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Abstract—Inertial Navigation Systems suffer from unbounded
errors on the position and orientation estimate. This drift can
be corrected by applying prior knowledge, instead of using
exteroceptive sensors. Analysing the state observability induced
by prior knowledge motivates us to track bikers in track cycling
races. In this paper, we show that the pose of the bikers can be
estimated with an IMU as the only sensor by using a heightmap
of the track and the knowledge that the biker drives forward.
We present a dataset with three 60-round trials and evaluate the
state estimate. We show that the influences of the priors match
the expectation derived from state observability analysis.

Index Terms—State Estimation, Prior Knowledge, Inertial
Navigation System, INS, Track Cycling

I. INTRODUCTION

For short time periods, the pose (position and orientation) of
an object can be estimated with an Inertial Measurement Unit
(IMU). The pose is estimated by integrating the acceleration
and angular rate measurements. This method accumulates the
measurement errors of the IMU, wherefore the estimate drifts
over time. The drift can be corrected by fusing the IMU with
exteroceptive sensors, e.g. GPS.

In indoor environments, GPS is unavailable. Custom radio
emitters or the buildings WiFi can be used instead [1]. Sur-
prisingly, several pedestrian tracking systems achieve drift-free
estimates with an IMU alone [2]–[4]. The systems fuse IMU
measurements with prior knowledge of the environment and
the motion dynamics, instead of using an additional sensor.

Fusing IMU measurements with prior knowledge is a pow-
erful concept to gain drift-free estimates [5]. The knowledge
allows to observe otherwise unobservable states. These ap-
proaches have the advantage that they do not require additional
sensor hardware in the buildings. Furthermore, most users
already carry the necessary IMU in their smartphone [2].

With a smartphone IMU, pedestrians can be localized with
accuracies of 1.3 m [6]. The common approach for pedestrian
tracking [2] is to detect the moment of the human gait cycle,
where the foot stands still on the ground. A Zero-Velocity
Update (ZUPT) is applied to correct the velocity drift [7].
Then, the position estimate is refined by mapping motions [2]
and activities [6] to building plans in a Particle Filter (PF) .
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Fig. 1. The track of the Sixdays Bremen

We investigate how knowledge affects the observability of
states. We will analyse the state observability independently
of applications, but we will try to bridge the gap between
theory and application. As a whole, we want to elevate the
fusion of knowledge and IMU measurements to a paradigm
of state observability through prior knowledge. In our position
paper [5], we argued that the prior knowledge that is available
for track cycling is sufficient to track a track cycler with an
IMU as the only sensor. Now, we develop a state estimator for
track cycling and confirm our conjecture with an experiment.

Tracking track cyclers is motivated by prior knowledge
used in the literature. The forward velocity prior for wheeled
vehicles [8] has a similar effect as the ZUPT. It states that a
wheeled vehicle has approximately zero velocity perpendicular
to its forward direction. The prior allows to observe the
forward velocity from IMU measurements if the vehicle is
driving a curve. Additionally, IMU biases are observable [9].
Since the bike track contains two 180◦ curves (see Fig. 1), the
velocity and biases get occasionally observable with the prior.

Several works use a map to improve the state estimate.
The map can have different forms, e.g. route maps [10]–
[12] with the paths that can be taken or building plans [3]
with impassable walls. With a terrain map, a vehicle can be
localized without a GPS [13]. At track cycling, the bikers are
constrained to stay on the track (see Fig. 1), which can be
modelled as a height- or terrain map.

Intuitively, we argue that the heightmap corrects the global
position drift. The global drift is a result of the accumulation
of small sensor errors. The forward velocity prior reduces the
global drift, but does not correct it. The prior improves the
accuracy of local segments so that curves and straights can be978-1-7281-1788-1/19/$31.00 © 2019 IEEE
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distinguished. The knowledge that the bike stays on the track
forces the state estimator to align the local segments with the
heightmap. This should correct the forward drift except for the
track’s symmetry.

In the curve, the velocity is observable and the angular rate
is measured. Hence, we can estimate the curve radius of the
track cycler. The curve radius depends on the lateral position
of the biker on the track. Therefore, the lateral position can
be determined in the curves.

We present a state estimator that uses the shown prior
knowledge to track the pose of a track cycler. The state esti-
mation is formulated as a least squares optimization problem
and solved with ceres [14]. We show the capability of the
state estimator on a track cycling dataset with three 60-round
trials. We also present methods based on prior knowledge to
retrieve an initial guess for the optimizer and to handle missing
IMU measurements. We will evaluate the influence of the used
knowledges on the quality of the state estimate.

The remainder of the paper is structured as follows. Sec-
tion II shows how to model the prior knowledge to use it
in the least squares state estimator. We show methods to
derive an initial guess and to handle missing data based on
prior knowledge and give practical implementation details in
Section III. In Section IV, the dataset is described. Our results
are shown and evaluated in Section V. Finally, we will sum
up the results in the conclusion.

II. KNOWLEDGE BASED OPTIMIZATION PROBLEM

At track cycling, bikers race on a track. There are several
game modes with varying strategies [15]. In our setup, the
bikes are equipped with wireless IMUs as shown in Fig. 2.

The trajectory is estimated by finding the trajectory with
the maximum a-posteriori probability given the measurements
of the Main frame IMU, the dynamic model and the prior
knowledge. We formulate the state estimation as a minimiza-
tion problem and solve it by using the ceres least squares
solver [14]. The solver works offline and optimizes the whole
problem at once.

The state estimation can be seen as a sequence of n states
xk, 0 < k <= n (see Fig. 3) connected by the dynamic model:

xk+1 = gk(xk) (1)

Instead of using the input for the dynamic update, the state
does contain every information needed for the dynamic model.

Main frame IMU
Handlebar IMU

Crank IMU

Pedal IMU

Body Frame

Center Line

Fig. 2. Bike with IMUs. Only the main frame IMU is used.

The inputs are used as a constraint on the respective state. The
prior knowledge constrains every state of the trial.

Each state xk consists of the position ~pW , velocity ~vW and
acceleration ~aW in world frame; the rotation from body to
world QB

W , the angular rate ~ωB and acceleration ~ω′B ; and the
biases of the accelerometer ~ba = ~ba1 +~ba2 and the gyrometer
~bg = ~bg1 +~bg2. The components always refer to xk, wherefore
we can omit the k-indices for readability:

xk =
(
~pW ~vW ~aW QB

W ~ωB ~ω′B ~ba ~bg

)T
(2)

The orientation QB
W is modelled as an Euler-Rodriguez

rotation matrix. Usually, the acceleration and angular rate are
modelled as inputs instead of states. We chose to add them to
the state to apply prior knowledge on them. Furthermore, we
defined the point on the ground under the Main frame IMU as
the body frame (see Fig. 2), instead of the IMU pose, because
the chosen prior knowledge does not hold for the IMU pose.

The complete parameter space X of the optimization prob-
lem consists of the states at all steps:

X = {x1, · · · , xn} (3)

We want to find the most likely sequence of states given the
inputs ~ack and ~gyk, the input functions ak(xk) and ωk(xk),
the dynamic model gk(xk) and our prior knowledges, i.e. the
heightmap hk(xk) and the forward velocity prior fvk(xk).
This can be calculated by solving the minimization problem
(4) at the top of the next page, where ||v − v̂||2Σ is the
Mahalanobis distance. The � is a normal minus operation,
despite that - for rotation matrices - it returns the difference
as a rotation vector, i.e. an unit-axis scaled by an angle [16]:

x∗�x = {~p ∗W−~pW , · · · ,
︷ ︸︸ ︷
log(QB

W

T
QB∗

W ), ~ω∗B−~ωB , · · · } (5)

Its purpose is to handle the manifold structure of QB
W .

The minimization problem is formulated by simply adding
up information about the states. The first information added
is the gyrometer input at each time step. Each state has to
match the measured angular rate. With ωk(xk), we calculate
a prediction of the angular rate and compare it with the
measurement. By imposing the difference of the prediction
and the measurement as an error, the optimizer will adapt each

· · · xk xk+1 · · ·gkgk−1 gk+1

hkfvk hk+1fvk+1

ak+1 ωk+1ak ωk

~gyk+1~ack+1~ack ~gyk

Fig. 3. The optimization problem as FactorGraph. ~ack and ~gyk are the inputs,
xk is the state, gk the dynamic model (8), ak the acceleration function (7),
ωk the angular rate function (6), and fvk the forward velocity prior (9) and
hk the heightmap prior (10).
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X̂ = arg min
X

n∑

k=1


||ωk(xk)− ~gyk||2Σgy︸ ︷︷ ︸

gyrometer input

+ ||ak(xk)− ~ack||2Σac︸ ︷︷ ︸
accelerometer input

+ ||gk(xk) � xk+1||2Σg︸ ︷︷ ︸
dynamic model

+ ||fvk(xk)||2Σfv︸ ︷︷ ︸
forward velocity prior

+ ||hk(xk)||2Σh︸ ︷︷ ︸
heightmap prior


 (4)

state xk until the prediction and the measurement coincide.
This is similar to the measurement step in a Kalman Filter.

The prediction of the angular rate can be calculated by:

ωk(xk) = QB
I ∗ ~ωB +~bg (6)

where the calibrated rotation matrix QB
I transforms ~ωB from

body to IMU frame. The ∗ denotes matrix multiplication.
The second information that we have about the states is

the accelerometer input. Similar to the gyrometer input, the
predicted accelerations ak(xk) and the acceleration measure-
ments ~ack have to match. Since the IMU is not at the origin
of the body frame, the IMU measures accelerations induced
by rotational movements. Additionally, the acceleration in the
state is gravity free. Those accelerations are taken into account
by the prediction function:

ak(xk) = QB
I ∗ (QB

W )T ∗ (~aW − ~gW )

+QB
I ∗ ([~ω′B ]× + [~ωB ]

2
×) ∗ ~tI +~ba (7)

where ~gW is the gravity vector and [· · · ]× forms a skew
symmetric matrix out of the given vector. ~tI is the calibrated
offset between IMU and body frame.

The dynamic model gk(xk) connects the states xk and
xk+1 over time. The predicted next state gk(xk) has to match
the next state xk+1. The dynamic model is based on the
classic Inertial Navigation System (INS) state space model
[17, Sec. 3.7.1]:

gk(xk) =




~pW + ∆t · ~vW + ∆t2

2 · ~aW
~vw + ∆t · ~aW

~aW
QB

W ∗ exp(∆t · ~ωB)
~ωB + ∆t · ~ω′B

~ω′B
~ba1 · (1− ∆t

Tcor1
)

~ba2 · (1− ∆t
Tcor2

)
~bg1

~bg2 · (1− ∆t
Tcor3

)




(8)

Tcor1 = 1000, Tcor2 = Tcor3 = 2000

where ∆t is the time difference. The accelerometer bias
is modelled as the sum of two exponential auto correlated
random walk functions with decorrelation constants Tcor1 and
Tcor2. The gyrometer bias is modelled as the sum of a constant
and an exponential auto correlated random walk function with
decorrelation constant Tcor3. exp(· · · ) is the Euler-Rodriguez
Formula [16]. Cartesian and angular acceleration stay constant
in the dynamic model, but do not contribute to the error
calculation. Thus, they can change arbitrary between states.

In contrast to the other information, the prior knowledges
are shown without a target value to compare. However, prior
knowledge often has a target value which is either constant or
state dependent itself. For example, the forward velocity prior
can be formulated as [8]:

fvk(xk) = (QB
W )T ∗ ~vW −

( ∗
0
0

)
(9)

where the target for the y- and z-dimension of the body
velocity is 0. The asterisk is a wildcard, which allows arbitrary
velocity in forward direction. If a measurement of the x-
dimension is available, e.g. by odometry, it can be used
instead. In our model, the x dimension is unused.

The heightmap prior states that the wheels of the bike stay at
the track. We approximate this by constraining the body frame,
which is between the wheels, to stay on the track. This means
that the distance between the position ~pW and the closest point
on the track has to be 0, or otherwise stated:

hk(xk) = ~pW − arg min
~cW∈Track

||~pW − ~cW || (10)

where Track is the set of all points on the track. In this
case, the prediction ~pW is trivial but the target value is state
dependent.

In this manner, additional information can be added simply
by adding it to (4). The optimizer will incorporate it weighted
by the covariance of the knowledge.

The covariances are crucial tuning parameters of the model.
Neither the forward velocity prior, nor the heightmap prior
hold exactly. Side slip can occur, which results in a side
velocity. The heightmap itself is imperfect. Furthermore, the
bike may bounce on surface irregularities. Those imprecisions
of the knowledge are modelled in the covariance of the
measurement equations. If the knowledge is violated more than
expected, the estimator’s performance will be reduced.

III. IMPLEMENTATION

The modelled problem in (4) can be solved with any least
squares solver. In this chapter, we will show what we have
done technically to get a converging solution.

A. The initial guess

The convergence of a least squares solver depends on the
initial guess of the states. Especially in the presence of state
dependent constraints, the solver may stay in unsuitable local
minima. We designed a method based on prior knowledge
to provide an initial guess for the least squares solver. This
method is again based on another, but more simple model.

The initial guess method exploits the basic form of the track.
In principle, the track consists of two straight lines connected
with two curves (see Fig. 4). As a vague model of the track, we
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Fig. 4. Basic form of the track. The red line shows the 1D simplification.
The arrows show the possible heading range.

assume that the bikers follow the 1D line. This model requires
big noise in lateral direction and for orientation. However, the
error of the 1D model is bounded. In lateral direction, the
bikers are forced to stay on the track, which has a width of
6 m. Hence, they can not drive far away from the 1D line. Their
yaw is also constrained to follow the 1D track approximately,
because they have to take the track counter clockwise.

The 1D formulation of the track has the advantage that we
can apply Theorem 1 from [5], which states that a 1D system is
observable from gyrometer measurements alone if the rotation
axis changes. At the entries and exits of the curves, the rotation
axis changes. Hence, they can be detected.

Between the entries and exits of the curves dead reckoning
is required. To reduce the drift, we can apply the forward
velocity prior [8]. It makes the forward velocity observable.
Hence, it can be estimated drift-free.

The initial guess is calculated by an Unscented Kalman
Filter (UKF). Each state xk consists of:

xk =
(
λ λ̇ QB

W ~ωB ~vW ~aW
)T

(11)

where λ is the position on the 1D line, λ̇ the speed on the
line and the rest is defined as in (2). The dynamic model is
similar defined to (8) by:

g(xk) =




λ+ ∆t · λ̇
λ̇

QB
W ∗ exp(∆t · ~ωB)

~ωB

~vw + ∆t · ~aW
~aW




(12)

We formulated the main model by taking the difference of
the measurement and a prediction function of the measurement
as error. The same prediction function can be used in the
measurement step of the UKF to apply the same information.
In the case of prior knowledge, 0 is used as the target value.
This is called a perfect measurement [18]. In this manner,
(6) and (7) are used to incorporate the IMU measurements.
Equation (9) is used to apply the forward velocity prior.

In the 1D Model, the bike follows the line only. Hence, we
have to set λ̇ to the norm of the velocity. This is done as a
perfect measurement using the prediction function:

ld(xk) = |~vW | − λ̇ (13)

Since the biker has to follow the track’s direction, the
angular rate has to be the direction change of the track

approximately. In other words, the biker is likely to be in a
curve if the gyrometer measures a nonzero angular rate. The
prediction function is:

ar(xk) = ~ωB −R(λ) · λ̇ (14)

where R(λ) is a function which returns the curvature of the
1D line at a given λ. This prior allows to observe the entry
and exit points of the curves.

The UKF evaluates the probability distribution at different
sigma points. If the covariance of the filter is underestimated,
i.e. the UKF is too confident in the estimate, the distribution
is evaluated poorly. Therefore, we apply high process noise,
which allows the filter to correct implausible estimates. The
high process noise models the vagueness of the 1D model.

The pseudo measurements are only useful in the curves of
the track. At the straight parts, dead reckoning is performed
implicitly. As a result the covariance rises quickly on the
straight segments and is low when the biker drives a curve.

B. Missing IMU measurements
Approximately 5% of the IMU measurements are missing

in the dataset for unknown reasons. In extreme cases, 50% of a
2 s interval are missing. Simply interpolating the missing mea-
surements amplifies errors and is unsuitable for larger gaps.
Therefore, we designed a solution that uses prior knowledge.

Neither the dynamic model, nor the prior knowledge require
that the state has an input value (see Fig. 3). Thus, they
are applicable for states with missing IMU data. Without
an input measurement, the optimizer could choose arbitrary
high acceleration and angular rate for the states. However,
the measurements of the trials are bounded and lay in a
certain range around 0. We incorporate this information by
setting missing inputs to 0 and increasing the covariance of the
measurement drastically to align the prior with the distribution
of the dataset. This way, the optimizer chooses a realistic input
that matches the heightmap and forward velocity prior.

C. Implementation details
The initial guess is smoothed with [19], which was modified

for usage with the � operator. This step backpropagates the
information gained in the curves to the straight segments and
improves the overall initial guess.

The main model has been implemented in ceres-solver, an
extensive nonlinear least squares library [14]. It provides an
automatic differentiation framework, which simplifies the use
of nonlinear constraints, e.g. the prior knowledge. The Local
Parameterization of ceres is used to adapt the rotation matrices
without breaking them. Additionally, the rotation matrices are
normalized every iteration.

Inputs, dynamic model and the prior knowledge are imple-
mented as cost functions. The covariances for the Mahalanobis
distances are shown in the Appendix.

To calculate the penalty for leaving the track, the closest
point on the track is required. We approximate the closest
point by taking the closest point on the x-y plane, i.e.:

hk(xk) ≈ ~pW − arg min
~cW∈Track

|( 1 0 0
0 1 0 ) ∗ (~pW − ~cW )| (15)
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This enables us to precalculate the closest point for any x-y
pair in a rectangle around the track and to store it in a 2D grid.
Values between grid points are interpolated with a cubic spline
using the algorithm of [20], which is already implemented in
ceres. The smooth interpolation improves the gradient descent.
Values outside the precalculated rectangle are extrapolated by
taking the closest border point.

Since least square optimizers are prone to outliers, mea-
surements exorbitantly outside the sensor range were removed
from the dataset. They are treated as missing measurements.

IV. DATASET

We recorded the dataset1 at the track of the Sixdays Bremen
(see Fig. 1), an annual track cycling race. The track has a
nominal length of 166.66 m and a width of 6 m. A heightmap
(see Fig. 5) has been built based on the blueprints by [21].

Fig. 5. Heightmap of the sixdays track. The red lines show the laser barriers.

We equipped the bike with four Xsens Awinda IMUs [22] at
different links (see Fig. 2). The placement allows to estimate
the joint angles of the bike using [23]. The crank IMU could
be used to estimate the bikes velocity via wheel turn odometry.
The sensors are connected wirelessly and measure at 100 Hz.
They buffer the sensor data for 10 s during connection losses.
Still, around 5% of the measurements are lost.

The bikes were also equipped with turn rate sensors to
measure the velocity as a reference for the bikers only.

A tracking system that covers the complete track was not
available. Thus, we used laser barriers to measure when the
bikes pass a position.

We used six custom build laser barriers as ground truth
reference. They trigger at 1024 Hz. The barriers are placed at
the entries and exits of the curves (see Fig. 5). Two barriers
are perpendicular to the track. The other 4 are arranged in two
crosses. In each trial, one laser barrier failed to record data.

1Download at: http://www.informatik.uni-bremen.de/agebv/zavi

The moment when the bike’s center line (see Fig. 2) passes
the laser barrier is used as the ground truth measurement. It is
calculated as the mean of the detected intervall in each round.
This introduces a random error in the ground truth, which we
guess around 5 ms. With a constant velocity assumption, the
lateral position could be calculated at the crosses. With the
known length of the bikes, the velocity could be estimated
from the time the biker needs to pass each laser barrier.

The barrier clocks (2 ppm error) and the IMU base station
(1ppm error) were synchronized before each trial. The accu-
mulated time error after each trial is negligible.

The alignment of the barriers with the 3D model is imper-
fect. Thus, a bias of a few centimeters is introduced.

Two bikers participated in data recording using their own
bikes. The dataset consists of two trials with Biker 1 and one
with Biker 2. The bikers were tasked to drive the sequence:

1) Drive on the 166.66 m reference line
2) Stay in the 0.7 m corridor above the ref. line
3) Stay in the lower track half
4) Use the whole track
5) Repeat 2) with constant velocity
6) Repeat 3) with constant velocity
7) Drive as you wish

All tasks except 7) were executed for 10 rounds. This results
in a driving distance of at least 10 km per trial and a driving
time of approximately 20 min. The tasks could be used to test
the use of prior knowledge with different strength, such as
different corridor widths.

In addition, calibration motions were recorded for both
bikes. These can be used to calibrate the position ~tI and
orientation QB

I of the IMUs with respect to the body frame.

V. RESULTS

The trials are evaluated using the measurements of the main
frame IMU. The laser barriers are only used as ground truth.
The estimated trajectories stay on the track (see Fig. 6).

Since we do not have continuous ground truth position,
we evaluate the error indirectly. We predict when the center
line of the bike passes the laser barriers and compare the
prediction with the measurement (see Fig. 6). TABLE I shows
errror metrics. To transfer the time error into a position error,
multiply it by the highest velocity of the trial (∼ 12m/s).

The estimator predicts passing the laser barrier with an
average RMS of 0.096 s. The prediction error is higher than
the error of the barriers. It does not increase over time, but

TABLE I
MEAN ERROR e, MEAN ABSOLUTE ERROR |e|, ROOT-MEAN-SQUARED ERROR RMS, MAX. ERROR emax AND STANDARD DEVIATION σ OF TIME ERRORS

IN SECONDS. TRIAL 1 (ORANGE), TRIAL 2 (GREEN) AND TRIAL 3 (YELLOW).

laser # e |e| RMS emax σ e |e| RMS emax σ e |e| RMS emax σ
1 -0.006 0.055 0.094 0.630 0.094 -0.016 0.066 0.085 0.372 0.083 -0.028 0.066 0.079 -0.173 0.074
2 - - - - - 0.056 0.096 0.121 -0.625 0.107 0.081 0.083 0.089 0.158 0.037
3 0.085 0.087 0.110 0.296 0.070 0.081 0.083 0.122 0.508 0.092 - - - - -
4 0.073 0.079 0.093 0.294 0.058 - - - - - 0.032 0.081 0.098 -0.309 0.093
5 0.075 0.075 0.097 0.386 0.061 0.098 0.102 0.172 1.010 0.141 0.030 0.044 0.063 0.280 0.056
6 0.039 0.047 0.061 0.221 0.047 0.024 0.055 0.072 -0.324 0.068 -0.011 0.056 0.081 -0.270 0.080
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(a) Trajectory Trial 1 (b) Trajectory Trial 2 (c) Trajectory Trial 3
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(f) Time error Trial 3

Fig. 6. (a-c) Trajectory of biker in all trials after 500, 500 and 250 iterations respectively. The lasers are shown as red lines. Blue color means that the
estimator predicts that the bike passes a laser barrier. Red color means that a barrier measured that a bikes passes. Green color shows where prediction and
measurement agree. (d-f) Time error between measured pass time and predicted pass time of the laser barriers.

it has a random component. Since it does not increase, the
estimate error is drift-free.

High time errors occur often at the first and last rounds
(see Fig. 6). Since we did not apply a start or end position
constraint on the state estimate, the end and start point are less
constrained than a point in the middle of the trial. Therefore,
the error can be higher at those points. Also the bikes are
slower at the the start and end (roll out), which increases the
dead reckoning time between the curves.

In Trial 3, the end point is off the track. In Trial 2, it is
almost off track. These are additional hints that the constraints
are weaker at the start and end points.

The standard deviations are mostly lower than the RMS.
Thus, the estimate is biased. To have a measure of the bias,
the mean error is used. The highest mean error is 0.098 s.
In certain cases, the bias is almost equal to the mean absolute
error. Hence, it has a big impact on the quality of the estimate.

The bias of each laser barrier is variable over the trials.
Thus, the bias is not purely systematic, e.g. caused by wrong
alignment between heightmap and lasers. The biases are
probably introduced by the prior knowledge. In [24], it was
already discovered that a constrained estimator may be biased.

Overall, the estimates are surprisingly close to the ground
truth data. The drift is corrected by the used prior knowledge.
The average RMS of 0.096 s (∼1.15 m) is low and compa-
rable to the accuracy of pedestrian tracking systems without
dedicated external hardware [1], [6]. The error has a few high
peaks, which would affect an application. At the current state,
the method can not compete in accuracy with off-the-shelf

indoor GPS systems with +-2 cm error [25]. Nevertheless, we
consider our results a successful tracking of the biker, which
does not require external reference sensors.

A. Interpolated imu data

The missing IMU data is interpolated by the estimator. Most
of the inserted values lay in a realistic range (see Fig. 7).
In certain cases, the inserted values are unrealistically high.
Probably, the prior knowledge was violated in these cases, for
which reason the estimator used the vagueness of the missing
measurements to correct the error.

(a) Measured x-acceleration (IMU frame)

(b) Reconstructed x-acceleration (IMU frame)

Fig. 7. X-acceleration of Trial 1. Orange points have no valid IMU data.

B. Effect of knowledge

We want to investigate the influence of the used knowledges
on the quality of the state estimate. The initial guess itself
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TABLE II
TIME ERROR OF THE INITIAL GUESS (TRIAL 1)

laser # e |e| RMS emax σ
1 0.452 0.458 0.551 2.670 0.314
2 - - - - -
3 0.369 0.380 0.412 0.933 0.183
4 0.323 0.334 0.363 0.676 0.166
5 0.364 0.380 0.437 1.291 0.242
6 0.192 0.210 0.243 0.586 0.149

is already a good guess of the real trajectory. It is drift-free
and has a time error of up to 2.670 s (see TABLE II). The
maximum error is smaller than a half round, which means
that all rounds are detected. The straights and curves of the
track are matched to the track. With this initial guess, the least
squares solver has to correct only local errors.

Using the forward velocity prior, we expect to have locally
correct segments with a global pose drift. The estimated
trajectory matches this expectation (See Fig. 8). The curves
and the straights are clearly visible. However, the estimate
leaves the track and has a false heading.

Fig. 8. Trajectory of Trial 1 without heightmap prior (100 iterations)

If only the heightmap prior is used, the estimate stays
mainly on the track (see Fig. 9). The estimate does not
drift. Again, this matches the expectation that the heightmap
contains positional information. The RMS has decreased com-
pared to the initial guess (see TABLE III). The estimate is
similar to the estimate with both priors (see Fig. 6).

By making the forward speed observable, the forward
velocity prior adds local correctness to the pose estimate. Only
the starting pose of a segment is unknown if the prior is used.
An INS without the prior would have local correctness as well,
but without knowing the starting velocity of the segments.
Hence, the segments would be deformed.

Fig. 9. Trajectory of Trial 1 without forward velocity prior (100 iterations)

TABLE III
TIME ERROR OF TRIAL 1 WITHOUT FORWARD VELOCITY PRIOR

laser # e |e| RMS emax σ
1 -0.094 0.128 0.157 0.600 0.125
2 - - - - -
3 -0.006 0.096 0.136 -0.557 0.135
4 -0.051 0.085 0.107 -0.309 0.094
5 0.011 0.094 0.219 1.651 0.219
6 -0.049 0.087 0.116 0.428 0.105

The heightmap prior adds global correctness and acts like
an exteroceptive sensor. It matches the segments to a world
pose implicitly, wherefore the drift is corrected. Since the IMU
measurements provide local correctness alone, it can work
without the forward velocity prior. However, the least squares
solver may stuck in a local minima if it is initialized badly.

The combination of both priors yields the best results. This
is not a surprise since state estimators generally get better if
correct information is added.

VI. CONCLUSION AND FUTURE WORK

The pose of a track cycler can be estimated drift-free
with an IMU as the only sensor, if it is combined with a
heightmap of the track and the forward velocity prior. We
have shown for three trials, each with more than 60 rounds,
that the pose estimate does not drift. The estimator predicts
passing laser barriers with an average RMS of 0.096 s, which
is approximately 1.15 m over all trials. Thus, it is inferior to
indoor positioning systems with external reference [25], but
comparable to other IMU only systems [6].

An approximate model of the state space can be used to
incorporate prior knowledge. For the initial guess, the track’s
surface is approximated as a 1D line. The initial guess is
already a drift-free estimate of the trajectory.

We evaluated the influence of the used prior knowledges
empirically. As expected from our observability analysis [5],
the forward velocity prior yields local correctness of segments,
whereas the heightmap prior yields global correctness.

Overall, the tracking accuracy is promising, but has outliers
in particular at the start and end of the trial. It has been con-
firmed that a track cycler can be tracked drift-free with an IMU
as the only sensor. Analysing the state observability through
prior knowledge has led to this new, feasible application.

In future work, it has to be investigated how the accuracy
of the state estimation can be improved. A dataset without
missing data would be beneficial.

We used an state estimator that evaluates the complete
trial data at once. This method is computationally expensive
and not real-time capable. It has to be investigated if online
methods, i.e. filters, can reach similar accuracy. We suggest
using a Rao-Blackwellized PF [26], where segments derived
with the forward velocity prior are used as dynamic update
and the heightmap is used to weight the particles similar to
the approaches in pedestrian dead reckoning [2].

Up to now, we argued that the pose of the biker is observable
based on a theorem which is made for 1D systems [5].
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Our results support the assumption. However, we want to
generalize the theorem for 2D systems like the track cycling.
With this, we want to deepen the insight into the paradigm of
state observability through prior knowledge.
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APPENDIX

Covariances: Process noise applies on the dynamic model
constraint (8). The ~aI measurement noise consists of the sensor
noise and additional noise which is caused by the transform
from IMU acceleration to the body acceleration.

TABLE IV
COVARIANCES OF THE INITIAL GUESS

Process noise λ 10m2/s

Process noise λ̇ 0.1m2/s2/s

Process noise QB
W 0 rad2/s

Process noise ~ωB 1 rad2/s2/s
Process noise ~vW 0m2/s2/s
Process noise ~aW 100m2/s4/s
~ωI measurement noise (6) 3.05 · 10−6 rad2/s2

~aI measurement noise (7) 0.2004m2/s4

Forward velocity prior (9) 0.1m2/s2

λ̇ pseudo measurement noise (13) 0.2m2/s2

~ωB pseudo measurement noise (14) 0.5 rad2/s2

TABLE V
COVARIANCES OF THE MAIN MODEL

Process noise ~pW in Σg 0.1m2/s
Process noise ~vW in Σg 0.1m2/s2/s
Process noise ~aW in Σg ∞
Process noise QB

W in Σg 0.1 rad2/s
Process noise ~ωB in Σg 0.1 rad2/s2/s
Process noise ~ω′B in Σg ∞
Process noise ~ba in Σg 8.28 · 10−9m2/s4/s

Process noise ~bg in Σg 0.58 · 10−9rad2/s2/s
~ωI measurement noise (6) in Σgy 3.05 · 10−6 rad2/s2

Missing angular rate noise (6) in Σgy 1rad2/s2

~aI measurement noise (7) in Σac 0.2004m2/s4

Missing acceleration noise (7) in Σac 400m2/s2

Forward velocity prior (9) in Σfv 0.1m2/s2

Heightmap prior (10) in Σh 0.1m2
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