
tently ignoressomeof the correlations,reducingthe cost toFG�c� m � � pertransferor equivalentlyto FG�c� m I �&�� � � permea-
surement,thusmeeting(R3).

This approach is much less conservative than [11].
Whether(R1)holdsin astrictsensehasto besubjectof athor-
oughanalysis.Themostcritical casefor submapbasedrepre-
sentationsis anadjacentpairof landmarkswith veryprecisely
known relative locationbelongingto differentsubmaps.

Lu andMilios [12] avoid the FG�H� m � storagespaceover-
headof thecovariancematrix by storinga graphof relations
betweenrobot poses. They estimate“globally consistent”
posesby applyingnon-linearleastsquare,having to solve aFG� �5� sizedlinearequationssystemeachtime anestimateof
themapis desired(� = numberof robotposes),which takes



FG� ��Kg� . Thiscanbereducedto FG� � m � by usingasparsematrix
solver� if thecovariancematrix is not required.Theapproach
doesnot satisfy(R2),sinceit permanentlystoresevery robot
posehaving a memoryconsumptionof FG� �>� . This is not lin-
earin the sizeof the map,but grows if the robot repeatedly
movesthroughthesamearea.

Golfarelli et al. [7] andDuckett et. al [4] build a graphof
relationsbetweencertain“places”(in [7] called“landmarks”)
insteadof robot posesand landmarks. Using placesasba-
sic entitieson the onehanddoesnot representlocal uncer-
tainty structure.On the otherhandit allows to immediately
integratemeasurementsbetweenthesameplacesthusachiev-
ing linear storagespace(R2). (R1) is met as far as global
uncertaintyis concerned. Duckett et al. employ a relax-
ation schemeequivalent to one Gauss-Seideliteration after
eachmeasurementto avoid the FG�H� m � (by exploiting spar-
sity) costof equationsolving. This is a clever way of meet-
ing (R3), sincenormallyeachmeasurementproducesonly a
smallchangein themap.Howeverwhenclosinga loopasin-
gle measurementhasa largeeffect on the wholemapwhich
resultsin many iterationsnecessaryandis presumablysignif-
icantly slower thanutilizing a direct equationsolver, which
areknown to bemuchfasterthanGauss-Seideliteration.Gol-
farelli et al. applyanupdateprocedurebasedon themechan-
ical analogywith parameterizabletradeoff betweencompu-
tationtimeandupdateaccuracy.

To avoid storingcorrelationswithout loosingconsistency,
Uhlmanet al. usecovarianceintersection[17]. Howeverdue
to assigninga singleindividual uncertaintymeasureto each
landmark,their approachcannotrepresentrelativity andthus
is not compliantwith (R1).

In previous work [6], we have build a graphlike the one
shown in figure1b with theedgesrepresentingrelationswith
uncertaintysimilar to covarianceintersection.We employed
a mechanismto keepthenumberof representedrobotposes
low andthusachievedaverycompactrepresentationmeeting
(R1) and(R2) andtreatingeven all nonlinearitiesconserva-
tively.

4.2 DenseApproaches
A consequentextensionof representingmapsby evidence
gridsis to representuncertaintyby grid basedprobabilitydis-
tributions. Eachgrid elementrepresentsan eventandstores
theprobability for thatevent. Thegreatestadvantageof this
approachis beingableto storearbitrary, evenmultimodaldis-
tributions,thusfor instancerepresentingambiguousidentifi-
cations.Thecomputationalcosthoweveris exponentialin the
numberof dimensions,limiting themto 3 or 4. Representing
a joint distribution of all robot posesor even of all mapin-
stancesasin thecovariancebasedapproachesis not feasible.

Thrun et al. [1] solve this problemby building the map
from possiblyoverlapping“patches”eachdescribedby anev-
idencegrid anda distribution of theposeof thatpatchin the
map.Thedistributionof thedifferentpatchesareassumedto
be independent.While the robotmoves,theraw sensordata
(ultrasonic)is integratedinto a new patchevery5m.

To achieve globalconsistency, the gridsarealignedby an
Expectation-Maximizationalgorithmmodifiedby ananneal-

ing techniqueto avoid local minima. In the E-stepdistribu-
tionsfor therobotposesbasedon theactualmapinstanceare
estimated(likeMarkov Localization).In theM-stepdistribu-
tionsfor theposesof thepatchesbasedontheestimatedrobot
posesare computed. The result is modified by an anneal-
ing parameter����� ����� �&� which performsa smoothtransition
from estimatingdistributionsto maximumlikelihoodestima-
tion (like normallydoneby theEM algorithm). Theprocess
is iteratedwith decreasing� until convergenceis achieved.

The algorithmexhibits impressive behavior beingable to
constructamapevenfromverynoisyandlow resolutionmea-
surementslike thatproducedby ultrasonicsonar. It doesnot
requireany landmarkor placeto be identified,sinceidenti-
fication is implicitly performedby the E-stepwith ambigu-
ousidentificationyielding multimodaldistributions. This is
a clearbreakthrough,sincesonardatais usuallysobad,that
it is very hardto deriveany reliablelandmarkinformationor
evenidentify a landmarkfrom it.

The drawback of the algorithm is its computationalex-
penseandtheassumptionof independencebetweentheposes
of differentpatches,thatdoesnotallow to representrelativity
above patchscale,which is necessaryfor large maps. Al-
togethertheapproachis very differentfrom landmarkbased
SLAM andthusdifficult to compare.

A possibleway of treatingdenseenvironmentrepresenta-
tions with a methodologysimilar to landmarkbasedSLAM
is thefollowing accordingto Lu andMilios [12]: Eachrobot
poseis associatedwith a singlelaserscanthathasbeentaken
from that pose. If two scanscover an overlappingregion of
theenvironment,therelationbetweenthetwo corresponding
robotposescanbeestimatedby comparingthem.Theresult-
ing graphof relative poseconstraintscanbe treatedjust like
thatappearingin landmarkbasedSLAM.

5 Proposingthe Useof an Inf ormation Matrix
As can be seenfrom the discussionabove, thereis a large
discrepancy betweenwhat one would think a SLAM solu-
tion shouldprovide and the actualperformanceof current
approaches.On the otherhand,at leastthe corerepresenta-
tionsof mostapproachesaremuchmoregeneralthanactually
needed.For instanceEKF canhandlearbitrarymeasurement
equations,covariancematricescanrepresentany linear rela-
tion betweenvariablesandmaximumlikelihoodcanbeused
for evenmoregeneralproblems.Thuswe think thatSLAM
hassomespecificpropertiesthatarenot utilized yet andthat
couldbeakey in meetingtheproposedrequirements.

In whatfollowswepresentasetof propertieswehaveiden-
tified anda representationthatmakesuseof them. Therep-
resentationmeetsrequirements(R1), (R2) andwith somere-
strictions(R3).

Our approachis to achieve memoryand time efficiency
by representingthelandmarkuncertaintieswith a sparsema-
trix. SLAM covariancematricesareseldomsparse,whereas
the informationmatrix N , usedin linearizedleastsquareis
sparse.The problemis however, thatwhenstoringall robot
poses,thedimensionof thematrix will grow unbounded,vi-
olating (R1), while eliminatingold robotposesby theSchur
complementdestroyssparsity.
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Figure 5: “Cutting” the odometricsequenceby duplicating
a robot posewith all correspondinglandmarkobservations.
Eliminating the robot posesof the resultingtwo partsyields
two densebut smallmatrix blocksinsteadof onelargedense
blockwhennot cuttingbeforeelimination.

To avoid this dilemma,we make a consistentapproxima-
tion. Thesequenceof odometricmeasurementsis “cut” into
piecesconnectedvia sharedlandmarks(figure 5). Eliminat-
ingnow therobotposesfor asinglepiecedestroysthesparsity
only of thesubmatrixof involvedlandmarks.This introduces
only asmalldenseblock into thewholematrix,whichoverall
remainssparse.

Cutting the odometrysequenceis doneby duplicatinga
robot posetogetherwith all landmarkobservationstaken at
thatpose.Eachcopy belongsto onepiece.To preserve con-
sistency, the covarianceof the landmarkobservation is dou-
bled. The resultingsystemwould beequivalentto theorigi-
nal onewhenaddingtheinformation,thatbothcopiesof the
robot poseare exactly equal. The error introducedby not
addingthatinformationdependson theprecisionwith which
thatposeis definedby the landmarkobservationsalone(fig-
ure5). Usinglargerpiecesresultsin lesserror, but theresult-
ing denseblock will belargerandthusthewholematrix less
sparse.

After cutting the odometrysequencethe informationma-
trix for a single piece is computed. Eliminating all robot
posesby the Schurcomplementintroducesoff-diagonalen-
triesbut only betweenthe involvedlandmarks.Thusthe re-
sulting matrix consistsof a small denseblock with � every-
whereelse(figure 6). Thereforethe integrationof a piece-
whichmeansto addits informationmatrix to N - doesnode-
stroy thesparsityof N andcanbedonein computationtime
independentfrom thenumberof landmarks.This procedure
doesnot sacrificeinformationexceptthatlostdueto cutting.

As canbeseenfrom theabovediscussion,maintainingthe
representationcanbedonevery efficiently. Extractinginfor-
mationlike estimatinga mapinstancerequiresto solve a lin-
earequationsystemwith N . This is theremainingchallenge
consideringcomputationalefficiency.

An effective methodfor maintaininganestimatedmapin-
stanceis to usean iterative equationsolver like conjugated
gradients[14, chapter2.7]. As the map estimatenormally
doesnot changerapidly oneiterationper measurementwill
suffice. More stepsareonly neededif a largeloop is closed.
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Figure6: Matrix operationperformed,whencuttingtheodo-
metric sequenceinto two pieces.The original matrix is the
informationmatrixof L1-L12 andP1-P8.P4is duplicatedto-
getherwith its landmarkobservations,cuttingtheinformation
by 2 to maintainconsistency. Theresultis thesumof two in-
dependentinformationmatricesrepresentingbothparts.Ap-
plying theSchurcomplementto eachyieldsmatricescontain-
ing a smalldenseblock. Thesumof thoseblocksis a sparse
informationmatrixof thelandmarkspositions.

In thefollowingwediscussthepropertiesthatmotivatethis
approach(P1-P3)or thatwe think canbeexploitedto further
speedup equationsolving(P3,P4):

P1: Odometric Scale: There exists a distance
(“odometric scale”) above which the uncertainty
of odometryis significantlyhigher thanof relocal-
izingwith respectto knownlandmarks.

In generalthis is clearfrom thefactthatodometryaccumu-
lateserror, whereasdeterminingaposefrom landmarkobser-
vationsdoesnot. For typical mobilerobotstherelocalization
error is �8� � m and � V , which is comparableto the odometric
erroraftermoving

�
m. Sotheodometricscaleis �+������� m.

This propertyyields that our approximationis compliant
with (R1). Theodometricscaledefinestheminimumlength
for theodometricpiecesthatdoesnot introducetoomuchad-
ditionalerrorcomparedto theaccumulatedodometricalerror.

P2: SparseRelations: Thenumberof landmarks
thatcanbeobservedin context with a certainland-
markis constantandsmall.

For every possiblerobotpose,all landmarksbut a few are
eitheroccludedor out of sensorrange.This andthefact that
therobotmovescontinouslyarethereasonsfor this property.

Properties(P1)and(P2)together, imply thatwhencutting
the whole odometrysequenceinto pieces,only a constant
numberof landmarkswill appearin thesameblock asa cer-
tain landmark. Thus the whole informationmatrix remains
sparsecontaininga numberof non-zeroentrieslinear in the
numberof landmarksandmeeting(R2).

This further implies that oneiterationof conjugategradi-
entsneedslineartime,sincethedominatingoperationof one



stepis computinga matrix vectorproduct. If theapplication
only needsan estimatedmapinstancewithout having easily
accessibleuncertaintyinformation,(R3) is met.

P3: Ar eaof Inter est: All of thetimetheonly rele-
vantlandmarksarethosein thevicinityof therobot.
Thissubsetchangesslowlyandpredictably, except
whenclosinglargecircles.

Dueto limited sensorrangeandocclusion,only landmarks
in the vicinity of the robot canbe observedandusedfor lo-
calization.Distantlandmarkscouldbeinvolvedin pathplan-
ning, but with a map that might changeat any moment,it
is desirableto useonly thoserelationsthat areknown pre-
cisely. This is entirely possible,asdiscussedin section2.3,
justifying thisproperty. All submapbasedapproachesandes-
peciallycompressedSLAM [8] utilize it, althoughin general
theareaof interestconstitutesrathersomethinglike a sliding
window thana setof submaps.

P4: Decomposability: Anylarge mapcanbesplit
into partswith a smallsharedboundary.

Thispropertyholdsfor any planarsurface,with theshared
boundarieslength being at most proportionalto the square
root of the areaof the surface. For large indoor mapsthe
lengthcanbemadeevensmaller, asit sufficesto cut a small
numberof doorways.

To speedup equationsolving,onecoulddivide the setof
landmarksinto partsdecomposingthematrix N accordingly.
For any non-zeroentry � 
�� the landmarkscorrespondingto E
and � mustberepresentedin a commonsubmatrixof N . So
somelandmarkswill be representedin several submatrices,
makingthedecompositionlesseffective.

By construction� 
��B�� � holdsonly if the corresponding
landmarkscanboth be observedwith the robot moving less
thantheodometricscale.Togetherwith (P4),this meansthat
only a small fractionof the landmarkswill besonearto the
boundarythat they canbe involved in a densematrix block
togetherwith somelandmarkfrom theotherside.

6 Conclusion
In this paperwe havediscussedtheintendedsemanticsof an
uncertainmap representationtogetherwith the structureof
theSLAM problemitself. We have identifiedsomeintuitive
requirementswhich a SLAM solutionshouldmeet.We con-
jecturedthatthediscrepancy betweentheserequirementsand
currentapproachesis dueto not exploiting somekey proper-
tiesof SLAM andproposeda setof propertiesascandidates.

We describean uncertainty representationthat utilizes
thesepropertiesto meettheproposeduncertaintyandmem-
ory requirements.To deriveanestimatefrom it, a sparselin-
earequationsystemmustbe solved. However updatingthe
representationitself takesonly constanttime.

Our currentresearchis addressingtheproblemof building
a completeSLAM algorithmusingthe proposedrepresenta-
tion. Herethemostimportantpoint will be to utilize SLAM
propertiesfor efficiently solvingtheappearingequationsys-
tems.As our representationhasconstantupdatetime,achiev-
ing linear time for equationsolvingwould completelyfulfill
all proposedrequirements.
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