
Noname manuscript No.
(will be inserted by the editor)

A SLAM Overview from a User’s Perspective

Udo Frese · René Wagner · Thomas Röfer

Received: date / Accepted: date

Abstract This paper gives a brief overview on the Si-
multaneous Localization and Mapping (SLAM) prob-

lem from the perspective of using SLAM for an applica-

tion as opposed to the common view in SLAM research

papers that focus on investigating SLAM itself.

We discuss different ways of using SLAM with in-

creasing difficulty: for creating a map prior to opera-

tion, as a black-box localization system, and for pro-

viding a growing online map during operation.

We also discuss the common variants of SLAM based

on 2-D evidence grids, 2-D pose graphs, 2-D features,

3-D visual features, and 3-D pose graphs together with

their pros and cons for applications. We point to imple-
mentations available on the Internet and give advice on

which approach suits which application from our expe-

rience.

Keywords SLAM · localization · navigation

1 Introduction

Navigation is the “science of getting ships, aircraft, or

spacecraft from place to place” (Merriam-Webster’s Col-

legiate Dictionary). It is also the science of getting mo-
bile robots from place to place, a problem that is central

This work has been partly supported under DFG grant
SFB/TR 8 Spatial Cognition and BMBF grant 01IS09044B.

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH,
Enrique-Schmidt-Str. 5, 28359 Bremen
Tel.: +49-421-218-64207
E-mail: udo.frese@dfki.de

Universität Bremen
Enrique-Schmidt-Str. 5, 28359 Bremen

Fig. 1 What is Simultaneous Localization and Mapping
(SLAM)? A robot observes the environment relative to its own
unknown pose. Also, the relative motion of the robot is measured.
From this input, a SLAM algorithm computes estimates of the
robot’s pose and of the geometry of the environment. In the ex-
ample illustrated here, a camera on a robot measures the relative
position of artificial features on the floor (light lines), while the
sensor’s motion is provided by the robot’s odometry (light ar-
rows). The output is the robot’s pose (dark, circled arrow below
the robot) and the global position of each feature (dark crosses).

to mobile robotics and has been subject to extensive re-

search. According to Leonard and Durrant-Whyte [22]

this involves answering the three questions “Where am

I ”, “Where am I going?” and “How do I get there?”.

SLAM, i.e., the Simultaneous Localization and Map-

ping problem, aims at a fully autonomous answer to the

question “Where am I?” by providing an autonomously

built map. Figure 1 illustrates what SLAM is about.
A robot observes the environment relative to itself. We

call the system robot for simplicity, in principle it could

also be a sensor that is somehow moved around. If the



2

environment was known the robot’s pose (position and

orientation) could be derived from this information.

This is called localization. Conversely, if the robot’s pose

was known one could aggregate sensor readings corre-

sponding to features in the environment in a global ref-
erence frame. This is called mapping. Now, in general,

neither the environment nor the robot’s pose is known

but both must be estimated from the same data. This

is called Simultaneous Localization and Mapping, i.e.,
SLAM and turned out to be much more difficult.

This problem has been explored since the late 1980s.

In recent years, it has received enormous attention and

has reached a certain level of maturity. Hence this pa-

per takes the perspective of someone who wants to use

SLAM rather than investigate SLAM. For a general

overview we refer the reader to the textbooks [33, 34]

and the articles [8, 2]. We follow the argument by Press

et al [28], §1.0 and offer practical judgment on the dif-
ferent approaches because we believe this kind of advice

is helpful to the practitioner. It is not infallible though

and readers are invited to form an opinion of their own.

The paper is structured as follows: Section 2 ex-

plains loop closing, the probably most important phe-
nomenon in SLAM. In Section 3 we discuss ways of

using SLAM in applications and in Section 4 different

SLAM variants regarding sensor and map representa-

tion.

2 Loop Closing

To understand SLAM, one has to realize that the input

data for SLAM is relative information. Imagine a room
at the end of a long winded corridor and the coordinate

origin at its start (Fig. 2). Then the pose of that room

is (implicitly) derived by the SLAM algorithm by con-

catenating many observed relations along the corridor.

Each has some error and hence the global pose of the
room can accumulate an arbitrarily large error. In con-

trast to that, the local shape of the room is only affected

by observations inside the room and relatively precise.

This uncertainty structure has been paraphrased by one
of us as “Certainty of relations despite uncertainty of

positions.” [10].

Now, assume the robot moves along a closed loop,

returns to the start of the loop, but has not realized

this yet. Then the loop is not closed in the map due to
the error accumulated (Fig. 2, left). Once the start of

the loop is re-identified and the corresponding measure-

ment is integrated into the map, the SLAM algorithm

will close the loop. To achieve this, it has to “deform”
the whole loop to incorporate the information of a con-

nection between both ends of the loop without intro-

ducing a break somewhere else (Fig. 2, right).

1 m

2m

Fig. 2 The map before (left) and after (right) loop-closing.
An animation of several random outcomes of this map-
ping process shows the structure of the uncertainty and can
be downloaded from www.informatik.uni-bremen.de/agebv/en/

SlamDiscussion.

Loop closing is a special situation, because a sin-

gle observation changes the whole map estimate signif-

icantly. It is also the most challenging situation, for the
following reasons:

– The system has to detect that it is at the same place
again (data-association). Depending on the sensors

used and the uncertainty accumulated, this is still

an open research question and a major failure mode.

– The incorporation of the loop-closure into the map
estimate has to be efficient enough. This has long

been a central question but is nowadays solved [11].

– Any application that uses the SLAM map or pose

estimate must handle the sudden jump when closing

a loop. To avoid this problem, all places in the appli-
cation, e.g., objects or way-points, must be defined

relative to the pose when the robot was at these

places. Then they will jump with the map. However,

this behavior is difficult to implement (Sec. 3.4).

3 Different Ways of Using SLAM

An application can use SLAM for different purposes.

This is seldom mentioned beyond the general motiva-

tion of a map for navigation. As the difference is im-

portant for the application, we discuss it here briefly.

3.1 Offline-SLAM for Map Acquisition

The most frequent and easiest way to use SLAM is map
acquisition. During a map learning phase, the robot is

manually steered through the environment. Sensor data

is recorded and annotations, such as place labels, are

given. Later, in a post-processing step, SLAM computes
a map from the sensor data that is henceforth kept fixed

and used for localization, path-planning, etc. during the

actual operation of the system.



3

A prominent example of this approach is the robotic

museum tour guide Minerva [35], where a grid-map

(Sec. 4.1) is acquired with offline-SLAM during the

setup in the museum, and then used for localization

and navigation.

Similarly, the shopping companion robot TOOMAS

[14] acquires a grid-map with a laser rangefinder. In

practice, it was essential to align that map with a floor

plan to link shop items to their respective shelves [9].
Therefor, the robot was driven to marker points with

known coordinates in the floor plan. Graph-based SLAM

(Sec. 4.2) can integrate both types of information. How-

ever, in practice, the pose estimate was already precise
enough with odometry and marker points alone. This

is a very minimalistic SLAM algorithm, where at ev-

ery marker point the accumulated error is linearly dis-

tributed on the trajectory since the last marker point.

The lessons learned were: floor plans are not only help-
ful but often necessary for a useful map and a simple

algorithm can do the job with some additional informa-

tion.

Another example is [21], where 3-D SLAM creates a

map of a multi-story parking garage that is then later

used for autonomously driving a car through the garage.

Overall, mapping prior to operation has advantages
although or because it is scientifically less ambitious:

– All other modules of the system can use coordinates
with respect to the map as usual without taking care

of map changes during operation.

– Slow but reliable offline SLAM algorithms can be

used. Indeed, many algorithms are efficient approx-

imations to non-linear least-squares. If time is avail-
able, a textbook least-squares algorithm such as the

Levenberg-Marquardt-algorithm[28, §15.7] is simpler

and better.

– The human operator can check the map visually af-
ter it is computed.

– The operator can help building the map interac-

tively by providing a few additional links for clos-

ing loops and for aligning with a floor plan. These

can be precise marker points or rough links where
the metric information is obtained from sensor data.

Closing loops manually will hardly take a minute,

but simplify the problem greatly for the SLAM algo-

rithm. This procedure works well with graph-based
SLAM (Sec. 4.2).

3.2 Online-SLAM for Localization

A more complex mode of operation is using SLAM as

a black-box localization system. SLAM performs both

localization and mapping online during operation, but

the application uses only the pose information and the

map is just for the SLAM algorithm itself. Sometimes,

a part of the map is given a-priori so the localization

operates in an application specific coordinate system

and error accumulation is limited. Unlike with incre-
mental sensors, e.g., odometry or inertial sensing, the

error does not grow as long as the robot operates in

a known part of the environment. It only grows when

extending the map.

In particular, when the robot returns to a known

place, the system knows this fact with the precision

of the environment sensor. This allows the robot for in-
stance to travel back or repeat a path taken before with

great precision. There is one caveat however: all esti-

mates can change, e.g., because of loop-closure. Then

a different pose estimate is reported at a place visited
before. So trajectories cannot simply be stored as lists

of coordinates. This problem is negligible if the error is

small or it can be solved by a more elaborate handling

of stored coordinates (Sec. 3.4).

An example of this approach is the MALTA project,

where a forklift truck navigates autonomously in a pa-

per reel storage depot [1] (Sec. 4.3). The positions of

some pillars are given a-priori to anchor the map and
limit error accumulation. SLAM estimates the vehicle

pose and the position of paper reels. Since these are

moved continuously into and out of the depot, this map

changes during operation and cannot be acquired a-
priori. The SLAM pose estimate is directly fed into the

motion controller driving the forklift truck, which is

only possible since the error is limited by giving pillar

positions in advance.

An alternative is “sensor odometry”, e.g., visual or

laser odometry. This means estimating the motion from

sensor data but without building a map. It is often

much more precise than an incremental motion sen-
sor such as odometry or inertial sensing. Unlike in real

SLAM, the error accumulates even when moving through

the same environment. Sensor odometry can be imple-

mented by a SLAM algorithm that forgets parts of the
map having moved by, avoiding efficiency problems.

Konolige et al. [20] realize visual odometry, i.e., es-

timating motion from the images of a stereo-camera. Vi-
sually distinct points, so-called center-surround-extrema

are detected in the images and fed into a visual SLAM

algorithm (Sec. 4.4). The motion during a sequence of

images can be obtained by estimating the end-pose rel-
ative to the start-pose, thus providing visual odometry.

Visual odometry has also been used on the Mars

Exploration Rovers Spirit and Opportunity [7] with a
simplified approach matching successive images. Math-

ematically this is SLAM with only one unknown pose

and hence it did run on the rover’s 20 MHz CPU.



4

Going beyond odometry, these local relative poses

can be used as links in graph-based SLAM (Sec. 4.2) if

not only successive poses but all spatially close poses are

matched. The resulting two-stage SLAM algorithm can

handle very large maps, because it avoids estimating
millions of distinct points in a single computation.

A different application is augmented reality [18],

where 3-D graphics is overlaid on a real camera im-

age. Therefor, the camera’s pose is needed that can be
provided by visual SLAM. Again, the map is only used

by SLAM and (mostly) not by the application itself. If a

separate sensor was used for tracking the camera, this

sensor would have to be calibrated and synchronized

with the camera very precisely, since humans are very
sensitive to erroneous relative motion between real and

virtual objects. By using the same images for SLAM

and for overlaying, these problems are avoided. The

videos in [18] show such a system in operation, which
at the moment is limited to a desktop-size workspace.

3.3 Online-SLAM for a Continuously Updated Map

The most complex way of using SLAM and also the
main motivation for SLAM research is to continuously

build a growing map, localize in that map, and use

both results for robot control and the overall applica-

tion. The challenge here is that the map changes during

operation, and in case of loop-closure it changes even
abruptly.

Tele-operating mobile robots for instance is difficult

because the operator only sees a small fraction of the

environment in the robot’s cameras and thus has to
memorize and grasp the overall spatial structure of the

environment. This is most notable in the area of Safety,

Security, and Rescue Robotics (SSRR), where the envi-

ronment is often complex and difficult to grasp. Birk et

al. [4] as well as Kleiner and Dornhege [19] have shown
2-D SLAM in harsh realistic field experiments and re-

ported that the maps were helpful to the operator.

It is tempting to propose that a robot should au-

tonomously explore its environment instead of being
manually controlled as in Section 3.1, in particular in

service robotics. Indeed, Stachniss et al. have shown au-

tonomous exploration even with a team of robots [32]

in a lab setting. However, we would argue against this

idea, unless there is compelling reason for it in a spe-
cific application. Autonomous exploration gives rise to

a set of very difficult problems beyond the SLAM and

exploration algorithm itself: obstacles or hazards invis-

ible to the sensor; forbidden areas for the robot; how
to tell the robot where to stop exploring; and gener-

ally the increased chance of failure. In our opinion, all

these problems more than outweigh the convenience of

not having to manually steer the robot. Indeed, this is

one example that for an application a clever combina-

tion of human and robot capabilities is a better design

paradigm than the ultimate challenge of full autonomy.

In contrast to that, abandoned mine mapping is an
application, where autonomy is essential. The under-

ground environment is too dangerous for people and

also prevents wire-less teleoperation. One of the most

impressive systems that uses SLAM in this way is the
Groundhog robot by Thrun et al. [36]. In an autonomous

experiment, it went 308m into an abandoned mine, where

it detected that the way was blocked by a broken beam

and went back. On the way back software problems re-

quired manual intervention, but still this is an impres-
sive real-world exploration experiment.

3.4 Handling Changing Map Estimates in Applications

In the discussion above, we have mentioned repeatedly
that changing estimates are difficult for the application

to use. We will now discuss approaches to solve these

problems.

Usually, the robot stores local obstacles, intermedi-
ate way-points or planned trajectories as part of its mo-

tion controller for some meters of travelling. Now, imag-

ine the pose estimate obtained from SLAM changes

significantly: these stored coordinates are suddenly far

away from the robot and motion control fails.
For such temporary spatial data, i.e., coordinates

only kept for a few meters, this problem can be solved

by storing them in odometry coordinates. This is the

coordinate system, where the robot pose is defined by
the uncorrected odometry. Its origin slowly drifts due

to odometry error but never jumps. So, all local control

modules can operate in odometry coordinates. Spatial

data from the map should be converted into odometry

coordinates at controlled points in time keeping in mind
that there might be a jump since the last conversion.

Long term spatial data, e.g., global way-points, ob-

ject locations, or application specific places, however,

must be represented in a way that they consistently
change with the SLAM map estimate. Formally, this

is clear as these locations are usually obtained relative

to a robot pose during teach-in. Hence, the most ele-

gant way is to represent them in the SLAM algorithm

as part of the map, where they are updated when the
map changes. Alternatively, they can be stored rela-

tive to the respective robot pose used for defining them

and SLAM updates these old robot poses. This is con-

venient for graph-based SLAM which updates all past
poses anyway.

On the downside, this approach is often incompat-

ible with an existing software architecture since it re-



5

quires every module to refer to the SLAM module for

storing long term spatial data. So, in summary, it is pos-

sible to represent spatial data compatible to the SLAM

philosophy of a changing map estimate but it requires

considerable effort. This, again, underlines the practi-
cal advantage of a prior mapping phase, where during

operation global coordinates can be used as usual.

4 Different Variants of SLAM

In this section, we will briefly discuss the most common

variants of SLAM regarding the sensor input and the

map representation. Following a user’s perspective, we

will stress the assumptions made on the environment

and point to implementations available on the Internet.
Unless otherwise noted implementations are in C/C++.

4.1 2-D Evidence Grid-based SLAM

In this SLAM variant a laser rangefinder is used to ob-

tain a bitmap-like map where white corresponds to free
space, black to obstacles, and gray to unknown space.

Odometry is (usually) needed as a second input. A par-

ticle filter based solution called GMapping has been de-

veloped by Grisetti et al [12] and evaluated on a broad
range of data-sets. Recently, it has been integrated in

the Robot Operating System (ROS) [29] where it is com-

plemented by a module based on the Adaptive Monte

Carlo Localization (AMCL) algorithm [34, §8] that lo-

calizes on the maps generated by GMapping.

The interface in ROS is clear and well documented.

While GMapping itself is research-code, we know of
several groups that have used it successfully and we

believe it is the most practical approach for indoor ser-

vice robot navigation or similar applications. The laser

rangefinder input also serves for obstacle avoidance and

the obtained map models free-space, i.e., it can be used
for navigation, path-planning, or exploration. For in-

door navigation, the fact that a laser rangefinder only

sees a horizontal slice of the environment usually causes

only small problems. Sometimes, however, overhanging
obstacles, e.g., tables and chairs, need to be marked,

either physically (e.g., with a string) or in the map.

4.2 2-D Graph-based SLAM

This SLAM variant maintains a map consisting of a
graph of 2-D poses, usually robot poses at regular inter-

vals. The input are links with uncertain spatial relations

between these poses. Links between successive poses are

directly obtained from odometry, most links are gener-

ated by scan-matching, i.e., by an algorithm that aligns

two laserscans thereby computing their relative pose [6].

Additionally, a policy must be implemented that con-

trols which scans to match, because matching all over-
lapping pairs of scans is too slow. If feasible (Sec. 3.1),

additional links can be manually added by the user. Be-

yond SLAM, scan-matching can correct odometry and

localize in a map represented by scans.

Graph-based maps are slightly more difficult to use

than grid maps: In offline SLAM (Sec. 3.1), one can eas-

ily compute a grid map by overlaying all laserscans ac-
cording to the estimated poses. When operating online,

the poses can be used as reference frames as described

in Section 3.4. Further, they constitute a navigation

graph for course path planning. However, free-space in-

formation for metrical path planning is only available
in the original laserscans, not in the graph-based map.

To our knowledge, no full graph-based SLAM im-

plementation is available, but the essential components
are. Censi [6] has implemented several scan matchers

and Grisetti et al [13] provide a SLAM algorithm, TORO,

operating on a graph of pose relations. Both are well

documented and easy to use. The above mentioned con-
trol policy needs to be implemented by the user. To in-

crease precision, scans can be aligned globally by match-

ing all points from all scans simultaneously [27].

Overall, graph-based SLAM with scan-matching is

a slightly more complicated alternative to grid-based

SLAM. It handles larger maps and allows the user to in-

corporate manual loop-closing information easily. While

a laser rangefinder is the most popular sensor, in prin-
ciple graph-based approaches can use any sensor-data

that can be matched, i.e., where a relative pose can be

obtained from comparing the sensor data at two points

in time. In particular, cameras can be used in 3-D.

4.3 2-D Feature-based SLAM

By far the largest fraction of the SLAM literature con-

siders a variant of SLAM, where the map consists of

2-D point features which are observed relative to the
robot (Fig. 1). For an application with feature-based

SLAM, the key question is what type of features to use

and how to detect and identify them reliably. Options

include fiducials (Fig. 1), trees which make good out-
door features [15], the paper reels reported in [1], and

walls or corners in buildings. Observations of a wall

without its end-corners need special treatment [30].

The most popular example of feature-based SLAM

is mapping the Victoria Park in Sydney [15] where trees

are detected with a laser rangefinder. Feature-based



6

SLAM is the preferred variant for research on the core

algorithm. Hence most articles use this dataset and sim-

ulations to evaluate their algorithms.

For every feature observation the identity of the ob-

served feature needs to be obtained, which is called
data-association. The simplest solution is nearest-neighbor

association, where within a given threshold an obser-

vation is associated with the nearest neighbor already

inside the map. This is simple but works only if the
map uncertainty is smaller than the separation between

features. Some algorithms compare a group of features

with the map taking map uncertainty into account [26],

however, this sometimes fails due to consistency prob-

lems [17]. Some algorithms even require the applica-
tion to provide data-association. In our opinion, un-

less the map uncertainty is low enough for nearest-

neighbor, data-association is a major hurdle that re-

quires a deeper understanding of SLAM to master.
Another issue is that a set of point features is useful

for localization but does not give any free-space or con-

nectivity information. It is advisable to retain old robot-

poses at regular intervals in the map so a navigation-

graph can be obtained from the trajectory used during
mapping. This is possible with most algorithms, but

also surprising as many algorithm take quite an effort

to be able to forget (marginalize out) old robot poses.

As an example of a feature-based SLAM algorithm,
a well-documented implementation of the treemap al-

gorithm is available [11]. The implementation clearly

separates the core computational engine from the front-

end that defines different quantities to be estimated

and different measurement equations. This simplifies in-
corporating various kinds of geometric objects, such as

corners, walls, and poses. However, it provides no data-

association leaving the user with nearest-neighbor. A

MATLAB implementation of the I-SLSJF provided by
Huang et al [17] is also well documented but also only

uses nearest-neighbor data-association.

Overall, to non-experts, we can recommend feature-

based 2D- SLAM only if reliable features can be ob-

tained in the target application and the uncertainty is
small enough for nearest-neighbor data-association.

4.4 3-D Visual SLAM

Visual SLAM is similar to feature-based SLAM as the
map is a set of visually distinct points and the obser-

vations are image positions of these points. The offline

version of this problem has been studied in photogram-

metry as “bundle adjustment” [37] and in computer vi-
sion as “structure from motion” [16, §18, App. 6.3] for

a long time and can be considered a mature technology.

The canonical procedure consists of the following steps:

– Detect interesting feature points, e.g., with the so-

called SIFT [25] or SURF [3] detector.

– Compute a descriptor vector for each feature point

describing its visual appearance, e.g., with the SIFT

or SURF descriptor.
– Match features in each pair of images by finding

nearest neighbors in the descriptor space.

– Use Random Sample Consensus (RANSAC) [16] with

the 5/7 point algorithm on the pairs found: RANSAC
repeatedly draws 5 or 7 pairs from the feature match-

ing result, therefrom computes a relative camera

pose using the so-called 5/7 point algorithm [23, 16],

and counts how many pairs are compatible with that

pose. It then chooses the repetition with the high-
est count. If it is above a threshold these pairs are

accepted as observations of the same feature.

– Run least-squares estimation (bundle adjustment)

on all observations of all images accepted by RANSAC.

All building blocks for visual SLAM are available:

The SURF detector and descriptor, RANSAC with the

7-point algorithm and nearest neighbor computation

are included in the well documented OpenCV computer
vision library [5]. Lourakis and Argyros [24] provide sba,

a well established and documented implementation of

bundle adjustment using sparse matrix methods. The

package bundler [31] implements the full procedure.

There are some caveats for applications. First, with
a single camera the overall scale of the scene is un-

defined. Even if one distance is known, e.g., by look-

ing at a known object, the scale can drift over time. A

stereo-camera solves this problem and simplifies data-
association. When all features are first matched be-

tween left and right image, only a 3-point algorithm

is needed later. Second, cameras have a smaller field of

view (45-100◦) than laser rangefinders making it diffi-

cult to have enough overlapping features between im-
ages, in particular when viewing the same place from

reverse directions. One or two sideways looking cameras

alleviate this problem but this is often undesirable.

The sba package needs some seconds of computation
time for 50 images and 5000 features, which is enough

for offline SLAM but not for processing every frame of

a video sequence online. Klein and Murray [18] address

this challenge with their Parallel Tracking and Mapping

framework (PTAM), where one thread tracks the cam-
era motion relative to a fixed map and another thread

updates the map at larger intervals with sparse bun-

dle adjustment. The implementation is available, but

should be considered research code.

If the application requires free motion in 3-D, as

with aerial vehicles or in rough-terrain navigation, an

inertial sensor can complement computer vision.



7

Overall, using images to compute a feature map

prior to operation is an established technique, online

visual SLAM is still an area of active research.

4.5 3-D Graph-based SLAM

This variant is the 3-D analogon to Section 4.2. 3-D

point clouds are obtained at certain robot poses and

pair wise aligned with a scan-matching algorithm. The

results form a graph of uncertain pose relations from

which the most likely poses are computed. As in 2-D,
finally all scans can be matched globally to increase

precision.

A 3-D scan is usually obtained by tilting or rotat-

ing a conventional 2-D laser rangefinder while the robot

is at a temporary halt. Taking the scans while moving

would require motion tracking, e.g., by an inertial sen-
sor which is a precision challenge. While stop-and-go

during operation could be problematic, we believe it is

feasible to map the environment this way before oper-

ation (Sec. 3.1). Localization with scans in motion is
much easier than full SLAM in motion.

Nüchter [27] provides SLAM6D, a well documented

implementation of 3-D scan matching and 3-D graph-

based SLAM. Considerable effort went into making it

efficient enough for practical applications, because the

amount of data is much higher in 3-D.

A point cloud representation is not very convenient
for most tasks, in particular motion planning, so one

can convert it into a 3-D voxel representation. Wurm

et al [38] implemented octomap, a library for maintain-

ing and updating a 3-D voxel-map in a memory efficient

oct-tree representation.

Overall, 3-D SLAM with tilted laser rangefinders is
feasible whenever a 3-D map is needed, e.g., often out-

doors. We recommend being more careful than with 2-D

SLAM when planning an application, because the en-

vironments under scope of 3-D SLAM are more diverse

and involved than the 2-D office environments.

5 Conclusions

In this article, we have discussed different ways of us-

ing SLAM in an application and different variants of

SLAM, pointing to available implementations where pos-
sible. To conclude with an overall recommendation: In-

door navigation is a mature technology. We recommend

the use of a laser rangefinder as the primary sensor, ac-

quiring a map with the robot prior to operation, and
2-D evidence-grid based SLAM. If interactive mapping

is possible, 2-D graph-based SLAM will be more reliable

but needs more custom implementation work.

In 3-D, the situation is more challenging. If stop-

and-go is feasible, 3-D graph-based SLAM with a tilted

laser rangefinder is a good choice. For fast motion, as

often seen in aerial applications, we recommend com-

puter vision with a stereo camera as the method of
choice (perhaps combined with inertial sensing). How-

ever, concerning visual SLAM, only visual odometry

can be considered mature enough to be used without a

deep understanding of SLAM itself.

References

1. Andreasson H (2010) An application of SLAM

to localize AGVs. Tech. Rep. urn:nbn:se:oru:diva-
10393, Örebro University, project web page: aass.

oru.se/Research/Learning/malta

2. Bailey T, Durrant-Whyte H (2006) Simultaneous

localisation and mapping (SLAM): Part II state

of the art. Robotics and Automation Magazine
13(3):108–117

3. Bay H, Tuytelaars T, Gool LV (2006) SURF:

Speeded up robust features. In: Ninth European

Conference on Computer Vision, software: included
in the OpenCV library.

4. Birk A, Schwertfeger S, Pathak K (2009) A net-

working framework for teleoperation in safety, se-

curity, and rescue robotics (SSRR). IEEE Wireless

Communications, Special Issue on Wireless Com-
munications in Networked Robotics 6(13):6–13

5. Bradski G, Kaehler A (2008) Learning OpenCV:

Computer Vision with the OpenCV Library.

O’Reilly, software: opencv.willowgarage.com
6. Censi A (2008) An ICP variant using a point-to-line

metric. In: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA),

Pasadena, software: purl.org/censi/2007/csm

7. Cheng Y, Maimone MW, Matthies L (2006) Visual
odometry on the mars exploration rovers. IEEE

Robotics and Automation Magazine pp 54–62

8. Durrant-Whyte H, Bailey T (2006) Simultaneous

localisation and mapping (SLAM): Part I. Robotics
and Automation Magazine 13(2):99–110

9. Einhorn E (2009) Personal communication

10. Frese U (2006) A discussion of simultaneous

localization and mapping. Autonomous Robots

20(1):25–42
11. Frese U, Schröder L (2006) Closing a million-

landmarks loop. In: Proceedings of the IEEE/RSJ

International Conf. on Intelligent Robots and

Systems, Beijing, pp 5032–5039, software: www.

openslam.org/treemap.html

12. Grisetti G, Stachniss C, Burgard W (2007) Im-

proved techniques for grid mapping with rao-



8

blackwellized particle filters. IEEE Transactions

on Robotics 23(1), software: www.openslam.org/

gmapping.html

13. Grisetti G, Stachniss C, Burgard W (2009) Non-

linear constraint network optimization for efficient
map learning. IEEE Trans on Intelligent Trans-

portation Systems 10(3):428–439, software: www.

openslam.org/toro.html

14. Gross, et al (2009) TOOMAS: Interactive shopping
guide robots in everyday use - final implementa-

tion and experiences from long-term field trials. In:

Proc. IEEE/RJS International Conference on Intel-

ligent Robots and Systems, St. Louis, pp 2005–2012

15. Guivant JE, Nebot EM (2001) Optimization of
the simultaneous localization and map build-

ing (SLAM) algorithm for real time implementa-

tion. IEEE Trans on Robotics and Automation

17:242–257, dataset: services.eng.uts.edu.au/

~sdhuang/research.htm

16. Hartley RI, Zisserman A (2004) Multiple View Ge-

ometry in Computer Vision, 2nd edn. Cambridge

University Press

17. Huang S, Wang Z, Dissanayake G, Frese U (2009)
Iterated D-SLAM map joining: Evaluating its per-

formance in terms of consistency, accuracy and ef-

ficiency. Autonomous Robots 27(4), software: www.

openslam.org/2d-i-slsjf.html

18. Klein G, Murray D (2007) Parallel tracking and

mapping for small AR workspaces. In: Proc.

Sixth IEEE and ACM International Symposium on

Mixed and Augmented Reality (ISMAR’07), Nara,

software: www.robots.ox.ac.uk/~gk/PTAM
19. Kleiner A, Dornhege C (2009) Operator-assistive

mapping in harsh environments. In: Proc. of the

IEEE Int. Workshop on Safety, Security and Rescue

Robotics (SSRR), Denver
20. Konolige K, Agrawal M, Sola J (2007) Large-scale

visual odometry for rough terrain. International

Symposium on Research in Robotics

21. Kümmerle R, Hähnel D, Dolgov D, Thrun S, Bur-

gard W (2009) Autonomous driving in a multi-level
parking structure. In: Proc. of the IEEE Int. Conf.

on Robotics and Automation, Kobe, pp 3395–3400

22. Leonard J, Durrant-Whyte H (1992) Dynamic map

building for an autonomous mobile robot. The In-
ternational Journal on Robotics Research 11(4):286

– 298

23. Li H, Hartley R (2006) Five-point motion estima-

tion made easy. In: International Conference on

Pattern Recognition, pp 630–633
24. Lourakis M, Argyros A (2009) Sba: A software

package for generic sparse bundle adjustment.

ACM Trans on Mathematical Software 36(1), soft-

ware: www.ics.forth.gr/~lourakis/sba

25. Lowe D (2004) Distinctive image features from

scale-invariant keypoints. International Journal of

Computer Vision 60(2):91 – 110

26. Neira J, Tardós J (2001) Data association in
stochastic mapping using the joint compatibility

test. IEEE Trans on Robotics and Automation

6(17):890 – 897

27. Nüchter A (2009) 3D Robotic Mapping. Springer
Tracts in Advanced Robotics (STAR), Springer

Verlag, software: openslam.org/slam6d.html

28. Press W, Teukolsky S, Vetterling W, Flannery B

(1992) Numerical Recipes, Second Edition. Cam-

bridge University Press, Cambridge
29. Quigley M, et al (2009) ROS: an open-source

robot operating system. In: Proceedings of the

ICRA-Workshop on Open-Source Robotics, soft-

ware: ros.org
30. Rodriguez-Losada D, Matia F, Galan R (2006)

Building geometric feature based maps for indoor

service robots. Robotics and Autonomous Systems

54(7):546–558

31. Snavely N, Seitz S, Szeliski R (2008) Modeling the
world from internet photo collections. International

Journal of Computer Vision 80(2):189–210, soft-

ware: phototour.cs.washington.edu/bundler/

32. Stachniss C, Mozos OM, Burgard W (2009) Effi-
cient exploration of unknown indoor environments

using a team of mobile robots. Annals of Mathe-

matics and Artificial Intelligence 52(2):205–231

33. Thrun S, Leonard J (2009) Springer Handbook of

Robotics, Springer Verlag, chap 34. B. Siciliano and
O. Khatib (eds.)

34. Thrun S, Burgard W, Fox D (2005) Probabilistic

Robotics. MIT Press

35. Thrun S, et al (2000) Probabilistic algorithms and
the interactive museum tour-guide robot minerva.

The International Journal of Robotics Research

19(11):972–999

36. Thrun S, et al (2004) Autonomous exploration and

mapping of abandoned mines. Robotics and Au-
tomation Magazine 11(4):79–91

37. Triggs W, McLauchlan P, Hartley R, Fitzgibbon A

(2000) Bundle adjustment – A modern synthesis.

In: Triggs W, Zisserman A, Szeliski R (eds) Vision
Algorithms: Theory and Practice, LNCS, Springer

Verlag, pp 298–375

38. Wurm KM, Hornung A, Bennewitz M, Stachniss C,

Burgard W (2010) Octomap: A probabilistic, flexi-

ble, and compact 3D map representation for robotic
systems. In: Proc. of the ICRA 2010 Workshop on

Best Practice in 3D Perception and Modeling for

Mobile Manipulation, software: octomap.sf.net


