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Abstract. Image based object recognition and pose estimation is nowa-
days a heavily focused research field important for robotic object manip-
ulation. Despite the impressive recent success of CNNs to our knowledge
none includes a self-estimation of its predicted pose’s uncertainty.
In this paper we introduce a novel fusion-based CNN output architec-
ture for 6d object pose estimation obtaining competitive performance on
the YCB-Video dataset while also providing a meaningful uncertainty
information per 6d pose estimate. It is motivated by the recent success
in semantic segmentation, which means that CNNs can learn to know
what they see in a pixel. Therefore our CNN produces a per-pixel output
of a point in object coordinates with image space uncertainty, which is
then fused by (generalized) PnP resulting in a 6d pose with 6× 6 covari-
ance matrix. We show that a CNN can compute image space uncertainty
while the way from there to pose uncertainty is well solved analytically.
In addition, the architecture allows to fuse additional sensor and context
information (e.g. binocular or depth data) and makes the CNN indepen-
dent of the camera parameters by which a training sample was taken.

Keywords: 3D object pose estimation · uncertainty · gPnP.

1 Introduction

1.1 Motivation

Convolutional Neural Networks (CNNs) have immensely improved the capability
of state of the art computer vision. This development started with qualitative
questions, such as ”What is in the image?” [10], over ”Where is something in the
image?” [17] to metrical questions, such as ”Where is an object in space?” [22,23].
The latter is of particular interest for robotics, because a robot normally needs
a 6d pose (position and orientation) to grasp an object.

The success of Deep Learning is accompanied by an uneasiness on the lack of
transparency, which has many aspects. One aspect is, that it is hard to under-
stand how CNNs come to the solution they output. Another aspect is, that one
would desire a measure of uncertainty that indicates how precise and/or reliable
the output is. Towards this goal, this paper provides such a measure as a 6× 6
covariance matrix for 6d object poses estimated by a CNN.

Such uncertainty information offers many opportunities. It could be used to
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Fig. 1. Proposed architecture overview (cf. Section 3): CNNs take the image and op-
tionally depth data and provide per-pixel instance segmentation, object points and un-
certainties, as well as a per-object overall uncertainty correction factor (Section 4). This
data is aggregated into a 13×13 matrix MTM and fused by a gPnP algorithm (Section
5) to a pose estimate T with covariance Σ.

– safeguard action, e.g. only grasp if the object pose is precise enough,
– trigger action e.g. look from a different perspective, if necessary,
– fuse several object observations with established probabilistic methods [21],
– fuse with prior information, e.g. that objects often rest on a horizontal plane.

1.2 Contribution

Towards this goal, we propose here an architecture (Fig. 1) where an en-
coder/decoder CNN with bypass connections predicts for every pixel belonging
to an object ”what is seen there” with uncertainty. Concretely it predicts the
3d object point belonging to that pixel in object coordinates as well as the 2D
uncertainty of the predicted object point in the image space.

These 3D-2D pairs with uncertainty are then input to a Perspective-n-Point
(PnP) solver that computes the pose estimate with uncertainty using probabilis-
tic methods and the camera calibration. Actually, the solver handles generalized
PnP (gPnP) [9] problems, so available depth information and binocular cameras
can be included.

This approach follows the idea that analytical methods are better at multi-
view geometry because it is well understood, whereas machine learning is better
at recognition, because it is not well understood what defines an object in a real
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Fig. 2. Object orientation is not even approximately a translation invariant function
of the image: In the middle, there is a tube in front of the camera. The right tube
is translated, i.e. has the same orientation but looks very different. The left tube is
rotated around the camera, i.e. has a different orientation but looks almost identical.

image. In particular, by construction gPnP handles the effects of camera cali-
bration and occlusion on the estimate and its uncertainty structurally correctly.

2 Related Work

2.1 CNN based Pose Estimation

From the perspective of this paper, the CNN based pose estimation methods
can be categorized according to how the pose is coded in the CNNs output.

Some practical approaches, e.g. [25] in the Amazon Picking Challenge use
CNNs to segment an object in RGB data and then perform ICP on the segmented
depth data, however this ignores most of the information in the RGB data.

Early pose estimation CNNs, such as [18] for outdoor camera pose estimation
directly predicted a vector and quaternion. So some object pose CNNs, such as
PoseCNN [23], SSD6D [5], AAE [19] and Periyasamy et al. [13] evolved from
object detection CNNs by adding a pose output stage. Usually they predict the
2D object center (relative to the pixel, often with voting), distance (directly
or from bounding box size) and orientation (discretized or quaternion). This
wrongly treats orientation as a translation invariant function of the image which
is not true as we show in Fig. 2.

Newer works assume, that CNNs can predict image-space quantities best.
Examples are YOLO6D [20], BB8 [15], Crivallaro et al. [2], Oberweger et al. [12]
and DOPE [22]. These predict the image position of e.g. bounding box corners
which are then fed into a PnP-solver (e.g. EPnP [11]). This also isolates the
CNN from camera calibration handled by the PnP stage.

One can take this idea further and let every pixel predict, which object
point it sees. Brachmann et al. [1] did this using random-forests, very recently
DPOD [24] with CNNs and we also follow this line. The approach handles oc-
clusions well [24, Table 2], arguably because as long as visible object points are
correct, PnP tolerates missing points. Crivallaro et al. [2] predict points for ob-
ject parts and Oberweger et al. [12] limit the receptive field for the same reason.

AAE [19] considers the problem of symmetries, which come in continuous
form (e.g. a bottle), discrete form (e.g. a cube) and as view dependent ambiguity
(e.g. a cup with occluded handle). They solve it with a denoising autoencoder
that discovers the appropriate rotation representation for the object.

Among the mentioned approaches only [2] considers uncertainty. By propa-
gating an assumed image noise through the Jacobian of the CNN, they predict
2D covariances for the control points. They see these only as a tool to improve the
fusion result and neither validate them empirically nor output a pose covariance.
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2.2 PnP and Variants

PnP, i.e. computing a pose from n 2D-3D point correspondences, is a classical
geometric vision problem. Lepetit et al. [11] condensed the n points into a fixed
size 12×12 matrix, by expressing them as a convex combination of four so-called
control points. Their EPnP algorithm globally finds the best fitting control points
with four cases depending on the number of small eigenvalues.

Kneip [9] extends EPnP to rays not intersecting in a single point, e.g. from
multiple cameras (generalized or gPnP). The input is condensed into a 12× 12
matrix and a 12 vector and solved using Gröbner bases considering 6 cases. This
and other geometric vision algorithms are published in the opengv library [8].

Zheng [26] casts PnP as quaternion minimization, solved by a Gröbner basis.
These algorithms provide global solutions making them fairly complex. Un-

like the iterative Gauss-Newton, they don’t provide uncertainty information.
The PnP solution in [2] fuses with a pose prior of 9 Gaussians, effectively by

Gauss-Newton on 9 initial guesses, while [12,15,20,22,24] use EPnP black-box.

2.3 Gaussian distributions and Gauss-Newton on SE(3)

The space of poses SE(3) ⊂ R4×4 is a manifold and special care is needed to
define Gaussians and perform least-squares there. We use �-manifolds [3] that
encapsulate the manifold structure into an operator � : SE(3)×R6→SE(3). It
takes a pose and changes it according to a vector in the tangential space, usually
using the exponential map. A converse operator � : SE(3) × SE(3) → R6

axiomatized by T1 � (T2 � T1) = T2 gives the vector that goes from one pose T1

to another T2. These operators allow also to define Gaussians in SE(3).

T � δ = T exp

( 0 −δ3 δ2 δ4
δ3 0 −δ1 δ5
−δ2 δ1 0 δ6

0 0 0 0

)
linea-
≈

rized
T

( 1 −δ3 +δ2 δ4
+δ3 1 −δ1 δ5
−δ2 +δ1 1 δ6

0 0 0 1

)
, (1)

T2 � T1 =( L32,L13,L21,L14,L24,L34 )
T
, L = log(T−1

1 T2)
linea-
≈

rized
T−1

1 T2 − I (2)

N (µ,Σ) = µ�N (0, Σ), µ ∈ SE(3), Σ ∈ R6×6 (3)

N (µ,Σ)(x) ≈ |2πΣ|−1/2 exp
(
− 1

2 (x� µ)TΣ−1(x� µ)
)

(4)

In this framework a squared residual ‖f(T )‖2 on T ∈SE(3) is minimized with
Gauss-Newton [14] by parameterizing the increment with � in each iteration:

arg min
T∈SE(3)

‖f(T )‖2 = lim
k
Tk, Tk+1 = Tk �

linearized
arg min
δ∈R6

‖f(Tk � δ)‖2 (5)

3 Approach

Figure 1 shows our approach: A CNN recognizes as first stage what is in the
images, segments the objects and predicts for every pixel ui belonging to an
object which object point pOi this is. It also predicts the uncertainty of this
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information, expressed as a covariance Ci ∈ R2×2 in image space. These pieces
of information are then fused by the second stage (gPnP) to obtain an object
pose with covariance derived from the point covariances.

Actually the uncertainty orginates from pOi while the pixel coordinates ui
are exact, however the CNN operates on the image, so presumably it can more
easily express image uncertainty (e.g. along an image edge). Furthermore, only
this way fits into the mathematical structure of gPnP.

To handle multiple cameras, the unknown object pose T := TRO is expressed
in a reference frame (R). A known transformation TCi

R locates the reference frame
in the frame of the camera to which pixel ui belongs. We omit the index at Ci
in the following. Let pCi denote pOi in camera-coordinates, u0 the image center,
and f the focal length. With this notation, the camera equation with noise ηi
defines the interface between the CNN and gPnP stages:

pCi = TCR T
R
O p

O
i , T := TRO , ui = u0 + f

pCi12
pCi3

+ ηi, ηi ∼ N (0, Ci) (6)

Ci = (WT
i Wi)

−1 =⇒ Wi

(
ui − u0 − f p

C
i12

pCi3

)
∼ N (0, I2) (7)

The CNN provides Ci indirectly as a 2× 2 weight matrix Wi. This should help,
as the rows of Wi describe independent image-directions of information with a
larger norm meaning more information. In particular, (7) ensures positive semi-
definiteness and facilitates expressing anisotropic situations, e.g. at image edges.

Contrary to the usual assumption in a PnP stage (cf. 5), different pOi are
not stochastically independent. Therefore the CNN stage predicts a correction
factor woj per object instance j that upscales the computed covariance ΣgPnP

assuming every pixel carries the same percentage w−1
oj of “new” information.

Σ = wojΣgPnP (8)

The proposed method can also incorporate per-pixel depth information zi if
available into the gPnP fusion with a depth-pendant to (6):

zi = pCi3 + ηdi, ηdi ∼ N (0, w−2
di ), wdi = (w−2

doi + w−2
dsi)
−1/2 (9)

=⇒ wdi
(
zi − pCi3

)
∼ N (0, 1) (10)

The noise ηdi has two sources: The main RGB-CNN gives a weight wdpi describ-
ing the noise in pOi . A small depth-CNN gives a weight wdsi describing the noise
in zi, identifying e.g. invalid depth data. Both are combined by adding variances.
This way the depth data does not contribute to the recognition but is integral
part of the gPnP-fusion stage not a separate postprocessing as in PoseCNN.

In the gPnP stage the measurement equations (6) and (9) are converted into
13× 13 matrices and added, thereby condensing all information into a globally
valid fixed size matrix MTM without linearization. We obtain an initial guess by
removing the translation with Schur-complement and optimizing the rotation-
only result on a finite set of 22.5◦-spaced rotations. This guess is refined with
Gauss-Newton on the SE(3) manifold of poses, giving the pose T and the pose
covariance ΣgPnP as the inverse of Gauss-Newton’s pseudo-Hessian. N (T,Σ), in
the sense of (3), is the then final posterior distribution.
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Fig. 3. CNN layers, where outputs are ordered according to Fig. 1: Shades from yellow
to orange denote 1× 1, 3× 3 or 5× 5 convolutions; magenta, pairs of 1× 1 followed by
3× 3 convolutions; green, upsampling; blue, global pool and fully connected layers. All
layers with trainable weights are followed by SELU [7] units. Output layers have no
activation. For further details see https://github.com/JesseRK/6D-UI-CNN-Output.

4 CNN Details

The main CNN consists of an encoder-decoder DenseNet-like [4] structure with
horizontal connections. Instead of batch-norm-ReLU we exclusively use SELU [7]
activations. There are a shared encoder path and two different but identical
decoder paths for object points (pOi ) and uncertainty predictions. The latter
forks into heads for Wi, wdoi and woj . All output images have a quarter (x and
y) of their input resolution. More details are shown in Fig. 3, however we see the
overall architecture, not the layer details, as the paper’s contribution.

Instance segmentation can be performed with an arbitrary method since it is
independent of the core object estimation algorithm, and was not the main focus
here. For prediction, we use the segmentation masks as they are calculated by
PoseCNN [23] and omit further description regarding the segmentation proce-
dure. During training we use ground truth segmentation to prevent distracting
dependencies. In general we try to prevent those by training the CNN in three
stages as declared in Section 4.1. In Section 4.2 we describe the secondary CNN
which is only used in case of depth fusion to estimate the sensor’s uncertainty.

4.1 Loss Function and Learning Procedure

Every pose estimation unit (i.e. all except those for segmentation) receives a
gradient only if it points at an object that should be learned (i.e. the loss function
gets masked with the ground truth segmentation). This allows the network to
e.g. predict a pOi under the condition that ui maps to an object point but leaves
the decision if this actually is the case to the segmentation. Therefore all outputs
are masked by the segmentation before they are used as well.

Currently, we train one network per object as DOPE [22] does. We use Adam

[6] with the amsgrad expansion [16] as optimizer and augment our input images
with contrast, Gaussian and brightness noise.

https://github.com/JesseRK/6D-UI-CNN-Output
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Object Points The pOi are exclusively learned first with a mean squared error
loss against ground truth pOi true, which can be obtained by rendering the corre-
sponding model with the ground truth pose. It is supplied with the YCb-data
set and for rendered images we obtained it from the depth image and ground
truth pose. Each axis is separately scaled to the range [−1, 1] for the CNN and
the original scale restored before gPnP.

Pixelwise Uncertainties The uncertainty weights Wi and wdoi are trained
with a negative log likelihood (NLL) loss from the Gaussians they represent.∑

i

− logN (0, (WT
i Wi)

−1)(ηi)− logN (0, w−2
doi)(ηdoi), (11)

The residuals ηi and ηdoi are obtained from (6) and (8) resp. by setting T = Ttrue.
The NLL becomes minimal when the residual distribution corresponds to the
weight-defined covariance.

After freezing the encoder as well as the respective pOi decoder we trained
Wi and wdoi together as a second training stage.

Object Uncertainty The per object correction factor woj for the uncertainty
obtained by gPnP is also trained with an NLL loss

− logN (T,Σ)(Ttrue), (12)

here of the ground truth pose in the predicted Gaussian posterior. (4) is used,
since it is a �-manifold Gaussian.

As third stage, all previously trained layers were frozen and only the woj-head
trained. This training involves the gPnP part. To stabilize the training, Gauss-
Newton uses the ground truth pose as initial guess. This approach is sound for
training, because the initial guess does not influence the limit, as long as it stays
in the basin of convergence for that limit value.

4.2 Depth Sensor Uncertainty CNN

To predict the depth sensor uncertainty we use a separate small network (cf.
Fig. 1, sec. 3), which consists of seven SELU-activated convolutions in a ResNet-
fashion (up to 32 channels) with one down and one up sampling layer. The only
input for this network is the depth image. Since the resulting weights are later
combined with the wdoi the input and output are using its resolution, too. The
network is trained on the NLL loss∑

i

− logN (zi, w
−2
dsi)(zi true), (13)

where the true depth zi true is obtained as pOi true above.



8 J. Richter-Klug and U. Frese

5 Pragmatic gPnP algorithm

Overall, the gPnP stage approximates the posterior distribution of T given (6)
and optionally (9) as a Gaussian in pose space using (3). It is derived as follows:

5.1 Perspective measurements

We multiply (7) by pCi3Wi making it linear in pCi with no Ci in the noise.

η′i =Wi(p
C
i3(ui − u0)− fpCi12) = Wi

(
−f 0 ui1−u01 0
0 −f ui2−u02 0

)
pCi (14)

:=WiAip
C
i = WiAiT

C
R Tp

O
i η′i = pCi3Wiηi ∼ N (0, (pCi3)2I2) (15)

Gaussian measurements can only be fused if their relative covariance is known,
however pCi3, the object point’s camera-Z-coordinate, is unknown. Thus we treat

the covariances as identical, i.e. η′i
approx∼ N (0, z̄2I2), where z̄ is the mean pCi3.

This is a acceptable, since the distance camera to object is usually several times
its size, so the pCi3 differ only by a small factor (3% avg. on our data). The
common factor z̄ is still a-priori unknown, but will be recovered later in (25).

The term TpOi is linear in T and hence can be expressed as a matrix-vector-
product p̄Oi T̄ , if T is flattened as T̄ ∈ R13 and pOi converted into p̄Oi ∈ R4×13:

T̄ = ( T11 T12 T13 T21 T22 T23 T31 T32 T33 1 T13 T23 T33 )
T
, (16)

p̄Oi =

 p1 p2 p3 0 0 0 0 0 0 0 1 0 0
0 0 0 p1 p2 p3 0 0 0 0 0 1 0
0 0 0 0 0 0 p1 p2 p3 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0

 (17)

The flattened transform T̄ consists of 9 rotations entries, followed by a constant 1
and 3 translation entries. Unlike [9,11,26] we directly estimate the transformation
matrix instead of control points. The ordering of T̄ will allow later to separate
the translation as the 3-vector tail.

Now (15) becomes a linear measurement in T̄ with i.i.d. Gaussian noise:

η′i = WiAiT
C
R Tp

O
i = (WiAiT

C
R p̄

O
i )T̄ =: MiT̄ . (18)

Consider the column M•,10 which is multiplied by the fixed T̄10 = 1. From the
pattern in Ai and p̄Oi it is zero, if and only if the translation in TCR is zero. This
shows, that it is needed in general but not for a single camera (TCR = I).

Following the usual least-squares approach, the Mi are stacked as M =
(M1...n) and assuming independence MT̄ ∼ N (0, z̄2I2n). The negative log-
likelihood of T̄ is now expressed by a R13×13 matrix MTM =

∑
iM

T
i Mi as

− log p(T |u1...n, p
O
1...n) + const = z̄2‖MT̄‖2 = z̄2T̄T

(
MTM

)
T̄ , (19)

and shall be minimized for T ∈SE(3). For several cameras, their M ’s are stacked,
resp. their MTM ’s added. So far, the approach resembles [9] except, that we
weight by Wi and estimate T directly instead of control points.
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5.2 Depth measurements

The depth measurements zi are handled similarly multiplying (10) with zi:

η′di = ziwdi
(
zi − pCi3

)
=
(
0 0 −wdizi wdiz2

i

)
pCi =: Bip

C
i (20)

= (BiT
C
R p̄

O
i )T̄ =: MdiT̄ , η′di = ziηdi ∼ N (0, z2

i ) (21)

This makes also η′di
approx∼ N (0, z̄2) so the Mdi can be stacked with Mi or equiva-

lently
∑
iM

T
diMdi is added to MTM . This fuses perspective and depth measure-

ments into one matrix. Even for TCR = I it requires the M•,10 column. Indeed, the
fixed T̄10 entry is necessary whenever scale is defined even without the T ∈ SE(3)
costraint, because without T̄10 any linear equation in T̄ is scale-ambiguous.

5.3 Gauss-Newton iteration

Following the approach from [3] specifically (5) to minimize (19) over T by
Gauss-Newton we need to minimize ‖M T̆�δ‖2 for δ in a linearized way in each
iteration, where T̆ = Tk is the starting point of the current iteration. We therefor
write the linearization (1) for T̆ � δ as a matrix-vector product P ( δ1 ).

T̆ � δ ≈


0 −T̆i3 +T̆i2 0 0 0 T̆i1

i=1..3+T̆i3 0 −T̆i1 0 0 0 T̆i2

−T̆i2 +T̆i1 0 0 0 0 T̆i3

0 0 0 0 0 0 1

0 0 0 T̆i1 T̆i2 T̆i3 T̆i4

}
i=1..3


(
δ
1

)
=: P

(
δ
1

)
(22)

The first block of 3 rows is repeated for i = 1 . . . 3 (rotation in row-wise ordering)
and also the last block (translation). It results a 6-D quadratic minimization∥∥∥MT̆ � δ

∥∥∥2

≈( δ1 )
T (
PTMTMP

)
( δ1 ) =:( δ1 )

T
Q( δ1 ) , (23)

δ∗ = arg min
δ

( δ1 )
T
Q( δ1 ) = −Q−1

1...6,1...6Q1...6,7, Tk+1 = T̆ � δ∗ (24)

and following (5), Tk+1 = T̆ � δ∗ is the result of one Gauss-Newton iteration.
In Gauss-Newton, the final inverse pseudo-Hessian Q−1

1...6,1...6 is the covari-
ance of the estimate [14], here in the sense of (3). However, there is still the
unknown factor z̄2 from (19). In theory, the obtained minimum of (23) should
be measurement dimension minus state dimension on average, i.e. nRow(M)−6.
We use this to estimate a scaling factor for the covariance [14]. It gets rid of z̄2

and any wrong factor in the weights predicted by the CNN. Such a factor arises,
because they are trained on training data and quantify the prediction error on
training data which is lower than on test data (Sec.6, Fig. 6).

TgPnP = T̆ � δ∗, ΣgPnP =
TgPnPT

TMTMTgPnP

nRow(M)− 6
Q−1

1...6,1...6 (25)

As a final remark: The Gauss-Newton iterations are very efficient, because
they work on the fixed size MTM instead of the original measurements. During
training and for all tests we use ten iterations albeit empiric results indicate that
four iterations might already be sufficient for full convergence.
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5.4 Calculation of the initial guess

Iterative algorithms need an initial guess, however we are far from the minimal
case that makes e.g. [9,11,26] so complex. So we decompose into a rotation R̄ ∈
R10 (with the fixed 1) and a translation t ∈ R3 solved by Schur-complement [14].

min
T∈SE(3)

T̄TMTMT̄ = min
R∈SO(3)

min
t∈R3

(
R̄
t

)T( P Q

QT S

)(
R̄
t

)
(26)

= min
R∈SO(3)

R̄T
(
P −QTS−1Q

)
R̄. ≈ min

R∈SOd

R̄T
(
P −QTS−1Q

)
(27)

t∗(R̄) = arg min
t∈R3

(
R̄
t

)T( P Q

QT S

)(
R̄
t

)
= −QS−1R̄ (28)

For (27) we simply try 960 fixed rotations R ∈ SOd precomputed by choosing
the x-axis on the 60 vertices of a truncated icosahedron (football, ≈ 23◦ spaced),
followed by an x-rotation in 22.5◦ steps. With (28) we exclude objects behind
the camera (t∗(R̄)3 ≤ 0) and get the final translation.

6 Experimental Results

We evaluate our system on the YCB-Video dataset [23]. We exclude symmet-
ric objects, because the network cannot be expected to distinguish symmetric
points1. Handling this is future work. For training we use the data provided
by [23] as well as additionally generated data according to the approach by [22].

We follow [23] and utilize the ADD-error as error metric, which is defined for
a model with a finite set of object points M and two poses T, T ′ as

ADD(T, T ′) =
1

|M |
∑
p∈M ||Tp− T ′p||. (29)

In addition, since we estimate uncertainty of the predicted pose, we also

compute the expected ADD-error (ÂDD) from Σ and M by

ÂDD =
1

|M |
∑
p∈M N̂

((
[p]×, I3

)
Σ
(
[p]×, I3

)T )
, a =

√
λ1/λ3, b =

√
λ2/λ3,

N̂(C) ≈
√
λ3

(
0.782 + 0.234(a+ b) + 0.246(a2 + b2)− 0.126ab

)
. (30)

λ1 ≤ λ2 ≤ λ3 are the eigenvalues of C. We cannot explain this approximation
here for lack of space, but have verified it has 1.3% average (2.9% max) error.

Figure 4 shows object-wise accuracy-threshold curves for ADD-errors in the
range of [0 m, 0.1 m] both with and without depth-data. In addition to the actual
errors we show the expected accuracy-threshold curves based on our predicted
uncertainties, which are obtained as the ADD-error from samples from the pos-
terior 6d error distribution N (0, Σ). One can see that the network’s prediction

1 This is, because the network is trained to distinguish each and every object point
based on its appearance (which is the same for multiple points within a symmetrical
object).
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Fig. 4. Accuracy-Treshold curves for evaluated objects with RGB input (red solid
lines) and with additional depth fusion (green solid lines). Dashed lines describe the
expected accuracy based on the predicted uncertainties. The vertical line marks the
two centimeter spot. Due to space we depict the object subset which was used in [22].

about its own accuracy curve looks fairly close to its actual accuracy curve, indi-
cating that the uncertainty information Σ is meaningful. The curves also show
that incorporating depth greatly improves the result.

Table 1 compares the performance PoseCNN [23] and DOPE [22]. It lists
the area under these ADD-accuracy-treshold-curves for all objects. In addition
to our proposed architecture, which utilizes the segmentation of PoseCNN (cf.
4), we also state comparative results using the true segmentation instead. The
intention here is to evaluate the effect of the segmentation algorithm selection.

One can see that there are no big differences between either segmentation
use. An exception makes the object 009 gelatin box where the true segmentation
performs much higher, because the segmentation has some outliers.

Our results fluctuate between different objects. In general our detection per-
formance (without the uncertainty estimation) is the higher the better possible it
is to distinguish all regions of an object. Otherwise, dissenting pOi regions might
accrue, disturbing gPnP (which is strongest in case of 011 banana).

Table 1 also shows our results with depth data fusion compared to PoseCNN
with iterative closest point (ICP). It can be clearly seen that our results benefit
highly from the depth fusion but the more powerful ICP produces overall better
results by the cost of much higher computation time. ICP may also dismiss
known rotations of objects where the 3D-model (without its texture) is rotational
invariant, which results in worse ADD-errors than our depth fusion.
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YCB-Video dataset RGB RGB-D

Object
Method

[23] [22] Seggt Our [23]ICP SegDF
gt OurDF

002 master chef can 50.9 - 56.3 54.6 69.0 78.0 78.1
003 cracker box 51.7 55.9 57.7 57.6 80.7 80.9 82.6
004 sugar box 68.6 75.7 85.5 84.1 97.2 95.8 95.3
005 tomato soup can 66.0 76.1 69.9 68.3 81.6 87.5 86.6
006 mustard bottle 79.9 81.9 79.0 79.0 97.0 89.9 90.0
007 tuna fish can 70.4 - 42.6 43.5 83.1 84.5 84.4
008 pudding box 62.9 - 51.0 50.3 96.6 91.4 92.0
009 gelatin box 75.2 - 86.2 74.8 98.2 96.7 95.5
010 potted meat can 59.6 39.4 50.9 50.3 83.8 72.0 72.1
011 banana 72.3 - 8.6 8.2 91.6 45.6 45.8
019 pitcher base 52.5 - 77.7 77.8 96.7 92.7 92.7
021 bleach cleanser 50.5 - 60.4 59.3 92.3 83.1 82.7
025 mug 57.7 - 69.8 69.1 81.4 88.4 91.0
035 power drill 55.1 - 71.5 71.4 96.9 89.3 88.3

AVG 62.4 (65.8) 61.9 60.6 88.3 84.0 84.1

Table 1. Pose evaluation: Area under ADD-accuracy-treshold-curve ([0,10] cm). Our

method is compared against PoseCNN’s [23] and DOPE’s [22] results - RGB-only and
with depth fusion (DF) or respective ICP. Seggt state comparative results using our’s
with true segmentation.

Fig. 5. Example expected ADD vs. posterior samples
(left) and vs. true ADD-errors (right).

Fig. 6. Cummulative χ2 curves on training (left) and
test images (right). Solid lines show the measured
curves for points and poses resp. The dotted lines show
the theoretical curves, corresponding to perfectly cor-
rect posterior distributions.

Fig. 7. Example Accuracy-
Treshold curves for monoc-
ular (red) and binocular
(green) results.
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Figure 6 investigates the provided uncertainty information. The χ2-error
measures consistency between actual error and estimated uncertainty. For the
training data, both points pOi and pose T uncertainties are good. For the test
data, the CNN underestimates the uncertainty in pOi , naturally, since it is trained
on training data, where the pOi are better. Still the gPnP computes a meaningful
uncertainty from that, because it normalizes with the actual residuum in (25).

Fig.5 shows a distribution of actual vs. expected ADD (by (30)) and how
that would look if the posterior was perfectly correct. Both match qualitatively,
showing that the system mostly knows when it performs badly. Interestingly
actual ADD is never small, when expected ADD is very large.

At last we want to show that our system is able to combine multiple cameras
for one detection. Therefore we generated a small simulated binocular dataset,
whereon we compare our monocular with our binocular results (Fig. 7). One can
see that the binocular results are much higher.

7 Conclusion and Future Work

To our knowledge we are the first to present a 6d pose estimation CNN that
predicts its own uncertainty (per estimate) with meaningful accuracy. Our net-
work system predicts observed object points per pixel as well as per pixel their
uncertainty in the image plane. This information is fused through a gPnP re-
sulting in a pose estimate with covariance. Currently, our pose prediction (not
the uncertainty estimation) can be confused by not clearly distinguishable ob-
ject regions which we want to study in future work including also texture-less
objects, rotation invariance and occlusion, as well as, train a single CNN for all
objects.
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