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Abstract. This paper presents a very efficient SLAM algorithm that
works by hierarchically dividing the map into local regions and subre-
gions. At each level of the hierarchy each region stores a matrix repre-
senting some of the landmarks contained in this region. For keeping the
matrices small only those landmarks are represented being observable
from outside the region. A measurement is integrated into a local subre-
gion using O(k?) computation time for k landmarks in a subregion. When
the robot moves to a different subregion a global update is necessary re-
quiring only O(k®logn) computation time for n overall landmarks. The
algorithm is evaluated for map quality, storage space and computation
time using simulated and real experiments in an office environment.

1 Introduction

The problem of making a map from local observations is a very old one basically
as old as maps themselves. While geodesy, the science of surveying in general
dates back to 8000 B.C., it was the achievement of C.F. Gauss to first formalize
the problem from the perspective of statistical estimation in his article “Theoria
combinationis observationum erroribus minimis obnoziae” [1](1821).

1.1 Simultaneous Localization and Mapping

In the much younger realm of robotics the corresponding problem is that of
simultaneous localization and mapping (SLAM). It requires the robot to contin-
uously build a map from sensor data while traveling through the environment. It
has been under research since the mid 80ies gaining enormous popularity in re-
cent years. A majority of approaches adhere to the Gaussian formalization. They
estimate a vector of n features, e.g. landmarks or laserscan reference frames by
minimizing a quadratic error function, i.e. by solving implicitly a linear equa-
tion system. With this well established methodology the main question is how
to compute or approximate the estimate efficiently. To make this more explicit,
there are three important requirements an ideal SLAM algorithm should fulfill
that were first proposed by the author in [2] and further discussed in [3]:



(R1) Bounded Uncertainty The uncertainty of any aspect of the
map should not be much larger than the minimal uncertainty that could
be theoretically derived from the measurements.

(R2) Linear Storage Space The storage space of a map covering a
large area should be linear in the number of landmarks (O(n))

(R3) Linear Update Cost Incorporating a measurement into a map
covering a large area should have a computational cost at most linear in

the number of landmarks (O(n)).

(R1) states that the map shall represent nearly all information contained in the
measurements, thus binding the map to reality and limiting approximations. The
other postulates (R2) and (R3) regard efficiency, requiring linear space and time
consumption. The contribution® of this paper is a hierarchical SLAM algorithm
that meets the above mentioned requirements. It works by dividing the map
into regions and subregions. When integrating a measurement it needs O(k?)
computation time for updating the estimate for a region with £ landmarks,
O(k3logn) when the robot moves to a different region and O(kn) to compute
an estimate for the whole map. There is an extension to the algorithm not
covered in this paper that applies “nonlinear rotations” to individual regions to
greatly reduce the linearization error caused by error in the robot orientation
[4]. The algorithm is landmark (feature) based, requires known data association
and assumes a “topologically suitable building” (§6).

1.2 Spatial Cognition

As formalized above the task can be described as computing global coordinates
from local measurements. This corresponds to the distinction between egocentric
and allocentric spatial memories reported in cognitive psychology [5]. It is a way
of integrating spatial observations that is very suited for mobile robots, because
the result is a single estimate that incorporates all information available, i.e. one
concrete map that is (statistically) consistent with all observations. Together
with the corresponding uncertainty information, generally provided as a covari-
ance matrix, such an estimate is very useful. Any derived spatial quantity, like
distances and angles can be directly computed from the estimate together with
its uncertainty without any complex inference process. Especially most existing
algorithms that use a map, like path planning, navigation and localization are
designed with global coordinates. Even when the task involves human robot com-
munication, for instance matching natural language descriptions (“after passing
the entrance hall turn right”) it appears to be promising to directly match qual-
itative predicates resulting from natural language processing (“right”) with an
estimated metrical map using empirical definitions of the predicates [6, 7].

! This article is based on research conducted during the author’s Ph.D. studies at the
German Aerospace Center (DLR) in Oberpfaffenhofen.



The paper is organized as follows. After a brief review of related work (§2)
the algorithm is presented (§3...8§8). It follows an investigation of map quality
and computation time based on simulations (§9) and experiments on a real robot
in an 60m x 45m office building (§10).

2 State of the Art

After the fundamental paper by Smith et al. [8] in 1988 most work on SLAM
was based on the Extended Kalman Filter (EKF) that allows to treat SLAM
theoretically thorough as an estimation problem. However, the problem of large
computation time remained. The most time consuming part is to update the
EKF’s covariance matrix after each measurement, taking O(n?) time for n land-
marks. This limited the use to small environments (n < 100 landmarks).
Recently, interest in SLAM has increased drastically and several, more effi-
cient algorithms have been developed. Many approaches exploit, that observa-
tions are local in the sense that from a single robot pose only few k landmarks are
visible. In the following the more recent contributions will be briefly reviewed. A

general overview is given by Thrun [9] and a discussion of the inherent structure
of SLAM by Frese [3].

To the authors knowledge the first SLAM algorithm achieving computation
time below O(n?) per measurement while maintaining a consistent estimate for
the whole map was the relaxation algorithm by Duckett et al. [10,11]. They em-
ployed an iterative equation solver called relazation to the linear equation system
appearing in maximum likelihood estimation. One iteration is applied after each
measurement with computation time O(kn) and O(kn) storage space. After clos-
ing a loop, more iterations are necessary leading to O(kn?) computation time
in the worst case. This was later improved by the Multilevel Relaxation (MLR)
algorithm [12]. It optimizes the map at different levels of resolution similar to
multigrid methods used for numerical solution of partial differential equations
leading to O(kn) computation time even when closing loops.

Montemerlo et al. [13] derived an algorithm called FastSLAM from the ob-
servation that the landmark estimates are conditionally independent given the
robot pose. Basically, the algorithm is a particle filter (M particles) in which
every particle represents a sampled robot trajectory plus a set of n Kalman
filters estimating the position for each landmark. The number of particles M
is a difficult tradeoff between computation time and quality, especially since it
is not clear how M scales with the complexity of the environment. However,
the algorithm can handle uncertain landmark identification, which is a unique
advantage over the other algorithms discussed in this section.

Guivant and Nebot [14] developed a modification of the EKF called Com-
pressed EKF (CEKF) that allows the accumulation of measurements in a local
region with k landmarks at cost O(k?) independent from the overall map size n.
When the robot leaves this region, the accumulated result must be propagated to
the full EKF (global update) at cost O(kn?). An approximate global update can
be performed more efficiently in O(kn3/?) with O(n3/?) storage space needed.



Thrun et al. [15] presented a “constant time” algorithm called the Sparse
Eztended Information Filter (SEIF), which uses an information matrix instead
of a covariance matrix to represent uncertainty. The algorithm exploits the ob-
servation that the information matrix is approximately sparse? requiring O(kn)
storage space. The information matrix representation allows integration of a
new measurement in O(k?) computation time, but to produce a map estimate
a system of n linear equations must be solved. Thrun et al. use relaxation but
updating only O(k) landmarks after each measurement (using so-called amorti-
zation). In general this can negatively affect map quality, since in the numerical
literature, relaxation is reputed to need O(n?) time for reducing the equation
error by a constant factor [16].

Bosse et al. [17] avoid the computational problem of updating an estimate
for n landmarks in their Atlas framework by dividing the map into submaps.
There is no global coordinate system, rather each submap performs estimation
in its own local frame.

Paskin [18] views the estimation problem as a Gaussian graphical model. He
proposed the Thin Junction Tree Filter (TJTF) based on the observation that
if a set of node separates the graph into two parts, then these parts are con-
ditionally independent given estimates for the separating nodes. The algorithm
maintains a junction tree (O(k?n) space), where every edge corresponds to such a
separation. Estimation is performed in O(k3n) time by passing marginalized dis-
tributions along the edges of the junction tree. This algorithm is closely related
to the treemap algorithm proposed in this paper although both have been in-
depently developed from completely different perspectives. The correspondence
is basically that both use a tree and pass marginalized distributions (TJTF)
equivalent to Schur complements (treemap) along edges.

In the next section the treemap algorithm proposed in this paper will be
introduced. It can be used in the same way as CEKF providing an estimate for
k landmarks of a local region but with only O(k®logn) computation time when
changing the region instead of O(kn?®/?) for CEKF. Alternatively the algorithm
can also compute a global estimate for all n landmarks with computation time
O(kn). As reported in the experiments, the prefactor in the O(kn) computation
is so small, that this can be done for almost “arbitrarily” large maps (12.37ms
for n = 11300) being the main contribution from a practical perspective.

3 Basic Idea of the Algorithm

The basic idea of the treemap algorithm is to organize the map hierarchically
by decomposing the information into small parts called information blocks (IBs)
and distributing these IBs along the hierarchy. Then each update involves only a
small part of the information. For verification, consider figure 1a with a building
that is divided into two parts A and B. Now consider the following question:

If the robot is in part A, what is the information needed about B?

2 this property has later been proven by the author [4, 3].
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Fig. 1. First two levels of a hierarchically decomposed building (a) and respective tree
representation (b). The first level is indicated by bold dark-gray lines, the second level
by bold light-gray lines. The region corresponding to a node is shown next to the node




Some landmarks of B are observable from A and thus may be involved in
measurements while the robot is in A. For integrating these measurements, the
algorithm must have all information about these landmarks explicitly available.
It is important that this information comprises more than just the measure-
ments that directly involve those landmarks. Rather all measurements in B can
indirectly yield information about the landmarks observable from A. So the infor-
mation needed about B is the whole integrated information of all measurements
made while the robot is in B on landmarks observable from A. In the following
this information is said to be condensed, since it comprises everything from the
measurements made in B that is needed outside of B.

The idea can be applied recursively by dividing the building into a hierarchy
of regions (Fig. 1a). The recursion stops when the size of a region is comparable
to the robot’s field of view. The condensed information for the different regions
can be computed by recursion. For a specific region condensed information for
the two subregions is integrated. After that, all landmarks not being observable
from outside the region are removed from representation. This process is called
elimination of landmarks. This is how the information is decomposed into two
parts: Part 1 contains information about eliminated landmarks and is stored at
the region and not considered further. Part 2 contains information about the
landmarks observable from outside and is passed to the next region above. This
part contains every information about the region that is necessary when the
robot is outside of the region.

At each moment the robot position corresponds to a particular region on
the lowest level of hierarchy called the actual region into which new landmark
observations can be integrated. When the robot is moving the actual region
changes from time to time and a global update has to be performed. The key
advantage of the hierarchical decomposition is that therefor only the condensed
information of the actual region and all regions above need to be updated.

In a similar way an estimate for the local landmarks can be computed. The
final integrated information about a landmark is stored in the region where the
landmark has been eliminated. So the information about landmarks of the actual
region can be collected by traversing the hierarchy down to the actual region.

4 Treemap Data Structure

This section introduces the treemap data structure used by the algorithm. At
first, it will be assumed that the robot’s observations are landmark—landmark
measurements. Under this assumption the algorithm is exact up to lineariza-
tion. In §7 the algorithm will be extended to integrate also landmark-robot and
robot-robot (odometry) measurements with a small approximation when chang-
ing regions. Both linearization and odometry approximation are performed when
storing a measurement in the treemap. The actual computation of the least
square estimate from the stored information is performed exactly without fur-
ther approximations. Thereby the algorithm computes a consistent estimate that
is statistically compatible with all measurements following requirement (R1).



4.1 Data Structure

The hierarchy is realized by a binary tree. Each node corresponds to a region
and stores information about the landmarks of this region in so called infor-
mation blocks (IBs). These IBs are quadratic error functions that describe the
negative log-likelihood for a vector of landmark positions given the information
represented by the IB. Internally they are represented by a small matrix (the
information matrix) and a vector. It is said that an information block, a matrix
or a vector respectively represents a landmark, if it contains information about
it. This means that a row / column of the matrix or an entry of the vector
corresponds to the landmark.

The regions corresponding to nodes are not defined geometrically, but rather
as a set of landmarks being close to each other. At each moment there is one leaf
called the actual leaf that corresponds to the region where the robot is currently
located. All leaves hold a Basic Information Block (BIB). New measurements are
integrated into the BIB of the actual leaf called the actual BIB. Thus, integration
of all BIBs constitutes the complete information contained in the treemap. The
information is recursively integrated and decomposed along the tree as described
in the previous section: Each node holds a Condensed Information Block (CIB)
for the information about landmarks observable from outside the region. The
node is said to represent these landmarks, since the nodes CIB contains all
information about this region needed from outside the region. Furthermore, each
node holds a Substitution Information Block® (SIB) containing the information
about eliminated landmarks, needed when the robot is inside the region.

Definition 1 (Node) A node represents those landmarks that are represented
both in some BIB inside and in some BIB outside the subtree below this node.
It stores a Condensed Information Block (CIB) containing the integrated infor-
mation of all BIBs below this node on the landmarks represented at this node. It
further stores a Substitution Information Block (SIB) that contains the infor-
mation from the childrens’ CIBs (leaf’s BIB resp.) that is not contained in the
nodes CIB.

According to this definition, a landmark is represented from each leaf where
the BIB represents the landmark up to the least common ancestor of all those
leaves. The least common ancestor is called elimination node of the landmark,
since it is that node the landmark is eliminated from the CIB and finally stored
into a SIB. The different elimination nodes are maintained in an array.

Figure 2 shows the role of the different IBs (BIB, CIB, SIB) and how a nodes
CIB and SIB are computed recursively from the children’s BIB resp. CIB. For
the moment, the symbols (4) and (S) can be viewed as black box operations
integrating and decomposing information. A detailed explanation will follow.
Altogether the intention of this approach is to eliminate landmarks as early as
possible, so all CIBs and SIBs represent only few landmarks and all involved
matrices are small and efficient to handle.

3 the name is explained in §5
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Fig. 2. Integration and decomposition of information in a single node (oval) and a
three level tree: Two IBs i and x3 from the nodes children are integrated (+) and
then decomposed (S) into a CIB x5 and a SIB xZ;5. The CIB is passed to the parent
and the SIB stored at the node (black arrows). Later, an estimate for the landmarks
represented at the node is combined (4) with the SIB, resulting in an estimate for the
landmarks represented at the children nodes (gray arrows)

4.2 Integration of a measurement

It is currently assumed that all observations are measurements of relative land-
mark positions (see §7). As long as the observed landmarks are represented in
the actual BIB, the measurement can be integrated there and the local estimate
can be updated by EKF equations. Such an update does not use the treemap at
all and its computation time O(k?) is independent from the size of the map.

When a landmark is observed that is not represented in the actual BIB, a
new BIB must be made the actual one and a global update is required. Since the
actual BIB has changed all CIBs and SIBs of ancestor nodes are invalid and must
be updated. However most CIBs and SIBs remain unaffected, so computation is
highly efficient. After that an estimate for the landmarks represented in the new
actual BIB has to be computed. This is done proceeding from the root down
to the actual BIB. At each node an estimate for landmarks represented at the
childrens’ nodes is computed by combining an estimate for the node’s landmarks
with the nodes’ SIB. In order to compute an estimate for all landmarks the tree
is traversed recursively.



4.3 Representation of IBs

The purpose of the algorithm is to compute a maximum likelihood estimate for
the map. This is equivalent to finding the minimum of the negative log-likelihood
given the statistical information known from the measurements. Since Gaussian
noise is assumed, this is a quadratic error function x?,(z). Each information
block also represents a quadratic error function x?(z) referring to the condi-
tional likelihood of landmark position vector x given the information represented
by the IB. x%;() is the negative logarithm of this likelihood and stored using
a constant 7, a vector b and a so called information matrix A being symmetric
positive semidefinite (SPSD), as

Xig(@) =" Az +2"b+y =" Aijmiz; + ) bizi+ . (1)

%7 i

This is the usual representation of a quadratic function. Each row / column of
A and each entry of b corresponds to a landmark’s x- or y-coordinate or the
robot’s z-, y-coordinate or orientation ¢.

5 Elimination of Landmarks by Schur Complement

This section presents how to use a mathematical technique called Schur comple-
ment to compute a node’s CIB and SIB from the CIB of both children. The first
step is to integrate the CIB from both children by simply adding ((4) in figure
2). The second step is to eliminate some landmarks by decomposing the result
into two parts (S). The first part does not depend on eliminated landmarks any
more (CIB). The second part is a maximum likelihood substitution of eliminated
landmarks by the remaining ones with a known uncertainty (SIB). The structure
of the SIB as a substitution with uncertainty is the reason for the second part
of the decomposition being called substitution information block.*

This operation is a redistribution of information, since the integrated infor-
mation of both input CIBs is equal to the integrated information of the resulting
CIB and SIB. Figure 2 illustrates the underlying data flow. In the following, the
formulas for the integration and decomposition are given ([4] for a derivation).

Lemma 1 Let x3(z) and x3(x) be two stochastically independent information
blocks. Then the integrated information is

X*(x) = xi (@) + x3 (). (2)

If both IBs represent different sets of landmarks, the matrices and vectors
have to be permuted and extended, so the same columns / rows correspond to
the same landmark. For ease of notation it is assumed that A is decomposed

4 From an abstract statistical perspective, this is just decomposing P(z) = P (¥) as

P(2)P(yl|z), i.e. as the product of a marginalized distribution of z and a conditional
distribution of y with parameter z.



into 2 x 2 blocks such that block row / column 1 corresponds to landmarks to
be eliminated and stored in the SIB:

X2(x) =aT Az + 2Tb 4+~ (3)

(=) GO () o

The following lemma provides the formulas for decomposing x? into &5 and
XZ;p performing the elimination.

Lemma 2 (Schur Complement) Let x? (¥) be an information block as in
(4) with P being symmetric positive definite (SPD). Then x*(x) can be uniquely
decomposed into an information block x%;5(z) on z and an information block
Xzp(Hz+h—y) on Hz + h —y, with x%;5(0) = 0:

Xsrp(w) =w'Pw, H=-P'RT, h=-Pl¢/2. (5)

An estimate can be easily computed from the SIBs: Since the root node
represents no landmark, start with an empty estimate & = (), with covariance
C = (). Proceed down and use the estimate for a node’s landmarks and the SIB
stored there to derive an estimate for the landmarks represented at the node’s
children applying lemma 3:

Lemma 3 Let x?(x) be decomposed as in lemma 2 and let 2 be an estimate with
covariance C'. Then the optimal estimate for y is

T -1
g=HZ+ h, with cov (g) = (HC%H—;P héC) . (6)

With lemma 1, 2 and 3 the necessary tools for using a treemap are available
(Fig. 2). Lemma 1 and 2 are used from the leaves up to the root (black arrows)
and lemma 3 from the root down to the leaves (gray arrows). When a global
update is performed only the way from the old actual BIB up to the root and
down again to the new actual BIB has to be computed. Even when an estimate
for all landmarks is desired, computation is extremely efficient, since lemma 3
(without covariance) requires just a small matrix-vector multiplication.

6 Assumptions on Topologically Suitable Buildings

The time needed for the computation discussed above depends on the size of the
matrices involved, which is determined by the number of landmarks represented
at the node’s children. So for the algorithm to be efficient it is crucial that
each node represents only a few landmarks. Thus, the tree must hierarchically
divide the building in a way that each node, i.e. each region, contains only a
few landmarks observable from outside the region. Achieving this goal requires
some sophisticated optimization of the tree, since it is not a simple bookkeeping



task. As experiments and the following considerations confirm, this is possible
for typical buildings, which will be called “topologically suitable”.

Typical buildings allow such a hierarchical partitioning because they are
hierarchical themselves, consisting of floors, corridors and rooms. Different floors
are only connected through a few staircases, different corridors through a few
crossings and different rooms most often only through a single door and the
adjacent parts of the corridor. Thus, on the different levels of hierarchy natural
regions are: rooms, part of a corridor including adjacent rooms, one or several
adjacent corridors and one or several consecutive floors (Fig. 3).

To allow a thorough theoretical analysis of the algorithm it is formally as-
sumed that the building is topologically suitable:

Definition 2 (Topologically suitable building) Let the building be decom-
posed into a hierarchy of regions according to definition 1. Let k (“number of
local landmarks”) be the mazimum number of landmarks represented in a BIB.
Then the building is said to be topologically suitable if the following holds:

1. For each node only O(k) landmarks exist that are represented both in BIBs
inside and in BIBs outside the subtree of this node.
2. FEach BIB shares landmarks only with O(1) other BIBs.

The parameter k is small, since the robot can only observe a few landmarks
simultaneously because its field of view is limited both by walls and sensor range.
In particular, k does not increase when the map gets larger (n — oc). Although
by this argument & = O(1), the asymptotical expressions in this paper explicitly
show the influence of k and do not formally assume k to be constant.

A counter-example for a not topologically suitable building is a large open
storeroom with many boxes, where the robot can navigate arbitrarily not con-
fined to designated paths. A region corresponding to one half of the hall will have
a whole border line with the region corresponding to the other half and thus vio-
late condition 1. For cross-country navigation, the same problem appears, when
the robot builds an area-wide map covering every detail. However, in most cases
the goal is to explore a large area rather than mapping a small area in detail.
Thus, the robot will use passable paths once it has found them. So again, each
region will be connected to the remaining map only with a few of these paths
and definition 2 is fulfilled.

Condition 1 is powerful. The fact that buildings have such a loosely connected
topology is a key property distinguishing SLAM from other estimation problems.

6.1 Computational Efficiency

By condition 2 there are O(%) nodes in the tree each storing matrices of dimen-
sion O(k x k) (condition 1). Thus, the storage requirement of the treemap is
O(Kk? - %) = O(nk) meeting requirement (R2).

Computation time depends: When a measurement involves only landmarks

represented in the actual BIB it can be integrated into this BIB and the estimate



~

Fig. 3. DLR Institute of Robotics and Mechatronics — A typical topologically suitable
building with the first three level of a suitable hierarchical partitioning. The building
has been mapped in the experiments reported in §10, with the dashed line sketching
the robots trajectory. Start and finish are indicated by small triangles

can be updated using EKF equations. Similar to CEKF this needs O(k?) compu-
tation time, independent from n. Otherwise, a different BIB is made actual one
and a global update has to be performed. The update basically requires recom-
puting the CIB and SIB from the old actual BIB up to the root and compiling
an estimate from the root down to the new actual BIB (O(k3) per node). There
are O(logn) nodes to be updated, so the overall time is O(k? logn). Under some
circumstances, more nodes are involved and additional computation is necessary
for bookkeeping but still with the same asymptotical complexity.

In order to compute an estimate not only for local but for all landmarks,
lemma 3 must be applied recursively from the root down to all BIBs taking
O(kn). It will turn out in the experiments in §9 that the prefactor involved
is extremely small. So while from a theoretical perspective the possibility to
perform updates in sublinear time is most appealing, practically the algorithm
allows computing an estimate for all landmarks in extremely large maps.



7 Integration of Odometry Measurements

Up to now the observations have been assumed to consist of landmark—landmark
measurements, i.e. information about the relative locations of a group of land-
marks. Lu & Milios [19] established a well known approach utilizing this kind of
information, where laserscan reference frames are treated as “landmarks” and the
relative pose of two scans is “measured” by scan matching. Indeed the treemap
algorithm could be readily used to solve the linear equation system derived by
Lu & Milios reducing computation time from O(n?) to O(kn) or to O(k3logn)
for an incremental local estimate.

Most often measurements are landmark-robot measurements, i.e. informa-
tion about the relative location of a landmark with respect to the robot. Another
source of information is odometry, i.e. robot—robot measurements providing in-
formation of the current robot pose relative to a previous robot pose. These
information could be processed as well by the algorithm described so far if all
robot poses were explicitly represented as random variables to be estimated,
like Lu & Milios did. This, however, violates (R2) because it leads to map size
growing even if moving through an area already mapped.

In the following it will be discussed how to avoid represantation of old robot
poses by using an EKF as preprocessing stage.

7.1 Landmark—Robot Measurements

First assume that odometry can be neglected, i.e. the robot’s motion is evi-
dent from the landmark observations alone: Each robot pose is considered as a
separate random variable that can be eliminated since it will not appear in any
further measurement: The landmark measurements made at a certain robot pose
are integrated into an IB representing the robot pose and all involved landmarks
as random variables. Then the robot pose is eliminated from the IB using Schur
complement (lemma 2). The resulting IB does not represent the robot pose any
more and can be integrated into the actual BIB just the same way like pure
landmark—landmark measurements.

The precondition of this approach is that at least two common landmarks
are being observed from successive robot poses. If this condition is met, odom-
etry can often be neglected [20]. Theoretically, this is even appealing, since the
assumption of stastistical independence between successive odometry measure-
ments is hardly true in reality. Although this is not a theoretically optimal ap-
proach, it will presumably be a good choice in practice and considerably simpler
than the more general approach described below.

7.2 Robot-Robot Measurements (Odometry)

When odometric measurements have to be integrated, it is necessary to represent
the robot pose as a random variable. Thus old robot poses have to be eliminated
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Fig. 4. Data flow between EKF and treemap when changing the actual BIB from BIBq
to BIBpew. Represented landmarks are shown in brackets (Tab. 1). Black arrows depict
information matrices, gray arrows covariance matrices

later to prevent the map size from growing. This leads to new couplings intro-
duced between all landmarks observed from an eliminated robot pose and in the
end between all pairs of landmarks.

To avoid this dilemma a conservative approximation is performed. All cou-
pling coefficients are eliminated except those with landmarks represented in the
actual BIB. This means to deliberately discard the information contained in
the eliminated coupling coefficients to make the representation less complex. It
has been proven [3], that the occurring information matrices are approximately
sparse. This theorem ensures, that couplings decay exponentially with distance
traveled and not too much information is discarded by the elimination.

The measurements are integrated by an EKF as a preprocessing stage (Fig. 4).
It represents the robot pose and all landmarks of the actual BIB and can directly
integrate odometry and landmark observations. The information about the robot
pose is exclusively contained in the EKF and not transferred into the treemap.
When a global update becomes necessary all coupling coefficients between the
robot pose and landmarks not represented in the new actual BIB are eliminated:

First, the EKF state is converted into an information block y2. Then, the
information x?2,,, is subtracted (-). This is the information obtained from the
tree map the last time the EKF was initialized and must not be integrated a
second time. The resulting difference A is the information gained from measure-
ments since then. Next, the couplings between robot pose and landmarks not
represented in BIB,., are eliminated (E) by subtracting a SPSD matrix can-
celling the necessary coefficients from A. This means, a part of the information



Table 1. Random variables corresponding to different block rows / columns of A.
Ao = A1T2 is to be eliminated. £(BIB) denotes the landmarks represented in BIB

Blockrow Notation Random variables

1 {r}] Robot pose

2 [£(BIBoia) — £L(BIBrew)] Landmarks represented in the old but not
in the new actual BIB

3 [£(BIBgia) N £L(BIBpew)] Landmarks represented in both the old and

new actual BIB

is deliberately discarded (0) to give the remaining information a simpler struc-
ture. After this the robot pose is eliminated from the IB by Schur complement
(S) and the resulting CIB is added to BIBgq (+) replacing it in the treemap.
The corresponding SIB defines the robot pose as a function of landmarks which
are both in BIB,g and BIByey (due to (E)). After the estimate for BIByey has
been generated by updating the treemap, the SIB can be integrated (4). The
result is the estimate for the landmarks of the new actual BIB and the robot
pose. Together with the corresponding covariance matrix the estimate is used as
a new EKF state.

7.3 Stepwise Optimal Elimination of Off-Diagonal Entries

In this section the procedure (E) is derived. It eliminates some coupling entries
in an information matrix A by subtracting a so called elimination matrix B.
The key idea is to make B small so as little information as possible is discarded.
This task is similar to the sparsification procedure used by Thrun et al. [15]
in their Sparse Extended Information Filter (SEIF) algorithm. Their approach
optimally approximates the original distribution in the sense of Kullback-Leibler
(KL) divergence.

The problem is reduced from a k-D problem to k£ 1-D problems by eliminat-
ing different coupling entries columnwise, where the following theorem gives an
optimal solution for eliminating a single column.

Theorem 1 (Elimination matrix) Let A be a 3 x 3 block SPD matriz being
TT 'U)T

decomposed as A = <1f s WT> with 1-dimensional first block row / column.
w W X

Then the best elimination matriz for Aoy is xx’ with x defined as
2 .
x :A<5561T),wzth (7)
Oé:T’TsilT, ﬂ: (¢7Q)715
(8)
A=y Z/}(TTSilr)v Y= /8()‘ - /\710‘)7 0= /8(7A + %Z})\fl)-

The result is optimal with respect to (R1) since it minimizes the worst factor
by which the covariance of any aspect of the map is increased. For lack of space
the reader is referred to [4] for a mathematical discussion.



Each measurement is affected by the elimination operation only once, namely
the next time when the actual BIB changed. So the elimination procedure pre-
serves topological information, i.e. when measurements report two landmarks to
be close to each other this information will be included in the BIB although less
precisely. Since propagation of information through the tree is extact, a loop
will be closed in the estimate immediately after integrating the corresponding
measurement. This indicates although does not proof that the algorithm com-
plies with (R1) and will be further investigated with simulation experiments in
89 reporting the actual increase of error encountered.

8 Maintenance of the Hierarchy

Up to now the linear algebra part of the algorithm has been described. It pro-
vides the subalgorithms for manipulating IBs and in the end for computing an
estimate from the measurements. The bookkeeping part of the algorithm takes
care to update CIBs and SIBs as necessary using the subalgorithms decribed
before. It further optimizes the tree, so that it is balanced and hierarchically
partitions the set of BIBs in a way that at any level of hierarchy a partition
shares only a few landmarks with BIBs not belonging to the partition. Thus the
node corresponding to the partition represents only a few landmarks, and com-
putation at this node is efficient. This is problem is in theory NP-complete, with
many established heuristic approaches existing[21]. The algorithm incrementally
optimizes the tree by moving a single subtree to a different location whenever a
global update is performed[4].

There exists a nonlinear extension to the algorithm that corrects the lin-
earization error resulting from large error in the robot orientation by applying
“Nonlinear Rotations” to individual IBs before integrating them. The extension
is omitted here due to lack of space refering the reader to [4] for an extensive
discussion and experimental results handling up to 140° orientation error.

9 Simulation Experiments

This section presents the simulation experiments conducted to verify the algo-
rithm with respect to the requirements (R1)-(R3). For this purpose, a simulation
approach is advantageous because ground truth is available and it allows to re-
peat the same experiment with identical measurements but new independent
measurement noise.

All experiments have been conducted on an Intel Xeon, 2.67 GHz with
2.5%, 2° noise for the landmark sensor, 0.01y/m noise for the odometry sensor
(proportionally to square root of distance traveled) and a robot radius of 0.3m.
The algorithm’s parameters are optHTPSteps = 5 steps of tree optimization per
global update and mazDistance = 5m as maximum diameter of a region.

Clearly space (R2) and time (R3) consumption are straightforward to mea-
sure but how should one assess map quality with respect to requirement (R1)?



9.1 Assessment of Map Quality

With known ground truth the estimation error can readily be computed. But
while it is a good measure for the overall system performance, it doesn’t tell
anything about the algorithm. An error, for example of 1m, could either be
caused by large sensor noise despite an optimal algorithm or it could be caused
by crude approximations in the algorithm despite precise sensor measurements.
To assess the performance of the algorithm with respect to requirement (R1) the
error must be compared to the “minimal uncertainty that could be theoretically
derived from the measurements” as evident from the optimal nonlinear Maximum
Likelihood estimate. So if, for instance the ML estimate has an error of 0.5m
it can be concluded, that the algorithm has increased the error by 100%. This
number i.e. the relative error indicates the prize to pay for using the algorithm
instead of ML estimation and characterizes the algorithm’s map quality with
respect to (R1). Another point to consider when interpreting absolute error
specifications is that the absolute error is accumulating and thus depends on the
map size.

To summarize: When the focus is on the core estimation algorithm not on
the overall system, relative not absolute error is the quantity to be considered.

It is well known [3] that relative aspects of a map e.g. the distance between
two landmarks have much less uncertainty than absolute landmark positions.
Since the uncertainty of absolute landmark positions is often several meters
navigation would be impossible otherwise. Thus it is essential, not only to look
at the relative error of different landmarks but at the relative error of any aspect
of the map as required by (R1). It has been derived [3] that this can be done by
computing a generalized eigenvalue spectrum

Cv= A\ CML’U (9)

of the covariance of the algorithm’s estimate C relative to the covariance of the
maximum likelihood estimate Cyyr,. The generalized eigenvalue A corresponding
to an eigenvector v gives the squared relative error in the two estimates for the
aspect corresponding to the eigenvector v. These eigenvalues characterizes the
relative error encountered in different aspects of the map just the same way as
ordinary eigenvalues characterize the absolute error in different aspects.

9.2 Small Map Experiment

The small map simulation experiment allows statistical evaluation of the esti-
mation error and comparison with EKF and ML (Fig. 5). At first sight all three
basically appear of same quality (except for the left upper room in the treemap
estimate) and perfectly usable for navigation. Quantitative inspection however
will still show a notable difference:

Figure 5d compares the relative error in the three estimates in all aspects of
the map. The error covariances C' for treemap, Crkr for EKF and Cyp, for ML
are approximatively determined by Monte Carlo simulation with 1000 runs. To
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Fig. 5. Small map simulation experiment results

limit the number of runs necessary only eight selected landmarks are evaluated.
The square root of the smallest eigenvalue is 110% (87% vs. EKF) and the largest
395% (181% vs. EKF). This means that the map estimate computed by treemap
has an error 10% larger in the best aspect and 295% larger in the worst aspect
than the ML estimate. The typical (median) relative error is 137% compared to
ML with two outliers of 395% and 293% and typically (median) 125% compared
to EKF. The outliers are also apparent in the plot comparing EKF to ML, so
they are probably caused by linearization errors occurring in EKF and treemap.
This is surprising since at visual inspection the EKF map is so good one would
hardly suspect linearization problems.

9.3 Large Scale Map Experiment

The second experiment uses an extremely large map consisting of 10 x 10 copies
of the building used before (not shown for its size). The experiment encompasses
n = 11300 landmarks, m = 312020 measurements and p = 63974 robot poses.
The EKF experiment was aborted earlier due to large computation time.
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Fig. 6. Large scale simulation experiment: Storage space and computation time over
number of landmarks n. Observe different computation time for a local update, a global
update and for computing a global estimate

In Fig. 6a storage space consumption is clearly shown to be linear for treemap
(O(kn)) and super-linear (O(n?)) for EKF. Overall computation time was 31.34s
for treemap and 18.89 days (extrapolated ~ n3) for EKF. Computation time
per measurement is shown in figure 6b. Time for three different computations
is given: Local updates (dots below < 0.5ms), global updates computing a local
map (scattered dots above 0.5ms) and the additional cost for computing a global
map are plotted w.r.t. n. The algorithm is extremely efficient updating an n =
11300 landmark map in 12.37ms. Average time is 1.21us - k2 for local update,
0.38us - k3 logn for global update and 0.15us - kn for a global map respectively.
The latter is surely the most impressive result from a practical perspective.

10 Real World Experiments

The real world experiments reported in this section are used to demonstrate
how to apply the treemap algorithm in practice by mapping the DLR Institute
of Robotics and Mechatronics’ building (Fig. 3). It is used as an example for
a typical office building and indeed turns out to be “topologically suitable” as
defined in §6. The algorithm is generating a balanced and well partitioned tree
representation online and closes three large loops during mapping.

In the experiments a wheeled mobile robot was moved manually through the
building. The robot is equipped with a camera system (field of view: +45°) at
a height of 1.55m. As maximum diameter of a region mazDistance = Tm was
used. For the purpose of conducting this experiments circular artificial landmarks
were set throughout the floor of the building (Fig. 7a) and visually detected by
a combination of Hough-transform and a gray-level variance criterion.

Since the landmarks are identical, identification is based on their relative
position employing two different strategies in parallel: Local identification is



(a) Screen shot with live image and map estimate.  (b) Before closing the loop.

Fig. 7. Real world experiments: Implementation mapping the DLR building

performed by simultaneously matching all observations from a single robot pose
to the map taking into account both error in each landmark observation and
error in the robot pose. For global identification considerable difficulties were
encountered in detecting closure of a loop: Before closing the largest loop the ac-
cumulated robot pose error was 16.18m (Fig. 7b, 8) and the average distance bet-
ween adjacent landmarks was ~ 1m. With indistinguishable landmarks matching
observations from a single image was not reliable enough.

Instead, the algorithm has been designed to match a map patch of radius 5m
around the robot. When the map patch is recognized somewhere else in the map,
the identity of all landmarks in the patch is changed accordingly and the loop is
closed. It is a particular advantage of the treemap algorithm to be able to change
the identity of landmarks already integrated into the map (referred to as lazy
data association by Haehnel et al. [22]). Technical details of computer vision
and landmark identification can be found in [4]. The final map contains 725
landmarks, 29142 measurements and 3297 robot poses (Fig.7b, 8). The results
highlight the advantage of using SLAM because after closing the loop the map is
much better and at visual inspection impressively good for such a large building.
Figure 9 shows the internal tree representation used by the algorithm. On the
average there are k =~ 16.39 landmarks represented in each BIB. The tree is
balanced and well partitioned, i.e. no node represents too many landmarks. It
can be concluded that the building is indeed topologically suitable in the sense
discussed in §6. Computation time is extremely low (0.07ms per measurement)
if, only a local update is performed as is the case most often. The average time
is 0.77us - k2 for local update, 0.02us - k3 logn for global update and 0.04us - kn
for a global map respectively (Fig. 10). Accumulated computation time is 2.95s
for treemap and 601s (extrapolated ~ n3) for EKF.



Fig. 8. Real world experiments: Final map estimate

11 Conclusion

The treemap SLAM algorithm proposed in this paper works by dividing the
map into a hierarchy of regions represented as a binary tree. With this data
structure, the computations necessary for integrating a measurement are limited
essentially to updating a leaf of the tree and all its ancestors up to the root.
From a theoretical perspective the main advantage is that a local map can be
computed in O(k®logn) time. Practically, it is equally important that a global
map can be computed in O(kn) additional time allowing computation of a map
with n = 11300 landmarks in 12.37ms on an Intel Xeon, 2.67 GHz.

With respect to the three proposed criteria the algorithm was verified the-
oretically, by simulation experiments, and by experiments with a real robot. A
precondition is a typical, topologically suitable building as explained in §6.

From the author’s perspective a drawback is the algorithms complexity nec-
essary for performing bookkeeping in O(k3 logn). Consequently a promising idea
currently investigated is to simplify the algorithm for computing a global map
in O(kn) rather than a local in O(k3logn).

Apart from computation time, the most important challenge is landmark
identification. Multi-Hypothesis tracking is generally seen as a promising idea
to tackle situations where identification is difficult. With such an approach, ef-
ficiency of the core algorithm becomes even more crucial as it has to handle all
hypotheses simultaneously, multiplying the computation time needed.
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