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Abstract— This paper addresses the problem of simultaneous
localisation and mapping (SLAM) by a mobile robot. An in-
cremental SLAM algorithm is introduced that is derived from
multigrid methods used for solving partial differential equa-
tions. The approach improves on the performance of previous
relaxation methods for robot mapping because it optimizes the
map at multiple levels of resolution. The resulting algorithm
has an update time that is linear in the number of estimated
features for typical indoor environments, even when closing very
large loops, and offers advantages in handling non-linearities
compared to other SLAM algorithms. Experimental comparisons
with alternative algorithms using two well-known data sets and
mapping results on a real robot are also presented.

Index Terms—mobile robot navigation, SLAM, metric-
topological maps, Gauss-Seidel relaxation, Galerkin multigrid.

I. INTRODUCTION
A. Motivation

To navigate in unknown environments, an autonomous robot
requires the ability to build its own map while maintaining
an estimate of its own position. The problem of simultaneous
localisation and mapping (SLAM) has received much attention
in recent years, and has been described as the autonomous
answer to the question “where am 1?” [1]. The SLAM problem
is hard because the same sensor data must be used for both
mapping and localisation. We can separate two major sources
of uncertainty in solving this problem:

(i.) the continuous uncertainty in the positions of the robot
and observed environmental features, and

(79.) the discrete uncertainty in the identification and re-
identification of environmental features (data association).

Any approach to the SLAM problem that considers both types
of uncertainty must somehow search the space of possible
maps, since alternative assignments in data association can
produce very different maps.

Our approach belongs to a family of techniques where the
environment is represented by a graph of spatial relations
between reference frames that is obtained by scan match-
ing [2], [3]. With this approach, it is natural to separate
the topological (discrete) and geometric (continuous) elements
of the representation, and to consider tracking the M most
likely topological hypotheses as a practical solution to the
SLAM problem. Alternative topological hypotheses generally
correspond to decisions over whether or not to “close a loop”,
based on the uncertainty in the re-identification of previously
mapped features. The key problem here is that to evaluate the
likelihood of one single hypothesis, a large linear equation
system has to be solved in order to infer the most likely
geometric representation given a particular topology.

In the rest of this paper, we only consider how to solve the
equation system for a single topological hypothesis, though
our solution to this problem is motivated by the computational
requirements for a full SLAM algorithm that considers both
types of uncertainty. In the conclusion (Section VII), we
discuss how to embed the new algorithm within a framework
for tracking multiple topological hypotheses.

B. Requirements of an Ideal SLAM Algorithm

The difficulty in SLAM arises from the fact that sensor
measurements are never exact but always subject to measure-
ment noise. However, leaving aside the question of uncertain
data association for now, there exists an optimal solution for
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SLAM under reasonable assumptions: the measurement noise
is assumed to be independent and drawn from a Gaussian
distribution with known covariance. The map with the largest
likelihood, the Maximum Likelihood Estimate (ML-estimate)
is then the best estimate possible. The optimal map can be
computed by solving the linear equation system obtained from
the measurements. A standard least squares algorithm such
as Levenberg-Marquardt [4] could be applied. However, this
approach would not be practical for real-time operation in
large environments: for n landmarks and p robot poses the
computational cost of the Levenberg-Marquardt algorithm is
O((n + p)®).

Another important issue in SLAM is non-linearity. The
equations involved are non-linear, mainly in the robot ori-
entation ¢, which occurs as a ‘;’;i’ *C(S)isnf rotation
matrix. Non-linearity is usually treated by linearization. Severe
linearization errors result if the error in the robot orientation
exceeds &~ 15°. Some algorithms can solve this problem
by relinearizing, i.e., updating the linearization point and
recomputing all measurement Jacobians once the estimate
changes (see Section II).

In general three criteria are important to assess the perfor-
mance of a SLAM algorithm, concerning respectively map
quality, storage space and computation time. The following
requirements for an ideal SLAM algorithm were identified by
Frese and Hirzinger [5]:

R1. Bounded uncertainty: the uncertainty of any aspect of
the map should not be much larger than the minimal
uncertainty that could be theoretically derived from the
measurements.

R2. Linear storage space: the storage space of a map covering
a large area should be at most linear in the number of
landmarks (O(n)).

R3. Linear update cost: incorporating a measurement into a
map covering a large area should have a computational
cost at most linear in the number of landmarks (O(n)).

In summary, requirement R1 states that the map should rep-
resent nearly all information contained in the measurements,
thus binding the map to reality. R2 and R3 concern efficiency,
requiring linear space and time consumption. There is a subtle
tradeoff between R1 and R3 since in general approximations
make processing faster but the resulting map less precise. R1
implies the ability to close loops, because any break in the
mapped representation of free space would prevent the robot
from navigating further. The most important requirement from
a practical perspective is R3, limiting the amount of time
spent on each new measurement. So our goal for the algorithm
described here was to achieve linear computation time while
being able to instantaneously close loops.

C. Accelerating Relaxation-based SLAM

One method for solving the linear equation system in SLAM
is to apply Gauss-Seidel relaxation [4], an iterative procedure
that is equivalent to Gibbs sampling at zero temperature [6], as
first applied to the SLAM problem in [7]. The basic principle
is to optimize the pose for each frame in turn, based on the
local relations to the connected frames, i.e., “pick a node and

move it to where its neighbours think it should be”. One
iteration consists of updating every frame once by this rule.
The method is useful for real-time SLAM applications because
the computation is distributed while the robot is moving,
instead of resolving the equation system from scratch at each
iteration. It has been applied and extended by a number of
authors [8], [9], [10], [11], [12], [13], [14].

Relaxation performs well on requirement R1, enabling
relinearization and converging to the non-linear maximum
likelihood solution when required (see Section III), and also
R2. With respect to R3, relaxation is computationally cheap,
requiring O(1) iterations at O(n) cost for incremental map
building in most situations [8]. However, the method is slow
to converge when closing large loops (i.e., when returning to
a previously visited location after traversing a large cycle),
because the accumulated error must be back-propagated and
corrected throughout the rest of the map. In general, Gauss-
Seidel relaxation requires O(n) iterations, i.e., O(n?) time to
reduce the equation error by a constant factor [4, §19.5].

The contribution of this paper is a new SLAM algorithm
called ‘Multilevel Relaxation’ that is an order of magnitude
faster than standard relaxation at closing loops, enabling map
building to be performed on-line in linear time for all situa-
tions. This algorithm is based on so-called multigrid methods
for solving partial differential equations [15], and accelerates
the convergence of Gauss-Seidel relaxation by optimising
the map at multiple levels of resolution. In contrast to the
previously published algorithms [7], [8], the new algorithm
does not require any global orientation sensor, and is shown
to converge to the non-linear maximum likelihood solution.

The rest of this paper is structured as follows. After a review
of related work (Section II), we derive the basic algorithm for
single level relaxation (Section III). This is followed by an
overview of multigrid methods (Section IV) and the Multilevel
Relaxation algorithm (Section V), then experimental results
(Section VI) and conclusions.

II. RELATED WORK

In the last five years interest in SLAM has increased signifi-
cantly, resulting in a large number of algorithms that are more
efficient than the traditionally used Extended Kalman Filter
(EKF) [16]. We briefly review the more recent contributions,
referring the reader to a general overview given by Thrun [17].

Least squares estimation and incremental least squares es-
timation in general lead to linear equation systems, which
is an established and thoroughly studied area of numerical
mathematics. So to improve upon these general methods, new
approaches must exploit some special property of the SLAM
problem in order to reduce computational costs.

Most approaches exploit the fact that the field of view
of the robot’s sensors is limited. Thus, at any point in the
environments, only few landmarks in the vicinity of the robot
are observable and can be involved in measurements. The
number k of these landmarks influences the computation time
of the algorithm. It depends on the sensor type and the density
of landmarks, but does not grow when the map gets larger. So
this number is small, e.g., k¥ =~ 10 in practice, and is usually
considered as constant k = O(1) for theoretical analysis.
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Fig. 1.

Performance of different SLAM algorithms with n landmarks or frames respectively, m measurements, p robot poses and k landmarks / frames

local to the robot. FastSLAM is a particle filter approach (M particles). Compare the remarks in Section II concerning the quality of the estimates provided
by fastSLAM and SEIF. UDA stands for *Uncertain Data Association’ meaning that the algorithm can handle landmarks with uncertain identity. The treemap
algorithm needs only O(k3logn) when computing an estimate for a selected O(k) number of features.

Guivant and Nebot [18], [19] developed a modification
of the EKF called Compressed EKF (CEKF) that allows
the accumulation of measurements in a local region with k
landmarks at cost O(k?) independent from the overall map
size n. When the robot leaves this region, the accumulated
result must be propagated to the full EKF (global update) at
cost O(kn?). An approximate global update can be performed
more efficiently in O(kn?) with O(n?) storage space needed.

Duckett et al. [7], [8] employed an iterative equation solver
called relaxation to the linear equation system appearing in
maximum likelihood estimation. They apply one iteration
after each measurement with computation time O(kn) and
O(kn) storage space. After closing a loop, more iterations are
necessary leading to O(kn?) computation time in the worst
case. In addition, their algorithm was based on the assumption
of a global orientation sensor to ensure linearity. Both of these
problems are solved in this paper by the Multilevel Relaxation
algorithm, so that computation time can be reduced to O(kn)
even when closing large loops.

Montemerlo et al. [20] derived an algorithm called Fast-
SLAM from the observation that the landmark estimates are
conditionally independent given the robot pose. Basically, the
algorithm is a particle filter [21] in which every particle repre-
sents a sampled robot trajectory plus a set of n Kalman filters
estimating the position for each landmark as a Gaussian dis-
tribution. These distributions are independent, so n small co-
variance matrices are needed instead of one large matrix. The
computation time for integrating a measurement is O(M logn)
for M particles with O(Mn) storage space. This algorithm can
cope with uncertain landmark identification, which is a unique
advantage over the other algorithms discussed in this section.
However, the efficiency of this algorithm depends crucially on
M being not too large, and it is not clear how this number
scales with the complexity of the environment. A very large
number of particles would be needed to close a loop, because a
particle filter integrates measurements by choosing a subset of
particles that is compatible with the measurements from the set
of already existing particles (resampling), neither modifying
the robot trajectory represented by the particles chosen, nor
back-propagating the error along the loop. So the particle set
must be large enough to contain a particle sufficiently close to

the true pose of the robot at all times, otherwise map quality
will be degraded.

Thrun et al. [22] presented a “constant time” algorithm
called the Sparse Extended Information Filter (SEIF), which
uses an information matrix instead of a covariance matrix to
represent uncertainty, as proposed by Frese and Hirzinger [5].
The algorithm exploits the fact that the information matrix
is approximately sparse requiring O(kn) storage space. The
information matrix representation allows integration of a new
measurement in O(k?) computation time, but to produce a map
estimate a system of n linear equations must be solved. The
equation solving is performed iteratively by relaxation. As in
the approach of Duckett et al., this could be done by applying
one iteration of relaxation with O(kn) computation time.
However, Thrun et al. propose not to relax all n landmarks,
but only O(k) of them (using so-called amortization), thereby
formally obtaining an O(k?) algorithm. In the numerical litera-
ture, relaxation is reputed to need O(n?) time for reducing the
equation error by a constant factor [15], [4]. For example, after
observing n landmarks each O(1) times, the SEIF algorithm
will have spent only O(n) time on equation solving, so it is
unclear whether this approach will suffice in general.

Bosse et al. [23] avoid the computational problem of up-
dating an estimate for O(n) landmarks in their Atlas frame-
work by dividing the map into submaps. There is no global
coordinate system, rather each submap performs estimation
in its own local frame. If information about landmarks in
different submaps is required, uncertain spatial relations along
a sequence of overlapping submaps are combined. However,
a global reference frame usually simplifies implementation
of algorithms using the map, and there are other techniques
realizing submaps on a linear algebra level [24], [25], so an
overall least square estimate could still be computed efficiently.

Paskin [26] views the estimation problem as a Gaussian
graphical model, which is closely related to the graph of
relations used in this paper. He proposed the Thin Junction
Tree Filter (TJTF). It is based on the observation that if a
set of node separates the graph into two parts, then these
parts are conditionally independent given estimates for the
separating nodes. The algorithm maintains a junction tree
(O(k?n) space), where every edge corresponds to such a
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separation. Estimation is performed in O(k3n) time by passing
marginalized distributions along the edges of the junction
tree. To keep the dimension of these distributions and thus
computation limited, the tree is simplified by performing an
approximation (similar to sparsification) on the represented
distributions. From the perspective of “linear equation solving”
this approach is complementary to the approach proposed in
this paper. In the Gaussian case the junction tree algorithm is a
direct, i.e., exact equation solver based on Schur-complements
(corresponding to the marginalized distributions) and approx-
imation is performed on the equation level. In contrast Mul-
tilevel Relaxation is an iterative, i.e., approximate equation
solver but does not approximate the equations themselves.

Frese [24] recently proposed the treemap algorithm that,
although independently developed, is even more closely re-
lated to TITE. It divides the environment into a parts-whole-
hierarchy represented as a binary tree. In order to integrate
a measurement, all nodes from a single leaf up to the root
need to be updated by passing Schur-complements along the
edges, in very similar fashion to a junction tree. In contrast
to TJTF, the algorithm uses a balanced tree with a designated
root, so this operation needs only O(k®logn) time. In order
to compute an estimate, information is propagated from the
root down to the leafs. This can be performed more efficiently
per node leading to an overall computation time of O(kn). If
only estimates for O(k) selected features are needed, as with
CEKF, computation time is even O(k3logn). The algorithm
further handles linearization problems, but is far more difficult
to implement compared to Multilevel Relaxation.

Fig. 1 gives a summary of the performance of the SLAM
algorithms discussed in this section, according to the criteria
R1-R3 described in Section I-B.

III. SINGLE LEVEL RELAXATION

This section derives the basic algorithm for relaxation on
a map with a single level, which provides the basis for the
multi-level algorithm described in Section V.

The input to the algorithm is a set R of m = |R| relations
on n planar frames. Each relation r € ‘R describes the
likelihood distribution of frame a” relative to frame b". It
is modelled as a Gaussian distribution with mean " and
covariance C". The output is the maximum likelihood (ML)
estimation vector & for the poses of all the frames.

In the context of SLAM, each frame corresponds to the
robot pose at a particular time. Note that in order to achieve
linear storage space and computation time, the number of
frames should be bounded to the total area covered, as in [8],

e., the map should not grow if the robot moves repeatedly
through the same area. This issue is discussed further in
Section V-E.

Each relation corresponds to a measurement of the relative
pose between two frames, either by odometry for consecutive
frames or as the result of matching the laser scans (or other
sensor readings) taken at the respective robot poses. As usual,
the mean p” of such a relation is the actual measurement
and the covariance C'" is taken from a suitable model of the
measurement uncertainty.

The algorithm proceeds in three steps [4, §15]:

1) Linearize the measurement functions.

2) Compute a quadratic error function x2(z) and represent

it by a matrix 4 and a vector b as x%(z) = 27 Az—2zTb.

3) Find the minimum % of x?(z) by solving Az = b.
The first two steps are used in most least square non-linear
model fitting algorithms. Specific to relaxation is the way of
solving Az = b. It is performed by going through all block
rows A; and solving (Az); = b; for x;. This process is
repeated until convergence.

A. Derivation of the Linear Equation System
Maximizing likelihood is equivalent to minimizing negative
log likelihood or x2 error energy:
=Y (e, (1)
reR
with
2" = f(@ar,zor) — 1", 2
where z,- and z- denote the 3 rows of vector z, correspond-
ing to the z, y and ¢ coordinates of frame a and b, and where
Qe be (az—bs) cosby+(ay—by)sinby
f (( ay ) , (by )) = ((ambm) sin by +(ay —by) cos by ) .
ag b¢ ag—bg
The measurement function f maps the two poses of the two
frames a” and b" to the relative pose of a” with respect
to b". Essentially f rotates the difference vector a — b into
b’s coordinate frame. As usual, it is linearized at some lin-
earization point ér,lv)r corresponding to some estimate for
the two frames (explained in Section V-D). The linearized

measurement function is derived by evaluating the Jacobians
J, and Jy of f(a,b) with respect to a and b:
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Setting a = 4~ and b = xp- and substituting into (2) yields
2" (@, 07) + JE (zar — d7) + JY (zpr —B7) —p" (5)
= Jowy + Jyap — (Jod" + JPbT — f(ar,br) +ut), (6)
~ ’
where y” contains all terms independent of z. It follows that
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The terms involve z either quadratically (lines 1-4) or linearly
(lines 5-6). They can be sorted by rows of x (either a” or b")
and grouped into matrix A and vector b as

) ,

J;‘T(C.’;)_IJ;”
NS ( |

JT(ET) L -
A A (el W

FT(C) T

v

A

JrT(C.v.r.)—lyr
T a T -1
—2" ) (lgT(C;:)_lyr)+Z y (€)Y

re€R reER

®)

/

~~

b

Each relation r contributes to block-rows a” and b" of b and
the intersection of these rows and columns in A. Since x? is
invariant under movement of the whole map, A is singular.
To make it positive definite, a relation between frame 0 and a
global frame is added (Jp = 0).

The matrix A is called the information matrix, and is the
inverse of the estimation covariance matrix. A block A, # 0
appears only between frames a, b with a common relation.
Due to limited sensor range there are only few frames with a
relation to a given frame. The number of these frames &k has
a similar influence to the number of local landmarks in the
CEKF [19] and SEIF [22] algorithms, since it depends on the
sensor and environment but does not grow with map size, i.e.,
k = O(1). This sparsity is essential for the efficiency of re-
laxation. The ML estimate # minimizes x2(z) or equivalently
makes the gradient equal to 0:

9 (x%(x)) 0 («" Az —22"D)
or N or

So with the definitions made above, the equation to be solved

is Az = b for a sparse matrix A.

0=

=2(Az—b). (9)

B. Iterative Solution by Relaxation

The basic idea of relaxation is to solve the equation system
Az = b one (block-) row at a time. Relaxation of (block-)
variable z; consists of solving (block-) row ¢ of the equation
for x; considering all other x; as fixed:

.TL'; =z; + A;l(bz - Ai..’L'), (10)

where A;, denotes (block-) row 7 and A,; denotes (block-)
column i of A. From the perspective of minimizing 27 Az —
2xTh, this means finding the minimum z; if all other z; remain
unchanged. Intuitively this corresponds to the basic principle
of relaxation: “pick a node and move it to where its neighbours
think it should be”. In a single iteration, (10) is used to update
all ;. After z; is updated, the new value is used in the update
of all following z;, j > ¢ (Gauss-Seidel relaxation).

Every iteration reduces z7 Az — 227b, so = will converge
to the unique minimum A~1b, thereby solving the equation.
Since A is sparse, evaluating (10) takes O(k) and a single
iteration O(kn) time. For typical A, O(n) iterations are needed
to reduce the error by a constant factor [15], [4, §19.5].
However, local or oscillating parts of the error are reduced
much more effectively than smooth or global parts, so in
practice, few (1 to 3) iterations suffice, except when closing a
large loop [8].

IV. MULTIGRID LINEAR EQUATION SOLVERS

This section gives an overview of the background theory on
multigrid methods used for solving linear equation systems.

Historically, relaxation has been widely used for the nu-
merical solution of partial differential equations (PDE). These
continuous equations appear, for instance, in the simulation
of heat flow, fluid dynamics or structural mechanics. As an
example, the solution to a heat flow problem is a function
R3 — R assigning a temperature to each point in 3-D space.
Numerically they are solved by discretizing the function onto a
grid of sampling points. Thereby the PDE is converted into an
ordinary sparse linear equation system. It is often solved using
relaxation. The problem with this approach is that oscillating
parts of the error are reduced efficiently, but it takes much
longer to reduce the remaining smooth error.

A breakthrough was the development of multigrid methods
in the 1970’s [27], [15], more or less replacing successive
overrelaxation and conjugate gradients as prevalent methods
for solving sparse linear equations.

The idea is to discretize the PDE at different levels of reso-
lution. Relaxation on a fine level (high resolution) effectively
smooths the error. Then relaxation on a coarser level is used
to reduce that error, which on the lower resolution is again
more oscillatory.

A. Geometric Multigrid

In the geometrical context underlying most PDEs, a hier-
archy of coarser levels is easily constructed by discretizing
the PDE onto grids with increasing grid spacing, i.e., onto
fewer sampling points. We follow the literature on multigrid
methods in distinguishing different levels by superscript . For
the transition between two levels * denotes the finer and # the
coarser level.

A single iteration of relaxation is first performed at the finest
level. The remaining residual b — A"z" is then restricted to the
next coarser level by a restriction operator I, also known as
the fine-to-coarse operator. This process is repeated until the
coarsest level is reached. At the coarsest level, the residual
equation is solved directly (e.g., by Cholesky decomposition
[4, §2.9]). Then the solution zH is interpolated to the next
finer level by an interpolation operator I%, also known as
the coarse-to-fine operator, and used to update the solution 2"
there. This process is repeated until the finest level is reached.

The propagation of the residual from fine to coarse and then
of the solution back from coarse to fine is called a V-cycle
(Fig. 2). Since the size of the levels decreases exponentially,
the computation time needed is O(kn), being asymptotically
the same as the time needed for the finest level (see section
V-F). For a suitable choice of I%, T f and AH one V-cycle
reduces the error by a constant factor [15].

B. Galerkin Multigrid

For PDEs, AH can be naturally derived as the discretization
onto a smaller set of sampling points. I% and I f are usually
chosen as linear interpolation and weighted averaging respec-
tively. If no “natural” choice for Af and I is available, the
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FOR Level h from fine to coarse

Relax equation on level h: APz = bt

Restrict residual to next level H: b = IT(b" — Azh)
Solve equation on coarsest level A#z7 = pH

FOR Level H from coarse to fine

Interpolate solution to next level h: " = z" + Ik o™
Relax equation on level h: APz? = p*

level 1

coarse
level 2

Fig. 2. General multigrid algorithm (V-cycle), and example with 3 levels.
Galerkin operator defines them purely algebraically for a given
interpolator 1 Ih{ It is derived from the equivalent minimization
problem (which on the finest level is just the original problem
of minimizing x2(z)):
T T
g(x) =z Algh — 2257 b,

Y

Since the coarse £ corresponds to the fine 1 Ih{a:H , the coarse
equation must minimize g(I%z*):

9 (9If=™))

H

0==0 (12)
o (a7 1y " AP T a T — 207 1)
- OzH (13)
AH It
T T
=2(I%" AMY o — I b) (14)
. . T
So by using the Galerkin operator [H = i~ AH =

T arrh b = 157h the coarse equation AHzH = pH
minimizes g(z) over the range of the interpolator. Relaxation
on any level thereby reduces g(z), ensuring convergence to the
unique solution for any I%. For fast convergence, however, the
choice of I% is still crucial.

Another point to consider is that I7 has to be local in some
sense, otherwise coarser matrices will become increasingly
dense, taking more than O(kn) time per iteration.

C. Algebraic Multigrid

There exist so-called algebraic multigrid approaches that
define the interpolator in a purely algebraic form without any
reference to an underlying geometry or PDE [28]. In principle
these approaches appear advantageous for a problem with an
irregular geometry such as SLAM. We implemented a variant
of “direct” interpolation [28, §4.2]. It interpolates a frame i
so that the result satisfies (Az); = b; given all coarse frames
x; and given linear interpolates for the fine frames x;,j # i.
However, for our data, this approach led to unacceptably dense
matrices (see Section VI), so we did not use it. Instead, we

applied a problem specific interpolator that is described in
Section V-C.

V. MULTILEVEL RELAXATION

This section describes the Multilevel Relaxation algorithm
proposed in this paper.

Unlike many PDEs, in SLAM the problem is not discretized
onto a regular grid, so the question is how to define the
hierarchy of coarser levels. The algorithm exploits the fact that
the frames form a sequence, namely the robot’s trajectory, so
selecting every second frame is a suitable way of generating
a coarser level (Fig. 3). It uses a multilevel representation
for equation (9) with a sparse matrix A. On this hierarchy
it implements a Galerkin based V-cycle. The algorithm is
incremental, updating £ for each new frame. Such an update
involves three steps: (i.) Extend A", b" on all levels necessary
to represent the new frame. (ii.) Update A", b" and I% based
on the new relations. (i4i.) Apply ¢ V-cycles to update the ML
estimate . The first two steps involve only few entries of A"
and b" and take O(k?logn) time, the third step takes O(kcn)
time.

A. Data Structure

The algorithm maintains the graph of relations R, with
linked lists that allows efficient traversal of the set of edges
incident upon a given node. Each relation r stores the corre-
sponding Gaussian distribution x", C™ and linearization point
a", b" (Section III-A).

For the multilevel hierarchy, each level h contains the sparse
equation matrix A" vector b", overall solution Z", residual
solution z" and the sparse interpolation matrix If. A" is
stored as a set of 3 x 3 blocks {(4,j, As;)|Ai; # 0}. Blocks
of a given row are linked for efficient traversal. This allows
computation of (Az); = A;ex and relaxation by equation (10)
in O(k). The interpolator I% is stored in an array, since each
row contains at most two blocks. We define C(f), the set of
coarse frames from which f is interpolated, and F'(f), the fine
frame corresponding to f, as

{%} f even
C(f) =< {1} f odd A last , (15)
{45, LY otherwise
_ _)2f =1 last
C(F) _fyfc(f)’ F(f) = {2 P e 9

B. Update

When new measurements arrive, a new frame is introduced
into A", b* and I, new relations are added and the equation
is updated on each level. Only O(k) frames are involved, so
the update is performed in O(k?) per level and O(k?logn)
total.

Our approach is to always recompute a complete row of A",
bR, and I%, keeping track of the changed rows from fine to
coarse level (Fig. 4). Some time could be saved if only the part
of a row that actually changed were recomputed. In each row
there are only O(k) entries anyway, so this approach would
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graph of
relations

level 0
fine

5 level 1

coarse
level 2

Fig. 3.

Example for a three level hierarchy: For each coarser level every even numbered frame is selected and the odd ones are interpolated from their

even predecessor and successor. Coarse frames (black) are represented on the next coarser level, fine frames (white) are interpolated. Lines show the sparsity
pattern of A%, A1 and A2. The first level is identical to the graph of relations R. Arrows show the interpolator I ? and 121 (only for frames 6...10)

Let F" be the set of all frames involved in a new relation r € R’

Extend ", 2" with initial estimates for new frames

Define linearization points a”, b" for new relations 7 € R’ (Section V-D)

Recompute rows F” of A", b* by (8) for finest level h

FOR Level A from fine to coarse

Recompute rows F" of I% by (22)

Let 77 = C(F") be the set of affected coarse frames

Copy &7 from corresponding fine frame 2%, for all f € F"

Recompute rows F2 of A# = 1" AkTl

Compute Cholesky decomposition A¥ = UTU for coarsest level H

Perform ¢ V-cycles (Fig. 2).

Fig. 4. Update of multigrid hierarchy after adding new relations R/'.

be more complicated and only slightly faster. For a new frame
A" b" and I are extended as necessary.

Let F” be the set of frames adjacent to a new relation.
From the sparsity pattern in (8) it can be seen that only A?j, bz’.b
for i,j € F" changes, so we recompute rows F". For each
f € F" the blocks generated by all relations incident to f are
added to A%, and .

Next the interpolator I ?I is updated. From the Galerkin
principle we are free to choose the interpolator, so we update
rows F", to limit the resulting change in A¥. Equation (17)
shows the structure of I%%:

I
BT Bf
(If)i; # 0

17
1 T e jech) (17)

Row (I%)te has blocks at columns C(f), so updating rows
F changes columns C(F). For a coarse f, row (I%)e is
a single identity block I. For a fine f, it is two blocks E;‘
and Ef_ defined by equation (22). The last step is to update
A = IIETAhIh , resulting in a change to columns C(F) of
Ik and F of A", A change in A?j changes rows C/(i) of AH,
so that rows C(F) are recomputed. When a level H has less
than np,;, frames (32 in our experiments), the equation on

that level is solved directly using a Cholesky decomposition
AP =U"TU.

C. Interpolation

There are several difficulties in devising a good interpolator
in the context of SLAM: (i.) The interpolator must be based
on the matrix A" or estimate #", not on the set of relations,
since the latter is only available at the finest level. (i.) It
must be rotation invariant, since otherwise it creates apparent
orientation information in the coarse equations, since for some
orientations the interpolation fits better than for others. Since
orientation is usually very uncertain [5], this effect distorts
the coarse solution. (#44.) This may even happen for rotation
invariant interpolators due to linearization. To see this, we
consider the following relation and substitute into (5):

o= ()= (418 - (1) 5- ()
b —

(3= "%~

(18)
19)

If, for instance, the rotation invariant interpolator b = a is
chosen, x? simplifies to 1+ b2, representing apparent absolute
orientation information. To reduce this problem, we use the
following geometric formula for interpolating a fine frame b
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from coarse frames a and c:

b=a+alc—a)+pBc—a)t, (20)
a€l0...1], pe[-1...4+1], (21)
ba
(gy) =E,a+Efc, (22)
¢
1-a B 0 a—80
Eb=<—ﬂ 1—a0), E;F:(ﬁaO). (23)
0 0 3 00 1

It defines the vector b — a as a linear combination of ¢ — a
and the orthogonal vector (¢ —a)*t. Therefore it is rotation
invariant. The constants a and § are chosen so that £, a +
E;'é = b, but clipped to avoid extreme cases. Thereby the
position of b relative to a and ¢ closely matches the position
used for linearization, and the above mentioned problems are
reduced.

D. Non-linearity and Convergence

To obtain a consistent estimate incrementally, a single V-
cycle for each new frame appears to suffice (see Section VI),
even when closing a loop. We update the linearization point
ar, b™ of a portion of the relations afterwards (5% in our
experiments), so that the map can converge to the non-linear
ML estimate while the robot continues moving. This is a
great advantage over EKF-based implementations, which do
not allow changing of the linearization point after integration
and can thus be subject to severe linearization errors [5].

For new relations we do not linearize at the most recent
estimate, but instead choose b" to be consistent with the mea-
surement, making f(&",b") = u". Usually the measurement
will be slightly more erroneous than the prior estimate but this
is no problem since the linearization point will be replaced by
the most recent estimate at the next relinearization. On the
contrary, when closing a loop the prior estimate is perturbed
by accumulated error. So the measurement itself is far closer
to the true value and thus a much better initial linearization
point.

For an immediate ML estimate #\; = argmin, x2(z),
iteration with a termination criterion is performed (Fig. 5). The
idea is to stop when the equation error £— . is much smaller
than the expected estimation error Ty, — ZTyue- We estimate
X2, ~ min, x%(z), by assuming exponential convergence.
The convergence factor o is computed from the initial and
last x? values. The factor -y is a heuristic for the case that x2
is already very close to the minimum.

It is well known that the expected minimum E (min, x?(z))
is 3(m —n + 1) and the expected E(x*(Zume)) value is 3m
[4, §15.1]. So =0 X2, is a rough estimate for x2(Zyye) —
min, x*(z). When x*(&) < (14+7) X7, With v = 0.1 L
the linearization points a”, b are updated, usually leading to
further reduction of x2(#). If this happens three times in a
row, iteration is stopped.

E. Linear Storage Space

Similar to the approach of Lu and Milios [2], our current
implementation uses one frame for each robot pose (sam-
pled every 0.5m). This makes both representation size and

computation time grow as O(kp) rather than O(kn). Thus
requirements (R2) and (R3) are only met if mapping is
terminated immediately after the robot has passed through
the whole environment a single time (p = O(n)), as in the
experiments presented in Section VI.

Requirements (R2) and (R3) could be fully met by storing
one frame for each place instead of each robot pose. This could
be achieved, for example, using the technique for incremental
map building employed by Duckett et al. [8], where new
frames were added to the map at 1 meter intervals. A better
alternative would be to replace older frames with new ones, so
that the map could be updated continually throughout the nor-
mal operation of the robot (so-called lifelong learning [29]).
Note, however, that the Multilevel Relaxation algorithm itself
does not specify whether frames correspond to places, land-
marks or robot poses, so the algorithmic complexity would be
the same regardless of the underlying representation.

F. Linear Computation Time

By selecting every second frame, the coarsification scheme
guarantees that the overall number of frames in all levels is
O(n). For a V-cycle to be executed in O(kn) time, the overall
number of non-zero matrix blocks must be limited to O(kn),
i.e., the number of frames connected to a single frame must not
grow too fast in coarser levels. In the following we will argue
without a formal proof that this holds for typical buildings.

Due to sensor range the distance between two frames
connected on the finest level is bounded. Thus the maximal
distance d between frames connected on level A is proportional
to 2. Now assume that the number of fine level frames within
this range is proportional to d” = (2")? for some v. Then on
level h the average number of frames connected to a single
frame is (2")” - 27", the overall number of connections is
kn -27h . (2")¥ . 27" and the number of connections on all
levels is

logn logn
Yokno2ho@h o=k S (270" 4
h=0 h=0

The result is O(kn) for any v < 2 and O(knlogn) for
2. (It should be noted that this effect is caused by
the interpolator and is not inherent to the general multilevel
approach.) This is the worst case possible, since the robot is
moving in 2-dimensions, so the area within a certain distance
can be at most proportional to the square of that distance.
This happens, for instance, when the robot performs a snake-
like movement on an open plane. The other extreme is a
“l-dimensional” corridor, where v = 1. In the experiments
discussed later (Fig. 6), the worst value encountered was
v ~ 1.3 between level O and level 1 for the Freiburg data.
From this evidence and the observation that typical buildings
are something inbetween a corridor and an open plane, we
argue that normally v < 2 and consequently a V-cycle needs
O(kn) computation time.

v =

VI. RESULTS
A. Off-line Experiments

The performance of the proposed algorithm was first eval-
vated on two well known datasets, one from the University
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Xo =xX*(&); ctr=0; i=0
WHILE ctr < 3
Update £ by 3 V-cycles, x7=x%(2); i=i+1
- A o
y=01l0m a=v Xi/(VX5)  Xhin = Xi 1 — %
Foo[ x> v (8 < (1+7)%)
THEN |Update a”, b" for all r € R;  ctr = ctr +1
ELSE |ctr =0
Fig. 5. Computation of the approximate ML estimate Z.
Freiburg Wean Hall
iter. time x2 iter. time x?
Initial Estimate (IE) 16395061 1126227
Cholesky Decomposition (CD) 19.951 s 428397 1.268 s 6113
Single level relaxation (SLR) 12 0.437 s 431995 630 0.786 s 7122
Multilevel relaxation (MLR) 12 0.586 s 427178 12 0.059 s 5992
One MLR iteration (1-MLR) 1 0.023 s 501273 1 0.003 s 40375
Exact Minimum 425639 5986
Incremental MLR (iMLR) 1 | avg. 14.4 ms 426104 1 | avg. 1.6 ms 6178
Incremental SLR (iSLR) 1 avg. 8.6 ms 425759 1 | avg. 0.7 ms 91772
n, m 906 8081 346 932
Blocks # 0 in A%, A1, A2 15770 9824 4154 | 2054 848 414

Fig. 6. Performance on Freiburg / Wean Hall data: CD, SLR, MLR, 1-MLR all compute a batch estimate for the whole data set. iMLR and iSLR incrementally
process each new frame (the average time per frame is given). The exact minimum was computed by iterating MLR to numerical convergence of the equation

Az = b.
I e e
- ; N E
0.25 f SLR -------
EISLR ——— i E
02 F Vi .
0.15 F E
E E . ”,’ E
had 0.1 ;— ”_,f _;
005 F 3
Rl I i P eR YT oA FITETTTIT PTTAYITYN FIYTYTSY,
0 100 200 300 400 500 600 700 800 900
n
(a) Execution time
Fig. 7.

up to 2% above the minimum, which all correspond to excellent estimates.

of Freiburg [3] and a single loop taken from the Carnegie
Mellon Wean Hall [30]. They were first processed by the
software package ScanStudio [31], which performs the scan-
matching. The resulting graph of relations was passed to our
implementation, which computes the x2 function and uses
either ‘Cholesky decomposition’ (CD), ‘Single level relax-
ation’ (SLR), ‘Multilevel relaxation’ (MLR) or ‘One MLR
iteration’ (1-MLR) for minimization. Cholesky decomposition
is a direct O(p®) equation solver [4, §2.9], which is included
as a baseline for comparison of the relaxation algorithms.
All four algorithms start with an initial estimate (IE) based

1.02

1.026

1.076

0 100 200 300 400 500 600 700 800 900
n
(b) Final x?2

Performance on Freiburg data plotted over number of frames. Algorithm names are sorted from high to low values. (b) is scaled to show x 2 values

on the first relation involving a frame. The last two methods
‘Incremental Multilevel Relaxation’ (iMLR) and ‘Incremental
Single Level Relaxation’ (iSLR) apply a single MLR and
SLR iteration for each new frame. Thereby they incrementally
maintain a map estimate as our algorithm would actually be
used on a mobile robot. All experiments were conducted on
a Pentium IV, 1.7 GHz using LINUX/gcc 2.95.3 (Fig. 6,
7). For visualisation purposes, the results are presented as
occupancy gridmaps [32], where white cells indicate areas
that are believed to be ‘empty’, black cells indicate ‘occupied’
areas, and grey cells indicate ‘unknown’ areas (see Fig. 8).
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(a) CD
Computed maps for Freiburg (17m X 26m, a-b) and Wean Hall (36m X 74m, c-e), see also Fig. 6.

(b) iIMLR
Fig. 8.

For both datasets, MLR is much more efficient than CD
and provides a better estimate. The latter point is true because
CD solves the linearized problem, while all others perform
non-linear minimization. It is worth noting that linearization
effects can be seen in the x? value despite the small orientation
error. SLR needs the same number of iterations as MLR on
the Freiburg data, thus being faster. But it is much slower on
the Wean Hall data. The reason therefore lies in the difference
between the two datasets (Fig. 8a, c). The Wean Hall data is
a long loop with a large global error. MLR is more efficient
in reducing this type of error than SLR, which needs many
more iterations. The error in the Freiburg data is mainly local,
so both MLR and SLR need the same number of iterations.

There is an inconsistency in the lower right two rooms of
the Freiburg CD estimate (Fig. 8a), which is also visible for
the MLR, SLR and 1-MLR estimates. The reason is that scans
from the lower room and scans from the upper room overlap
only slightly through the small doorway, so ScanStudio did
not match any of them, and this inconsistency is not visible
in the graph of relations.

iMLR and iSLR are much faster than CD, MLR and SLR
if an incremental estimate is desired. For the Freiburg data,
the estimates produced by both incremental algorithms are
extremely good (Fig. 7, 8b) and better than CD and MLR
most of the time, with the exception of two outliers occurring
after integrating two inconsistent relations. iSLR performs
extremely well here because the Freiburg data does not contain
loops, which is the main situation where SLR requires more
iterations.

The iSLR estimate is even better than the iMLR estimate.
This is surprising, because iMLR performs the same amount
of fine level relaxation as iSLR plus additional relaxation on
coarse levels. We checked that the coarse level relaxation
indeed reduced the linearized x2 error further. So it can be
concluded that the phenomenom is related to linearization
effects. On the other hand it should be kept in mind that both
estimates are extremely good, with a x2 value less than 7%
above the exact minimum.

For the Wean Hall data, the CD and MLR estimates are

() IE (d) MLR () iIMLR

better than the iMLR estimate (Fig. 6, 8c-e), which is in turn
much better than the iSLR estimate. This is because both
perform only a single iteration after closing the loop. Here
the advantage of iMLR can be seen, since it closes the loop
consistently (Fig. 8e), which is not achieved by iSLR.

As claimed in Section V-F, the interpolator leads to suffi-
ciently sparse matrices A%, A!, A2, with each coarser level
having 40% to 60% fewer non-zero blocks, equivalent to
values of v between 0.7 and 1.3. When using a variant of
direct interpolation [28], A' has 29723 and A? has 25347
non-zero blocks, which is unacceptably dense.

The minimum x2, is much larger (Freiburg: %20,
Wean Hall: x3.4) than the theoretically expected value
3(m — n + 1). This shows that the scan matching covariance
is overconfident [33] and stresses the importance of defining
the termination criterion relative to X2, in Section V-D.

B. Robotic Implementation

The Multilevel Relaxation algorithm has also been tested
extensively as one component of a complete system for incre-
mental mapping of unknown environments. The platform for
these experiments was an Activimedia Peoplebot mobile robot
equipped with a SICK LMS 200 laser scanner (Fig. 10). In
this system, the robot is controlled remotely by a teleoperation
interface via a client-server architecture. The server program
running on the robot sends the sensor data and a visual image
stream to the client PC (P4, 1200 Mhz), while the client sends
the motor commands selected by the user back to the robot.

The largest map acquired by the robot is shown in Fig. 9,
which comprises n = 602 frames (laser scans) and m =
2108 relations, in an area at the Technology building of
Orebro University covering approximately 60 x 55 metres.
The gridmap used for visualisation purposes was built off-
line after mapping had been completed, but the Multilevel
Relaxation algorithm was run online in real-time as the robot
traversed the environment.

The Cox algorithm was used for real-time matching of
laser scans [34] (using the standard implementation from
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Fig. 9. Visualisation of the map acquired online at the Department of
Technology, Orebro University, approximate size 60 X 55 metres.

Fig. 10. Activmedia Peoplebot mobile robot exploring part of the environ-
ment shown in Fig. 9

ScanStudio), due to its low computational cost. New laser
scans were added to the map whenever the robot pose changed
by a distance of at least 50 cm or an angle of at least 15°.
After adding a new scan, the client tried to match it with the
previously recorded scan, in order to obtain an estimate of the
displacement of the robot (odometry was only used here to
provide an initial estimate of the relation for scan matching).
If this match failed, then the client tried to match the current
scan with the next previous scan. If both matches failed, then
a new relation was taken directly from the recorded odometry
data, corresponding to a so-called “weak link™ in the approach
of Lu and Milios [2]. For this map, only 3 such relations were
obtained from odometry, while the rest were obtained by scan

matching.

The radius used for checking of other possible scan matches
was 1 m, i.e., whenever a new scan was added to the map,
all other scans with a pose estimate less than 1 m from the
current robot pose were matched to the new scan, and new
relations (so-called “strong links” [2]) were added to the map
for all successful matches.

Note that a more accurate map could possibly be achieved
by using a more complex scan matching algorithm and a larger
matching radius, but this could not be done in real-time with
the currently used set-up.

VII. CONCLUSION

This paper introduced a new SLAM algorithm, Multilevel
Relaxation, which is suitable for incremental, on-line use on
a mobile robot in O(n) time, including closing of large loops.
This is possible because (i.) the algorithm makes an iterative
refinement to the existing solution at each step, rather than re-
solving the equation system from scratch, and (4i.) it exploits
an important property of multigrid methods, namely that the
residual error is geometrically smooth, i.e., it is distributed
evenly over the whole map. In the case of closing a very
large loop, as in the Wean Hall example presented, it can
take several further iterations to converge to the maximum
likelihood solution. However, the map is already geometrically
consistent after a single iteration, that is, none of the measured
relations are strongly violated in the estimated vector £, and
the map should be useful for navigation purposes. A further
advantage of relaxation methods is that non-linearities can be
handled by recomputing the linearization points as necessary.
Remarkably, the result from a few iterations is already better
than the exact solution of the linearized problem provided by
Cholesky decomposition.

Relaxation is also potentially very useful for assisting in
the task of data association (identification of observed envi-
ronmental features), because relations between frames can be
added and removed at any time (an advantage not yet exploited
in this work). Furthermore, the minimum y2(#) = min, x2(z)
provides a plausibility measure that allows assessment of
different data association decisions, since the increase in x2(%)
encountered after integrating a measurement equals the Ma-
halanobis distance of that measurement. These aspects make
it possible to detect bad data association decisions and correct
them retroactively (referred to as lazy data association by
Hihnel et al. [35]). The approach is also useful for extracting
covariance information for assessing map quality. To obtain
column 4 of the covariance matrix A~! equation Az = e; must
be solved, with e; being the ¢-th unit vector. A single multigrid
iteration should suffice, since the resulting covariance column
provides a good initial guess for the columns corresponding
to other landmarks nearby.

Future work will include embedding the new algorithm in
a framework for handling both the continuous and discrete
uncertainty in SLAM. This would be achieved by multi-
hypothesis tracking in the space of possible maps, where
one hypothesis corresponds to one possible topology. Search
among alternative topologies could be performed by global
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optimization methods such as genetic algorithms [36]. The
ability to add and remove relations at any time could then be
used to optimize min, x2(x) over different topologies. This
approach appears to be very promising for lifelong learning,
since it would combine adaptive global optimization capability
with the efficiency of Multilevel Relaxation in closing loops,
i.e., in finding the best metric estimate for a given topology.
While loops occur rarely in most indoor environments, alterna-
tive topological interpretations of the same sensor data usually
correspond to decisions on whether or not to close loops —
this is why an efficient equation solver is highly desirable for
solving the SLAM problem in its more general form.
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